2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
27 #include <linux/dmi.h>
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/input.h>
31 #include <linux/i2c.h>
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
40 #include "i915_trace.h"
41 #include "drm_dp_helper.h"
42 #include "drm_crtc_helper.h"
43 #include <linux/dma_remapping.h>
45 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
47 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
48 static void intel_update_watermarks(struct drm_device *dev);
49 static void intel_increase_pllclock(struct drm_crtc *crtc);
50 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
73 #define INTEL_P2_NUM 2
74 typedef struct intel_limit intel_limit_t;
76 intel_range_t dot, vco, n, m, m1, m2, p, p1;
78 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
79 int, int, intel_clock_t *, intel_clock_t *);
83 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
86 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87 int target, int refclk, intel_clock_t *match_clock,
88 intel_clock_t *best_clock);
90 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
91 int target, int refclk, intel_clock_t *match_clock,
92 intel_clock_t *best_clock);
95 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *match_clock,
97 intel_clock_t *best_clock);
99 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
100 int target, int refclk, intel_clock_t *match_clock,
101 intel_clock_t *best_clock);
103 static inline u32 /* units of 100MHz */
104 intel_fdi_link_freq(struct drm_device *dev)
107 struct drm_i915_private *dev_priv = dev->dev_private;
108 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
113 static const intel_limit_t intel_limits_i8xx_dvo = {
114 .dot = { .min = 25000, .max = 350000 },
115 .vco = { .min = 930000, .max = 1400000 },
116 .n = { .min = 3, .max = 16 },
117 .m = { .min = 96, .max = 140 },
118 .m1 = { .min = 18, .max = 26 },
119 .m2 = { .min = 6, .max = 16 },
120 .p = { .min = 4, .max = 128 },
121 .p1 = { .min = 2, .max = 33 },
122 .p2 = { .dot_limit = 165000,
123 .p2_slow = 4, .p2_fast = 2 },
124 .find_pll = intel_find_best_PLL,
127 static const intel_limit_t intel_limits_i8xx_lvds = {
128 .dot = { .min = 25000, .max = 350000 },
129 .vco = { .min = 930000, .max = 1400000 },
130 .n = { .min = 3, .max = 16 },
131 .m = { .min = 96, .max = 140 },
132 .m1 = { .min = 18, .max = 26 },
133 .m2 = { .min = 6, .max = 16 },
134 .p = { .min = 4, .max = 128 },
135 .p1 = { .min = 1, .max = 6 },
136 .p2 = { .dot_limit = 165000,
137 .p2_slow = 14, .p2_fast = 7 },
138 .find_pll = intel_find_best_PLL,
141 static const intel_limit_t intel_limits_i9xx_sdvo = {
142 .dot = { .min = 20000, .max = 400000 },
143 .vco = { .min = 1400000, .max = 2800000 },
144 .n = { .min = 1, .max = 6 },
145 .m = { .min = 70, .max = 120 },
146 .m1 = { .min = 10, .max = 22 },
147 .m2 = { .min = 5, .max = 9 },
148 .p = { .min = 5, .max = 80 },
149 .p1 = { .min = 1, .max = 8 },
150 .p2 = { .dot_limit = 200000,
151 .p2_slow = 10, .p2_fast = 5 },
152 .find_pll = intel_find_best_PLL,
155 static const intel_limit_t intel_limits_i9xx_lvds = {
156 .dot = { .min = 20000, .max = 400000 },
157 .vco = { .min = 1400000, .max = 2800000 },
158 .n = { .min = 1, .max = 6 },
159 .m = { .min = 70, .max = 120 },
160 .m1 = { .min = 10, .max = 22 },
161 .m2 = { .min = 5, .max = 9 },
162 .p = { .min = 7, .max = 98 },
163 .p1 = { .min = 1, .max = 8 },
164 .p2 = { .dot_limit = 112000,
165 .p2_slow = 14, .p2_fast = 7 },
166 .find_pll = intel_find_best_PLL,
170 static const intel_limit_t intel_limits_g4x_sdvo = {
171 .dot = { .min = 25000, .max = 270000 },
172 .vco = { .min = 1750000, .max = 3500000},
173 .n = { .min = 1, .max = 4 },
174 .m = { .min = 104, .max = 138 },
175 .m1 = { .min = 17, .max = 23 },
176 .m2 = { .min = 5, .max = 11 },
177 .p = { .min = 10, .max = 30 },
178 .p1 = { .min = 1, .max = 3},
179 .p2 = { .dot_limit = 270000,
183 .find_pll = intel_g4x_find_best_PLL,
186 static const intel_limit_t intel_limits_g4x_hdmi = {
187 .dot = { .min = 22000, .max = 400000 },
188 .vco = { .min = 1750000, .max = 3500000},
189 .n = { .min = 1, .max = 4 },
190 .m = { .min = 104, .max = 138 },
191 .m1 = { .min = 16, .max = 23 },
192 .m2 = { .min = 5, .max = 11 },
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8},
195 .p2 = { .dot_limit = 165000,
196 .p2_slow = 10, .p2_fast = 5 },
197 .find_pll = intel_g4x_find_best_PLL,
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201 .dot = { .min = 20000, .max = 115000 },
202 .vco = { .min = 1750000, .max = 3500000 },
203 .n = { .min = 1, .max = 3 },
204 .m = { .min = 104, .max = 138 },
205 .m1 = { .min = 17, .max = 23 },
206 .m2 = { .min = 5, .max = 11 },
207 .p = { .min = 28, .max = 112 },
208 .p1 = { .min = 2, .max = 8 },
209 .p2 = { .dot_limit = 0,
210 .p2_slow = 14, .p2_fast = 14
212 .find_pll = intel_g4x_find_best_PLL,
215 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
216 .dot = { .min = 80000, .max = 224000 },
217 .vco = { .min = 1750000, .max = 3500000 },
218 .n = { .min = 1, .max = 3 },
219 .m = { .min = 104, .max = 138 },
220 .m1 = { .min = 17, .max = 23 },
221 .m2 = { .min = 5, .max = 11 },
222 .p = { .min = 14, .max = 42 },
223 .p1 = { .min = 2, .max = 6 },
224 .p2 = { .dot_limit = 0,
225 .p2_slow = 7, .p2_fast = 7
227 .find_pll = intel_g4x_find_best_PLL,
230 static const intel_limit_t intel_limits_g4x_display_port = {
231 .dot = { .min = 161670, .max = 227000 },
232 .vco = { .min = 1750000, .max = 3500000},
233 .n = { .min = 1, .max = 2 },
234 .m = { .min = 97, .max = 108 },
235 .m1 = { .min = 0x10, .max = 0x12 },
236 .m2 = { .min = 0x05, .max = 0x06 },
237 .p = { .min = 10, .max = 20 },
238 .p1 = { .min = 1, .max = 2},
239 .p2 = { .dot_limit = 0,
240 .p2_slow = 10, .p2_fast = 10 },
241 .find_pll = intel_find_pll_g4x_dp,
244 static const intel_limit_t intel_limits_pineview_sdvo = {
245 .dot = { .min = 20000, .max = 400000},
246 .vco = { .min = 1700000, .max = 3500000 },
247 /* Pineview's Ncounter is a ring counter */
248 .n = { .min = 3, .max = 6 },
249 .m = { .min = 2, .max = 256 },
250 /* Pineview only has one combined m divider, which we treat as m2. */
251 .m1 = { .min = 0, .max = 0 },
252 .m2 = { .min = 0, .max = 254 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 200000,
256 .p2_slow = 10, .p2_fast = 5 },
257 .find_pll = intel_find_best_PLL,
260 static const intel_limit_t intel_limits_pineview_lvds = {
261 .dot = { .min = 20000, .max = 400000 },
262 .vco = { .min = 1700000, .max = 3500000 },
263 .n = { .min = 3, .max = 6 },
264 .m = { .min = 2, .max = 256 },
265 .m1 = { .min = 0, .max = 0 },
266 .m2 = { .min = 0, .max = 254 },
267 .p = { .min = 7, .max = 112 },
268 .p1 = { .min = 1, .max = 8 },
269 .p2 = { .dot_limit = 112000,
270 .p2_slow = 14, .p2_fast = 14 },
271 .find_pll = intel_find_best_PLL,
274 /* Ironlake / Sandybridge
276 * We calculate clock using (register_value + 2) for N/M1/M2, so here
277 * the range value for them is (actual_value - 2).
279 static const intel_limit_t intel_limits_ironlake_dac = {
280 .dot = { .min = 25000, .max = 350000 },
281 .vco = { .min = 1760000, .max = 3510000 },
282 .n = { .min = 1, .max = 5 },
283 .m = { .min = 79, .max = 127 },
284 .m1 = { .min = 12, .max = 22 },
285 .m2 = { .min = 5, .max = 9 },
286 .p = { .min = 5, .max = 80 },
287 .p1 = { .min = 1, .max = 8 },
288 .p2 = { .dot_limit = 225000,
289 .p2_slow = 10, .p2_fast = 5 },
290 .find_pll = intel_g4x_find_best_PLL,
293 static const intel_limit_t intel_limits_ironlake_single_lvds = {
294 .dot = { .min = 25000, .max = 350000 },
295 .vco = { .min = 1760000, .max = 3510000 },
296 .n = { .min = 1, .max = 3 },
297 .m = { .min = 79, .max = 118 },
298 .m1 = { .min = 12, .max = 22 },
299 .m2 = { .min = 5, .max = 9 },
300 .p = { .min = 28, .max = 112 },
301 .p1 = { .min = 2, .max = 8 },
302 .p2 = { .dot_limit = 225000,
303 .p2_slow = 14, .p2_fast = 14 },
304 .find_pll = intel_g4x_find_best_PLL,
307 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 127 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 14, .max = 56 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 7, .p2_fast = 7 },
318 .find_pll = intel_g4x_find_best_PLL,
321 /* LVDS 100mhz refclk limits. */
322 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
323 .dot = { .min = 25000, .max = 350000 },
324 .vco = { .min = 1760000, .max = 3510000 },
325 .n = { .min = 1, .max = 2 },
326 .m = { .min = 79, .max = 126 },
327 .m1 = { .min = 12, .max = 22 },
328 .m2 = { .min = 5, .max = 9 },
329 .p = { .min = 28, .max = 112 },
330 .p1 = { .min = 2, .max = 8 },
331 .p2 = { .dot_limit = 225000,
332 .p2_slow = 14, .p2_fast = 14 },
333 .find_pll = intel_g4x_find_best_PLL,
336 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
337 .dot = { .min = 25000, .max = 350000 },
338 .vco = { .min = 1760000, .max = 3510000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 79, .max = 126 },
341 .m1 = { .min = 12, .max = 22 },
342 .m2 = { .min = 5, .max = 9 },
343 .p = { .min = 14, .max = 42 },
344 .p1 = { .min = 2, .max = 6 },
345 .p2 = { .dot_limit = 225000,
346 .p2_slow = 7, .p2_fast = 7 },
347 .find_pll = intel_g4x_find_best_PLL,
350 static const intel_limit_t intel_limits_ironlake_display_port = {
351 .dot = { .min = 25000, .max = 350000 },
352 .vco = { .min = 1760000, .max = 3510000},
353 .n = { .min = 1, .max = 2 },
354 .m = { .min = 81, .max = 90 },
355 .m1 = { .min = 12, .max = 22 },
356 .m2 = { .min = 5, .max = 9 },
357 .p = { .min = 10, .max = 20 },
358 .p1 = { .min = 1, .max = 2},
359 .p2 = { .dot_limit = 0,
360 .p2_slow = 10, .p2_fast = 10 },
361 .find_pll = intel_find_pll_ironlake_dp,
364 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
369 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
370 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
371 DRM_ERROR("DPIO idle wait timed out\n");
375 I915_WRITE(DPIO_REG, reg);
376 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
378 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
379 DRM_ERROR("DPIO read wait timed out\n");
382 val = I915_READ(DPIO_DATA);
385 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
389 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
394 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
395 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
396 DRM_ERROR("DPIO idle wait timed out\n");
400 I915_WRITE(DPIO_DATA, val);
401 I915_WRITE(DPIO_REG, reg);
402 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
404 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
405 DRM_ERROR("DPIO write wait timed out\n");
408 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
411 static void vlv_init_dpio(struct drm_device *dev)
413 struct drm_i915_private *dev_priv = dev->dev_private;
415 /* Reset the DPIO config */
416 I915_WRITE(DPIO_CTL, 0);
417 POSTING_READ(DPIO_CTL);
418 I915_WRITE(DPIO_CTL, 1);
419 POSTING_READ(DPIO_CTL);
422 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
424 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
428 static const struct dmi_system_id intel_dual_link_lvds[] = {
430 .callback = intel_dual_link_lvds_callback,
431 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
433 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
434 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
437 { } /* terminating entry */
440 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
445 /* use the module option value if specified */
446 if (i915_lvds_channel_mode > 0)
447 return i915_lvds_channel_mode == 2;
449 if (dmi_check_system(intel_dual_link_lvds))
452 if (dev_priv->lvds_val)
453 val = dev_priv->lvds_val;
455 /* BIOS should set the proper LVDS register value at boot, but
456 * in reality, it doesn't set the value when the lid is closed;
457 * we need to check "the value to be set" in VBT when LVDS
458 * register is uninitialized.
460 val = I915_READ(reg);
461 if (!(val & ~LVDS_DETECTED))
462 val = dev_priv->bios_lvds_val;
463 dev_priv->lvds_val = val;
465 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
468 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
471 struct drm_device *dev = crtc->dev;
472 struct drm_i915_private *dev_priv = dev->dev_private;
473 const intel_limit_t *limit;
475 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
476 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
477 /* LVDS dual channel */
478 if (refclk == 100000)
479 limit = &intel_limits_ironlake_dual_lvds_100m;
481 limit = &intel_limits_ironlake_dual_lvds;
483 if (refclk == 100000)
484 limit = &intel_limits_ironlake_single_lvds_100m;
486 limit = &intel_limits_ironlake_single_lvds;
488 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
490 limit = &intel_limits_ironlake_display_port;
492 limit = &intel_limits_ironlake_dac;
497 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
499 struct drm_device *dev = crtc->dev;
500 struct drm_i915_private *dev_priv = dev->dev_private;
501 const intel_limit_t *limit;
503 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
504 if (is_dual_link_lvds(dev_priv, LVDS))
505 /* LVDS with dual channel */
506 limit = &intel_limits_g4x_dual_channel_lvds;
508 /* LVDS with dual channel */
509 limit = &intel_limits_g4x_single_channel_lvds;
510 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
511 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
512 limit = &intel_limits_g4x_hdmi;
513 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
514 limit = &intel_limits_g4x_sdvo;
515 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
516 limit = &intel_limits_g4x_display_port;
517 } else /* The option is for other outputs */
518 limit = &intel_limits_i9xx_sdvo;
523 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
525 struct drm_device *dev = crtc->dev;
526 const intel_limit_t *limit;
528 if (HAS_PCH_SPLIT(dev))
529 limit = intel_ironlake_limit(crtc, refclk);
530 else if (IS_G4X(dev)) {
531 limit = intel_g4x_limit(crtc);
532 } else if (IS_PINEVIEW(dev)) {
533 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_pineview_lvds;
536 limit = &intel_limits_pineview_sdvo;
537 } else if (!IS_GEN2(dev)) {
538 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_i9xx_lvds;
541 limit = &intel_limits_i9xx_sdvo;
543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
544 limit = &intel_limits_i8xx_lvds;
546 limit = &intel_limits_i8xx_dvo;
551 /* m1 is reserved as 0 in Pineview, n is a ring counter */
552 static void pineview_clock(int refclk, intel_clock_t *clock)
554 clock->m = clock->m2 + 2;
555 clock->p = clock->p1 * clock->p2;
556 clock->vco = refclk * clock->m / clock->n;
557 clock->dot = clock->vco / clock->p;
560 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
562 if (IS_PINEVIEW(dev)) {
563 pineview_clock(refclk, clock);
566 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
567 clock->p = clock->p1 * clock->p2;
568 clock->vco = refclk * clock->m / (clock->n + 2);
569 clock->dot = clock->vco / clock->p;
573 * Returns whether any output on the specified pipe is of the specified type
575 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
577 struct drm_device *dev = crtc->dev;
578 struct drm_mode_config *mode_config = &dev->mode_config;
579 struct intel_encoder *encoder;
581 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
582 if (encoder->base.crtc == crtc && encoder->type == type)
588 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
590 * Returns whether the given set of divisors are valid for a given refclk with
591 * the given connectors.
594 static bool intel_PLL_is_valid(struct drm_device *dev,
595 const intel_limit_t *limit,
596 const intel_clock_t *clock)
598 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
599 INTELPllInvalid("p1 out of range\n");
600 if (clock->p < limit->p.min || limit->p.max < clock->p)
601 INTELPllInvalid("p out of range\n");
602 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
603 INTELPllInvalid("m2 out of range\n");
604 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
605 INTELPllInvalid("m1 out of range\n");
606 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
607 INTELPllInvalid("m1 <= m2\n");
608 if (clock->m < limit->m.min || limit->m.max < clock->m)
609 INTELPllInvalid("m out of range\n");
610 if (clock->n < limit->n.min || limit->n.max < clock->n)
611 INTELPllInvalid("n out of range\n");
612 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
613 INTELPllInvalid("vco out of range\n");
614 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
615 * connector, etc., rather than just a single range.
617 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
618 INTELPllInvalid("dot out of range\n");
624 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
625 int target, int refclk, intel_clock_t *match_clock,
626 intel_clock_t *best_clock)
629 struct drm_device *dev = crtc->dev;
630 struct drm_i915_private *dev_priv = dev->dev_private;
634 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
635 (I915_READ(LVDS)) != 0) {
637 * For LVDS, if the panel is on, just rely on its current
638 * settings for dual-channel. We haven't figured out how to
639 * reliably set up different single/dual channel state, if we
642 if (is_dual_link_lvds(dev_priv, LVDS))
643 clock.p2 = limit->p2.p2_fast;
645 clock.p2 = limit->p2.p2_slow;
647 if (target < limit->p2.dot_limit)
648 clock.p2 = limit->p2.p2_slow;
650 clock.p2 = limit->p2.p2_fast;
653 memset(best_clock, 0, sizeof(*best_clock));
655 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
657 for (clock.m2 = limit->m2.min;
658 clock.m2 <= limit->m2.max; clock.m2++) {
659 /* m1 is always 0 in Pineview */
660 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
662 for (clock.n = limit->n.min;
663 clock.n <= limit->n.max; clock.n++) {
664 for (clock.p1 = limit->p1.min;
665 clock.p1 <= limit->p1.max; clock.p1++) {
668 intel_clock(dev, refclk, &clock);
669 if (!intel_PLL_is_valid(dev, limit,
673 clock.p != match_clock->p)
676 this_err = abs(clock.dot - target);
677 if (this_err < err) {
686 return (err != target);
690 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
691 int target, int refclk, intel_clock_t *match_clock,
692 intel_clock_t *best_clock)
694 struct drm_device *dev = crtc->dev;
695 struct drm_i915_private *dev_priv = dev->dev_private;
699 /* approximately equals target * 0.00585 */
700 int err_most = (target >> 8) + (target >> 9);
703 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
706 if (HAS_PCH_SPLIT(dev))
710 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
712 clock.p2 = limit->p2.p2_fast;
714 clock.p2 = limit->p2.p2_slow;
716 if (target < limit->p2.dot_limit)
717 clock.p2 = limit->p2.p2_slow;
719 clock.p2 = limit->p2.p2_fast;
722 memset(best_clock, 0, sizeof(*best_clock));
723 max_n = limit->n.max;
724 /* based on hardware requirement, prefer smaller n to precision */
725 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
726 /* based on hardware requirement, prefere larger m1,m2 */
727 for (clock.m1 = limit->m1.max;
728 clock.m1 >= limit->m1.min; clock.m1--) {
729 for (clock.m2 = limit->m2.max;
730 clock.m2 >= limit->m2.min; clock.m2--) {
731 for (clock.p1 = limit->p1.max;
732 clock.p1 >= limit->p1.min; clock.p1--) {
735 intel_clock(dev, refclk, &clock);
736 if (!intel_PLL_is_valid(dev, limit,
740 clock.p != match_clock->p)
743 this_err = abs(clock.dot - target);
744 if (this_err < err_most) {
758 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
759 int target, int refclk, intel_clock_t *match_clock,
760 intel_clock_t *best_clock)
762 struct drm_device *dev = crtc->dev;
765 if (target < 200000) {
778 intel_clock(dev, refclk, &clock);
779 memcpy(best_clock, &clock, sizeof(intel_clock_t));
783 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
785 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
786 int target, int refclk, intel_clock_t *match_clock,
787 intel_clock_t *best_clock)
790 if (target < 200000) {
803 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
804 clock.p = (clock.p1 * clock.p2);
805 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
807 memcpy(best_clock, &clock, sizeof(intel_clock_t));
812 * intel_wait_for_vblank - wait for vblank on a given pipe
814 * @pipe: pipe to wait for
816 * Wait for vblank to occur on a given pipe. Needed for various bits of
819 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
821 struct drm_i915_private *dev_priv = dev->dev_private;
822 int pipestat_reg = PIPESTAT(pipe);
824 /* Clear existing vblank status. Note this will clear any other
825 * sticky status fields as well.
827 * This races with i915_driver_irq_handler() with the result
828 * that either function could miss a vblank event. Here it is not
829 * fatal, as we will either wait upon the next vblank interrupt or
830 * timeout. Generally speaking intel_wait_for_vblank() is only
831 * called during modeset at which time the GPU should be idle and
832 * should *not* be performing page flips and thus not waiting on
834 * Currently, the result of us stealing a vblank from the irq
835 * handler is that a single frame will be skipped during swapbuffers.
837 I915_WRITE(pipestat_reg,
838 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
840 /* Wait for vblank interrupt bit to set */
841 if (wait_for(I915_READ(pipestat_reg) &
842 PIPE_VBLANK_INTERRUPT_STATUS,
844 DRM_DEBUG_KMS("vblank wait timed out\n");
848 * intel_wait_for_pipe_off - wait for pipe to turn off
850 * @pipe: pipe to wait for
852 * After disabling a pipe, we can't wait for vblank in the usual way,
853 * spinning on the vblank interrupt status bit, since we won't actually
854 * see an interrupt when the pipe is disabled.
857 * wait for the pipe register state bit to turn off
860 * wait for the display line value to settle (it usually
861 * ends up stopping at the start of the next frame).
864 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
866 struct drm_i915_private *dev_priv = dev->dev_private;
868 if (INTEL_INFO(dev)->gen >= 4) {
869 int reg = PIPECONF(pipe);
871 /* Wait for the Pipe State to go off */
872 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
874 DRM_DEBUG_KMS("pipe_off wait timed out\n");
877 int reg = PIPEDSL(pipe);
878 unsigned long timeout = jiffies + msecs_to_jiffies(100);
880 /* Wait for the display line to settle */
882 last_line = I915_READ(reg) & DSL_LINEMASK;
884 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
885 time_after(timeout, jiffies));
886 if (time_after(jiffies, timeout))
887 DRM_DEBUG_KMS("pipe_off wait timed out\n");
891 static const char *state_string(bool enabled)
893 return enabled ? "on" : "off";
896 /* Only for pre-ILK configs */
897 static void assert_pll(struct drm_i915_private *dev_priv,
898 enum pipe pipe, bool state)
905 val = I915_READ(reg);
906 cur_state = !!(val & DPLL_VCO_ENABLE);
907 WARN(cur_state != state,
908 "PLL state assertion failure (expected %s, current %s)\n",
909 state_string(state), state_string(cur_state));
911 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
912 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
915 static void assert_pch_pll(struct drm_i915_private *dev_priv,
916 enum pipe pipe, bool state)
922 if (HAS_PCH_CPT(dev_priv->dev)) {
925 pch_dpll = I915_READ(PCH_DPLL_SEL);
927 /* Make sure the selected PLL is enabled to the transcoder */
928 WARN(!((pch_dpll >> (4 * pipe)) & 8),
929 "transcoder %d PLL not enabled\n", pipe);
931 /* Convert the transcoder pipe number to a pll pipe number */
932 pipe = (pch_dpll >> (4 * pipe)) & 1;
935 reg = PCH_DPLL(pipe);
936 val = I915_READ(reg);
937 cur_state = !!(val & DPLL_VCO_ENABLE);
938 WARN(cur_state != state,
939 "PCH PLL state assertion failure (expected %s, current %s)\n",
940 state_string(state), state_string(cur_state));
942 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
943 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
945 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
946 enum pipe pipe, bool state)
952 reg = FDI_TX_CTL(pipe);
953 val = I915_READ(reg);
954 cur_state = !!(val & FDI_TX_ENABLE);
955 WARN(cur_state != state,
956 "FDI TX state assertion failure (expected %s, current %s)\n",
957 state_string(state), state_string(cur_state));
959 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
960 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
962 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
963 enum pipe pipe, bool state)
969 reg = FDI_RX_CTL(pipe);
970 val = I915_READ(reg);
971 cur_state = !!(val & FDI_RX_ENABLE);
972 WARN(cur_state != state,
973 "FDI RX state assertion failure (expected %s, current %s)\n",
974 state_string(state), state_string(cur_state));
976 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
977 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
979 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
985 /* ILK FDI PLL is always enabled */
986 if (dev_priv->info->gen == 5)
989 reg = FDI_TX_CTL(pipe);
990 val = I915_READ(reg);
991 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
994 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1000 reg = FDI_RX_CTL(pipe);
1001 val = I915_READ(reg);
1002 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1005 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1008 int pp_reg, lvds_reg;
1010 enum pipe panel_pipe = PIPE_A;
1013 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1014 pp_reg = PCH_PP_CONTROL;
1015 lvds_reg = PCH_LVDS;
1017 pp_reg = PP_CONTROL;
1021 val = I915_READ(pp_reg);
1022 if (!(val & PANEL_POWER_ON) ||
1023 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1026 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1027 panel_pipe = PIPE_B;
1029 WARN(panel_pipe == pipe && locked,
1030 "panel assertion failure, pipe %c regs locked\n",
1034 void assert_pipe(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, bool state)
1041 /* if we need the pipe A quirk it must be always on */
1042 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1045 reg = PIPECONF(pipe);
1046 val = I915_READ(reg);
1047 cur_state = !!(val & PIPECONF_ENABLE);
1048 WARN(cur_state != state,
1049 "pipe %c assertion failure (expected %s, current %s)\n",
1050 pipe_name(pipe), state_string(state), state_string(cur_state));
1053 static void assert_plane(struct drm_i915_private *dev_priv,
1054 enum plane plane, bool state)
1060 reg = DSPCNTR(plane);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1063 WARN(cur_state != state,
1064 "plane %c assertion failure (expected %s, current %s)\n",
1065 plane_name(plane), state_string(state), state_string(cur_state));
1068 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1069 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1071 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1078 /* Planes are fixed to pipes on ILK+ */
1079 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080 reg = DSPCNTR(pipe);
1081 val = I915_READ(reg);
1082 WARN((val & DISPLAY_PLANE_ENABLE),
1083 "plane %c assertion failure, should be disabled but not\n",
1088 /* Need to check both planes against the pipe */
1089 for (i = 0; i < 2; i++) {
1091 val = I915_READ(reg);
1092 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1093 DISPPLANE_SEL_PIPE_SHIFT;
1094 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1095 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1096 plane_name(i), pipe_name(pipe));
1100 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1105 val = I915_READ(PCH_DREF_CONTROL);
1106 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1107 DREF_SUPERSPREAD_SOURCE_MASK));
1108 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1111 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1118 reg = TRANSCONF(pipe);
1119 val = I915_READ(reg);
1120 enabled = !!(val & TRANS_ENABLE);
1122 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1126 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1127 enum pipe pipe, u32 port_sel, u32 val)
1129 if ((val & DP_PORT_EN) == 0)
1132 if (HAS_PCH_CPT(dev_priv->dev)) {
1133 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1134 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1135 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1138 if ((val & DP_PIPE_MASK) != (pipe << 30))
1144 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, u32 val)
1147 if ((val & PORT_ENABLE) == 0)
1150 if (HAS_PCH_CPT(dev_priv->dev)) {
1151 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1154 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1160 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe, u32 val)
1163 if ((val & LVDS_PORT_EN) == 0)
1166 if (HAS_PCH_CPT(dev_priv->dev)) {
1167 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1170 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1176 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, u32 val)
1179 if ((val & ADPA_DAC_ENABLE) == 0)
1181 if (HAS_PCH_CPT(dev_priv->dev)) {
1182 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1185 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1191 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, int reg, u32 port_sel)
1194 u32 val = I915_READ(reg);
1195 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1196 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1197 reg, pipe_name(pipe));
1200 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, int reg)
1203 u32 val = I915_READ(reg);
1204 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1205 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1206 reg, pipe_name(pipe));
1209 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1215 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1216 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1217 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1220 val = I915_READ(reg);
1221 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1222 "PCH VGA enabled on transcoder %c, should be disabled\n",
1226 val = I915_READ(reg);
1227 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1228 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1231 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1232 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1233 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1237 * intel_enable_pll - enable a PLL
1238 * @dev_priv: i915 private structure
1239 * @pipe: pipe PLL to enable
1241 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1242 * make sure the PLL reg is writable first though, since the panel write
1243 * protect mechanism may be enabled.
1245 * Note! This is for pre-ILK only.
1247 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1252 /* No really, not for ILK+ */
1253 BUG_ON(dev_priv->info->gen >= 5);
1255 /* PLL is protected by panel, make sure we can write it */
1256 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1257 assert_panel_unlocked(dev_priv, pipe);
1260 val = I915_READ(reg);
1261 val |= DPLL_VCO_ENABLE;
1263 /* We do this three times for luck */
1264 I915_WRITE(reg, val);
1266 udelay(150); /* wait for warmup */
1267 I915_WRITE(reg, val);
1269 udelay(150); /* wait for warmup */
1270 I915_WRITE(reg, val);
1272 udelay(150); /* wait for warmup */
1276 * intel_disable_pll - disable a PLL
1277 * @dev_priv: i915 private structure
1278 * @pipe: pipe PLL to disable
1280 * Disable the PLL for @pipe, making sure the pipe is off first.
1282 * Note! This is for pre-ILK only.
1284 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1289 /* Don't disable pipe A or pipe A PLLs if needed */
1290 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1293 /* Make sure the pipe isn't still relying on us */
1294 assert_pipe_disabled(dev_priv, pipe);
1297 val = I915_READ(reg);
1298 val &= ~DPLL_VCO_ENABLE;
1299 I915_WRITE(reg, val);
1304 * intel_enable_pch_pll - enable PCH PLL
1305 * @dev_priv: i915 private structure
1306 * @pipe: pipe PLL to enable
1308 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1309 * drives the transcoder clock.
1311 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1320 /* PCH only available on ILK+ */
1321 BUG_ON(dev_priv->info->gen < 5);
1323 /* PCH refclock must be enabled first */
1324 assert_pch_refclk_enabled(dev_priv);
1326 reg = PCH_DPLL(pipe);
1327 val = I915_READ(reg);
1328 val |= DPLL_VCO_ENABLE;
1329 I915_WRITE(reg, val);
1334 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1338 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1339 pll_sel = TRANSC_DPLL_ENABLE;
1344 /* PCH only available on ILK+ */
1345 BUG_ON(dev_priv->info->gen < 5);
1347 /* Make sure transcoder isn't still depending on us */
1348 assert_transcoder_disabled(dev_priv, pipe);
1351 pll_sel |= TRANSC_DPLLA_SEL;
1353 pll_sel |= TRANSC_DPLLB_SEL;
1356 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1359 reg = PCH_DPLL(pipe);
1360 val = I915_READ(reg);
1361 val &= ~DPLL_VCO_ENABLE;
1362 I915_WRITE(reg, val);
1367 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1371 u32 val, pipeconf_val;
1372 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1374 /* PCH only available on ILK+ */
1375 BUG_ON(dev_priv->info->gen < 5);
1377 /* Make sure PCH DPLL is enabled */
1378 assert_pch_pll_enabled(dev_priv, pipe);
1380 /* FDI must be feeding us bits for PCH ports */
1381 assert_fdi_tx_enabled(dev_priv, pipe);
1382 assert_fdi_rx_enabled(dev_priv, pipe);
1384 reg = TRANSCONF(pipe);
1385 val = I915_READ(reg);
1386 pipeconf_val = I915_READ(PIPECONF(pipe));
1388 if (HAS_PCH_IBX(dev_priv->dev)) {
1390 * make the BPC in transcoder be consistent with
1391 * that in pipeconf reg.
1393 val &= ~PIPE_BPC_MASK;
1394 val |= pipeconf_val & PIPE_BPC_MASK;
1397 val &= ~TRANS_INTERLACE_MASK;
1398 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1399 if (HAS_PCH_IBX(dev_priv->dev) &&
1400 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1401 val |= TRANS_LEGACY_INTERLACED_ILK;
1403 val |= TRANS_INTERLACED;
1405 val |= TRANS_PROGRESSIVE;
1407 I915_WRITE(reg, val | TRANS_ENABLE);
1408 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1409 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1412 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1418 /* FDI relies on the transcoder */
1419 assert_fdi_tx_disabled(dev_priv, pipe);
1420 assert_fdi_rx_disabled(dev_priv, pipe);
1422 /* Ports must be off as well */
1423 assert_pch_ports_disabled(dev_priv, pipe);
1425 reg = TRANSCONF(pipe);
1426 val = I915_READ(reg);
1427 val &= ~TRANS_ENABLE;
1428 I915_WRITE(reg, val);
1429 /* wait for PCH transcoder off, transcoder state */
1430 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1431 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1435 * intel_enable_pipe - enable a pipe, asserting requirements
1436 * @dev_priv: i915 private structure
1437 * @pipe: pipe to enable
1438 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1440 * Enable @pipe, making sure that various hardware specific requirements
1441 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1443 * @pipe should be %PIPE_A or %PIPE_B.
1445 * Will wait until the pipe is actually running (i.e. first vblank) before
1448 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1455 * A pipe without a PLL won't actually be able to drive bits from
1456 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1459 if (!HAS_PCH_SPLIT(dev_priv->dev))
1460 assert_pll_enabled(dev_priv, pipe);
1463 /* if driving the PCH, we need FDI enabled */
1464 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1465 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1467 /* FIXME: assert CPU port conditions for SNB+ */
1470 reg = PIPECONF(pipe);
1471 val = I915_READ(reg);
1472 if (val & PIPECONF_ENABLE)
1475 I915_WRITE(reg, val | PIPECONF_ENABLE);
1476 intel_wait_for_vblank(dev_priv->dev, pipe);
1480 * intel_disable_pipe - disable a pipe, asserting requirements
1481 * @dev_priv: i915 private structure
1482 * @pipe: pipe to disable
1484 * Disable @pipe, making sure that various hardware specific requirements
1485 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1487 * @pipe should be %PIPE_A or %PIPE_B.
1489 * Will wait until the pipe has shut down before returning.
1491 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1498 * Make sure planes won't keep trying to pump pixels to us,
1499 * or we might hang the display.
1501 assert_planes_disabled(dev_priv, pipe);
1503 /* Don't disable pipe A or pipe A PLLs if needed */
1504 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1507 reg = PIPECONF(pipe);
1508 val = I915_READ(reg);
1509 if ((val & PIPECONF_ENABLE) == 0)
1512 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1513 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1517 * Plane regs are double buffered, going from enabled->disabled needs a
1518 * trigger in order to latch. The display address reg provides this.
1520 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1523 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1524 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1528 * intel_enable_plane - enable a display plane on a given pipe
1529 * @dev_priv: i915 private structure
1530 * @plane: plane to enable
1531 * @pipe: pipe being fed
1533 * Enable @plane on @pipe, making sure that @pipe is running first.
1535 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1536 enum plane plane, enum pipe pipe)
1541 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1542 assert_pipe_enabled(dev_priv, pipe);
1544 reg = DSPCNTR(plane);
1545 val = I915_READ(reg);
1546 if (val & DISPLAY_PLANE_ENABLE)
1549 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1550 intel_flush_display_plane(dev_priv, plane);
1551 intel_wait_for_vblank(dev_priv->dev, pipe);
1555 * intel_disable_plane - disable a display plane
1556 * @dev_priv: i915 private structure
1557 * @plane: plane to disable
1558 * @pipe: pipe consuming the data
1560 * Disable @plane; should be an independent operation.
1562 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1563 enum plane plane, enum pipe pipe)
1568 reg = DSPCNTR(plane);
1569 val = I915_READ(reg);
1570 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1573 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1574 intel_flush_display_plane(dev_priv, plane);
1575 intel_wait_for_vblank(dev_priv->dev, pipe);
1578 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1579 enum pipe pipe, int reg, u32 port_sel)
1581 u32 val = I915_READ(reg);
1582 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1583 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1584 I915_WRITE(reg, val & ~DP_PORT_EN);
1588 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1589 enum pipe pipe, int reg)
1591 u32 val = I915_READ(reg);
1592 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1593 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1595 I915_WRITE(reg, val & ~PORT_ENABLE);
1599 /* Disable any ports connected to this transcoder */
1600 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1605 val = I915_READ(PCH_PP_CONTROL);
1606 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1608 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1609 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1610 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1613 val = I915_READ(reg);
1614 if (adpa_pipe_enabled(dev_priv, val, pipe))
1615 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1618 val = I915_READ(reg);
1619 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1620 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1621 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1626 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1627 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1628 disable_pch_hdmi(dev_priv, pipe, HDMID);
1631 static void i8xx_disable_fbc(struct drm_device *dev)
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1636 /* Disable compression */
1637 fbc_ctl = I915_READ(FBC_CONTROL);
1638 if ((fbc_ctl & FBC_CTL_EN) == 0)
1641 fbc_ctl &= ~FBC_CTL_EN;
1642 I915_WRITE(FBC_CONTROL, fbc_ctl);
1644 /* Wait for compressing bit to clear */
1645 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1646 DRM_DEBUG_KMS("FBC idle timed out\n");
1650 DRM_DEBUG_KMS("disabled FBC\n");
1653 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1655 struct drm_device *dev = crtc->dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 struct drm_framebuffer *fb = crtc->fb;
1658 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1659 struct drm_i915_gem_object *obj = intel_fb->obj;
1660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1663 u32 fbc_ctl, fbc_ctl2;
1665 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1666 if (fb->pitches[0] < cfb_pitch)
1667 cfb_pitch = fb->pitches[0];
1669 /* FBC_CTL wants 64B units */
1670 cfb_pitch = (cfb_pitch / 64) - 1;
1671 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1673 /* Clear old tags */
1674 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1675 I915_WRITE(FBC_TAG + (i * 4), 0);
1678 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1680 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1681 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1684 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1686 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1687 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1688 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1689 fbc_ctl |= obj->fence_reg;
1690 I915_WRITE(FBC_CONTROL, fbc_ctl);
1692 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1693 cfb_pitch, crtc->y, intel_crtc->plane);
1696 static bool i8xx_fbc_enabled(struct drm_device *dev)
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1700 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1703 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1705 struct drm_device *dev = crtc->dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707 struct drm_framebuffer *fb = crtc->fb;
1708 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1709 struct drm_i915_gem_object *obj = intel_fb->obj;
1710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1711 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1712 unsigned long stall_watermark = 200;
1715 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1716 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1717 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1719 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1720 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1721 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1722 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1725 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1727 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1730 static void g4x_disable_fbc(struct drm_device *dev)
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1735 /* Disable compression */
1736 dpfc_ctl = I915_READ(DPFC_CONTROL);
1737 if (dpfc_ctl & DPFC_CTL_EN) {
1738 dpfc_ctl &= ~DPFC_CTL_EN;
1739 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1741 DRM_DEBUG_KMS("disabled FBC\n");
1745 static bool g4x_fbc_enabled(struct drm_device *dev)
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1749 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1752 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1757 /* Make sure blitter notifies FBC of writes */
1758 gen6_gt_force_wake_get(dev_priv);
1759 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1760 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1761 GEN6_BLITTER_LOCK_SHIFT;
1762 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1763 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1764 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1765 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1766 GEN6_BLITTER_LOCK_SHIFT);
1767 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1768 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1769 gen6_gt_force_wake_put(dev_priv);
1772 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1774 struct drm_device *dev = crtc->dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 struct drm_framebuffer *fb = crtc->fb;
1777 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1778 struct drm_i915_gem_object *obj = intel_fb->obj;
1779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1780 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1781 unsigned long stall_watermark = 200;
1784 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1785 dpfc_ctl &= DPFC_RESERVED;
1786 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1787 /* Set persistent mode for front-buffer rendering, ala X. */
1788 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1789 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1790 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1792 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1793 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1794 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1795 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1796 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1798 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1801 I915_WRITE(SNB_DPFC_CTL_SA,
1802 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1803 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1804 sandybridge_blit_fbc_update(dev);
1807 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1810 static void ironlake_disable_fbc(struct drm_device *dev)
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1815 /* Disable compression */
1816 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1817 if (dpfc_ctl & DPFC_CTL_EN) {
1818 dpfc_ctl &= ~DPFC_CTL_EN;
1819 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1821 DRM_DEBUG_KMS("disabled FBC\n");
1825 static bool ironlake_fbc_enabled(struct drm_device *dev)
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1829 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1832 bool intel_fbc_enabled(struct drm_device *dev)
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1836 if (!dev_priv->display.fbc_enabled)
1839 return dev_priv->display.fbc_enabled(dev);
1842 static void intel_fbc_work_fn(struct work_struct *__work)
1844 struct intel_fbc_work *work =
1845 container_of(to_delayed_work(__work),
1846 struct intel_fbc_work, work);
1847 struct drm_device *dev = work->crtc->dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1850 mutex_lock(&dev->struct_mutex);
1851 if (work == dev_priv->fbc_work) {
1852 /* Double check that we haven't switched fb without cancelling
1855 if (work->crtc->fb == work->fb) {
1856 dev_priv->display.enable_fbc(work->crtc,
1859 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1860 dev_priv->cfb_fb = work->crtc->fb->base.id;
1861 dev_priv->cfb_y = work->crtc->y;
1864 dev_priv->fbc_work = NULL;
1866 mutex_unlock(&dev->struct_mutex);
1871 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1873 if (dev_priv->fbc_work == NULL)
1876 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1878 /* Synchronisation is provided by struct_mutex and checking of
1879 * dev_priv->fbc_work, so we can perform the cancellation
1880 * entirely asynchronously.
1882 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1883 /* tasklet was killed before being run, clean up */
1884 kfree(dev_priv->fbc_work);
1886 /* Mark the work as no longer wanted so that if it does
1887 * wake-up (because the work was already running and waiting
1888 * for our mutex), it will discover that is no longer
1891 dev_priv->fbc_work = NULL;
1894 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1896 struct intel_fbc_work *work;
1897 struct drm_device *dev = crtc->dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1900 if (!dev_priv->display.enable_fbc)
1903 intel_cancel_fbc_work(dev_priv);
1905 work = kzalloc(sizeof *work, GFP_KERNEL);
1907 dev_priv->display.enable_fbc(crtc, interval);
1912 work->fb = crtc->fb;
1913 work->interval = interval;
1914 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1916 dev_priv->fbc_work = work;
1918 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1920 /* Delay the actual enabling to let pageflipping cease and the
1921 * display to settle before starting the compression. Note that
1922 * this delay also serves a second purpose: it allows for a
1923 * vblank to pass after disabling the FBC before we attempt
1924 * to modify the control registers.
1926 * A more complicated solution would involve tracking vblanks
1927 * following the termination of the page-flipping sequence
1928 * and indeed performing the enable as a co-routine and not
1929 * waiting synchronously upon the vblank.
1931 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1934 void intel_disable_fbc(struct drm_device *dev)
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1938 intel_cancel_fbc_work(dev_priv);
1940 if (!dev_priv->display.disable_fbc)
1943 dev_priv->display.disable_fbc(dev);
1944 dev_priv->cfb_plane = -1;
1948 * intel_update_fbc - enable/disable FBC as needed
1949 * @dev: the drm_device
1951 * Set up the framebuffer compression hardware at mode set time. We
1952 * enable it if possible:
1953 * - plane A only (on pre-965)
1954 * - no pixel mulitply/line duplication
1955 * - no alpha buffer discard
1957 * - framebuffer <= 2048 in width, 1536 in height
1959 * We can't assume that any compression will take place (worst case),
1960 * so the compressed buffer has to be the same size as the uncompressed
1961 * one. It also must reside (along with the line length buffer) in
1964 * We need to enable/disable FBC on a global basis.
1966 static void intel_update_fbc(struct drm_device *dev)
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 struct drm_crtc *crtc = NULL, *tmp_crtc;
1970 struct intel_crtc *intel_crtc;
1971 struct drm_framebuffer *fb;
1972 struct intel_framebuffer *intel_fb;
1973 struct drm_i915_gem_object *obj;
1976 DRM_DEBUG_KMS("\n");
1978 if (!i915_powersave)
1981 if (!I915_HAS_FBC(dev))
1985 * If FBC is already on, we just have to verify that we can
1986 * keep it that way...
1987 * Need to disable if:
1988 * - more than one pipe is active
1989 * - changing FBC params (stride, fence, mode)
1990 * - new fb is too large to fit in compressed buffer
1991 * - going to an unsupported config (interlace, pixel multiply, etc.)
1993 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1994 if (tmp_crtc->enabled && tmp_crtc->fb) {
1996 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1997 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
2004 if (!crtc || crtc->fb == NULL) {
2005 DRM_DEBUG_KMS("no output, disabling\n");
2006 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2010 intel_crtc = to_intel_crtc(crtc);
2012 intel_fb = to_intel_framebuffer(fb);
2013 obj = intel_fb->obj;
2015 enable_fbc = i915_enable_fbc;
2016 if (enable_fbc < 0) {
2017 DRM_DEBUG_KMS("fbc set to per-chip default\n");
2019 if (INTEL_INFO(dev)->gen <= 6)
2023 DRM_DEBUG_KMS("fbc disabled per module param\n");
2024 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
2027 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2028 DRM_DEBUG_KMS("framebuffer too large, disabling "
2030 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2033 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2034 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2035 DRM_DEBUG_KMS("mode incompatible with compression, "
2037 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2040 if ((crtc->mode.hdisplay > 2048) ||
2041 (crtc->mode.vdisplay > 1536)) {
2042 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2043 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2046 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2047 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2048 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2052 /* The use of a CPU fence is mandatory in order to detect writes
2053 * by the CPU to the scanout and trigger updates to the FBC.
2055 if (obj->tiling_mode != I915_TILING_X ||
2056 obj->fence_reg == I915_FENCE_REG_NONE) {
2057 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
2058 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2062 /* If the kernel debugger is active, always disable compression */
2063 if (in_dbg_master())
2066 /* If the scanout has not changed, don't modify the FBC settings.
2067 * Note that we make the fundamental assumption that the fb->obj
2068 * cannot be unpinned (and have its GTT offset and fence revoked)
2069 * without first being decoupled from the scanout and FBC disabled.
2071 if (dev_priv->cfb_plane == intel_crtc->plane &&
2072 dev_priv->cfb_fb == fb->base.id &&
2073 dev_priv->cfb_y == crtc->y)
2076 if (intel_fbc_enabled(dev)) {
2077 /* We update FBC along two paths, after changing fb/crtc
2078 * configuration (modeswitching) and after page-flipping
2079 * finishes. For the latter, we know that not only did
2080 * we disable the FBC at the start of the page-flip
2081 * sequence, but also more than one vblank has passed.
2083 * For the former case of modeswitching, it is possible
2084 * to switch between two FBC valid configurations
2085 * instantaneously so we do need to disable the FBC
2086 * before we can modify its control registers. We also
2087 * have to wait for the next vblank for that to take
2088 * effect. However, since we delay enabling FBC we can
2089 * assume that a vblank has passed since disabling and
2090 * that we can safely alter the registers in the deferred
2093 * In the scenario that we go from a valid to invalid
2094 * and then back to valid FBC configuration we have
2095 * no strict enforcement that a vblank occurred since
2096 * disabling the FBC. However, along all current pipe
2097 * disabling paths we do need to wait for a vblank at
2098 * some point. And we wait before enabling FBC anyway.
2100 DRM_DEBUG_KMS("disabling active FBC for update\n");
2101 intel_disable_fbc(dev);
2104 intel_enable_fbc(crtc, 500);
2108 /* Multiple disables should be harmless */
2109 if (intel_fbc_enabled(dev)) {
2110 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2111 intel_disable_fbc(dev);
2116 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2117 struct drm_i915_gem_object *obj,
2118 struct intel_ring_buffer *pipelined)
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2124 switch (obj->tiling_mode) {
2125 case I915_TILING_NONE:
2126 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2127 alignment = 128 * 1024;
2128 else if (INTEL_INFO(dev)->gen >= 4)
2129 alignment = 4 * 1024;
2131 alignment = 64 * 1024;
2134 /* pin() will align the object as required by fence */
2138 /* FIXME: Is this true? */
2139 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2145 dev_priv->mm.interruptible = false;
2146 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2148 goto err_interruptible;
2150 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2151 * fence, whereas 965+ only requires a fence if using
2152 * framebuffer compression. For simplicity, we always install
2153 * a fence as the cost is not that onerous.
2155 if (obj->tiling_mode != I915_TILING_NONE) {
2156 ret = i915_gem_object_get_fence(obj, pipelined);
2160 i915_gem_object_pin_fence(obj);
2163 dev_priv->mm.interruptible = true;
2167 i915_gem_object_unpin(obj);
2169 dev_priv->mm.interruptible = true;
2173 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2175 i915_gem_object_unpin_fence(obj);
2176 i915_gem_object_unpin(obj);
2179 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2182 struct drm_device *dev = crtc->dev;
2183 struct drm_i915_private *dev_priv = dev->dev_private;
2184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2185 struct intel_framebuffer *intel_fb;
2186 struct drm_i915_gem_object *obj;
2187 int plane = intel_crtc->plane;
2188 unsigned long Start, Offset;
2197 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2201 intel_fb = to_intel_framebuffer(fb);
2202 obj = intel_fb->obj;
2204 reg = DSPCNTR(plane);
2205 dspcntr = I915_READ(reg);
2206 /* Mask out pixel format bits in case we change it */
2207 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2208 switch (fb->bits_per_pixel) {
2210 dspcntr |= DISPPLANE_8BPP;
2213 if (fb->depth == 15)
2214 dspcntr |= DISPPLANE_15_16BPP;
2216 dspcntr |= DISPPLANE_16BPP;
2220 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2223 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2226 if (INTEL_INFO(dev)->gen >= 4) {
2227 if (obj->tiling_mode != I915_TILING_NONE)
2228 dspcntr |= DISPPLANE_TILED;
2230 dspcntr &= ~DISPPLANE_TILED;
2233 I915_WRITE(reg, dspcntr);
2235 Start = obj->gtt_offset;
2236 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2238 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2239 Start, Offset, x, y, fb->pitches[0]);
2240 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2241 if (INTEL_INFO(dev)->gen >= 4) {
2242 I915_WRITE(DSPSURF(plane), Start);
2243 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2244 I915_WRITE(DSPADDR(plane), Offset);
2246 I915_WRITE(DSPADDR(plane), Start + Offset);
2252 static int ironlake_update_plane(struct drm_crtc *crtc,
2253 struct drm_framebuffer *fb, int x, int y)
2255 struct drm_device *dev = crtc->dev;
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2258 struct intel_framebuffer *intel_fb;
2259 struct drm_i915_gem_object *obj;
2260 int plane = intel_crtc->plane;
2261 unsigned long Start, Offset;
2271 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2275 intel_fb = to_intel_framebuffer(fb);
2276 obj = intel_fb->obj;
2278 reg = DSPCNTR(plane);
2279 dspcntr = I915_READ(reg);
2280 /* Mask out pixel format bits in case we change it */
2281 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2282 switch (fb->bits_per_pixel) {
2284 dspcntr |= DISPPLANE_8BPP;
2287 if (fb->depth != 16)
2290 dspcntr |= DISPPLANE_16BPP;
2294 if (fb->depth == 24)
2295 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2296 else if (fb->depth == 30)
2297 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2302 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2306 if (obj->tiling_mode != I915_TILING_NONE)
2307 dspcntr |= DISPPLANE_TILED;
2309 dspcntr &= ~DISPPLANE_TILED;
2312 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2314 I915_WRITE(reg, dspcntr);
2316 Start = obj->gtt_offset;
2317 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2319 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2320 Start, Offset, x, y, fb->pitches[0]);
2321 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2322 I915_WRITE(DSPSURF(plane), Start);
2323 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2324 I915_WRITE(DSPADDR(plane), Offset);
2330 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2332 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2333 int x, int y, enum mode_set_atomic state)
2335 struct drm_device *dev = crtc->dev;
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2339 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2343 intel_update_fbc(dev);
2344 intel_increase_pllclock(crtc);
2350 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2351 struct drm_framebuffer *old_fb)
2353 struct drm_device *dev = crtc->dev;
2354 struct drm_i915_master_private *master_priv;
2355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2360 DRM_ERROR("No FB bound\n");
2364 switch (intel_crtc->plane) {
2369 if (IS_IVYBRIDGE(dev))
2371 /* fall through otherwise */
2373 DRM_ERROR("no plane for crtc\n");
2377 mutex_lock(&dev->struct_mutex);
2378 ret = intel_pin_and_fence_fb_obj(dev,
2379 to_intel_framebuffer(crtc->fb)->obj,
2382 mutex_unlock(&dev->struct_mutex);
2383 DRM_ERROR("pin & fence failed\n");
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2391 wait_event(dev_priv->pending_flip_queue,
2392 atomic_read(&dev_priv->mm.wedged) ||
2393 atomic_read(&obj->pending_flip) == 0);
2395 /* Big Hammer, we also need to ensure that any pending
2396 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2397 * current scanout is retired before unpinning the old
2400 * This should only fail upon a hung GPU, in which case we
2401 * can safely continue.
2403 ret = i915_gem_object_finish_gpu(obj);
2407 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2408 LEAVE_ATOMIC_MODE_SET);
2410 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2411 mutex_unlock(&dev->struct_mutex);
2412 DRM_ERROR("failed to update base address\n");
2417 intel_wait_for_vblank(dev, intel_crtc->pipe);
2418 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2421 mutex_unlock(&dev->struct_mutex);
2423 if (!dev->primary->master)
2426 master_priv = dev->primary->master->driver_priv;
2427 if (!master_priv->sarea_priv)
2430 if (intel_crtc->pipe) {
2431 master_priv->sarea_priv->pipeB_x = x;
2432 master_priv->sarea_priv->pipeB_y = y;
2434 master_priv->sarea_priv->pipeA_x = x;
2435 master_priv->sarea_priv->pipeA_y = y;
2441 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2443 struct drm_device *dev = crtc->dev;
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2447 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2448 dpa_ctl = I915_READ(DP_A);
2449 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2451 if (clock < 200000) {
2453 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2454 /* workaround for 160Mhz:
2455 1) program 0x4600c bits 15:0 = 0x8124
2456 2) program 0x46010 bit 0 = 1
2457 3) program 0x46034 bit 24 = 1
2458 4) program 0x64000 bit 14 = 1
2460 temp = I915_READ(0x4600c);
2462 I915_WRITE(0x4600c, temp | 0x8124);
2464 temp = I915_READ(0x46010);
2465 I915_WRITE(0x46010, temp | 1);
2467 temp = I915_READ(0x46034);
2468 I915_WRITE(0x46034, temp | (1 << 24));
2470 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2472 I915_WRITE(DP_A, dpa_ctl);
2478 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2480 struct drm_device *dev = crtc->dev;
2481 struct drm_i915_private *dev_priv = dev->dev_private;
2482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2483 int pipe = intel_crtc->pipe;
2486 /* enable normal train */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 if (IS_IVYBRIDGE(dev)) {
2490 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2491 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2493 temp &= ~FDI_LINK_TRAIN_NONE;
2494 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2496 I915_WRITE(reg, temp);
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_NONE;
2507 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2509 /* wait one idle pattern time */
2513 /* IVB wants error correction enabled */
2514 if (IS_IVYBRIDGE(dev))
2515 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2516 FDI_FE_ERRC_ENABLE);
2519 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522 u32 flags = I915_READ(SOUTH_CHICKEN1);
2524 flags |= FDI_PHASE_SYNC_OVR(pipe);
2525 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2526 flags |= FDI_PHASE_SYNC_EN(pipe);
2527 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2528 POSTING_READ(SOUTH_CHICKEN1);
2531 /* The FDI link training functions for ILK/Ibexpeak. */
2532 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2534 struct drm_device *dev = crtc->dev;
2535 struct drm_i915_private *dev_priv = dev->dev_private;
2536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2537 int pipe = intel_crtc->pipe;
2538 int plane = intel_crtc->plane;
2539 u32 reg, temp, tries;
2541 /* FDI needs bits from pipe & plane first */
2542 assert_pipe_enabled(dev_priv, pipe);
2543 assert_plane_enabled(dev_priv, plane);
2545 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2547 reg = FDI_RX_IMR(pipe);
2548 temp = I915_READ(reg);
2549 temp &= ~FDI_RX_SYMBOL_LOCK;
2550 temp &= ~FDI_RX_BIT_LOCK;
2551 I915_WRITE(reg, temp);
2555 /* enable CPU FDI TX and PCH FDI RX */
2556 reg = FDI_TX_CTL(pipe);
2557 temp = I915_READ(reg);
2559 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2560 temp &= ~FDI_LINK_TRAIN_NONE;
2561 temp |= FDI_LINK_TRAIN_PATTERN_1;
2562 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2564 reg = FDI_RX_CTL(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_LINK_TRAIN_NONE;
2567 temp |= FDI_LINK_TRAIN_PATTERN_1;
2568 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2573 /* Ironlake workaround, enable clock pointer after FDI enable*/
2574 if (HAS_PCH_IBX(dev)) {
2575 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2576 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2577 FDI_RX_PHASE_SYNC_POINTER_EN);
2580 reg = FDI_RX_IIR(pipe);
2581 for (tries = 0; tries < 5; tries++) {
2582 temp = I915_READ(reg);
2583 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2585 if ((temp & FDI_RX_BIT_LOCK)) {
2586 DRM_DEBUG_KMS("FDI train 1 done.\n");
2587 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2592 DRM_ERROR("FDI train 1 fail!\n");
2595 reg = FDI_TX_CTL(pipe);
2596 temp = I915_READ(reg);
2597 temp &= ~FDI_LINK_TRAIN_NONE;
2598 temp |= FDI_LINK_TRAIN_PATTERN_2;
2599 I915_WRITE(reg, temp);
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
2603 temp &= ~FDI_LINK_TRAIN_NONE;
2604 temp |= FDI_LINK_TRAIN_PATTERN_2;
2605 I915_WRITE(reg, temp);
2610 reg = FDI_RX_IIR(pipe);
2611 for (tries = 0; tries < 5; tries++) {
2612 temp = I915_READ(reg);
2613 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2615 if (temp & FDI_RX_SYMBOL_LOCK) {
2616 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2617 DRM_DEBUG_KMS("FDI train 2 done.\n");
2622 DRM_ERROR("FDI train 2 fail!\n");
2624 DRM_DEBUG_KMS("FDI train done\n");
2628 static const int snb_b_fdi_train_param[] = {
2629 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2630 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2631 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2632 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2635 /* The FDI link training functions for SNB/Cougarpoint. */
2636 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2638 struct drm_device *dev = crtc->dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2641 int pipe = intel_crtc->pipe;
2642 u32 reg, temp, i, retry;
2644 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2646 reg = FDI_RX_IMR(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_RX_SYMBOL_LOCK;
2649 temp &= ~FDI_RX_BIT_LOCK;
2650 I915_WRITE(reg, temp);
2655 /* enable CPU FDI TX and PCH FDI RX */
2656 reg = FDI_TX_CTL(pipe);
2657 temp = I915_READ(reg);
2659 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2660 temp &= ~FDI_LINK_TRAIN_NONE;
2661 temp |= FDI_LINK_TRAIN_PATTERN_1;
2662 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2665 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2667 reg = FDI_RX_CTL(pipe);
2668 temp = I915_READ(reg);
2669 if (HAS_PCH_CPT(dev)) {
2670 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2671 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2673 temp &= ~FDI_LINK_TRAIN_NONE;
2674 temp |= FDI_LINK_TRAIN_PATTERN_1;
2676 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2681 if (HAS_PCH_CPT(dev))
2682 cpt_phase_pointer_enable(dev, pipe);
2684 for (i = 0; i < 4; i++) {
2685 reg = FDI_TX_CTL(pipe);
2686 temp = I915_READ(reg);
2687 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2688 temp |= snb_b_fdi_train_param[i];
2689 I915_WRITE(reg, temp);
2694 for (retry = 0; retry < 5; retry++) {
2695 reg = FDI_RX_IIR(pipe);
2696 temp = I915_READ(reg);
2697 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2698 if (temp & FDI_RX_BIT_LOCK) {
2699 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2700 DRM_DEBUG_KMS("FDI train 1 done.\n");
2709 DRM_ERROR("FDI train 1 fail!\n");
2712 reg = FDI_TX_CTL(pipe);
2713 temp = I915_READ(reg);
2714 temp &= ~FDI_LINK_TRAIN_NONE;
2715 temp |= FDI_LINK_TRAIN_PATTERN_2;
2717 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2721 I915_WRITE(reg, temp);
2723 reg = FDI_RX_CTL(pipe);
2724 temp = I915_READ(reg);
2725 if (HAS_PCH_CPT(dev)) {
2726 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2727 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729 temp &= ~FDI_LINK_TRAIN_NONE;
2730 temp |= FDI_LINK_TRAIN_PATTERN_2;
2732 I915_WRITE(reg, temp);
2737 for (i = 0; i < 4; i++) {
2738 reg = FDI_TX_CTL(pipe);
2739 temp = I915_READ(reg);
2740 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2741 temp |= snb_b_fdi_train_param[i];
2742 I915_WRITE(reg, temp);
2747 for (retry = 0; retry < 5; retry++) {
2748 reg = FDI_RX_IIR(pipe);
2749 temp = I915_READ(reg);
2750 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2751 if (temp & FDI_RX_SYMBOL_LOCK) {
2752 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2753 DRM_DEBUG_KMS("FDI train 2 done.\n");
2762 DRM_ERROR("FDI train 2 fail!\n");
2764 DRM_DEBUG_KMS("FDI train done.\n");
2767 /* Manual link training for Ivy Bridge A0 parts */
2768 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2770 struct drm_device *dev = crtc->dev;
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773 int pipe = intel_crtc->pipe;
2776 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2778 reg = FDI_RX_IMR(pipe);
2779 temp = I915_READ(reg);
2780 temp &= ~FDI_RX_SYMBOL_LOCK;
2781 temp &= ~FDI_RX_BIT_LOCK;
2782 I915_WRITE(reg, temp);
2787 /* enable CPU FDI TX and PCH FDI RX */
2788 reg = FDI_TX_CTL(pipe);
2789 temp = I915_READ(reg);
2791 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2792 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2793 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2794 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2795 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2796 temp |= FDI_COMPOSITE_SYNC;
2797 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2799 reg = FDI_RX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_AUTO;
2802 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2803 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2804 temp |= FDI_COMPOSITE_SYNC;
2805 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2810 if (HAS_PCH_CPT(dev))
2811 cpt_phase_pointer_enable(dev, pipe);
2813 for (i = 0; i < 4; i++) {
2814 reg = FDI_TX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2817 temp |= snb_b_fdi_train_param[i];
2818 I915_WRITE(reg, temp);
2823 reg = FDI_RX_IIR(pipe);
2824 temp = I915_READ(reg);
2825 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2827 if (temp & FDI_RX_BIT_LOCK ||
2828 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2829 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2830 DRM_DEBUG_KMS("FDI train 1 done.\n");
2835 DRM_ERROR("FDI train 1 fail!\n");
2838 reg = FDI_TX_CTL(pipe);
2839 temp = I915_READ(reg);
2840 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2841 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2842 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2843 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2844 I915_WRITE(reg, temp);
2846 reg = FDI_RX_CTL(pipe);
2847 temp = I915_READ(reg);
2848 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2849 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2850 I915_WRITE(reg, temp);
2855 for (i = 0; i < 4; i++) {
2856 reg = FDI_TX_CTL(pipe);
2857 temp = I915_READ(reg);
2858 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2859 temp |= snb_b_fdi_train_param[i];
2860 I915_WRITE(reg, temp);
2865 reg = FDI_RX_IIR(pipe);
2866 temp = I915_READ(reg);
2867 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2869 if (temp & FDI_RX_SYMBOL_LOCK) {
2870 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2871 DRM_DEBUG_KMS("FDI train 2 done.\n");
2876 DRM_ERROR("FDI train 2 fail!\n");
2878 DRM_DEBUG_KMS("FDI train done.\n");
2881 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2883 struct drm_device *dev = crtc->dev;
2884 struct drm_i915_private *dev_priv = dev->dev_private;
2885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2886 int pipe = intel_crtc->pipe;
2889 /* Write the TU size bits so error detection works */
2890 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2891 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2893 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2894 reg = FDI_RX_CTL(pipe);
2895 temp = I915_READ(reg);
2896 temp &= ~((0x7 << 19) | (0x7 << 16));
2897 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2898 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2899 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2904 /* Switch from Rawclk to PCDclk */
2905 temp = I915_READ(reg);
2906 I915_WRITE(reg, temp | FDI_PCDCLK);
2911 /* Enable CPU FDI TX PLL, always on for Ironlake */
2912 reg = FDI_TX_CTL(pipe);
2913 temp = I915_READ(reg);
2914 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2915 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2922 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 u32 flags = I915_READ(SOUTH_CHICKEN1);
2927 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2928 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2929 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2930 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2931 POSTING_READ(SOUTH_CHICKEN1);
2933 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2935 struct drm_device *dev = crtc->dev;
2936 struct drm_i915_private *dev_priv = dev->dev_private;
2937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2938 int pipe = intel_crtc->pipe;
2941 /* disable CPU FDI tx and PCH FDI rx */
2942 reg = FDI_TX_CTL(pipe);
2943 temp = I915_READ(reg);
2944 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2947 reg = FDI_RX_CTL(pipe);
2948 temp = I915_READ(reg);
2949 temp &= ~(0x7 << 16);
2950 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2951 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2956 /* Ironlake workaround, disable clock pointer after downing FDI */
2957 if (HAS_PCH_IBX(dev)) {
2958 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2959 I915_WRITE(FDI_RX_CHICKEN(pipe),
2960 I915_READ(FDI_RX_CHICKEN(pipe) &
2961 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2962 } else if (HAS_PCH_CPT(dev)) {
2963 cpt_phase_pointer_disable(dev, pipe);
2966 /* still set train pattern 1 */
2967 reg = FDI_TX_CTL(pipe);
2968 temp = I915_READ(reg);
2969 temp &= ~FDI_LINK_TRAIN_NONE;
2970 temp |= FDI_LINK_TRAIN_PATTERN_1;
2971 I915_WRITE(reg, temp);
2973 reg = FDI_RX_CTL(pipe);
2974 temp = I915_READ(reg);
2975 if (HAS_PCH_CPT(dev)) {
2976 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2977 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2979 temp &= ~FDI_LINK_TRAIN_NONE;
2980 temp |= FDI_LINK_TRAIN_PATTERN_1;
2982 /* BPC in FDI rx is consistent with that in PIPECONF */
2983 temp &= ~(0x07 << 16);
2984 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2985 I915_WRITE(reg, temp);
2992 * When we disable a pipe, we need to clear any pending scanline wait events
2993 * to avoid hanging the ring, which we assume we are waiting on.
2995 static void intel_clear_scanline_wait(struct drm_device *dev)
2997 struct drm_i915_private *dev_priv = dev->dev_private;
2998 struct intel_ring_buffer *ring;
3002 /* Can't break the hang on i8xx */
3005 ring = LP_RING(dev_priv);
3006 tmp = I915_READ_CTL(ring);
3007 if (tmp & RING_WAIT)
3008 I915_WRITE_CTL(ring, tmp);
3011 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3013 struct drm_i915_gem_object *obj;
3014 struct drm_i915_private *dev_priv;
3016 if (crtc->fb == NULL)
3019 obj = to_intel_framebuffer(crtc->fb)->obj;
3020 dev_priv = crtc->dev->dev_private;
3021 wait_event(dev_priv->pending_flip_queue,
3022 atomic_read(&obj->pending_flip) == 0);
3025 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
3027 struct drm_device *dev = crtc->dev;
3028 struct drm_mode_config *mode_config = &dev->mode_config;
3029 struct intel_encoder *encoder;
3032 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3033 * must be driven by its own crtc; no sharing is possible.
3035 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3036 if (encoder->base.crtc != crtc)
3039 switch (encoder->type) {
3040 case INTEL_OUTPUT_EDP:
3041 if (!intel_encoder_is_pch_edp(&encoder->base))
3051 * Enable PCH resources required for PCH ports:
3053 * - FDI training & RX/TX
3054 * - update transcoder timings
3055 * - DP transcoding bits
3058 static void ironlake_pch_enable(struct drm_crtc *crtc)
3060 struct drm_device *dev = crtc->dev;
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3063 int pipe = intel_crtc->pipe;
3064 u32 reg, temp, transc_sel;
3066 /* For PCH output, training FDI link */
3067 dev_priv->display.fdi_link_train(crtc);
3069 intel_enable_pch_pll(dev_priv, pipe);
3071 if (HAS_PCH_CPT(dev)) {
3072 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3075 /* Be sure PCH DPLL SEL is set */
3076 temp = I915_READ(PCH_DPLL_SEL);
3078 temp &= ~(TRANSA_DPLLB_SEL);
3079 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3080 } else if (pipe == 1) {
3081 temp &= ~(TRANSB_DPLLB_SEL);
3082 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3083 } else if (pipe == 2) {
3084 temp &= ~(TRANSC_DPLLB_SEL);
3085 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3087 I915_WRITE(PCH_DPLL_SEL, temp);
3090 /* set transcoder timing, panel must allow it */
3091 assert_panel_unlocked(dev_priv, pipe);
3092 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3093 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3094 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3096 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3097 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3098 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3099 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3101 intel_fdi_normal_train(crtc);
3103 /* For PCH DP, enable TRANS_DP_CTL */
3104 if (HAS_PCH_CPT(dev) &&
3105 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3106 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3107 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3108 reg = TRANS_DP_CTL(pipe);
3109 temp = I915_READ(reg);
3110 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3111 TRANS_DP_SYNC_MASK |
3113 temp |= (TRANS_DP_OUTPUT_ENABLE |
3114 TRANS_DP_ENH_FRAMING);
3115 temp |= bpc << 9; /* same format but at 11:9 */
3117 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3118 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3119 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3120 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3122 switch (intel_trans_dp_port_sel(crtc)) {
3124 temp |= TRANS_DP_PORT_SEL_B;
3127 temp |= TRANS_DP_PORT_SEL_C;
3130 temp |= TRANS_DP_PORT_SEL_D;
3133 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3134 temp |= TRANS_DP_PORT_SEL_B;
3138 I915_WRITE(reg, temp);
3141 intel_enable_transcoder(dev_priv, pipe);
3144 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3150 temp = I915_READ(dslreg);
3152 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3153 /* Without this, mode sets may fail silently on FDI */
3154 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3156 I915_WRITE(tc2reg, 0);
3157 if (wait_for(I915_READ(dslreg) != temp, 5))
3158 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3162 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167 int pipe = intel_crtc->pipe;
3168 int plane = intel_crtc->plane;
3172 if (intel_crtc->active)
3175 intel_crtc->active = true;
3176 intel_update_watermarks(dev);
3178 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3179 temp = I915_READ(PCH_LVDS);
3180 if ((temp & LVDS_PORT_EN) == 0)
3181 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3184 is_pch_port = intel_crtc_driving_pch(crtc);
3187 ironlake_fdi_pll_enable(crtc);
3189 ironlake_fdi_disable(crtc);
3191 /* Enable panel fitting for LVDS */
3192 if (dev_priv->pch_pf_size &&
3193 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3194 /* Force use of hard-coded filter coefficients
3195 * as some pre-programmed values are broken,
3198 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3199 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3200 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3204 * On ILK+ LUT must be loaded before the pipe is running but with
3207 intel_crtc_load_lut(crtc);
3209 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3210 intel_enable_plane(dev_priv, plane, pipe);
3213 ironlake_pch_enable(crtc);
3215 mutex_lock(&dev->struct_mutex);
3216 intel_update_fbc(dev);
3217 mutex_unlock(&dev->struct_mutex);
3219 intel_crtc_update_cursor(crtc, true);
3222 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3224 struct drm_device *dev = crtc->dev;
3225 struct drm_i915_private *dev_priv = dev->dev_private;
3226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3227 int pipe = intel_crtc->pipe;
3228 int plane = intel_crtc->plane;
3231 if (!intel_crtc->active)
3234 intel_crtc_wait_for_pending_flips(crtc);
3235 drm_vblank_off(dev, pipe);
3236 intel_crtc_update_cursor(crtc, false);
3238 intel_disable_plane(dev_priv, plane, pipe);
3240 if (dev_priv->cfb_plane == plane)
3241 intel_disable_fbc(dev);
3243 intel_disable_pipe(dev_priv, pipe);
3246 I915_WRITE(PF_CTL(pipe), 0);
3247 I915_WRITE(PF_WIN_SZ(pipe), 0);
3249 ironlake_fdi_disable(crtc);
3251 /* This is a horrible layering violation; we should be doing this in
3252 * the connector/encoder ->prepare instead, but we don't always have
3253 * enough information there about the config to know whether it will
3254 * actually be necessary or just cause undesired flicker.
3256 intel_disable_pch_ports(dev_priv, pipe);
3258 intel_disable_transcoder(dev_priv, pipe);
3260 if (HAS_PCH_CPT(dev)) {
3261 /* disable TRANS_DP_CTL */
3262 reg = TRANS_DP_CTL(pipe);
3263 temp = I915_READ(reg);
3264 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3265 temp |= TRANS_DP_PORT_SEL_NONE;
3266 I915_WRITE(reg, temp);
3268 /* disable DPLL_SEL */
3269 temp = I915_READ(PCH_DPLL_SEL);
3272 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3275 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3278 /* C shares PLL A or B */
3279 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3284 I915_WRITE(PCH_DPLL_SEL, temp);
3287 /* disable PCH DPLL */
3288 if (!intel_crtc->no_pll)
3289 intel_disable_pch_pll(dev_priv, pipe);
3291 /* Switch from PCDclk to Rawclk */
3292 reg = FDI_RX_CTL(pipe);
3293 temp = I915_READ(reg);
3294 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3296 /* Disable CPU FDI TX PLL */
3297 reg = FDI_TX_CTL(pipe);
3298 temp = I915_READ(reg);
3299 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3304 reg = FDI_RX_CTL(pipe);
3305 temp = I915_READ(reg);
3306 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3308 /* Wait for the clocks to turn off. */
3312 intel_crtc->active = false;
3313 intel_update_watermarks(dev);
3315 mutex_lock(&dev->struct_mutex);
3316 intel_update_fbc(dev);
3317 intel_clear_scanline_wait(dev);
3318 mutex_unlock(&dev->struct_mutex);
3321 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3324 int pipe = intel_crtc->pipe;
3325 int plane = intel_crtc->plane;
3327 /* XXX: When our outputs are all unaware of DPMS modes other than off
3328 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3331 case DRM_MODE_DPMS_ON:
3332 case DRM_MODE_DPMS_STANDBY:
3333 case DRM_MODE_DPMS_SUSPEND:
3334 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3335 ironlake_crtc_enable(crtc);
3338 case DRM_MODE_DPMS_OFF:
3339 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3340 ironlake_crtc_disable(crtc);
3345 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3347 if (!enable && intel_crtc->overlay) {
3348 struct drm_device *dev = intel_crtc->base.dev;
3349 struct drm_i915_private *dev_priv = dev->dev_private;
3351 mutex_lock(&dev->struct_mutex);
3352 dev_priv->mm.interruptible = false;
3353 (void) intel_overlay_switch_off(intel_crtc->overlay);
3354 dev_priv->mm.interruptible = true;
3355 mutex_unlock(&dev->struct_mutex);
3358 /* Let userspace switch the overlay on again. In most cases userspace
3359 * has to recompute where to put it anyway.
3363 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3365 struct drm_device *dev = crtc->dev;
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3368 int pipe = intel_crtc->pipe;
3369 int plane = intel_crtc->plane;
3371 if (intel_crtc->active)
3374 intel_crtc->active = true;
3375 intel_update_watermarks(dev);
3377 intel_enable_pll(dev_priv, pipe);
3378 intel_enable_pipe(dev_priv, pipe, false);
3379 intel_enable_plane(dev_priv, plane, pipe);
3381 intel_crtc_load_lut(crtc);
3382 intel_update_fbc(dev);
3384 /* Give the overlay scaler a chance to enable if it's on this pipe */
3385 intel_crtc_dpms_overlay(intel_crtc, true);
3386 intel_crtc_update_cursor(crtc, true);
3389 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3391 struct drm_device *dev = crtc->dev;
3392 struct drm_i915_private *dev_priv = dev->dev_private;
3393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3394 int pipe = intel_crtc->pipe;
3395 int plane = intel_crtc->plane;
3397 if (!intel_crtc->active)
3400 /* Give the overlay scaler a chance to disable if it's on this pipe */
3401 intel_crtc_wait_for_pending_flips(crtc);
3402 drm_vblank_off(dev, pipe);
3403 intel_crtc_dpms_overlay(intel_crtc, false);
3404 intel_crtc_update_cursor(crtc, false);
3406 if (dev_priv->cfb_plane == plane)
3407 intel_disable_fbc(dev);
3409 intel_disable_plane(dev_priv, plane, pipe);
3410 intel_disable_pipe(dev_priv, pipe);
3411 intel_disable_pll(dev_priv, pipe);
3413 intel_crtc->active = false;
3414 intel_update_fbc(dev);
3415 intel_update_watermarks(dev);
3416 intel_clear_scanline_wait(dev);
3419 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3421 /* XXX: When our outputs are all unaware of DPMS modes other than off
3422 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3425 case DRM_MODE_DPMS_ON:
3426 case DRM_MODE_DPMS_STANDBY:
3427 case DRM_MODE_DPMS_SUSPEND:
3428 i9xx_crtc_enable(crtc);
3430 case DRM_MODE_DPMS_OFF:
3431 i9xx_crtc_disable(crtc);
3437 * Sets the power management mode of the pipe and plane.
3439 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3441 struct drm_device *dev = crtc->dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 struct drm_i915_master_private *master_priv;
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 int pipe = intel_crtc->pipe;
3448 if (intel_crtc->dpms_mode == mode)
3451 intel_crtc->dpms_mode = mode;
3453 dev_priv->display.dpms(crtc, mode);
3455 if (!dev->primary->master)
3458 master_priv = dev->primary->master->driver_priv;
3459 if (!master_priv->sarea_priv)
3462 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3466 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3467 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3470 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3471 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3474 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3479 static void intel_crtc_disable(struct drm_crtc *crtc)
3481 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3482 struct drm_device *dev = crtc->dev;
3484 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3485 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3486 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3489 mutex_lock(&dev->struct_mutex);
3490 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3491 mutex_unlock(&dev->struct_mutex);
3495 /* Prepare for a mode set.
3497 * Note we could be a lot smarter here. We need to figure out which outputs
3498 * will be enabled, which disabled (in short, how the config will changes)
3499 * and perform the minimum necessary steps to accomplish that, e.g. updating
3500 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3501 * panel fitting is in the proper state, etc.
3503 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3505 i9xx_crtc_disable(crtc);
3508 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3510 i9xx_crtc_enable(crtc);
3513 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3515 ironlake_crtc_disable(crtc);
3518 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3520 ironlake_crtc_enable(crtc);
3523 void intel_encoder_prepare(struct drm_encoder *encoder)
3525 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3526 /* lvds has its own version of prepare see intel_lvds_prepare */
3527 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3530 void intel_encoder_commit(struct drm_encoder *encoder)
3532 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3533 struct drm_device *dev = encoder->dev;
3534 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3535 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3537 /* lvds has its own version of commit see intel_lvds_commit */
3538 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3540 if (HAS_PCH_CPT(dev))
3541 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3544 void intel_encoder_destroy(struct drm_encoder *encoder)
3546 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3548 drm_encoder_cleanup(encoder);
3549 kfree(intel_encoder);
3552 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3553 struct drm_display_mode *mode,
3554 struct drm_display_mode *adjusted_mode)
3556 struct drm_device *dev = crtc->dev;
3558 if (HAS_PCH_SPLIT(dev)) {
3559 /* FDI link clock is fixed at 2.7G */
3560 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3564 /* All interlaced capable intel hw wants timings in frames. */
3565 drm_mode_set_crtcinfo(adjusted_mode, 0);
3570 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3572 return 400000; /* FIXME */
3575 static int i945_get_display_clock_speed(struct drm_device *dev)
3580 static int i915_get_display_clock_speed(struct drm_device *dev)
3585 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3590 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3594 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3596 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3599 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3600 case GC_DISPLAY_CLOCK_333_MHZ:
3603 case GC_DISPLAY_CLOCK_190_200_MHZ:
3609 static int i865_get_display_clock_speed(struct drm_device *dev)
3614 static int i855_get_display_clock_speed(struct drm_device *dev)
3617 /* Assume that the hardware is in the high speed state. This
3618 * should be the default.
3620 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3621 case GC_CLOCK_133_200:
3622 case GC_CLOCK_100_200:
3624 case GC_CLOCK_166_250:
3626 case GC_CLOCK_100_133:
3630 /* Shouldn't happen */
3634 static int i830_get_display_clock_speed(struct drm_device *dev)
3648 fdi_reduce_ratio(u32 *num, u32 *den)
3650 while (*num > 0xffffff || *den > 0xffffff) {
3657 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3658 int link_clock, struct fdi_m_n *m_n)
3660 m_n->tu = 64; /* default size */
3662 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3663 m_n->gmch_m = bits_per_pixel * pixel_clock;
3664 m_n->gmch_n = link_clock * nlanes * 8;
3665 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3667 m_n->link_m = pixel_clock;
3668 m_n->link_n = link_clock;
3669 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3673 struct intel_watermark_params {
3674 unsigned long fifo_size;
3675 unsigned long max_wm;
3676 unsigned long default_wm;
3677 unsigned long guard_size;
3678 unsigned long cacheline_size;
3681 /* Pineview has different values for various configs */
3682 static const struct intel_watermark_params pineview_display_wm = {
3683 PINEVIEW_DISPLAY_FIFO,
3687 PINEVIEW_FIFO_LINE_SIZE
3689 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3690 PINEVIEW_DISPLAY_FIFO,
3692 PINEVIEW_DFT_HPLLOFF_WM,
3694 PINEVIEW_FIFO_LINE_SIZE
3696 static const struct intel_watermark_params pineview_cursor_wm = {
3697 PINEVIEW_CURSOR_FIFO,
3698 PINEVIEW_CURSOR_MAX_WM,
3699 PINEVIEW_CURSOR_DFT_WM,
3700 PINEVIEW_CURSOR_GUARD_WM,
3701 PINEVIEW_FIFO_LINE_SIZE,
3703 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3704 PINEVIEW_CURSOR_FIFO,
3705 PINEVIEW_CURSOR_MAX_WM,
3706 PINEVIEW_CURSOR_DFT_WM,
3707 PINEVIEW_CURSOR_GUARD_WM,
3708 PINEVIEW_FIFO_LINE_SIZE
3710 static const struct intel_watermark_params g4x_wm_info = {
3717 static const struct intel_watermark_params g4x_cursor_wm_info = {
3724 static const struct intel_watermark_params valleyview_wm_info = {
3725 VALLEYVIEW_FIFO_SIZE,
3731 static const struct intel_watermark_params valleyview_cursor_wm_info = {
3733 VALLEYVIEW_CURSOR_MAX_WM,
3738 static const struct intel_watermark_params i965_cursor_wm_info = {
3743 I915_FIFO_LINE_SIZE,
3745 static const struct intel_watermark_params i945_wm_info = {
3752 static const struct intel_watermark_params i915_wm_info = {
3759 static const struct intel_watermark_params i855_wm_info = {
3766 static const struct intel_watermark_params i830_wm_info = {
3774 static const struct intel_watermark_params ironlake_display_wm_info = {
3781 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3788 static const struct intel_watermark_params ironlake_display_srwm_info = {
3789 ILK_DISPLAY_SR_FIFO,
3790 ILK_DISPLAY_MAX_SRWM,
3791 ILK_DISPLAY_DFT_SRWM,
3795 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3797 ILK_CURSOR_MAX_SRWM,
3798 ILK_CURSOR_DFT_SRWM,
3803 static const struct intel_watermark_params sandybridge_display_wm_info = {
3810 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3817 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3818 SNB_DISPLAY_SR_FIFO,
3819 SNB_DISPLAY_MAX_SRWM,
3820 SNB_DISPLAY_DFT_SRWM,
3824 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3826 SNB_CURSOR_MAX_SRWM,
3827 SNB_CURSOR_DFT_SRWM,
3834 * intel_calculate_wm - calculate watermark level
3835 * @clock_in_khz: pixel clock
3836 * @wm: chip FIFO params
3837 * @pixel_size: display pixel size
3838 * @latency_ns: memory latency for the platform
3840 * Calculate the watermark level (the level at which the display plane will
3841 * start fetching from memory again). Each chip has a different display
3842 * FIFO size and allocation, so the caller needs to figure that out and pass
3843 * in the correct intel_watermark_params structure.
3845 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3846 * on the pixel size. When it reaches the watermark level, it'll start
3847 * fetching FIFO line sized based chunks from memory until the FIFO fills
3848 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3849 * will occur, and a display engine hang could result.
3851 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3852 const struct intel_watermark_params *wm,
3855 unsigned long latency_ns)
3857 long entries_required, wm_size;
3860 * Note: we need to make sure we don't overflow for various clock &
3862 * clocks go from a few thousand to several hundred thousand.
3863 * latency is usually a few thousand
3865 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3867 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3869 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3871 wm_size = fifo_size - (entries_required + wm->guard_size);
3873 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3875 /* Don't promote wm_size to unsigned... */
3876 if (wm_size > (long)wm->max_wm)
3877 wm_size = wm->max_wm;
3879 wm_size = wm->default_wm;
3883 struct cxsr_latency {
3886 unsigned long fsb_freq;
3887 unsigned long mem_freq;
3888 unsigned long display_sr;
3889 unsigned long display_hpll_disable;
3890 unsigned long cursor_sr;
3891 unsigned long cursor_hpll_disable;
3894 static const struct cxsr_latency cxsr_latency_table[] = {
3895 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3896 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3897 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3898 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3899 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3901 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3902 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3903 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3904 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3905 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3907 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3908 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3909 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3910 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3911 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3913 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3914 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3915 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3916 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3917 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3919 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3920 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3921 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3922 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3923 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3925 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3926 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3927 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3928 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3929 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3932 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3937 const struct cxsr_latency *latency;
3940 if (fsb == 0 || mem == 0)
3943 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3944 latency = &cxsr_latency_table[i];
3945 if (is_desktop == latency->is_desktop &&
3946 is_ddr3 == latency->is_ddr3 &&
3947 fsb == latency->fsb_freq && mem == latency->mem_freq)
3951 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3956 static void pineview_disable_cxsr(struct drm_device *dev)
3958 struct drm_i915_private *dev_priv = dev->dev_private;
3960 /* deactivate cxsr */
3961 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3965 * Latency for FIFO fetches is dependent on several factors:
3966 * - memory configuration (speed, channels)
3968 * - current MCH state
3969 * It can be fairly high in some situations, so here we assume a fairly
3970 * pessimal value. It's a tradeoff between extra memory fetches (if we
3971 * set this value too high, the FIFO will fetch frequently to stay full)
3972 * and power consumption (set it too low to save power and we might see
3973 * FIFO underruns and display "flicker").
3975 * A value of 5us seems to be a good balance; safe for very low end
3976 * platforms but not overly aggressive on lower latency configs.
3978 static const int latency_ns = 5000;
3980 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3982 struct drm_i915_private *dev_priv = dev->dev_private;
3983 uint32_t dsparb = I915_READ(DSPARB);
3986 size = dsparb & 0x7f;
3988 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3990 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3991 plane ? "B" : "A", size);
3996 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3998 struct drm_i915_private *dev_priv = dev->dev_private;
3999 uint32_t dsparb = I915_READ(DSPARB);
4002 size = dsparb & 0x1ff;
4004 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
4005 size >>= 1; /* Convert to cachelines */
4007 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4008 plane ? "B" : "A", size);
4013 static int i845_get_fifo_size(struct drm_device *dev, int plane)
4015 struct drm_i915_private *dev_priv = dev->dev_private;
4016 uint32_t dsparb = I915_READ(DSPARB);
4019 size = dsparb & 0x7f;
4020 size >>= 2; /* Convert to cachelines */
4022 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4029 static int i830_get_fifo_size(struct drm_device *dev, int plane)
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032 uint32_t dsparb = I915_READ(DSPARB);
4035 size = dsparb & 0x7f;
4036 size >>= 1; /* Convert to cachelines */
4038 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4039 plane ? "B" : "A", size);
4044 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
4046 struct drm_crtc *crtc, *enabled = NULL;
4048 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4049 if (crtc->enabled && crtc->fb) {
4059 static void pineview_update_wm(struct drm_device *dev)
4061 struct drm_i915_private *dev_priv = dev->dev_private;
4062 struct drm_crtc *crtc;
4063 const struct cxsr_latency *latency;
4067 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4068 dev_priv->fsb_freq, dev_priv->mem_freq);
4070 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4071 pineview_disable_cxsr(dev);
4075 crtc = single_enabled_crtc(dev);
4077 int clock = crtc->mode.clock;
4078 int pixel_size = crtc->fb->bits_per_pixel / 8;
4081 wm = intel_calculate_wm(clock, &pineview_display_wm,
4082 pineview_display_wm.fifo_size,
4083 pixel_size, latency->display_sr);
4084 reg = I915_READ(DSPFW1);
4085 reg &= ~DSPFW_SR_MASK;
4086 reg |= wm << DSPFW_SR_SHIFT;
4087 I915_WRITE(DSPFW1, reg);
4088 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4091 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4092 pineview_display_wm.fifo_size,
4093 pixel_size, latency->cursor_sr);
4094 reg = I915_READ(DSPFW3);
4095 reg &= ~DSPFW_CURSOR_SR_MASK;
4096 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4097 I915_WRITE(DSPFW3, reg);
4099 /* Display HPLL off SR */
4100 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4101 pineview_display_hplloff_wm.fifo_size,
4102 pixel_size, latency->display_hpll_disable);
4103 reg = I915_READ(DSPFW3);
4104 reg &= ~DSPFW_HPLL_SR_MASK;
4105 reg |= wm & DSPFW_HPLL_SR_MASK;
4106 I915_WRITE(DSPFW3, reg);
4108 /* cursor HPLL off SR */
4109 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4110 pineview_display_hplloff_wm.fifo_size,
4111 pixel_size, latency->cursor_hpll_disable);
4112 reg = I915_READ(DSPFW3);
4113 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4114 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4115 I915_WRITE(DSPFW3, reg);
4116 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4120 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4121 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4123 pineview_disable_cxsr(dev);
4124 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4128 static bool g4x_compute_wm0(struct drm_device *dev,
4130 const struct intel_watermark_params *display,
4131 int display_latency_ns,
4132 const struct intel_watermark_params *cursor,
4133 int cursor_latency_ns,
4137 struct drm_crtc *crtc;
4138 int htotal, hdisplay, clock, pixel_size;
4139 int line_time_us, line_count;
4140 int entries, tlb_miss;
4142 crtc = intel_get_crtc_for_plane(dev, plane);
4143 if (crtc->fb == NULL || !crtc->enabled) {
4144 *cursor_wm = cursor->guard_size;
4145 *plane_wm = display->guard_size;
4149 htotal = crtc->mode.htotal;
4150 hdisplay = crtc->mode.hdisplay;
4151 clock = crtc->mode.clock;
4152 pixel_size = crtc->fb->bits_per_pixel / 8;
4154 /* Use the small buffer method to calculate plane watermark */
4155 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4156 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4158 entries += tlb_miss;
4159 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4160 *plane_wm = entries + display->guard_size;
4161 if (*plane_wm > (int)display->max_wm)
4162 *plane_wm = display->max_wm;
4164 /* Use the large buffer method to calculate cursor watermark */
4165 line_time_us = ((htotal * 1000) / clock);
4166 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4167 entries = line_count * 64 * pixel_size;
4168 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4170 entries += tlb_miss;
4171 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4172 *cursor_wm = entries + cursor->guard_size;
4173 if (*cursor_wm > (int)cursor->max_wm)
4174 *cursor_wm = (int)cursor->max_wm;
4180 * Check the wm result.
4182 * If any calculated watermark values is larger than the maximum value that
4183 * can be programmed into the associated watermark register, that watermark
4186 static bool g4x_check_srwm(struct drm_device *dev,
4187 int display_wm, int cursor_wm,
4188 const struct intel_watermark_params *display,
4189 const struct intel_watermark_params *cursor)
4191 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4192 display_wm, cursor_wm);
4194 if (display_wm > display->max_wm) {
4195 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4196 display_wm, display->max_wm);
4200 if (cursor_wm > cursor->max_wm) {
4201 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4202 cursor_wm, cursor->max_wm);
4206 if (!(display_wm || cursor_wm)) {
4207 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4214 static bool g4x_compute_srwm(struct drm_device *dev,
4217 const struct intel_watermark_params *display,
4218 const struct intel_watermark_params *cursor,
4219 int *display_wm, int *cursor_wm)
4221 struct drm_crtc *crtc;
4222 int hdisplay, htotal, pixel_size, clock;
4223 unsigned long line_time_us;
4224 int line_count, line_size;
4229 *display_wm = *cursor_wm = 0;
4233 crtc = intel_get_crtc_for_plane(dev, plane);
4234 hdisplay = crtc->mode.hdisplay;
4235 htotal = crtc->mode.htotal;
4236 clock = crtc->mode.clock;
4237 pixel_size = crtc->fb->bits_per_pixel / 8;
4239 line_time_us = (htotal * 1000) / clock;
4240 line_count = (latency_ns / line_time_us + 1000) / 1000;
4241 line_size = hdisplay * pixel_size;
4243 /* Use the minimum of the small and large buffer method for primary */
4244 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4245 large = line_count * line_size;
4247 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4248 *display_wm = entries + display->guard_size;
4250 /* calculate the self-refresh watermark for display cursor */
4251 entries = line_count * pixel_size * 64;
4252 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4253 *cursor_wm = entries + cursor->guard_size;
4255 return g4x_check_srwm(dev,
4256 *display_wm, *cursor_wm,
4260 static bool vlv_compute_drain_latency(struct drm_device *dev,
4262 int *plane_prec_mult,
4264 int *cursor_prec_mult,
4267 struct drm_crtc *crtc;
4268 int clock, pixel_size;
4271 crtc = intel_get_crtc_for_plane(dev, plane);
4272 if (crtc->fb == NULL || !crtc->enabled)
4275 clock = crtc->mode.clock; /* VESA DOT Clock */
4276 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
4278 entries = (clock / 1000) * pixel_size;
4279 *plane_prec_mult = (entries > 256) ?
4280 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4281 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
4284 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
4285 *cursor_prec_mult = (entries > 256) ?
4286 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4287 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
4293 * Update drain latency registers of memory arbiter
4295 * Valleyview SoC has a new memory arbiter and needs drain latency registers
4296 * to be programmed. Each plane has a drain latency multiplier and a drain
4300 static void vlv_update_drain_latency(struct drm_device *dev)
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 int planea_prec, planea_dl, planeb_prec, planeb_dl;
4304 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
4305 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
4308 /* For plane A, Cursor A */
4309 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
4310 &cursor_prec_mult, &cursora_dl)) {
4311 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4312 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
4313 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4314 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
4316 I915_WRITE(VLV_DDL1, cursora_prec |
4317 (cursora_dl << DDL_CURSORA_SHIFT) |
4318 planea_prec | planea_dl);
4321 /* For plane B, Cursor B */
4322 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
4323 &cursor_prec_mult, &cursorb_dl)) {
4324 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4325 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
4326 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4327 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
4329 I915_WRITE(VLV_DDL2, cursorb_prec |
4330 (cursorb_dl << DDL_CURSORB_SHIFT) |
4331 planeb_prec | planeb_dl);
4335 #define single_plane_enabled(mask) is_power_of_2(mask)
4337 static void valleyview_update_wm(struct drm_device *dev)
4339 static const int sr_latency_ns = 12000;
4340 struct drm_i915_private *dev_priv = dev->dev_private;
4341 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4342 int plane_sr, cursor_sr;
4343 unsigned int enabled = 0;
4345 vlv_update_drain_latency(dev);
4347 if (g4x_compute_wm0(dev, 0,
4348 &valleyview_wm_info, latency_ns,
4349 &valleyview_cursor_wm_info, latency_ns,
4350 &planea_wm, &cursora_wm))
4353 if (g4x_compute_wm0(dev, 1,
4354 &valleyview_wm_info, latency_ns,
4355 &valleyview_cursor_wm_info, latency_ns,
4356 &planeb_wm, &cursorb_wm))
4359 plane_sr = cursor_sr = 0;
4360 if (single_plane_enabled(enabled) &&
4361 g4x_compute_srwm(dev, ffs(enabled) - 1,
4363 &valleyview_wm_info,
4364 &valleyview_cursor_wm_info,
4365 &plane_sr, &cursor_sr))
4366 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
4368 I915_WRITE(FW_BLC_SELF_VLV,
4369 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
4371 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4372 planea_wm, cursora_wm,
4373 planeb_wm, cursorb_wm,
4374 plane_sr, cursor_sr);
4377 (plane_sr << DSPFW_SR_SHIFT) |
4378 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4379 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4382 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4383 (cursora_wm << DSPFW_CURSORA_SHIFT));
4385 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
4388 static void g4x_update_wm(struct drm_device *dev)
4390 static const int sr_latency_ns = 12000;
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4393 int plane_sr, cursor_sr;
4394 unsigned int enabled = 0;
4396 if (g4x_compute_wm0(dev, 0,
4397 &g4x_wm_info, latency_ns,
4398 &g4x_cursor_wm_info, latency_ns,
4399 &planea_wm, &cursora_wm))
4402 if (g4x_compute_wm0(dev, 1,
4403 &g4x_wm_info, latency_ns,
4404 &g4x_cursor_wm_info, latency_ns,
4405 &planeb_wm, &cursorb_wm))
4408 plane_sr = cursor_sr = 0;
4409 if (single_plane_enabled(enabled) &&
4410 g4x_compute_srwm(dev, ffs(enabled) - 1,
4413 &g4x_cursor_wm_info,
4414 &plane_sr, &cursor_sr))
4415 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4417 I915_WRITE(FW_BLC_SELF,
4418 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4420 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4421 planea_wm, cursora_wm,
4422 planeb_wm, cursorb_wm,
4423 plane_sr, cursor_sr);
4426 (plane_sr << DSPFW_SR_SHIFT) |
4427 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4428 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4431 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4432 (cursora_wm << DSPFW_CURSORA_SHIFT));
4433 /* HPLL off in SR has some issues on G4x... disable it */
4435 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4436 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4439 static void i965_update_wm(struct drm_device *dev)
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 struct drm_crtc *crtc;
4446 /* Calc sr entries for one plane configs */
4447 crtc = single_enabled_crtc(dev);
4449 /* self-refresh has much higher latency */
4450 static const int sr_latency_ns = 12000;
4451 int clock = crtc->mode.clock;
4452 int htotal = crtc->mode.htotal;
4453 int hdisplay = crtc->mode.hdisplay;
4454 int pixel_size = crtc->fb->bits_per_pixel / 8;
4455 unsigned long line_time_us;
4458 line_time_us = ((htotal * 1000) / clock);
4460 /* Use ns/us then divide to preserve precision */
4461 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4462 pixel_size * hdisplay;
4463 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4464 srwm = I965_FIFO_SIZE - entries;
4468 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4471 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4473 entries = DIV_ROUND_UP(entries,
4474 i965_cursor_wm_info.cacheline_size);
4475 cursor_sr = i965_cursor_wm_info.fifo_size -
4476 (entries + i965_cursor_wm_info.guard_size);
4478 if (cursor_sr > i965_cursor_wm_info.max_wm)
4479 cursor_sr = i965_cursor_wm_info.max_wm;
4481 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4482 "cursor %d\n", srwm, cursor_sr);
4484 if (IS_CRESTLINE(dev))
4485 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4487 /* Turn off self refresh if both pipes are enabled */
4488 if (IS_CRESTLINE(dev))
4489 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4493 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4496 /* 965 has limitations... */
4497 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4498 (8 << 16) | (8 << 8) | (8 << 0));
4499 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4500 /* update cursor SR watermark */
4501 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4504 static void i9xx_update_wm(struct drm_device *dev)
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 const struct intel_watermark_params *wm_info;
4512 int planea_wm, planeb_wm;
4513 struct drm_crtc *crtc, *enabled = NULL;
4516 wm_info = &i945_wm_info;
4517 else if (!IS_GEN2(dev))
4518 wm_info = &i915_wm_info;
4520 wm_info = &i855_wm_info;
4522 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4523 crtc = intel_get_crtc_for_plane(dev, 0);
4524 if (crtc->enabled && crtc->fb) {
4525 planea_wm = intel_calculate_wm(crtc->mode.clock,
4527 crtc->fb->bits_per_pixel / 8,
4531 planea_wm = fifo_size - wm_info->guard_size;
4533 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4534 crtc = intel_get_crtc_for_plane(dev, 1);
4535 if (crtc->enabled && crtc->fb) {
4536 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4538 crtc->fb->bits_per_pixel / 8,
4540 if (enabled == NULL)
4545 planeb_wm = fifo_size - wm_info->guard_size;
4547 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4550 * Overlay gets an aggressive default since video jitter is bad.
4554 /* Play safe and disable self-refresh before adjusting watermarks. */
4555 if (IS_I945G(dev) || IS_I945GM(dev))
4556 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4557 else if (IS_I915GM(dev))
4558 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4560 /* Calc sr entries for one plane configs */
4561 if (HAS_FW_BLC(dev) && enabled) {
4562 /* self-refresh has much higher latency */
4563 static const int sr_latency_ns = 6000;
4564 int clock = enabled->mode.clock;
4565 int htotal = enabled->mode.htotal;
4566 int hdisplay = enabled->mode.hdisplay;
4567 int pixel_size = enabled->fb->bits_per_pixel / 8;
4568 unsigned long line_time_us;
4571 line_time_us = (htotal * 1000) / clock;
4573 /* Use ns/us then divide to preserve precision */
4574 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4575 pixel_size * hdisplay;
4576 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4577 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4578 srwm = wm_info->fifo_size - entries;
4582 if (IS_I945G(dev) || IS_I945GM(dev))
4583 I915_WRITE(FW_BLC_SELF,
4584 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4585 else if (IS_I915GM(dev))
4586 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4589 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4590 planea_wm, planeb_wm, cwm, srwm);
4592 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4593 fwater_hi = (cwm & 0x1f);
4595 /* Set request length to 8 cachelines per fetch */
4596 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4597 fwater_hi = fwater_hi | (1 << 8);
4599 I915_WRITE(FW_BLC, fwater_lo);
4600 I915_WRITE(FW_BLC2, fwater_hi);
4602 if (HAS_FW_BLC(dev)) {
4604 if (IS_I945G(dev) || IS_I945GM(dev))
4605 I915_WRITE(FW_BLC_SELF,
4606 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4607 else if (IS_I915GM(dev))
4608 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4609 DRM_DEBUG_KMS("memory self refresh enabled\n");
4611 DRM_DEBUG_KMS("memory self refresh disabled\n");
4615 static void i830_update_wm(struct drm_device *dev)
4617 struct drm_i915_private *dev_priv = dev->dev_private;
4618 struct drm_crtc *crtc;
4622 crtc = single_enabled_crtc(dev);
4626 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4627 dev_priv->display.get_fifo_size(dev, 0),
4628 crtc->fb->bits_per_pixel / 8,
4630 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4631 fwater_lo |= (3<<8) | planea_wm;
4633 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4635 I915_WRITE(FW_BLC, fwater_lo);
4638 #define ILK_LP0_PLANE_LATENCY 700
4639 #define ILK_LP0_CURSOR_LATENCY 1300
4642 * Check the wm result.
4644 * If any calculated watermark values is larger than the maximum value that
4645 * can be programmed into the associated watermark register, that watermark
4648 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4649 int fbc_wm, int display_wm, int cursor_wm,
4650 const struct intel_watermark_params *display,
4651 const struct intel_watermark_params *cursor)
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4655 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4656 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4658 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4659 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4660 fbc_wm, SNB_FBC_MAX_SRWM, level);
4662 /* fbc has it's own way to disable FBC WM */
4663 I915_WRITE(DISP_ARB_CTL,
4664 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4668 if (display_wm > display->max_wm) {
4669 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4670 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4674 if (cursor_wm > cursor->max_wm) {
4675 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4676 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4680 if (!(fbc_wm || display_wm || cursor_wm)) {
4681 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4689 * Compute watermark values of WM[1-3],
4691 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4693 const struct intel_watermark_params *display,
4694 const struct intel_watermark_params *cursor,
4695 int *fbc_wm, int *display_wm, int *cursor_wm)
4697 struct drm_crtc *crtc;
4698 unsigned long line_time_us;
4699 int hdisplay, htotal, pixel_size, clock;
4700 int line_count, line_size;
4705 *fbc_wm = *display_wm = *cursor_wm = 0;
4709 crtc = intel_get_crtc_for_plane(dev, plane);
4710 hdisplay = crtc->mode.hdisplay;
4711 htotal = crtc->mode.htotal;
4712 clock = crtc->mode.clock;
4713 pixel_size = crtc->fb->bits_per_pixel / 8;
4715 line_time_us = (htotal * 1000) / clock;
4716 line_count = (latency_ns / line_time_us + 1000) / 1000;
4717 line_size = hdisplay * pixel_size;
4719 /* Use the minimum of the small and large buffer method for primary */
4720 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4721 large = line_count * line_size;
4723 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4724 *display_wm = entries + display->guard_size;
4728 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4730 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4732 /* calculate the self-refresh watermark for display cursor */
4733 entries = line_count * pixel_size * 64;
4734 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4735 *cursor_wm = entries + cursor->guard_size;
4737 return ironlake_check_srwm(dev, level,
4738 *fbc_wm, *display_wm, *cursor_wm,
4742 static void ironlake_update_wm(struct drm_device *dev)
4744 struct drm_i915_private *dev_priv = dev->dev_private;
4745 int fbc_wm, plane_wm, cursor_wm;
4746 unsigned int enabled;
4749 if (g4x_compute_wm0(dev, 0,
4750 &ironlake_display_wm_info,
4751 ILK_LP0_PLANE_LATENCY,
4752 &ironlake_cursor_wm_info,
4753 ILK_LP0_CURSOR_LATENCY,
4754 &plane_wm, &cursor_wm)) {
4755 I915_WRITE(WM0_PIPEA_ILK,
4756 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4757 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4758 " plane %d, " "cursor: %d\n",
4759 plane_wm, cursor_wm);
4763 if (g4x_compute_wm0(dev, 1,
4764 &ironlake_display_wm_info,
4765 ILK_LP0_PLANE_LATENCY,
4766 &ironlake_cursor_wm_info,
4767 ILK_LP0_CURSOR_LATENCY,
4768 &plane_wm, &cursor_wm)) {
4769 I915_WRITE(WM0_PIPEB_ILK,
4770 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4771 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4772 " plane %d, cursor: %d\n",
4773 plane_wm, cursor_wm);
4778 * Calculate and update the self-refresh watermark only when one
4779 * display plane is used.
4781 I915_WRITE(WM3_LP_ILK, 0);
4782 I915_WRITE(WM2_LP_ILK, 0);
4783 I915_WRITE(WM1_LP_ILK, 0);
4785 if (!single_plane_enabled(enabled))
4787 enabled = ffs(enabled) - 1;
4790 if (!ironlake_compute_srwm(dev, 1, enabled,
4791 ILK_READ_WM1_LATENCY() * 500,
4792 &ironlake_display_srwm_info,
4793 &ironlake_cursor_srwm_info,
4794 &fbc_wm, &plane_wm, &cursor_wm))
4797 I915_WRITE(WM1_LP_ILK,
4799 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4800 (fbc_wm << WM1_LP_FBC_SHIFT) |
4801 (plane_wm << WM1_LP_SR_SHIFT) |
4805 if (!ironlake_compute_srwm(dev, 2, enabled,
4806 ILK_READ_WM2_LATENCY() * 500,
4807 &ironlake_display_srwm_info,
4808 &ironlake_cursor_srwm_info,
4809 &fbc_wm, &plane_wm, &cursor_wm))
4812 I915_WRITE(WM2_LP_ILK,
4814 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4815 (fbc_wm << WM1_LP_FBC_SHIFT) |
4816 (plane_wm << WM1_LP_SR_SHIFT) |
4820 * WM3 is unsupported on ILK, probably because we don't have latency
4821 * data for that power state
4825 void sandybridge_update_wm(struct drm_device *dev)
4827 struct drm_i915_private *dev_priv = dev->dev_private;
4828 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4830 int fbc_wm, plane_wm, cursor_wm;
4831 unsigned int enabled;
4834 if (g4x_compute_wm0(dev, 0,
4835 &sandybridge_display_wm_info, latency,
4836 &sandybridge_cursor_wm_info, latency,
4837 &plane_wm, &cursor_wm)) {
4838 val = I915_READ(WM0_PIPEA_ILK);
4839 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4840 I915_WRITE(WM0_PIPEA_ILK, val |
4841 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4842 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4843 " plane %d, " "cursor: %d\n",
4844 plane_wm, cursor_wm);
4848 if (g4x_compute_wm0(dev, 1,
4849 &sandybridge_display_wm_info, latency,
4850 &sandybridge_cursor_wm_info, latency,
4851 &plane_wm, &cursor_wm)) {
4852 val = I915_READ(WM0_PIPEB_ILK);
4853 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4854 I915_WRITE(WM0_PIPEB_ILK, val |
4855 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4856 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4857 " plane %d, cursor: %d\n",
4858 plane_wm, cursor_wm);
4862 /* IVB has 3 pipes */
4863 if (IS_IVYBRIDGE(dev) &&
4864 g4x_compute_wm0(dev, 2,
4865 &sandybridge_display_wm_info, latency,
4866 &sandybridge_cursor_wm_info, latency,
4867 &plane_wm, &cursor_wm)) {
4868 val = I915_READ(WM0_PIPEC_IVB);
4869 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4870 I915_WRITE(WM0_PIPEC_IVB, val |
4871 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4872 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4873 " plane %d, cursor: %d\n",
4874 plane_wm, cursor_wm);
4879 * Calculate and update the self-refresh watermark only when one
4880 * display plane is used.
4882 * SNB support 3 levels of watermark.
4884 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4885 * and disabled in the descending order
4888 I915_WRITE(WM3_LP_ILK, 0);
4889 I915_WRITE(WM2_LP_ILK, 0);
4890 I915_WRITE(WM1_LP_ILK, 0);
4892 if (!single_plane_enabled(enabled) ||
4893 dev_priv->sprite_scaling_enabled)
4895 enabled = ffs(enabled) - 1;
4898 if (!ironlake_compute_srwm(dev, 1, enabled,
4899 SNB_READ_WM1_LATENCY() * 500,
4900 &sandybridge_display_srwm_info,
4901 &sandybridge_cursor_srwm_info,
4902 &fbc_wm, &plane_wm, &cursor_wm))
4905 I915_WRITE(WM1_LP_ILK,
4907 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4908 (fbc_wm << WM1_LP_FBC_SHIFT) |
4909 (plane_wm << WM1_LP_SR_SHIFT) |
4913 if (!ironlake_compute_srwm(dev, 2, enabled,
4914 SNB_READ_WM2_LATENCY() * 500,
4915 &sandybridge_display_srwm_info,
4916 &sandybridge_cursor_srwm_info,
4917 &fbc_wm, &plane_wm, &cursor_wm))
4920 I915_WRITE(WM2_LP_ILK,
4922 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4923 (fbc_wm << WM1_LP_FBC_SHIFT) |
4924 (plane_wm << WM1_LP_SR_SHIFT) |
4928 if (!ironlake_compute_srwm(dev, 3, enabled,
4929 SNB_READ_WM3_LATENCY() * 500,
4930 &sandybridge_display_srwm_info,
4931 &sandybridge_cursor_srwm_info,
4932 &fbc_wm, &plane_wm, &cursor_wm))
4935 I915_WRITE(WM3_LP_ILK,
4937 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4938 (fbc_wm << WM1_LP_FBC_SHIFT) |
4939 (plane_wm << WM1_LP_SR_SHIFT) |
4944 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4945 uint32_t sprite_width, int pixel_size,
4946 const struct intel_watermark_params *display,
4947 int display_latency_ns, int *sprite_wm)
4949 struct drm_crtc *crtc;
4951 int entries, tlb_miss;
4953 crtc = intel_get_crtc_for_plane(dev, plane);
4954 if (crtc->fb == NULL || !crtc->enabled) {
4955 *sprite_wm = display->guard_size;
4959 clock = crtc->mode.clock;
4961 /* Use the small buffer method to calculate the sprite watermark */
4962 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4963 tlb_miss = display->fifo_size*display->cacheline_size -
4966 entries += tlb_miss;
4967 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4968 *sprite_wm = entries + display->guard_size;
4969 if (*sprite_wm > (int)display->max_wm)
4970 *sprite_wm = display->max_wm;
4976 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4977 uint32_t sprite_width, int pixel_size,
4978 const struct intel_watermark_params *display,
4979 int latency_ns, int *sprite_wm)
4981 struct drm_crtc *crtc;
4982 unsigned long line_time_us;
4984 int line_count, line_size;
4993 crtc = intel_get_crtc_for_plane(dev, plane);
4994 clock = crtc->mode.clock;
4996 line_time_us = (sprite_width * 1000) / clock;
4997 line_count = (latency_ns / line_time_us + 1000) / 1000;
4998 line_size = sprite_width * pixel_size;
5000 /* Use the minimum of the small and large buffer method for primary */
5001 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
5002 large = line_count * line_size;
5004 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
5005 *sprite_wm = entries + display->guard_size;
5007 return *sprite_wm > 0x3ff ? false : true;
5010 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
5011 uint32_t sprite_width, int pixel_size)
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
5021 reg = WM0_PIPEA_ILK;
5024 reg = WM0_PIPEB_ILK;
5027 reg = WM0_PIPEC_IVB;
5030 return; /* bad pipe */
5033 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
5034 &sandybridge_display_wm_info,
5035 latency, &sprite_wm);
5037 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
5042 val = I915_READ(reg);
5043 val &= ~WM0_PIPE_SPRITE_MASK;
5044 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
5045 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
5048 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5050 &sandybridge_display_srwm_info,
5051 SNB_READ_WM1_LATENCY() * 500,
5054 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
5058 I915_WRITE(WM1S_LP_ILK, sprite_wm);
5060 /* Only IVB has two more LP watermarks for sprite */
5061 if (!IS_IVYBRIDGE(dev))
5064 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5066 &sandybridge_display_srwm_info,
5067 SNB_READ_WM2_LATENCY() * 500,
5070 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
5074 I915_WRITE(WM2S_LP_IVB, sprite_wm);
5076 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5078 &sandybridge_display_srwm_info,
5079 SNB_READ_WM3_LATENCY() * 500,
5082 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
5086 I915_WRITE(WM3S_LP_IVB, sprite_wm);
5090 * intel_update_watermarks - update FIFO watermark values based on current modes
5092 * Calculate watermark values for the various WM regs based on current mode
5093 * and plane configuration.
5095 * There are several cases to deal with here:
5096 * - normal (i.e. non-self-refresh)
5097 * - self-refresh (SR) mode
5098 * - lines are large relative to FIFO size (buffer can hold up to 2)
5099 * - lines are small relative to FIFO size (buffer can hold more than 2
5100 * lines), so need to account for TLB latency
5102 * The normal calculation is:
5103 * watermark = dotclock * bytes per pixel * latency
5104 * where latency is platform & configuration dependent (we assume pessimal
5107 * The SR calculation is:
5108 * watermark = (trunc(latency/line time)+1) * surface width *
5111 * line time = htotal / dotclock
5112 * surface width = hdisplay for normal plane and 64 for cursor
5113 * and latency is assumed to be high, as above.
5115 * The final value programmed to the register should always be rounded up,
5116 * and include an extra 2 entries to account for clock crossings.
5118 * We don't use the sprite, so we can ignore that. And on Crestline we have
5119 * to set the non-SR watermarks to 8.
5121 static void intel_update_watermarks(struct drm_device *dev)
5123 struct drm_i915_private *dev_priv = dev->dev_private;
5125 if (dev_priv->display.update_wm)
5126 dev_priv->display.update_wm(dev);
5129 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
5130 uint32_t sprite_width, int pixel_size)
5132 struct drm_i915_private *dev_priv = dev->dev_private;
5134 if (dev_priv->display.update_sprite_wm)
5135 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
5139 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5141 if (i915_panel_use_ssc >= 0)
5142 return i915_panel_use_ssc != 0;
5143 return dev_priv->lvds_use_ssc
5144 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5148 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
5149 * @crtc: CRTC structure
5150 * @mode: requested mode
5152 * A pipe may be connected to one or more outputs. Based on the depth of the
5153 * attached framebuffer, choose a good color depth to use on the pipe.
5155 * If possible, match the pipe depth to the fb depth. In some cases, this
5156 * isn't ideal, because the connected output supports a lesser or restricted
5157 * set of depths. Resolve that here:
5158 * LVDS typically supports only 6bpc, so clamp down in that case
5159 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
5160 * Displays may support a restricted set as well, check EDID and clamp as
5162 * DP may want to dither down to 6bpc to fit larger modes
5165 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
5166 * true if they don't match).
5168 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
5169 unsigned int *pipe_bpp,
5170 struct drm_display_mode *mode)
5172 struct drm_device *dev = crtc->dev;
5173 struct drm_i915_private *dev_priv = dev->dev_private;
5174 struct drm_encoder *encoder;
5175 struct drm_connector *connector;
5176 unsigned int display_bpc = UINT_MAX, bpc;
5178 /* Walk the encoders & connectors on this crtc, get min bpc */
5179 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5180 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5182 if (encoder->crtc != crtc)
5185 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5186 unsigned int lvds_bpc;
5188 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5194 if (lvds_bpc < display_bpc) {
5195 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5196 display_bpc = lvds_bpc;
5201 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5202 /* Use VBT settings if we have an eDP panel */
5203 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5205 if (edp_bpc < display_bpc) {
5206 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5207 display_bpc = edp_bpc;
5212 /* Not one of the known troublemakers, check the EDID */
5213 list_for_each_entry(connector, &dev->mode_config.connector_list,
5215 if (connector->encoder != encoder)
5218 /* Don't use an invalid EDID bpc value */
5219 if (connector->display_info.bpc &&
5220 connector->display_info.bpc < display_bpc) {
5221 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5222 display_bpc = connector->display_info.bpc;
5227 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5228 * through, clamp it down. (Note: >12bpc will be caught below.)
5230 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5231 if (display_bpc > 8 && display_bpc < 12) {
5232 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5235 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5241 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5242 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5247 * We could just drive the pipe at the highest bpc all the time and
5248 * enable dithering as needed, but that costs bandwidth. So choose
5249 * the minimum value that expresses the full color range of the fb but
5250 * also stays within the max display bpc discovered above.
5253 switch (crtc->fb->depth) {
5255 bpc = 8; /* since we go through a colormap */
5259 bpc = 6; /* min is 18bpp */
5271 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5272 bpc = min((unsigned int)8, display_bpc);
5276 display_bpc = min(display_bpc, bpc);
5278 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5281 *pipe_bpp = display_bpc * 3;
5283 return display_bpc != bpc;
5286 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5288 struct drm_device *dev = crtc->dev;
5289 struct drm_i915_private *dev_priv = dev->dev_private;
5292 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5293 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5294 refclk = dev_priv->lvds_ssc_freq * 1000;
5295 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5297 } else if (!IS_GEN2(dev)) {
5306 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5307 intel_clock_t *clock)
5309 /* SDVO TV has fixed PLL values depend on its clock range,
5310 this mirrors vbios setting. */
5311 if (adjusted_mode->clock >= 100000
5312 && adjusted_mode->clock < 140500) {
5318 } else if (adjusted_mode->clock >= 140500
5319 && adjusted_mode->clock <= 200000) {
5328 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5329 intel_clock_t *clock,
5330 intel_clock_t *reduced_clock)
5332 struct drm_device *dev = crtc->dev;
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5335 int pipe = intel_crtc->pipe;
5338 if (IS_PINEVIEW(dev)) {
5339 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5341 fp2 = (1 << reduced_clock->n) << 16 |
5342 reduced_clock->m1 << 8 | reduced_clock->m2;
5344 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5346 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5350 I915_WRITE(FP0(pipe), fp);
5352 intel_crtc->lowfreq_avail = false;
5353 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5354 reduced_clock && i915_powersave) {
5355 I915_WRITE(FP1(pipe), fp2);
5356 intel_crtc->lowfreq_avail = true;
5358 I915_WRITE(FP1(pipe), fp);
5362 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
5363 struct drm_display_mode *adjusted_mode)
5365 struct drm_device *dev = crtc->dev;
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5368 int pipe = intel_crtc->pipe;
5369 u32 temp, lvds_sync = 0;
5371 temp = I915_READ(LVDS);
5372 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5374 temp |= LVDS_PIPEB_SELECT;
5376 temp &= ~LVDS_PIPEB_SELECT;
5378 /* set the corresponsding LVDS_BORDER bit */
5379 temp |= dev_priv->lvds_border_bits;
5380 /* Set the B0-B3 data pairs corresponding to whether we're going to
5381 * set the DPLLs for dual-channel mode or not.
5384 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5386 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5388 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5389 * appropriately here, but we need to look more thoroughly into how
5390 * panels behave in the two modes.
5392 /* set the dithering flag on LVDS as needed */
5393 if (INTEL_INFO(dev)->gen >= 4) {
5394 if (dev_priv->lvds_dither)
5395 temp |= LVDS_ENABLE_DITHER;
5397 temp &= ~LVDS_ENABLE_DITHER;
5399 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5400 lvds_sync |= LVDS_HSYNC_POLARITY;
5401 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5402 lvds_sync |= LVDS_VSYNC_POLARITY;
5403 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5405 char flags[2] = "-+";
5406 DRM_INFO("Changing LVDS panel from "
5407 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5408 flags[!(temp & LVDS_HSYNC_POLARITY)],
5409 flags[!(temp & LVDS_VSYNC_POLARITY)],
5410 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5411 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5412 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5415 I915_WRITE(LVDS, temp);
5418 static void i9xx_update_pll(struct drm_crtc *crtc,
5419 struct drm_display_mode *mode,
5420 struct drm_display_mode *adjusted_mode,
5421 intel_clock_t *clock, intel_clock_t *reduced_clock,
5424 struct drm_device *dev = crtc->dev;
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5427 int pipe = intel_crtc->pipe;
5431 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
5432 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
5434 dpll = DPLL_VGA_MODE_DIS;
5436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5437 dpll |= DPLLB_MODE_LVDS;
5439 dpll |= DPLLB_MODE_DAC_SERIAL;
5441 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5442 if (pixel_multiplier > 1) {
5443 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5444 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5446 dpll |= DPLL_DVO_HIGH_SPEED;
5448 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5449 dpll |= DPLL_DVO_HIGH_SPEED;
5451 /* compute bitmask from p1 value */
5452 if (IS_PINEVIEW(dev))
5453 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5455 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5456 if (IS_G4X(dev) && reduced_clock)
5457 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5459 switch (clock->p2) {
5461 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5464 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5467 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5470 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5473 if (INTEL_INFO(dev)->gen >= 4)
5474 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5476 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5477 dpll |= PLL_REF_INPUT_TVCLKINBC;
5478 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5479 /* XXX: just matching BIOS for now */
5480 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5482 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5483 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5484 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5486 dpll |= PLL_REF_INPUT_DREFCLK;
5488 dpll |= DPLL_VCO_ENABLE;
5489 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5490 POSTING_READ(DPLL(pipe));
5493 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5494 * This is an exception to the general rule that mode_set doesn't turn
5497 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5498 intel_update_lvds(crtc, clock, adjusted_mode);
5500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5501 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5503 I915_WRITE(DPLL(pipe), dpll);
5505 /* Wait for the clocks to stabilize. */
5506 POSTING_READ(DPLL(pipe));
5509 if (INTEL_INFO(dev)->gen >= 4) {
5512 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5514 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5518 I915_WRITE(DPLL_MD(pipe), temp);
5520 /* The pixel multiplier can only be updated once the
5521 * DPLL is enabled and the clocks are stable.
5523 * So write it again.
5525 I915_WRITE(DPLL(pipe), dpll);
5529 static void i8xx_update_pll(struct drm_crtc *crtc,
5530 struct drm_display_mode *adjusted_mode,
5531 intel_clock_t *clock,
5534 struct drm_device *dev = crtc->dev;
5535 struct drm_i915_private *dev_priv = dev->dev_private;
5536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5537 int pipe = intel_crtc->pipe;
5540 dpll = DPLL_VGA_MODE_DIS;
5542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
5543 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5546 dpll |= PLL_P1_DIVIDE_BY_TWO;
5548 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5550 dpll |= PLL_P2_DIVIDE_BY_4;
5553 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5554 /* XXX: just matching BIOS for now */
5555 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5557 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5558 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5559 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5561 dpll |= PLL_REF_INPUT_DREFCLK;
5563 dpll |= DPLL_VCO_ENABLE;
5564 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5565 POSTING_READ(DPLL(pipe));
5568 I915_WRITE(DPLL(pipe), dpll);
5570 /* Wait for the clocks to stabilize. */
5571 POSTING_READ(DPLL(pipe));
5574 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5575 * This is an exception to the general rule that mode_set doesn't turn
5578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5579 intel_update_lvds(crtc, clock, adjusted_mode);
5581 /* The pixel multiplier can only be updated once the
5582 * DPLL is enabled and the clocks are stable.
5584 * So write it again.
5586 I915_WRITE(DPLL(pipe), dpll);
5589 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5590 struct drm_display_mode *mode,
5591 struct drm_display_mode *adjusted_mode,
5593 struct drm_framebuffer *old_fb)
5595 struct drm_device *dev = crtc->dev;
5596 struct drm_i915_private *dev_priv = dev->dev_private;
5597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5598 int pipe = intel_crtc->pipe;
5599 int plane = intel_crtc->plane;
5600 int refclk, num_connectors = 0;
5601 intel_clock_t clock, reduced_clock;
5602 u32 dspcntr, pipeconf, vsyncshift;
5603 bool ok, has_reduced_clock = false, is_sdvo = false;
5604 bool is_lvds = false, is_tv = false, is_dp = false;
5605 struct drm_mode_config *mode_config = &dev->mode_config;
5606 struct intel_encoder *encoder;
5607 const intel_limit_t *limit;
5610 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5611 if (encoder->base.crtc != crtc)
5614 switch (encoder->type) {
5615 case INTEL_OUTPUT_LVDS:
5618 case INTEL_OUTPUT_SDVO:
5619 case INTEL_OUTPUT_HDMI:
5621 if (encoder->needs_tv_clock)
5624 case INTEL_OUTPUT_TVOUT:
5627 case INTEL_OUTPUT_DISPLAYPORT:
5635 refclk = i9xx_get_refclk(crtc, num_connectors);
5638 * Returns a set of divisors for the desired target clock with the given
5639 * refclk, or FALSE. The returned values represent the clock equation:
5640 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5642 limit = intel_limit(crtc, refclk);
5643 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5646 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5650 /* Ensure that the cursor is valid for the new mode before changing... */
5651 intel_crtc_update_cursor(crtc, true);
5653 if (is_lvds && dev_priv->lvds_downclock_avail) {
5655 * Ensure we match the reduced clock's P to the target clock.
5656 * If the clocks don't match, we can't switch the display clock
5657 * by using the FP0/FP1. In such case we will disable the LVDS
5658 * downclock feature.
5660 has_reduced_clock = limit->find_pll(limit, crtc,
5661 dev_priv->lvds_downclock,
5667 if (is_sdvo && is_tv)
5668 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5670 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5671 &reduced_clock : NULL);
5674 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
5676 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
5677 has_reduced_clock ? &reduced_clock : NULL,
5680 /* setup pipeconf */
5681 pipeconf = I915_READ(PIPECONF(pipe));
5683 /* Set up the display plane register */
5684 dspcntr = DISPPLANE_GAMMA_ENABLE;
5687 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5689 dspcntr |= DISPPLANE_SEL_PIPE_B;
5691 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5692 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5695 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5699 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5700 pipeconf |= PIPECONF_DOUBLE_WIDE;
5702 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5705 /* default to 8bpc */
5706 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5708 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5709 pipeconf |= PIPECONF_BPP_6 |
5710 PIPECONF_DITHER_EN |
5711 PIPECONF_DITHER_TYPE_SP;
5715 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5716 drm_mode_debug_printmodeline(mode);
5718 if (HAS_PIPE_CXSR(dev)) {
5719 if (intel_crtc->lowfreq_avail) {
5720 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5721 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5723 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5724 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5728 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5729 if (!IS_GEN2(dev) &&
5730 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5731 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5732 /* the chip adds 2 halflines automatically */
5733 adjusted_mode->crtc_vtotal -= 1;
5734 adjusted_mode->crtc_vblank_end -= 1;
5735 vsyncshift = adjusted_mode->crtc_hsync_start
5736 - adjusted_mode->crtc_htotal/2;
5738 pipeconf |= PIPECONF_PROGRESSIVE;
5743 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5745 I915_WRITE(HTOTAL(pipe),
5746 (adjusted_mode->crtc_hdisplay - 1) |
5747 ((adjusted_mode->crtc_htotal - 1) << 16));
5748 I915_WRITE(HBLANK(pipe),
5749 (adjusted_mode->crtc_hblank_start - 1) |
5750 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5751 I915_WRITE(HSYNC(pipe),
5752 (adjusted_mode->crtc_hsync_start - 1) |
5753 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5755 I915_WRITE(VTOTAL(pipe),
5756 (adjusted_mode->crtc_vdisplay - 1) |
5757 ((adjusted_mode->crtc_vtotal - 1) << 16));
5758 I915_WRITE(VBLANK(pipe),
5759 (adjusted_mode->crtc_vblank_start - 1) |
5760 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5761 I915_WRITE(VSYNC(pipe),
5762 (adjusted_mode->crtc_vsync_start - 1) |
5763 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5765 /* pipesrc and dspsize control the size that is scaled from,
5766 * which should always be the user's requested size.
5768 I915_WRITE(DSPSIZE(plane),
5769 ((mode->vdisplay - 1) << 16) |
5770 (mode->hdisplay - 1));
5771 I915_WRITE(DSPPOS(plane), 0);
5772 I915_WRITE(PIPESRC(pipe),
5773 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5775 I915_WRITE(PIPECONF(pipe), pipeconf);
5776 POSTING_READ(PIPECONF(pipe));
5777 intel_enable_pipe(dev_priv, pipe, false);
5779 intel_wait_for_vblank(dev, pipe);
5781 I915_WRITE(DSPCNTR(plane), dspcntr);
5782 POSTING_READ(DSPCNTR(plane));
5783 intel_enable_plane(dev_priv, plane, pipe);
5785 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5787 intel_update_watermarks(dev);
5793 * Initialize reference clocks when the driver loads
5795 void ironlake_init_pch_refclk(struct drm_device *dev)
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 struct drm_mode_config *mode_config = &dev->mode_config;
5799 struct intel_encoder *encoder;
5801 bool has_lvds = false;
5802 bool has_cpu_edp = false;
5803 bool has_pch_edp = false;
5804 bool has_panel = false;
5805 bool has_ck505 = false;
5806 bool can_ssc = false;
5808 /* We need to take the global config into account */
5809 list_for_each_entry(encoder, &mode_config->encoder_list,
5811 switch (encoder->type) {
5812 case INTEL_OUTPUT_LVDS:
5816 case INTEL_OUTPUT_EDP:
5818 if (intel_encoder_is_pch_edp(&encoder->base))
5826 if (HAS_PCH_IBX(dev)) {
5827 has_ck505 = dev_priv->display_clock_mode;
5828 can_ssc = has_ck505;
5834 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5835 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5838 /* Ironlake: try to setup display ref clock before DPLL
5839 * enabling. This is only under driver's control after
5840 * PCH B stepping, previous chipset stepping should be
5841 * ignoring this setting.
5843 temp = I915_READ(PCH_DREF_CONTROL);
5844 /* Always enable nonspread source */
5845 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5848 temp |= DREF_NONSPREAD_CK505_ENABLE;
5850 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5853 temp &= ~DREF_SSC_SOURCE_MASK;
5854 temp |= DREF_SSC_SOURCE_ENABLE;
5856 /* SSC must be turned on before enabling the CPU output */
5857 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5858 DRM_DEBUG_KMS("Using SSC on panel\n");
5859 temp |= DREF_SSC1_ENABLE;
5862 /* Get SSC going before enabling the outputs */
5863 I915_WRITE(PCH_DREF_CONTROL, temp);
5864 POSTING_READ(PCH_DREF_CONTROL);
5867 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5869 /* Enable CPU source on CPU attached eDP */
5871 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5872 DRM_DEBUG_KMS("Using SSC on eDP\n");
5873 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5876 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5878 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5880 I915_WRITE(PCH_DREF_CONTROL, temp);
5881 POSTING_READ(PCH_DREF_CONTROL);
5884 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5886 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5888 /* Turn off CPU output */
5889 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5891 I915_WRITE(PCH_DREF_CONTROL, temp);
5892 POSTING_READ(PCH_DREF_CONTROL);
5895 /* Turn off the SSC source */
5896 temp &= ~DREF_SSC_SOURCE_MASK;
5897 temp |= DREF_SSC_SOURCE_DISABLE;
5900 temp &= ~ DREF_SSC1_ENABLE;
5902 I915_WRITE(PCH_DREF_CONTROL, temp);
5903 POSTING_READ(PCH_DREF_CONTROL);
5908 static int ironlake_get_refclk(struct drm_crtc *crtc)
5910 struct drm_device *dev = crtc->dev;
5911 struct drm_i915_private *dev_priv = dev->dev_private;
5912 struct intel_encoder *encoder;
5913 struct drm_mode_config *mode_config = &dev->mode_config;
5914 struct intel_encoder *edp_encoder = NULL;
5915 int num_connectors = 0;
5916 bool is_lvds = false;
5918 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5919 if (encoder->base.crtc != crtc)
5922 switch (encoder->type) {
5923 case INTEL_OUTPUT_LVDS:
5926 case INTEL_OUTPUT_EDP:
5927 edp_encoder = encoder;
5933 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5934 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5935 dev_priv->lvds_ssc_freq);
5936 return dev_priv->lvds_ssc_freq * 1000;
5942 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5943 struct drm_display_mode *mode,
5944 struct drm_display_mode *adjusted_mode,
5946 struct drm_framebuffer *old_fb)
5948 struct drm_device *dev = crtc->dev;
5949 struct drm_i915_private *dev_priv = dev->dev_private;
5950 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5951 int pipe = intel_crtc->pipe;
5952 int plane = intel_crtc->plane;
5953 int refclk, num_connectors = 0;
5954 intel_clock_t clock, reduced_clock;
5955 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5956 bool ok, has_reduced_clock = false, is_sdvo = false;
5957 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5958 struct intel_encoder *has_edp_encoder = NULL;
5959 struct drm_mode_config *mode_config = &dev->mode_config;
5960 struct intel_encoder *encoder;
5961 const intel_limit_t *limit;
5963 struct fdi_m_n m_n = {0};
5966 int target_clock, pixel_multiplier, lane, link_bw, factor;
5967 unsigned int pipe_bpp;
5970 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5971 if (encoder->base.crtc != crtc)
5974 switch (encoder->type) {
5975 case INTEL_OUTPUT_LVDS:
5978 case INTEL_OUTPUT_SDVO:
5979 case INTEL_OUTPUT_HDMI:
5981 if (encoder->needs_tv_clock)
5984 case INTEL_OUTPUT_TVOUT:
5987 case INTEL_OUTPUT_ANALOG:
5990 case INTEL_OUTPUT_DISPLAYPORT:
5993 case INTEL_OUTPUT_EDP:
5994 has_edp_encoder = encoder;
6001 refclk = ironlake_get_refclk(crtc);
6004 * Returns a set of divisors for the desired target clock with the given
6005 * refclk, or FALSE. The returned values represent the clock equation:
6006 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6008 limit = intel_limit(crtc, refclk);
6009 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
6012 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6016 /* Ensure that the cursor is valid for the new mode before changing... */
6017 intel_crtc_update_cursor(crtc, true);
6019 if (is_lvds && dev_priv->lvds_downclock_avail) {
6021 * Ensure we match the reduced clock's P to the target clock.
6022 * If the clocks don't match, we can't switch the display clock
6023 * by using the FP0/FP1. In such case we will disable the LVDS
6024 * downclock feature.
6026 has_reduced_clock = limit->find_pll(limit, crtc,
6027 dev_priv->lvds_downclock,
6032 /* SDVO TV has fixed PLL values depend on its clock range,
6033 this mirrors vbios setting. */
6034 if (is_sdvo && is_tv) {
6035 if (adjusted_mode->clock >= 100000
6036 && adjusted_mode->clock < 140500) {
6042 } else if (adjusted_mode->clock >= 140500
6043 && adjusted_mode->clock <= 200000) {
6053 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6055 /* CPU eDP doesn't require FDI link, so just set DP M/N
6056 according to current link config */
6057 if (has_edp_encoder &&
6058 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6059 target_clock = mode->clock;
6060 intel_edp_link_config(has_edp_encoder,
6063 /* [e]DP over FDI requires target mode clock
6064 instead of link clock */
6065 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
6066 target_clock = mode->clock;
6068 target_clock = adjusted_mode->clock;
6070 /* FDI is a binary signal running at ~2.7GHz, encoding
6071 * each output octet as 10 bits. The actual frequency
6072 * is stored as a divider into a 100MHz clock, and the
6073 * mode pixel clock is stored in units of 1KHz.
6074 * Hence the bw of each lane in terms of the mode signal
6077 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6080 /* determine panel color depth */
6081 temp = I915_READ(PIPECONF(pipe));
6082 temp &= ~PIPE_BPC_MASK;
6083 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
6098 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
6105 intel_crtc->bpp = pipe_bpp;
6106 I915_WRITE(PIPECONF(pipe), temp);
6110 * Account for spread spectrum to avoid
6111 * oversubscribing the link. Max center spread
6112 * is 2.5%; use 5% for safety's sake.
6114 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
6115 lane = bps / (link_bw * 8) + 1;
6118 intel_crtc->fdi_lanes = lane;
6120 if (pixel_multiplier > 1)
6121 link_bw *= pixel_multiplier;
6122 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
6125 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
6126 if (has_reduced_clock)
6127 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
6130 /* Enable autotuning of the PLL clock (if permissible) */
6133 if ((intel_panel_use_ssc(dev_priv) &&
6134 dev_priv->lvds_ssc_freq == 100) ||
6135 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
6137 } else if (is_sdvo && is_tv)
6140 if (clock.m < factor * clock.n)
6146 dpll |= DPLLB_MODE_LVDS;
6148 dpll |= DPLLB_MODE_DAC_SERIAL;
6150 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6151 if (pixel_multiplier > 1) {
6152 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6154 dpll |= DPLL_DVO_HIGH_SPEED;
6156 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
6157 dpll |= DPLL_DVO_HIGH_SPEED;
6159 /* compute bitmask from p1 value */
6160 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6162 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6166 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6169 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6172 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6175 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6179 if (is_sdvo && is_tv)
6180 dpll |= PLL_REF_INPUT_TVCLKINBC;
6182 /* XXX: just matching BIOS for now */
6183 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
6185 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6186 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6188 dpll |= PLL_REF_INPUT_DREFCLK;
6190 /* setup pipeconf */
6191 pipeconf = I915_READ(PIPECONF(pipe));
6193 /* Set up the display plane register */
6194 dspcntr = DISPPLANE_GAMMA_ENABLE;
6196 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
6197 drm_mode_debug_printmodeline(mode);
6199 /* PCH eDP needs FDI, but CPU eDP does not */
6200 if (!intel_crtc->no_pll) {
6201 if (!has_edp_encoder ||
6202 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6203 I915_WRITE(PCH_FP0(pipe), fp);
6204 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
6206 POSTING_READ(PCH_DPLL(pipe));
6210 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
6211 fp == I915_READ(PCH_FP0(0))) {
6212 intel_crtc->use_pll_a = true;
6213 DRM_DEBUG_KMS("using pipe a dpll\n");
6214 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
6215 fp == I915_READ(PCH_FP0(1))) {
6216 intel_crtc->use_pll_a = false;
6217 DRM_DEBUG_KMS("using pipe b dpll\n");
6219 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
6224 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
6225 * This is an exception to the general rule that mode_set doesn't turn
6229 temp = I915_READ(PCH_LVDS);
6230 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
6231 if (HAS_PCH_CPT(dev)) {
6232 temp &= ~PORT_TRANS_SEL_MASK;
6233 temp |= PORT_TRANS_SEL_CPT(pipe);
6236 temp |= LVDS_PIPEB_SELECT;
6238 temp &= ~LVDS_PIPEB_SELECT;
6241 /* set the corresponsding LVDS_BORDER bit */
6242 temp |= dev_priv->lvds_border_bits;
6243 /* Set the B0-B3 data pairs corresponding to whether we're going to
6244 * set the DPLLs for dual-channel mode or not.
6247 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6249 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6251 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6252 * appropriately here, but we need to look more thoroughly into how
6253 * panels behave in the two modes.
6255 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6256 lvds_sync |= LVDS_HSYNC_POLARITY;
6257 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6258 lvds_sync |= LVDS_VSYNC_POLARITY;
6259 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6261 char flags[2] = "-+";
6262 DRM_INFO("Changing LVDS panel from "
6263 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6264 flags[!(temp & LVDS_HSYNC_POLARITY)],
6265 flags[!(temp & LVDS_VSYNC_POLARITY)],
6266 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6267 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6268 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6271 I915_WRITE(PCH_LVDS, temp);
6274 pipeconf &= ~PIPECONF_DITHER_EN;
6275 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6276 if ((is_lvds && dev_priv->lvds_dither) || dither) {
6277 pipeconf |= PIPECONF_DITHER_EN;
6278 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6280 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6281 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6283 /* For non-DP output, clear any trans DP clock recovery setting.*/
6284 I915_WRITE(TRANSDATA_M1(pipe), 0);
6285 I915_WRITE(TRANSDATA_N1(pipe), 0);
6286 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6287 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6290 if (!intel_crtc->no_pll &&
6291 (!has_edp_encoder ||
6292 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6293 I915_WRITE(PCH_DPLL(pipe), dpll);
6295 /* Wait for the clocks to stabilize. */
6296 POSTING_READ(PCH_DPLL(pipe));
6299 /* The pixel multiplier can only be updated once the
6300 * DPLL is enabled and the clocks are stable.
6302 * So write it again.
6304 I915_WRITE(PCH_DPLL(pipe), dpll);
6307 intel_crtc->lowfreq_avail = false;
6308 if (!intel_crtc->no_pll) {
6309 if (is_lvds && has_reduced_clock && i915_powersave) {
6310 I915_WRITE(PCH_FP1(pipe), fp2);
6311 intel_crtc->lowfreq_avail = true;
6312 if (HAS_PIPE_CXSR(dev)) {
6313 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6314 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6317 I915_WRITE(PCH_FP1(pipe), fp);
6318 if (HAS_PIPE_CXSR(dev)) {
6319 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6320 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6325 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6326 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6327 pipeconf |= PIPECONF_INTERLACED_ILK;
6328 /* the chip adds 2 halflines automatically */
6329 adjusted_mode->crtc_vtotal -= 1;
6330 adjusted_mode->crtc_vblank_end -= 1;
6331 I915_WRITE(VSYNCSHIFT(pipe),
6332 adjusted_mode->crtc_hsync_start
6333 - adjusted_mode->crtc_htotal/2);
6335 pipeconf |= PIPECONF_PROGRESSIVE;
6336 I915_WRITE(VSYNCSHIFT(pipe), 0);
6339 I915_WRITE(HTOTAL(pipe),
6340 (adjusted_mode->crtc_hdisplay - 1) |
6341 ((adjusted_mode->crtc_htotal - 1) << 16));
6342 I915_WRITE(HBLANK(pipe),
6343 (adjusted_mode->crtc_hblank_start - 1) |
6344 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6345 I915_WRITE(HSYNC(pipe),
6346 (adjusted_mode->crtc_hsync_start - 1) |
6347 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6349 I915_WRITE(VTOTAL(pipe),
6350 (adjusted_mode->crtc_vdisplay - 1) |
6351 ((adjusted_mode->crtc_vtotal - 1) << 16));
6352 I915_WRITE(VBLANK(pipe),
6353 (adjusted_mode->crtc_vblank_start - 1) |
6354 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6355 I915_WRITE(VSYNC(pipe),
6356 (adjusted_mode->crtc_vsync_start - 1) |
6357 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6359 /* pipesrc controls the size that is scaled from, which should
6360 * always be the user's requested size.
6362 I915_WRITE(PIPESRC(pipe),
6363 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6365 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6366 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6367 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6368 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6370 if (has_edp_encoder &&
6371 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6372 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6375 I915_WRITE(PIPECONF(pipe), pipeconf);
6376 POSTING_READ(PIPECONF(pipe));
6378 intel_wait_for_vblank(dev, pipe);
6380 I915_WRITE(DSPCNTR(plane), dspcntr);
6381 POSTING_READ(DSPCNTR(plane));
6383 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6385 intel_update_watermarks(dev);
6390 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6391 struct drm_display_mode *mode,
6392 struct drm_display_mode *adjusted_mode,
6394 struct drm_framebuffer *old_fb)
6396 struct drm_device *dev = crtc->dev;
6397 struct drm_i915_private *dev_priv = dev->dev_private;
6398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6399 int pipe = intel_crtc->pipe;
6402 drm_vblank_pre_modeset(dev, pipe);
6404 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6406 drm_vblank_post_modeset(dev, pipe);
6409 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6411 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6416 static bool intel_eld_uptodate(struct drm_connector *connector,
6417 int reg_eldv, uint32_t bits_eldv,
6418 int reg_elda, uint32_t bits_elda,
6421 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6422 uint8_t *eld = connector->eld;
6425 i = I915_READ(reg_eldv);
6434 i = I915_READ(reg_elda);
6436 I915_WRITE(reg_elda, i);
6438 for (i = 0; i < eld[2]; i++)
6439 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6445 static void g4x_write_eld(struct drm_connector *connector,
6446 struct drm_crtc *crtc)
6448 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6449 uint8_t *eld = connector->eld;
6454 i = I915_READ(G4X_AUD_VID_DID);
6456 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6457 eldv = G4X_ELDV_DEVCL_DEVBLC;
6459 eldv = G4X_ELDV_DEVCTG;
6461 if (intel_eld_uptodate(connector,
6462 G4X_AUD_CNTL_ST, eldv,
6463 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6464 G4X_HDMIW_HDMIEDID))
6467 i = I915_READ(G4X_AUD_CNTL_ST);
6468 i &= ~(eldv | G4X_ELD_ADDR);
6469 len = (i >> 9) & 0x1f; /* ELD buffer size */
6470 I915_WRITE(G4X_AUD_CNTL_ST, i);
6475 len = min_t(uint8_t, eld[2], len);
6476 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6477 for (i = 0; i < len; i++)
6478 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6480 i = I915_READ(G4X_AUD_CNTL_ST);
6482 I915_WRITE(G4X_AUD_CNTL_ST, i);
6485 static void ironlake_write_eld(struct drm_connector *connector,
6486 struct drm_crtc *crtc)
6488 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6489 uint8_t *eld = connector->eld;
6498 if (HAS_PCH_IBX(connector->dev)) {
6499 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6500 aud_config = IBX_AUD_CONFIG_A;
6501 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6502 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6504 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6505 aud_config = CPT_AUD_CONFIG_A;
6506 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6507 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6510 i = to_intel_crtc(crtc)->pipe;
6511 hdmiw_hdmiedid += i * 0x100;
6512 aud_cntl_st += i * 0x100;
6513 aud_config += i * 0x100;
6515 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6517 i = I915_READ(aud_cntl_st);
6518 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6520 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6521 /* operate blindly on all ports */
6522 eldv = IBX_ELD_VALIDB;
6523 eldv |= IBX_ELD_VALIDB << 4;
6524 eldv |= IBX_ELD_VALIDB << 8;
6526 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6527 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6531 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6532 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6533 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6535 I915_WRITE(aud_config, 0);
6537 if (intel_eld_uptodate(connector,
6538 aud_cntrl_st2, eldv,
6539 aud_cntl_st, IBX_ELD_ADDRESS,
6543 i = I915_READ(aud_cntrl_st2);
6545 I915_WRITE(aud_cntrl_st2, i);
6550 i = I915_READ(aud_cntl_st);
6551 i &= ~IBX_ELD_ADDRESS;
6552 I915_WRITE(aud_cntl_st, i);
6554 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6555 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6556 for (i = 0; i < len; i++)
6557 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6559 i = I915_READ(aud_cntrl_st2);
6561 I915_WRITE(aud_cntrl_st2, i);
6564 void intel_write_eld(struct drm_encoder *encoder,
6565 struct drm_display_mode *mode)
6567 struct drm_crtc *crtc = encoder->crtc;
6568 struct drm_connector *connector;
6569 struct drm_device *dev = encoder->dev;
6570 struct drm_i915_private *dev_priv = dev->dev_private;
6572 connector = drm_select_eld(encoder, mode);
6576 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6578 drm_get_connector_name(connector),
6579 connector->encoder->base.id,
6580 drm_get_encoder_name(connector->encoder));
6582 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6584 if (dev_priv->display.write_eld)
6585 dev_priv->display.write_eld(connector, crtc);
6588 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6589 void intel_crtc_load_lut(struct drm_crtc *crtc)
6591 struct drm_device *dev = crtc->dev;
6592 struct drm_i915_private *dev_priv = dev->dev_private;
6593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6594 int palreg = PALETTE(intel_crtc->pipe);
6597 /* The clocks have to be on to load the palette. */
6601 /* use legacy palette for Ironlake */
6602 if (HAS_PCH_SPLIT(dev))
6603 palreg = LGC_PALETTE(intel_crtc->pipe);
6605 for (i = 0; i < 256; i++) {
6606 I915_WRITE(palreg + 4 * i,
6607 (intel_crtc->lut_r[i] << 16) |
6608 (intel_crtc->lut_g[i] << 8) |
6609 intel_crtc->lut_b[i]);
6613 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6615 struct drm_device *dev = crtc->dev;
6616 struct drm_i915_private *dev_priv = dev->dev_private;
6617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6618 bool visible = base != 0;
6621 if (intel_crtc->cursor_visible == visible)
6624 cntl = I915_READ(_CURACNTR);
6626 /* On these chipsets we can only modify the base whilst
6627 * the cursor is disabled.
6629 I915_WRITE(_CURABASE, base);
6631 cntl &= ~(CURSOR_FORMAT_MASK);
6632 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6633 cntl |= CURSOR_ENABLE |
6634 CURSOR_GAMMA_ENABLE |
6637 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6638 I915_WRITE(_CURACNTR, cntl);
6640 intel_crtc->cursor_visible = visible;
6643 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6645 struct drm_device *dev = crtc->dev;
6646 struct drm_i915_private *dev_priv = dev->dev_private;
6647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6648 int pipe = intel_crtc->pipe;
6649 bool visible = base != 0;
6651 if (intel_crtc->cursor_visible != visible) {
6652 uint32_t cntl = I915_READ(CURCNTR(pipe));
6654 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6655 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6656 cntl |= pipe << 28; /* Connect to correct pipe */
6658 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6659 cntl |= CURSOR_MODE_DISABLE;
6661 I915_WRITE(CURCNTR(pipe), cntl);
6663 intel_crtc->cursor_visible = visible;
6665 /* and commit changes on next vblank */
6666 I915_WRITE(CURBASE(pipe), base);
6669 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6671 struct drm_device *dev = crtc->dev;
6672 struct drm_i915_private *dev_priv = dev->dev_private;
6673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6674 int pipe = intel_crtc->pipe;
6675 bool visible = base != 0;
6677 if (intel_crtc->cursor_visible != visible) {
6678 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6680 cntl &= ~CURSOR_MODE;
6681 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6683 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6684 cntl |= CURSOR_MODE_DISABLE;
6686 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6688 intel_crtc->cursor_visible = visible;
6690 /* and commit changes on next vblank */
6691 I915_WRITE(CURBASE_IVB(pipe), base);
6694 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6695 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6698 struct drm_device *dev = crtc->dev;
6699 struct drm_i915_private *dev_priv = dev->dev_private;
6700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6701 int pipe = intel_crtc->pipe;
6702 int x = intel_crtc->cursor_x;
6703 int y = intel_crtc->cursor_y;
6709 if (on && crtc->enabled && crtc->fb) {
6710 base = intel_crtc->cursor_addr;
6711 if (x > (int) crtc->fb->width)
6714 if (y > (int) crtc->fb->height)
6720 if (x + intel_crtc->cursor_width < 0)
6723 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6726 pos |= x << CURSOR_X_SHIFT;
6729 if (y + intel_crtc->cursor_height < 0)
6732 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6735 pos |= y << CURSOR_Y_SHIFT;
6737 visible = base != 0;
6738 if (!visible && !intel_crtc->cursor_visible)
6741 if (IS_IVYBRIDGE(dev)) {
6742 I915_WRITE(CURPOS_IVB(pipe), pos);
6743 ivb_update_cursor(crtc, base);
6745 I915_WRITE(CURPOS(pipe), pos);
6746 if (IS_845G(dev) || IS_I865G(dev))
6747 i845_update_cursor(crtc, base);
6749 i9xx_update_cursor(crtc, base);
6753 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6756 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6757 struct drm_file *file,
6759 uint32_t width, uint32_t height)
6761 struct drm_device *dev = crtc->dev;
6762 struct drm_i915_private *dev_priv = dev->dev_private;
6763 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6764 struct drm_i915_gem_object *obj;
6768 DRM_DEBUG_KMS("\n");
6770 /* if we want to turn off the cursor ignore width and height */
6772 DRM_DEBUG_KMS("cursor off\n");
6775 mutex_lock(&dev->struct_mutex);
6779 /* Currently we only support 64x64 cursors */
6780 if (width != 64 || height != 64) {
6781 DRM_ERROR("we currently only support 64x64 cursors\n");
6785 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6786 if (&obj->base == NULL)
6789 if (obj->base.size < width * height * 4) {
6790 DRM_ERROR("buffer is to small\n");
6795 /* we only need to pin inside GTT if cursor is non-phy */
6796 mutex_lock(&dev->struct_mutex);
6797 if (!dev_priv->info->cursor_needs_physical) {
6798 if (obj->tiling_mode) {
6799 DRM_ERROR("cursor cannot be tiled\n");
6804 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6806 DRM_ERROR("failed to move cursor bo into the GTT\n");
6810 ret = i915_gem_object_put_fence(obj);
6812 DRM_ERROR("failed to release fence for cursor");
6816 addr = obj->gtt_offset;
6818 int align = IS_I830(dev) ? 16 * 1024 : 256;
6819 ret = i915_gem_attach_phys_object(dev, obj,
6820 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6823 DRM_ERROR("failed to attach phys object\n");
6826 addr = obj->phys_obj->handle->busaddr;
6830 I915_WRITE(CURSIZE, (height << 12) | width);
6833 if (intel_crtc->cursor_bo) {
6834 if (dev_priv->info->cursor_needs_physical) {
6835 if (intel_crtc->cursor_bo != obj)
6836 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6838 i915_gem_object_unpin(intel_crtc->cursor_bo);
6839 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6842 mutex_unlock(&dev->struct_mutex);
6844 intel_crtc->cursor_addr = addr;
6845 intel_crtc->cursor_bo = obj;
6846 intel_crtc->cursor_width = width;
6847 intel_crtc->cursor_height = height;
6849 intel_crtc_update_cursor(crtc, true);
6853 i915_gem_object_unpin(obj);
6855 mutex_unlock(&dev->struct_mutex);
6857 drm_gem_object_unreference_unlocked(&obj->base);
6861 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865 intel_crtc->cursor_x = x;
6866 intel_crtc->cursor_y = y;
6868 intel_crtc_update_cursor(crtc, true);
6873 /** Sets the color ramps on behalf of RandR */
6874 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6875 u16 blue, int regno)
6877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6879 intel_crtc->lut_r[regno] = red >> 8;
6880 intel_crtc->lut_g[regno] = green >> 8;
6881 intel_crtc->lut_b[regno] = blue >> 8;
6884 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6885 u16 *blue, int regno)
6887 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6889 *red = intel_crtc->lut_r[regno] << 8;
6890 *green = intel_crtc->lut_g[regno] << 8;
6891 *blue = intel_crtc->lut_b[regno] << 8;
6894 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6895 u16 *blue, uint32_t start, uint32_t size)
6897 int end = (start + size > 256) ? 256 : start + size, i;
6898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6900 for (i = start; i < end; i++) {
6901 intel_crtc->lut_r[i] = red[i] >> 8;
6902 intel_crtc->lut_g[i] = green[i] >> 8;
6903 intel_crtc->lut_b[i] = blue[i] >> 8;
6906 intel_crtc_load_lut(crtc);
6910 * Get a pipe with a simple mode set on it for doing load-based monitor
6913 * It will be up to the load-detect code to adjust the pipe as appropriate for
6914 * its requirements. The pipe will be connected to no other encoders.
6916 * Currently this code will only succeed if there is a pipe with no encoders
6917 * configured for it. In the future, it could choose to temporarily disable
6918 * some outputs to free up a pipe for its use.
6920 * \return crtc, or NULL if no pipes are available.
6923 /* VESA 640x480x72Hz mode to set on the pipe */
6924 static struct drm_display_mode load_detect_mode = {
6925 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6926 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6929 static struct drm_framebuffer *
6930 intel_framebuffer_create(struct drm_device *dev,
6931 struct drm_mode_fb_cmd2 *mode_cmd,
6932 struct drm_i915_gem_object *obj)
6934 struct intel_framebuffer *intel_fb;
6937 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6939 drm_gem_object_unreference_unlocked(&obj->base);
6940 return ERR_PTR(-ENOMEM);
6943 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6945 drm_gem_object_unreference_unlocked(&obj->base);
6947 return ERR_PTR(ret);
6950 return &intel_fb->base;
6954 intel_framebuffer_pitch_for_width(int width, int bpp)
6956 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6957 return ALIGN(pitch, 64);
6961 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6963 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6964 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6967 static struct drm_framebuffer *
6968 intel_framebuffer_create_for_mode(struct drm_device *dev,
6969 struct drm_display_mode *mode,
6972 struct drm_i915_gem_object *obj;
6973 struct drm_mode_fb_cmd2 mode_cmd;
6975 obj = i915_gem_alloc_object(dev,
6976 intel_framebuffer_size_for_mode(mode, bpp));
6978 return ERR_PTR(-ENOMEM);
6980 mode_cmd.width = mode->hdisplay;
6981 mode_cmd.height = mode->vdisplay;
6982 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6984 mode_cmd.pixel_format = 0;
6986 return intel_framebuffer_create(dev, &mode_cmd, obj);
6989 static struct drm_framebuffer *
6990 mode_fits_in_fbdev(struct drm_device *dev,
6991 struct drm_display_mode *mode)
6993 struct drm_i915_private *dev_priv = dev->dev_private;
6994 struct drm_i915_gem_object *obj;
6995 struct drm_framebuffer *fb;
6997 if (dev_priv->fbdev == NULL)
7000 obj = dev_priv->fbdev->ifb.obj;
7004 fb = &dev_priv->fbdev->ifb.base;
7005 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7006 fb->bits_per_pixel))
7009 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7015 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
7016 struct drm_connector *connector,
7017 struct drm_display_mode *mode,
7018 struct intel_load_detect_pipe *old)
7020 struct intel_crtc *intel_crtc;
7021 struct drm_crtc *possible_crtc;
7022 struct drm_encoder *encoder = &intel_encoder->base;
7023 struct drm_crtc *crtc = NULL;
7024 struct drm_device *dev = encoder->dev;
7025 struct drm_framebuffer *old_fb;
7028 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7029 connector->base.id, drm_get_connector_name(connector),
7030 encoder->base.id, drm_get_encoder_name(encoder));
7033 * Algorithm gets a little messy:
7035 * - if the connector already has an assigned crtc, use it (but make
7036 * sure it's on first)
7038 * - try to find the first unused crtc that can drive this connector,
7039 * and use that if we find one
7042 /* See if we already have a CRTC for this connector */
7043 if (encoder->crtc) {
7044 crtc = encoder->crtc;
7046 intel_crtc = to_intel_crtc(crtc);
7047 old->dpms_mode = intel_crtc->dpms_mode;
7048 old->load_detect_temp = false;
7050 /* Make sure the crtc and connector are running */
7051 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
7052 struct drm_encoder_helper_funcs *encoder_funcs;
7053 struct drm_crtc_helper_funcs *crtc_funcs;
7055 crtc_funcs = crtc->helper_private;
7056 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
7058 encoder_funcs = encoder->helper_private;
7059 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
7065 /* Find an unused one (if possible) */
7066 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7068 if (!(encoder->possible_crtcs & (1 << i)))
7070 if (!possible_crtc->enabled) {
7071 crtc = possible_crtc;
7077 * If we didn't find an unused CRTC, don't use any.
7080 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7084 encoder->crtc = crtc;
7085 connector->encoder = encoder;
7087 intel_crtc = to_intel_crtc(crtc);
7088 old->dpms_mode = intel_crtc->dpms_mode;
7089 old->load_detect_temp = true;
7090 old->release_fb = NULL;
7093 mode = &load_detect_mode;
7097 /* We need a framebuffer large enough to accommodate all accesses
7098 * that the plane may generate whilst we perform load detection.
7099 * We can not rely on the fbcon either being present (we get called
7100 * during its initialisation to detect all boot displays, or it may
7101 * not even exist) or that it is large enough to satisfy the
7104 crtc->fb = mode_fits_in_fbdev(dev, mode);
7105 if (crtc->fb == NULL) {
7106 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7107 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7108 old->release_fb = crtc->fb;
7110 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7111 if (IS_ERR(crtc->fb)) {
7112 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7117 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
7118 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7119 if (old->release_fb)
7120 old->release_fb->funcs->destroy(old->release_fb);
7125 /* let the connector get through one full cycle before testing */
7126 intel_wait_for_vblank(dev, intel_crtc->pipe);
7131 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
7132 struct drm_connector *connector,
7133 struct intel_load_detect_pipe *old)
7135 struct drm_encoder *encoder = &intel_encoder->base;
7136 struct drm_device *dev = encoder->dev;
7137 struct drm_crtc *crtc = encoder->crtc;
7138 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
7139 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
7141 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7142 connector->base.id, drm_get_connector_name(connector),
7143 encoder->base.id, drm_get_encoder_name(encoder));
7145 if (old->load_detect_temp) {
7146 connector->encoder = NULL;
7147 drm_helper_disable_unused_functions(dev);
7149 if (old->release_fb)
7150 old->release_fb->funcs->destroy(old->release_fb);
7155 /* Switch crtc and encoder back off if necessary */
7156 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
7157 encoder_funcs->dpms(encoder, old->dpms_mode);
7158 crtc_funcs->dpms(crtc, old->dpms_mode);
7162 /* Returns the clock of the currently programmed mode of the given pipe. */
7163 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
7165 struct drm_i915_private *dev_priv = dev->dev_private;
7166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7167 int pipe = intel_crtc->pipe;
7168 u32 dpll = I915_READ(DPLL(pipe));
7170 intel_clock_t clock;
7172 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7173 fp = I915_READ(FP0(pipe));
7175 fp = I915_READ(FP1(pipe));
7177 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7178 if (IS_PINEVIEW(dev)) {
7179 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7180 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7182 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7183 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7186 if (!IS_GEN2(dev)) {
7187 if (IS_PINEVIEW(dev))
7188 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7189 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7191 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7192 DPLL_FPA01_P1_POST_DIV_SHIFT);
7194 switch (dpll & DPLL_MODE_MASK) {
7195 case DPLLB_MODE_DAC_SERIAL:
7196 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7199 case DPLLB_MODE_LVDS:
7200 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7204 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7205 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7209 /* XXX: Handle the 100Mhz refclk */
7210 intel_clock(dev, 96000, &clock);
7212 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7215 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7216 DPLL_FPA01_P1_POST_DIV_SHIFT);
7219 if ((dpll & PLL_REF_INPUT_MASK) ==
7220 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7221 /* XXX: might not be 66MHz */
7222 intel_clock(dev, 66000, &clock);
7224 intel_clock(dev, 48000, &clock);
7226 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7229 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7230 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7232 if (dpll & PLL_P2_DIVIDE_BY_4)
7237 intel_clock(dev, 48000, &clock);
7241 /* XXX: It would be nice to validate the clocks, but we can't reuse
7242 * i830PllIsValid() because it relies on the xf86_config connector
7243 * configuration being accurate, which it isn't necessarily.
7249 /** Returns the currently programmed mode of the given pipe. */
7250 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7251 struct drm_crtc *crtc)
7253 struct drm_i915_private *dev_priv = dev->dev_private;
7254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7255 int pipe = intel_crtc->pipe;
7256 struct drm_display_mode *mode;
7257 int htot = I915_READ(HTOTAL(pipe));
7258 int hsync = I915_READ(HSYNC(pipe));
7259 int vtot = I915_READ(VTOTAL(pipe));
7260 int vsync = I915_READ(VSYNC(pipe));
7262 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7266 mode->clock = intel_crtc_clock_get(dev, crtc);
7267 mode->hdisplay = (htot & 0xffff) + 1;
7268 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7269 mode->hsync_start = (hsync & 0xffff) + 1;
7270 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7271 mode->vdisplay = (vtot & 0xffff) + 1;
7272 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7273 mode->vsync_start = (vsync & 0xffff) + 1;
7274 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7276 drm_mode_set_name(mode);
7277 drm_mode_set_crtcinfo(mode, 0);
7282 #define GPU_IDLE_TIMEOUT 500 /* ms */
7284 /* When this timer fires, we've been idle for awhile */
7285 static void intel_gpu_idle_timer(unsigned long arg)
7287 struct drm_device *dev = (struct drm_device *)arg;
7288 drm_i915_private_t *dev_priv = dev->dev_private;
7290 if (!list_empty(&dev_priv->mm.active_list)) {
7291 /* Still processing requests, so just re-arm the timer. */
7292 mod_timer(&dev_priv->idle_timer, jiffies +
7293 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7297 dev_priv->busy = false;
7298 queue_work(dev_priv->wq, &dev_priv->idle_work);
7301 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
7303 static void intel_crtc_idle_timer(unsigned long arg)
7305 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
7306 struct drm_crtc *crtc = &intel_crtc->base;
7307 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7308 struct intel_framebuffer *intel_fb;
7310 intel_fb = to_intel_framebuffer(crtc->fb);
7311 if (intel_fb && intel_fb->obj->active) {
7312 /* The framebuffer is still being accessed by the GPU. */
7313 mod_timer(&intel_crtc->idle_timer, jiffies +
7314 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7318 intel_crtc->busy = false;
7319 queue_work(dev_priv->wq, &dev_priv->idle_work);
7322 static void intel_increase_pllclock(struct drm_crtc *crtc)
7324 struct drm_device *dev = crtc->dev;
7325 drm_i915_private_t *dev_priv = dev->dev_private;
7326 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7327 int pipe = intel_crtc->pipe;
7328 int dpll_reg = DPLL(pipe);
7331 if (HAS_PCH_SPLIT(dev))
7334 if (!dev_priv->lvds_downclock_avail)
7337 dpll = I915_READ(dpll_reg);
7338 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7339 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7341 assert_panel_unlocked(dev_priv, pipe);
7343 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7344 I915_WRITE(dpll_reg, dpll);
7345 intel_wait_for_vblank(dev, pipe);
7347 dpll = I915_READ(dpll_reg);
7348 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7349 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7352 /* Schedule downclock */
7353 mod_timer(&intel_crtc->idle_timer, jiffies +
7354 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7357 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7359 struct drm_device *dev = crtc->dev;
7360 drm_i915_private_t *dev_priv = dev->dev_private;
7361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7362 int pipe = intel_crtc->pipe;
7363 int dpll_reg = DPLL(pipe);
7364 int dpll = I915_READ(dpll_reg);
7366 if (HAS_PCH_SPLIT(dev))
7369 if (!dev_priv->lvds_downclock_avail)
7373 * Since this is called by a timer, we should never get here in
7376 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7377 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7379 assert_panel_unlocked(dev_priv, pipe);
7381 dpll |= DISPLAY_RATE_SELECT_FPA1;
7382 I915_WRITE(dpll_reg, dpll);
7383 intel_wait_for_vblank(dev, pipe);
7384 dpll = I915_READ(dpll_reg);
7385 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7386 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7392 * intel_idle_update - adjust clocks for idleness
7393 * @work: work struct
7395 * Either the GPU or display (or both) went idle. Check the busy status
7396 * here and adjust the CRTC and GPU clocks as necessary.
7398 static void intel_idle_update(struct work_struct *work)
7400 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7402 struct drm_device *dev = dev_priv->dev;
7403 struct drm_crtc *crtc;
7404 struct intel_crtc *intel_crtc;
7406 if (!i915_powersave)
7409 mutex_lock(&dev->struct_mutex);
7411 i915_update_gfx_val(dev_priv);
7413 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7414 /* Skip inactive CRTCs */
7418 intel_crtc = to_intel_crtc(crtc);
7419 if (!intel_crtc->busy)
7420 intel_decrease_pllclock(crtc);
7424 mutex_unlock(&dev->struct_mutex);
7428 * intel_mark_busy - mark the GPU and possibly the display busy
7430 * @obj: object we're operating on
7432 * Callers can use this function to indicate that the GPU is busy processing
7433 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7434 * buffer), we'll also mark the display as busy, so we know to increase its
7437 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7439 drm_i915_private_t *dev_priv = dev->dev_private;
7440 struct drm_crtc *crtc = NULL;
7441 struct intel_framebuffer *intel_fb;
7442 struct intel_crtc *intel_crtc;
7444 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7447 if (!dev_priv->busy)
7448 dev_priv->busy = true;
7450 mod_timer(&dev_priv->idle_timer, jiffies +
7451 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7453 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7457 intel_crtc = to_intel_crtc(crtc);
7458 intel_fb = to_intel_framebuffer(crtc->fb);
7459 if (intel_fb->obj == obj) {
7460 if (!intel_crtc->busy) {
7461 /* Non-busy -> busy, upclock */
7462 intel_increase_pllclock(crtc);
7463 intel_crtc->busy = true;
7465 /* Busy -> busy, put off timer */
7466 mod_timer(&intel_crtc->idle_timer, jiffies +
7467 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7473 static void intel_crtc_destroy(struct drm_crtc *crtc)
7475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7476 struct drm_device *dev = crtc->dev;
7477 struct intel_unpin_work *work;
7478 unsigned long flags;
7480 spin_lock_irqsave(&dev->event_lock, flags);
7481 work = intel_crtc->unpin_work;
7482 intel_crtc->unpin_work = NULL;
7483 spin_unlock_irqrestore(&dev->event_lock, flags);
7486 cancel_work_sync(&work->work);
7490 drm_crtc_cleanup(crtc);
7495 static void intel_unpin_work_fn(struct work_struct *__work)
7497 struct intel_unpin_work *work =
7498 container_of(__work, struct intel_unpin_work, work);
7500 mutex_lock(&work->dev->struct_mutex);
7501 intel_unpin_fb_obj(work->old_fb_obj);
7502 drm_gem_object_unreference(&work->pending_flip_obj->base);
7503 drm_gem_object_unreference(&work->old_fb_obj->base);
7505 intel_update_fbc(work->dev);
7506 mutex_unlock(&work->dev->struct_mutex);
7510 static void do_intel_finish_page_flip(struct drm_device *dev,
7511 struct drm_crtc *crtc)
7513 drm_i915_private_t *dev_priv = dev->dev_private;
7514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7515 struct intel_unpin_work *work;
7516 struct drm_i915_gem_object *obj;
7517 struct drm_pending_vblank_event *e;
7518 struct timeval tnow, tvbl;
7519 unsigned long flags;
7521 /* Ignore early vblank irqs */
7522 if (intel_crtc == NULL)
7525 do_gettimeofday(&tnow);
7527 spin_lock_irqsave(&dev->event_lock, flags);
7528 work = intel_crtc->unpin_work;
7529 if (work == NULL || !work->pending) {
7530 spin_unlock_irqrestore(&dev->event_lock, flags);
7534 intel_crtc->unpin_work = NULL;
7538 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7540 /* Called before vblank count and timestamps have
7541 * been updated for the vblank interval of flip
7542 * completion? Need to increment vblank count and
7543 * add one videorefresh duration to returned timestamp
7544 * to account for this. We assume this happened if we
7545 * get called over 0.9 frame durations after the last
7546 * timestamped vblank.
7548 * This calculation can not be used with vrefresh rates
7549 * below 5Hz (10Hz to be on the safe side) without
7550 * promoting to 64 integers.
7552 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7553 9 * crtc->framedur_ns) {
7554 e->event.sequence++;
7555 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7559 e->event.tv_sec = tvbl.tv_sec;
7560 e->event.tv_usec = tvbl.tv_usec;
7562 list_add_tail(&e->base.link,
7563 &e->base.file_priv->event_list);
7564 wake_up_interruptible(&e->base.file_priv->event_wait);
7567 drm_vblank_put(dev, intel_crtc->pipe);
7569 spin_unlock_irqrestore(&dev->event_lock, flags);
7571 obj = work->old_fb_obj;
7573 atomic_clear_mask(1 << intel_crtc->plane,
7574 &obj->pending_flip.counter);
7575 if (atomic_read(&obj->pending_flip) == 0)
7576 wake_up(&dev_priv->pending_flip_queue);
7578 schedule_work(&work->work);
7580 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7583 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7585 drm_i915_private_t *dev_priv = dev->dev_private;
7586 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7588 do_intel_finish_page_flip(dev, crtc);
7591 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7593 drm_i915_private_t *dev_priv = dev->dev_private;
7594 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7596 do_intel_finish_page_flip(dev, crtc);
7599 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7601 drm_i915_private_t *dev_priv = dev->dev_private;
7602 struct intel_crtc *intel_crtc =
7603 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7604 unsigned long flags;
7606 spin_lock_irqsave(&dev->event_lock, flags);
7607 if (intel_crtc->unpin_work) {
7608 if ((++intel_crtc->unpin_work->pending) > 1)
7609 DRM_ERROR("Prepared flip multiple times\n");
7611 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7613 spin_unlock_irqrestore(&dev->event_lock, flags);
7616 static int intel_gen2_queue_flip(struct drm_device *dev,
7617 struct drm_crtc *crtc,
7618 struct drm_framebuffer *fb,
7619 struct drm_i915_gem_object *obj)
7621 struct drm_i915_private *dev_priv = dev->dev_private;
7622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7623 unsigned long offset;
7627 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7631 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7632 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7634 ret = BEGIN_LP_RING(6);
7638 /* Can't queue multiple flips, so wait for the previous
7639 * one to finish before executing the next.
7641 if (intel_crtc->plane)
7642 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7644 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7645 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7647 OUT_RING(MI_DISPLAY_FLIP |
7648 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7649 OUT_RING(fb->pitches[0]);
7650 OUT_RING(obj->gtt_offset + offset);
7651 OUT_RING(0); /* aux display base address, unused */
7657 static int intel_gen3_queue_flip(struct drm_device *dev,
7658 struct drm_crtc *crtc,
7659 struct drm_framebuffer *fb,
7660 struct drm_i915_gem_object *obj)
7662 struct drm_i915_private *dev_priv = dev->dev_private;
7663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7664 unsigned long offset;
7668 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7672 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7673 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7675 ret = BEGIN_LP_RING(6);
7679 if (intel_crtc->plane)
7680 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7682 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7683 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7685 OUT_RING(MI_DISPLAY_FLIP_I915 |
7686 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7687 OUT_RING(fb->pitches[0]);
7688 OUT_RING(obj->gtt_offset + offset);
7696 static int intel_gen4_queue_flip(struct drm_device *dev,
7697 struct drm_crtc *crtc,
7698 struct drm_framebuffer *fb,
7699 struct drm_i915_gem_object *obj)
7701 struct drm_i915_private *dev_priv = dev->dev_private;
7702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7703 uint32_t pf, pipesrc;
7706 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7710 ret = BEGIN_LP_RING(4);
7714 /* i965+ uses the linear or tiled offsets from the
7715 * Display Registers (which do not change across a page-flip)
7716 * so we need only reprogram the base address.
7718 OUT_RING(MI_DISPLAY_FLIP |
7719 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7720 OUT_RING(fb->pitches[0]);
7721 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7723 /* XXX Enabling the panel-fitter across page-flip is so far
7724 * untested on non-native modes, so ignore it for now.
7725 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7728 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7729 OUT_RING(pf | pipesrc);
7735 static int intel_gen6_queue_flip(struct drm_device *dev,
7736 struct drm_crtc *crtc,
7737 struct drm_framebuffer *fb,
7738 struct drm_i915_gem_object *obj)
7740 struct drm_i915_private *dev_priv = dev->dev_private;
7741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7742 uint32_t pf, pipesrc;
7745 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7749 ret = BEGIN_LP_RING(4);
7753 OUT_RING(MI_DISPLAY_FLIP |
7754 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7755 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7756 OUT_RING(obj->gtt_offset);
7758 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7759 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7760 OUT_RING(pf | pipesrc);
7767 * On gen7 we currently use the blit ring because (in early silicon at least)
7768 * the render ring doesn't give us interrpts for page flip completion, which
7769 * means clients will hang after the first flip is queued. Fortunately the
7770 * blit ring generates interrupts properly, so use it instead.
7772 static int intel_gen7_queue_flip(struct drm_device *dev,
7773 struct drm_crtc *crtc,
7774 struct drm_framebuffer *fb,
7775 struct drm_i915_gem_object *obj)
7777 struct drm_i915_private *dev_priv = dev->dev_private;
7778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7779 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7782 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7786 ret = intel_ring_begin(ring, 4);
7790 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7791 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7792 intel_ring_emit(ring, (obj->gtt_offset));
7793 intel_ring_emit(ring, (MI_NOOP));
7794 intel_ring_advance(ring);
7799 static int intel_default_queue_flip(struct drm_device *dev,
7800 struct drm_crtc *crtc,
7801 struct drm_framebuffer *fb,
7802 struct drm_i915_gem_object *obj)
7807 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7808 struct drm_framebuffer *fb,
7809 struct drm_pending_vblank_event *event)
7811 struct drm_device *dev = crtc->dev;
7812 struct drm_i915_private *dev_priv = dev->dev_private;
7813 struct intel_framebuffer *intel_fb;
7814 struct drm_i915_gem_object *obj;
7815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7816 struct intel_unpin_work *work;
7817 unsigned long flags;
7820 work = kzalloc(sizeof *work, GFP_KERNEL);
7824 work->event = event;
7825 work->dev = crtc->dev;
7826 intel_fb = to_intel_framebuffer(crtc->fb);
7827 work->old_fb_obj = intel_fb->obj;
7828 INIT_WORK(&work->work, intel_unpin_work_fn);
7830 ret = drm_vblank_get(dev, intel_crtc->pipe);
7834 /* We borrow the event spin lock for protecting unpin_work */
7835 spin_lock_irqsave(&dev->event_lock, flags);
7836 if (intel_crtc->unpin_work) {
7837 spin_unlock_irqrestore(&dev->event_lock, flags);
7839 drm_vblank_put(dev, intel_crtc->pipe);
7841 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7844 intel_crtc->unpin_work = work;
7845 spin_unlock_irqrestore(&dev->event_lock, flags);
7847 intel_fb = to_intel_framebuffer(fb);
7848 obj = intel_fb->obj;
7850 mutex_lock(&dev->struct_mutex);
7852 /* Reference the objects for the scheduled work. */
7853 drm_gem_object_reference(&work->old_fb_obj->base);
7854 drm_gem_object_reference(&obj->base);
7858 work->pending_flip_obj = obj;
7860 work->enable_stall_check = true;
7862 /* Block clients from rendering to the new back buffer until
7863 * the flip occurs and the object is no longer visible.
7865 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7867 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7869 goto cleanup_pending;
7871 intel_disable_fbc(dev);
7872 mutex_unlock(&dev->struct_mutex);
7874 trace_i915_flip_request(intel_crtc->plane, obj);
7879 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7880 drm_gem_object_unreference(&work->old_fb_obj->base);
7881 drm_gem_object_unreference(&obj->base);
7882 mutex_unlock(&dev->struct_mutex);
7884 spin_lock_irqsave(&dev->event_lock, flags);
7885 intel_crtc->unpin_work = NULL;
7886 spin_unlock_irqrestore(&dev->event_lock, flags);
7888 drm_vblank_put(dev, intel_crtc->pipe);
7895 static void intel_sanitize_modesetting(struct drm_device *dev,
7896 int pipe, int plane)
7898 struct drm_i915_private *dev_priv = dev->dev_private;
7901 if (HAS_PCH_SPLIT(dev))
7904 /* Who knows what state these registers were left in by the BIOS or
7907 * If we leave the registers in a conflicting state (e.g. with the
7908 * display plane reading from the other pipe than the one we intend
7909 * to use) then when we attempt to teardown the active mode, we will
7910 * not disable the pipes and planes in the correct order -- leaving
7911 * a plane reading from a disabled pipe and possibly leading to
7912 * undefined behaviour.
7915 reg = DSPCNTR(plane);
7916 val = I915_READ(reg);
7918 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7920 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7923 /* This display plane is active and attached to the other CPU pipe. */
7926 /* Disable the plane and wait for it to stop reading from the pipe. */
7927 intel_disable_plane(dev_priv, plane, pipe);
7928 intel_disable_pipe(dev_priv, pipe);
7931 static void intel_crtc_reset(struct drm_crtc *crtc)
7933 struct drm_device *dev = crtc->dev;
7934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7936 /* Reset flags back to the 'unknown' status so that they
7937 * will be correctly set on the initial modeset.
7939 intel_crtc->dpms_mode = -1;
7941 /* We need to fix up any BIOS configuration that conflicts with
7944 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7947 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7948 .dpms = intel_crtc_dpms,
7949 .mode_fixup = intel_crtc_mode_fixup,
7950 .mode_set = intel_crtc_mode_set,
7951 .mode_set_base = intel_pipe_set_base,
7952 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7953 .load_lut = intel_crtc_load_lut,
7954 .disable = intel_crtc_disable,
7957 static const struct drm_crtc_funcs intel_crtc_funcs = {
7958 .reset = intel_crtc_reset,
7959 .cursor_set = intel_crtc_cursor_set,
7960 .cursor_move = intel_crtc_cursor_move,
7961 .gamma_set = intel_crtc_gamma_set,
7962 .set_config = drm_crtc_helper_set_config,
7963 .destroy = intel_crtc_destroy,
7964 .page_flip = intel_crtc_page_flip,
7967 static void intel_crtc_init(struct drm_device *dev, int pipe)
7969 drm_i915_private_t *dev_priv = dev->dev_private;
7970 struct intel_crtc *intel_crtc;
7973 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7974 if (intel_crtc == NULL)
7977 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7979 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7980 for (i = 0; i < 256; i++) {
7981 intel_crtc->lut_r[i] = i;
7982 intel_crtc->lut_g[i] = i;
7983 intel_crtc->lut_b[i] = i;
7986 /* Swap pipes & planes for FBC on pre-965 */
7987 intel_crtc->pipe = pipe;
7988 intel_crtc->plane = pipe;
7989 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7990 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7991 intel_crtc->plane = !pipe;
7994 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7995 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7996 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7997 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7999 intel_crtc_reset(&intel_crtc->base);
8000 intel_crtc->active = true; /* force the pipe off on setup_init_config */
8001 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8003 if (HAS_PCH_SPLIT(dev)) {
8004 if (pipe == 2 && IS_IVYBRIDGE(dev))
8005 intel_crtc->no_pll = true;
8006 intel_helper_funcs.prepare = ironlake_crtc_prepare;
8007 intel_helper_funcs.commit = ironlake_crtc_commit;
8009 intel_helper_funcs.prepare = i9xx_crtc_prepare;
8010 intel_helper_funcs.commit = i9xx_crtc_commit;
8013 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8015 intel_crtc->busy = false;
8017 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
8018 (unsigned long)intel_crtc);
8021 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8022 struct drm_file *file)
8024 drm_i915_private_t *dev_priv = dev->dev_private;
8025 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8026 struct drm_mode_object *drmmode_obj;
8027 struct intel_crtc *crtc;
8030 DRM_ERROR("called with no initialization\n");
8034 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8035 DRM_MODE_OBJECT_CRTC);
8038 DRM_ERROR("no such CRTC id\n");
8042 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8043 pipe_from_crtc_id->pipe = crtc->pipe;
8048 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
8050 struct intel_encoder *encoder;
8054 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8055 if (type_mask & encoder->clone_mask)
8056 index_mask |= (1 << entry);
8063 static bool has_edp_a(struct drm_device *dev)
8065 struct drm_i915_private *dev_priv = dev->dev_private;
8067 if (!IS_MOBILE(dev))
8070 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8074 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8080 static void intel_setup_outputs(struct drm_device *dev)
8082 struct drm_i915_private *dev_priv = dev->dev_private;
8083 struct intel_encoder *encoder;
8084 bool dpd_is_edp = false;
8087 has_lvds = intel_lvds_init(dev);
8088 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8089 /* disable the panel fitter on everything but LVDS */
8090 I915_WRITE(PFIT_CONTROL, 0);
8093 if (HAS_PCH_SPLIT(dev)) {
8094 dpd_is_edp = intel_dpd_is_edp(dev);
8097 intel_dp_init(dev, DP_A);
8099 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8100 intel_dp_init(dev, PCH_DP_D);
8103 intel_crt_init(dev);
8105 if (HAS_PCH_SPLIT(dev)) {
8108 if (I915_READ(HDMIB) & PORT_DETECTED) {
8109 /* PCH SDVOB multiplex with HDMIB */
8110 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8112 intel_hdmi_init(dev, HDMIB);
8113 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8114 intel_dp_init(dev, PCH_DP_B);
8117 if (I915_READ(HDMIC) & PORT_DETECTED)
8118 intel_hdmi_init(dev, HDMIC);
8120 if (I915_READ(HDMID) & PORT_DETECTED)
8121 intel_hdmi_init(dev, HDMID);
8123 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8124 intel_dp_init(dev, PCH_DP_C);
8126 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8127 intel_dp_init(dev, PCH_DP_D);
8129 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8132 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8133 DRM_DEBUG_KMS("probing SDVOB\n");
8134 found = intel_sdvo_init(dev, SDVOB, true);
8135 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8136 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8137 intel_hdmi_init(dev, SDVOB);
8140 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8141 DRM_DEBUG_KMS("probing DP_B\n");
8142 intel_dp_init(dev, DP_B);
8146 /* Before G4X SDVOC doesn't have its own detect register */
8148 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8149 DRM_DEBUG_KMS("probing SDVOC\n");
8150 found = intel_sdvo_init(dev, SDVOC, false);
8153 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8155 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8156 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8157 intel_hdmi_init(dev, SDVOC);
8159 if (SUPPORTS_INTEGRATED_DP(dev)) {
8160 DRM_DEBUG_KMS("probing DP_C\n");
8161 intel_dp_init(dev, DP_C);
8165 if (SUPPORTS_INTEGRATED_DP(dev) &&
8166 (I915_READ(DP_D) & DP_DETECTED)) {
8167 DRM_DEBUG_KMS("probing DP_D\n");
8168 intel_dp_init(dev, DP_D);
8170 } else if (IS_GEN2(dev))
8171 intel_dvo_init(dev);
8173 if (SUPPORTS_TV(dev))
8176 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8177 encoder->base.possible_crtcs = encoder->crtc_mask;
8178 encoder->base.possible_clones =
8179 intel_encoder_clones(dev, encoder->clone_mask);
8182 /* disable all the possible outputs/crtcs before entering KMS mode */
8183 drm_helper_disable_unused_functions(dev);
8185 if (HAS_PCH_SPLIT(dev))
8186 ironlake_init_pch_refclk(dev);
8189 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8191 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8193 drm_framebuffer_cleanup(fb);
8194 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8199 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8200 struct drm_file *file,
8201 unsigned int *handle)
8203 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8204 struct drm_i915_gem_object *obj = intel_fb->obj;
8206 return drm_gem_handle_create(file, &obj->base, handle);
8209 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8210 .destroy = intel_user_framebuffer_destroy,
8211 .create_handle = intel_user_framebuffer_create_handle,
8214 int intel_framebuffer_init(struct drm_device *dev,
8215 struct intel_framebuffer *intel_fb,
8216 struct drm_mode_fb_cmd2 *mode_cmd,
8217 struct drm_i915_gem_object *obj)
8221 if (obj->tiling_mode == I915_TILING_Y)
8224 if (mode_cmd->pitches[0] & 63)
8227 switch (mode_cmd->pixel_format) {
8228 case DRM_FORMAT_RGB332:
8229 case DRM_FORMAT_RGB565:
8230 case DRM_FORMAT_XRGB8888:
8231 case DRM_FORMAT_ARGB8888:
8232 case DRM_FORMAT_XRGB2101010:
8233 case DRM_FORMAT_ARGB2101010:
8234 /* RGB formats are common across chipsets */
8236 case DRM_FORMAT_YUYV:
8237 case DRM_FORMAT_UYVY:
8238 case DRM_FORMAT_YVYU:
8239 case DRM_FORMAT_VYUY:
8242 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8243 mode_cmd->pixel_format);
8247 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8249 DRM_ERROR("framebuffer init failed %d\n", ret);
8253 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8254 intel_fb->obj = obj;
8258 static struct drm_framebuffer *
8259 intel_user_framebuffer_create(struct drm_device *dev,
8260 struct drm_file *filp,
8261 struct drm_mode_fb_cmd2 *mode_cmd)
8263 struct drm_i915_gem_object *obj;
8265 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8266 mode_cmd->handles[0]));
8267 if (&obj->base == NULL)
8268 return ERR_PTR(-ENOENT);
8270 return intel_framebuffer_create(dev, mode_cmd, obj);
8273 static const struct drm_mode_config_funcs intel_mode_funcs = {
8274 .fb_create = intel_user_framebuffer_create,
8275 .output_poll_changed = intel_fb_output_poll_changed,
8278 static struct drm_i915_gem_object *
8279 intel_alloc_context_page(struct drm_device *dev)
8281 struct drm_i915_gem_object *ctx;
8284 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8286 ctx = i915_gem_alloc_object(dev, 4096);
8288 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8292 ret = i915_gem_object_pin(ctx, 4096, true);
8294 DRM_ERROR("failed to pin power context: %d\n", ret);
8298 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8300 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8307 i915_gem_object_unpin(ctx);
8309 drm_gem_object_unreference(&ctx->base);
8310 mutex_unlock(&dev->struct_mutex);
8314 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8316 struct drm_i915_private *dev_priv = dev->dev_private;
8319 rgvswctl = I915_READ16(MEMSWCTL);
8320 if (rgvswctl & MEMCTL_CMD_STS) {
8321 DRM_DEBUG("gpu busy, RCS change rejected\n");
8322 return false; /* still busy with another command */
8325 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8326 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8327 I915_WRITE16(MEMSWCTL, rgvswctl);
8328 POSTING_READ16(MEMSWCTL);
8330 rgvswctl |= MEMCTL_CMD_STS;
8331 I915_WRITE16(MEMSWCTL, rgvswctl);
8336 void ironlake_enable_drps(struct drm_device *dev)
8338 struct drm_i915_private *dev_priv = dev->dev_private;
8339 u32 rgvmodectl = I915_READ(MEMMODECTL);
8340 u8 fmax, fmin, fstart, vstart;
8342 /* Enable temp reporting */
8343 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8344 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8346 /* 100ms RC evaluation intervals */
8347 I915_WRITE(RCUPEI, 100000);
8348 I915_WRITE(RCDNEI, 100000);
8350 /* Set max/min thresholds to 90ms and 80ms respectively */
8351 I915_WRITE(RCBMAXAVG, 90000);
8352 I915_WRITE(RCBMINAVG, 80000);
8354 I915_WRITE(MEMIHYST, 1);
8356 /* Set up min, max, and cur for interrupt handling */
8357 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8358 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8359 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8360 MEMMODE_FSTART_SHIFT;
8362 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8365 dev_priv->fmax = fmax; /* IPS callback will increase this */
8366 dev_priv->fstart = fstart;
8368 dev_priv->max_delay = fstart;
8369 dev_priv->min_delay = fmin;
8370 dev_priv->cur_delay = fstart;
8372 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8373 fmax, fmin, fstart);
8375 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8378 * Interrupts will be enabled in ironlake_irq_postinstall
8381 I915_WRITE(VIDSTART, vstart);
8382 POSTING_READ(VIDSTART);
8384 rgvmodectl |= MEMMODE_SWMODE_EN;
8385 I915_WRITE(MEMMODECTL, rgvmodectl);
8387 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8388 DRM_ERROR("stuck trying to change perf mode\n");
8391 ironlake_set_drps(dev, fstart);
8393 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8395 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8396 dev_priv->last_count2 = I915_READ(0x112f4);
8397 getrawmonotonic(&dev_priv->last_time2);
8400 void ironlake_disable_drps(struct drm_device *dev)
8402 struct drm_i915_private *dev_priv = dev->dev_private;
8403 u16 rgvswctl = I915_READ16(MEMSWCTL);
8405 /* Ack interrupts, disable EFC interrupt */
8406 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8407 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8408 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8409 I915_WRITE(DEIIR, DE_PCU_EVENT);
8410 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8412 /* Go back to the starting frequency */
8413 ironlake_set_drps(dev, dev_priv->fstart);
8415 rgvswctl |= MEMCTL_CMD_STS;
8416 I915_WRITE(MEMSWCTL, rgvswctl);
8421 void gen6_set_rps(struct drm_device *dev, u8 val)
8423 struct drm_i915_private *dev_priv = dev->dev_private;
8426 swreq = (val & 0x3ff) << 25;
8427 I915_WRITE(GEN6_RPNSWREQ, swreq);
8430 void gen6_disable_rps(struct drm_device *dev)
8432 struct drm_i915_private *dev_priv = dev->dev_private;
8434 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8435 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8436 I915_WRITE(GEN6_PMIER, 0);
8437 /* Complete PM interrupt masking here doesn't race with the rps work
8438 * item again unmasking PM interrupts because that is using a different
8439 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8440 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8442 spin_lock_irq(&dev_priv->rps_lock);
8443 dev_priv->pm_iir = 0;
8444 spin_unlock_irq(&dev_priv->rps_lock);
8446 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8449 static unsigned long intel_pxfreq(u32 vidfreq)
8452 int div = (vidfreq & 0x3f0000) >> 16;
8453 int post = (vidfreq & 0x3000) >> 12;
8454 int pre = (vidfreq & 0x7);
8459 freq = ((div * 133333) / ((1<<post) * pre));
8464 void intel_init_emon(struct drm_device *dev)
8466 struct drm_i915_private *dev_priv = dev->dev_private;
8471 /* Disable to program */
8475 /* Program energy weights for various events */
8476 I915_WRITE(SDEW, 0x15040d00);
8477 I915_WRITE(CSIEW0, 0x007f0000);
8478 I915_WRITE(CSIEW1, 0x1e220004);
8479 I915_WRITE(CSIEW2, 0x04000004);
8481 for (i = 0; i < 5; i++)
8482 I915_WRITE(PEW + (i * 4), 0);
8483 for (i = 0; i < 3; i++)
8484 I915_WRITE(DEW + (i * 4), 0);
8486 /* Program P-state weights to account for frequency power adjustment */
8487 for (i = 0; i < 16; i++) {
8488 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8489 unsigned long freq = intel_pxfreq(pxvidfreq);
8490 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8495 val *= (freq / 1000);
8497 val /= (127*127*900);
8499 DRM_ERROR("bad pxval: %ld\n", val);
8502 /* Render standby states get 0 weight */
8506 for (i = 0; i < 4; i++) {
8507 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8508 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8509 I915_WRITE(PXW + (i * 4), val);
8512 /* Adjust magic regs to magic values (more experimental results) */
8513 I915_WRITE(OGW0, 0);
8514 I915_WRITE(OGW1, 0);
8515 I915_WRITE(EG0, 0x00007f00);
8516 I915_WRITE(EG1, 0x0000000e);
8517 I915_WRITE(EG2, 0x000e0000);
8518 I915_WRITE(EG3, 0x68000300);
8519 I915_WRITE(EG4, 0x42000000);
8520 I915_WRITE(EG5, 0x00140031);
8524 for (i = 0; i < 8; i++)
8525 I915_WRITE(PXWL + (i * 4), 0);
8527 /* Enable PMON + select events */
8528 I915_WRITE(ECR, 0x80000019);
8530 lcfuse = I915_READ(LCFUSE02);
8532 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8535 static bool intel_enable_rc6(struct drm_device *dev)
8538 * Respect the kernel parameter if it is set
8540 if (i915_enable_rc6 >= 0)
8541 return i915_enable_rc6;
8544 * Disable RC6 on Ironlake
8546 if (INTEL_INFO(dev)->gen == 5)
8550 * Disable rc6 on Sandybridge
8552 if (INTEL_INFO(dev)->gen == 6) {
8553 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8556 DRM_DEBUG_DRIVER("RC6 enabled\n");
8560 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8562 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8563 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8564 u32 pcu_mbox, rc6_mask = 0;
8566 int cur_freq, min_freq, max_freq;
8569 /* Here begins a magic sequence of register writes to enable
8570 * auto-downclocking.
8572 * Perhaps there might be some value in exposing these to
8575 I915_WRITE(GEN6_RC_STATE, 0);
8576 mutex_lock(&dev_priv->dev->struct_mutex);
8578 /* Clear the DBG now so we don't confuse earlier errors */
8579 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8580 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8581 I915_WRITE(GTFIFODBG, gtfifodbg);
8584 gen6_gt_force_wake_get(dev_priv);
8586 /* disable the counters and set deterministic thresholds */
8587 I915_WRITE(GEN6_RC_CONTROL, 0);
8589 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8590 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8591 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8592 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8593 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8595 for (i = 0; i < I915_NUM_RINGS; i++)
8596 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8598 I915_WRITE(GEN6_RC_SLEEP, 0);
8599 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8600 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8601 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8602 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8604 if (intel_enable_rc6(dev_priv->dev))
8605 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8606 GEN6_RC_CTL_RC6_ENABLE;
8608 I915_WRITE(GEN6_RC_CONTROL,
8610 GEN6_RC_CTL_EI_MODE(1) |
8611 GEN6_RC_CTL_HW_ENABLE);
8613 I915_WRITE(GEN6_RPNSWREQ,
8614 GEN6_FREQUENCY(10) |
8616 GEN6_AGGRESSIVE_TURBO);
8617 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8618 GEN6_FREQUENCY(12));
8620 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8621 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8624 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8625 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8626 I915_WRITE(GEN6_RP_UP_EI, 100000);
8627 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8628 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8629 I915_WRITE(GEN6_RP_CONTROL,
8630 GEN6_RP_MEDIA_TURBO |
8631 GEN6_RP_MEDIA_HW_MODE |
8632 GEN6_RP_MEDIA_IS_GFX |
8634 GEN6_RP_UP_BUSY_AVG |
8635 GEN6_RP_DOWN_IDLE_CONT);
8637 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8639 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8641 I915_WRITE(GEN6_PCODE_DATA, 0);
8642 I915_WRITE(GEN6_PCODE_MAILBOX,
8644 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8645 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8647 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8649 min_freq = (rp_state_cap & 0xff0000) >> 16;
8650 max_freq = rp_state_cap & 0xff;
8651 cur_freq = (gt_perf_status & 0xff00) >> 8;
8653 /* Check for overclock support */
8654 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8656 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8657 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8658 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8659 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8661 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8662 if (pcu_mbox & (1<<31)) { /* OC supported */
8663 max_freq = pcu_mbox & 0xff;
8664 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8667 /* In units of 100MHz */
8668 dev_priv->max_delay = max_freq;
8669 dev_priv->min_delay = min_freq;
8670 dev_priv->cur_delay = cur_freq;
8672 /* requires MSI enabled */
8673 I915_WRITE(GEN6_PMIER,
8674 GEN6_PM_MBOX_EVENT |
8675 GEN6_PM_THERMAL_EVENT |
8676 GEN6_PM_RP_DOWN_TIMEOUT |
8677 GEN6_PM_RP_UP_THRESHOLD |
8678 GEN6_PM_RP_DOWN_THRESHOLD |
8679 GEN6_PM_RP_UP_EI_EXPIRED |
8680 GEN6_PM_RP_DOWN_EI_EXPIRED);
8681 spin_lock_irq(&dev_priv->rps_lock);
8682 WARN_ON(dev_priv->pm_iir != 0);
8683 I915_WRITE(GEN6_PMIMR, 0);
8684 spin_unlock_irq(&dev_priv->rps_lock);
8685 /* enable all PM interrupts */
8686 I915_WRITE(GEN6_PMINTRMSK, 0);
8688 gen6_gt_force_wake_put(dev_priv);
8689 mutex_unlock(&dev_priv->dev->struct_mutex);
8692 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8695 int gpu_freq, ia_freq, max_ia_freq;
8696 int scaling_factor = 180;
8698 max_ia_freq = cpufreq_quick_get_max(0);
8700 * Default to measured freq if none found, PCU will ensure we don't go
8704 max_ia_freq = tsc_khz;
8706 /* Convert from kHz to MHz */
8707 max_ia_freq /= 1000;
8709 mutex_lock(&dev_priv->dev->struct_mutex);
8712 * For each potential GPU frequency, load a ring frequency we'd like
8713 * to use for memory access. We do this by specifying the IA frequency
8714 * the PCU should use as a reference to determine the ring frequency.
8716 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8718 int diff = dev_priv->max_delay - gpu_freq;
8721 * For GPU frequencies less than 750MHz, just use the lowest
8724 if (gpu_freq < min_freq)
8727 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8728 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8730 I915_WRITE(GEN6_PCODE_DATA,
8731 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8733 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8734 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8735 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8736 GEN6_PCODE_READY) == 0, 10)) {
8737 DRM_ERROR("pcode write of freq table timed out\n");
8742 mutex_unlock(&dev_priv->dev->struct_mutex);
8745 static void ironlake_init_clock_gating(struct drm_device *dev)
8747 struct drm_i915_private *dev_priv = dev->dev_private;
8748 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8750 /* Required for FBC */
8751 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8752 DPFCRUNIT_CLOCK_GATE_DISABLE |
8753 DPFDUNIT_CLOCK_GATE_DISABLE;
8754 /* Required for CxSR */
8755 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8757 I915_WRITE(PCH_3DCGDIS0,
8758 MARIUNIT_CLOCK_GATE_DISABLE |
8759 SVSMUNIT_CLOCK_GATE_DISABLE);
8760 I915_WRITE(PCH_3DCGDIS1,
8761 VFMUNIT_CLOCK_GATE_DISABLE);
8763 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8766 * According to the spec the following bits should be set in
8767 * order to enable memory self-refresh
8768 * The bit 22/21 of 0x42004
8769 * The bit 5 of 0x42020
8770 * The bit 15 of 0x45000
8772 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8773 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8774 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8775 I915_WRITE(ILK_DSPCLK_GATE,
8776 (I915_READ(ILK_DSPCLK_GATE) |
8777 ILK_DPARB_CLK_GATE));
8778 I915_WRITE(DISP_ARB_CTL,
8779 (I915_READ(DISP_ARB_CTL) |
8781 I915_WRITE(WM3_LP_ILK, 0);
8782 I915_WRITE(WM2_LP_ILK, 0);
8783 I915_WRITE(WM1_LP_ILK, 0);
8786 * Based on the document from hardware guys the following bits
8787 * should be set unconditionally in order to enable FBC.
8788 * The bit 22 of 0x42000
8789 * The bit 22 of 0x42004
8790 * The bit 7,8,9 of 0x42020.
8792 if (IS_IRONLAKE_M(dev)) {
8793 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8794 I915_READ(ILK_DISPLAY_CHICKEN1) |
8796 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8797 I915_READ(ILK_DISPLAY_CHICKEN2) |
8799 I915_WRITE(ILK_DSPCLK_GATE,
8800 I915_READ(ILK_DSPCLK_GATE) |
8806 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8807 I915_READ(ILK_DISPLAY_CHICKEN2) |
8808 ILK_ELPIN_409_SELECT);
8809 I915_WRITE(_3D_CHICKEN2,
8810 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8811 _3D_CHICKEN2_WM_READ_PIPELINED);
8814 static void gen6_init_clock_gating(struct drm_device *dev)
8816 struct drm_i915_private *dev_priv = dev->dev_private;
8818 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8820 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8822 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8823 I915_READ(ILK_DISPLAY_CHICKEN2) |
8824 ILK_ELPIN_409_SELECT);
8826 I915_WRITE(WM3_LP_ILK, 0);
8827 I915_WRITE(WM2_LP_ILK, 0);
8828 I915_WRITE(WM1_LP_ILK, 0);
8830 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8831 * gating disable must be set. Failure to set it results in
8832 * flickering pixels due to Z write ordering failures after
8833 * some amount of runtime in the Mesa "fire" demo, and Unigine
8834 * Sanctuary and Tropics, and apparently anything else with
8835 * alpha test or pixel discard.
8837 * According to the spec, bit 11 (RCCUNIT) must also be set,
8838 * but we didn't debug actual testcases to find it out.
8840 I915_WRITE(GEN6_UCGCTL2,
8841 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8842 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8845 * According to the spec the following bits should be
8846 * set in order to enable memory self-refresh and fbc:
8847 * The bit21 and bit22 of 0x42000
8848 * The bit21 and bit22 of 0x42004
8849 * The bit5 and bit7 of 0x42020
8850 * The bit14 of 0x70180
8851 * The bit14 of 0x71180
8853 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8854 I915_READ(ILK_DISPLAY_CHICKEN1) |
8855 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8856 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8857 I915_READ(ILK_DISPLAY_CHICKEN2) |
8858 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8859 I915_WRITE(ILK_DSPCLK_GATE,
8860 I915_READ(ILK_DSPCLK_GATE) |
8861 ILK_DPARB_CLK_GATE |
8864 for_each_pipe(pipe) {
8865 I915_WRITE(DSPCNTR(pipe),
8866 I915_READ(DSPCNTR(pipe)) |
8867 DISPPLANE_TRICKLE_FEED_DISABLE);
8868 intel_flush_display_plane(dev_priv, pipe);
8872 static void ivybridge_init_clock_gating(struct drm_device *dev)
8874 struct drm_i915_private *dev_priv = dev->dev_private;
8876 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8878 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8880 I915_WRITE(WM3_LP_ILK, 0);
8881 I915_WRITE(WM2_LP_ILK, 0);
8882 I915_WRITE(WM1_LP_ILK, 0);
8884 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8886 I915_WRITE(IVB_CHICKEN3,
8887 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8888 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8890 for_each_pipe(pipe) {
8891 I915_WRITE(DSPCNTR(pipe),
8892 I915_READ(DSPCNTR(pipe)) |
8893 DISPPLANE_TRICKLE_FEED_DISABLE);
8894 intel_flush_display_plane(dev_priv, pipe);
8898 static void valleyview_init_clock_gating(struct drm_device *dev)
8900 struct drm_i915_private *dev_priv = dev->dev_private;
8902 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8904 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8906 I915_WRITE(WM3_LP_ILK, 0);
8907 I915_WRITE(WM2_LP_ILK, 0);
8908 I915_WRITE(WM1_LP_ILK, 0);
8910 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8911 * This implements the WaDisableRCZUnitClockGating workaround.
8913 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8915 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8917 I915_WRITE(IVB_CHICKEN3,
8918 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8919 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8921 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8922 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8923 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8925 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8926 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
8927 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
8929 /* This is required by WaCatErrorRejectionIssue */
8930 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8931 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8932 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8934 for_each_pipe(pipe) {
8935 I915_WRITE(DSPCNTR(pipe),
8936 I915_READ(DSPCNTR(pipe)) |
8937 DISPPLANE_TRICKLE_FEED_DISABLE);
8938 intel_flush_display_plane(dev_priv, pipe);
8941 I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
8942 (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
8943 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
8946 static void g4x_init_clock_gating(struct drm_device *dev)
8948 struct drm_i915_private *dev_priv = dev->dev_private;
8949 uint32_t dspclk_gate;
8951 I915_WRITE(RENCLK_GATE_D1, 0);
8952 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8953 GS_UNIT_CLOCK_GATE_DISABLE |
8954 CL_UNIT_CLOCK_GATE_DISABLE);
8955 I915_WRITE(RAMCLK_GATE_D, 0);
8956 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8957 OVRUNIT_CLOCK_GATE_DISABLE |
8958 OVCUNIT_CLOCK_GATE_DISABLE;
8960 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8961 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8964 static void crestline_init_clock_gating(struct drm_device *dev)
8966 struct drm_i915_private *dev_priv = dev->dev_private;
8968 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8969 I915_WRITE(RENCLK_GATE_D2, 0);
8970 I915_WRITE(DSPCLK_GATE_D, 0);
8971 I915_WRITE(RAMCLK_GATE_D, 0);
8972 I915_WRITE16(DEUC, 0);
8975 static void broadwater_init_clock_gating(struct drm_device *dev)
8977 struct drm_i915_private *dev_priv = dev->dev_private;
8979 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8980 I965_RCC_CLOCK_GATE_DISABLE |
8981 I965_RCPB_CLOCK_GATE_DISABLE |
8982 I965_ISC_CLOCK_GATE_DISABLE |
8983 I965_FBC_CLOCK_GATE_DISABLE);
8984 I915_WRITE(RENCLK_GATE_D2, 0);
8987 static void gen3_init_clock_gating(struct drm_device *dev)
8989 struct drm_i915_private *dev_priv = dev->dev_private;
8990 u32 dstate = I915_READ(D_STATE);
8992 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8993 DSTATE_DOT_CLOCK_GATING;
8994 I915_WRITE(D_STATE, dstate);
8997 static void i85x_init_clock_gating(struct drm_device *dev)
8999 struct drm_i915_private *dev_priv = dev->dev_private;
9001 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9004 static void i830_init_clock_gating(struct drm_device *dev)
9006 struct drm_i915_private *dev_priv = dev->dev_private;
9008 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
9011 static void ibx_init_clock_gating(struct drm_device *dev)
9013 struct drm_i915_private *dev_priv = dev->dev_private;
9016 * On Ibex Peak and Cougar Point, we need to disable clock
9017 * gating for the panel power sequencer or it will fail to
9018 * start up when no ports are active.
9020 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9023 static void cpt_init_clock_gating(struct drm_device *dev)
9025 struct drm_i915_private *dev_priv = dev->dev_private;
9029 * On Ibex Peak and Cougar Point, we need to disable clock
9030 * gating for the panel power sequencer or it will fail to
9031 * start up when no ports are active.
9033 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9034 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
9035 DPLS_EDP_PPS_FIX_DIS);
9036 /* Without this, mode sets may fail silently on FDI */
9038 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
9041 static void ironlake_teardown_rc6(struct drm_device *dev)
9043 struct drm_i915_private *dev_priv = dev->dev_private;
9045 if (dev_priv->renderctx) {
9046 i915_gem_object_unpin(dev_priv->renderctx);
9047 drm_gem_object_unreference(&dev_priv->renderctx->base);
9048 dev_priv->renderctx = NULL;
9051 if (dev_priv->pwrctx) {
9052 i915_gem_object_unpin(dev_priv->pwrctx);
9053 drm_gem_object_unreference(&dev_priv->pwrctx->base);
9054 dev_priv->pwrctx = NULL;
9058 static void ironlake_disable_rc6(struct drm_device *dev)
9060 struct drm_i915_private *dev_priv = dev->dev_private;
9062 if (I915_READ(PWRCTXA)) {
9063 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
9064 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
9065 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
9068 I915_WRITE(PWRCTXA, 0);
9069 POSTING_READ(PWRCTXA);
9071 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9072 POSTING_READ(RSTDBYCTL);
9075 ironlake_teardown_rc6(dev);
9078 static int ironlake_setup_rc6(struct drm_device *dev)
9080 struct drm_i915_private *dev_priv = dev->dev_private;
9082 if (dev_priv->renderctx == NULL)
9083 dev_priv->renderctx = intel_alloc_context_page(dev);
9084 if (!dev_priv->renderctx)
9087 if (dev_priv->pwrctx == NULL)
9088 dev_priv->pwrctx = intel_alloc_context_page(dev);
9089 if (!dev_priv->pwrctx) {
9090 ironlake_teardown_rc6(dev);
9097 void ironlake_enable_rc6(struct drm_device *dev)
9099 struct drm_i915_private *dev_priv = dev->dev_private;
9102 /* rc6 disabled by default due to repeated reports of hanging during
9105 if (!intel_enable_rc6(dev))
9108 mutex_lock(&dev->struct_mutex);
9109 ret = ironlake_setup_rc6(dev);
9111 mutex_unlock(&dev->struct_mutex);
9116 * GPU can automatically power down the render unit if given a page
9119 ret = BEGIN_LP_RING(6);
9121 ironlake_teardown_rc6(dev);
9122 mutex_unlock(&dev->struct_mutex);
9126 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
9127 OUT_RING(MI_SET_CONTEXT);
9128 OUT_RING(dev_priv->renderctx->gtt_offset |
9130 MI_SAVE_EXT_STATE_EN |
9131 MI_RESTORE_EXT_STATE_EN |
9132 MI_RESTORE_INHIBIT);
9133 OUT_RING(MI_SUSPEND_FLUSH);
9139 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
9140 * does an implicit flush, combined with MI_FLUSH above, it should be
9141 * safe to assume that renderctx is valid
9143 ret = intel_wait_ring_idle(LP_RING(dev_priv));
9145 DRM_ERROR("failed to enable ironlake power power savings\n");
9146 ironlake_teardown_rc6(dev);
9147 mutex_unlock(&dev->struct_mutex);
9151 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
9152 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9153 mutex_unlock(&dev->struct_mutex);
9156 void intel_init_clock_gating(struct drm_device *dev)
9158 struct drm_i915_private *dev_priv = dev->dev_private;
9160 dev_priv->display.init_clock_gating(dev);
9162 if (dev_priv->display.init_pch_clock_gating)
9163 dev_priv->display.init_pch_clock_gating(dev);
9166 /* Set up chip specific display functions */
9167 static void intel_init_display(struct drm_device *dev)
9169 struct drm_i915_private *dev_priv = dev->dev_private;
9171 /* We always want a DPMS function */
9172 if (HAS_PCH_SPLIT(dev)) {
9173 dev_priv->display.dpms = ironlake_crtc_dpms;
9174 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9175 dev_priv->display.update_plane = ironlake_update_plane;
9177 dev_priv->display.dpms = i9xx_crtc_dpms;
9178 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9179 dev_priv->display.update_plane = i9xx_update_plane;
9182 if (I915_HAS_FBC(dev)) {
9183 if (HAS_PCH_SPLIT(dev)) {
9184 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
9185 dev_priv->display.enable_fbc = ironlake_enable_fbc;
9186 dev_priv->display.disable_fbc = ironlake_disable_fbc;
9187 } else if (IS_GM45(dev)) {
9188 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
9189 dev_priv->display.enable_fbc = g4x_enable_fbc;
9190 dev_priv->display.disable_fbc = g4x_disable_fbc;
9191 } else if (IS_CRESTLINE(dev)) {
9192 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
9193 dev_priv->display.enable_fbc = i8xx_enable_fbc;
9194 dev_priv->display.disable_fbc = i8xx_disable_fbc;
9196 /* 855GM needs testing */
9199 /* Returns the core display clock speed */
9200 if (IS_VALLEYVIEW(dev))
9201 dev_priv->display.get_display_clock_speed =
9202 valleyview_get_display_clock_speed;
9203 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9204 dev_priv->display.get_display_clock_speed =
9205 i945_get_display_clock_speed;
9206 else if (IS_I915G(dev))
9207 dev_priv->display.get_display_clock_speed =
9208 i915_get_display_clock_speed;
9209 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9210 dev_priv->display.get_display_clock_speed =
9211 i9xx_misc_get_display_clock_speed;
9212 else if (IS_I915GM(dev))
9213 dev_priv->display.get_display_clock_speed =
9214 i915gm_get_display_clock_speed;
9215 else if (IS_I865G(dev))
9216 dev_priv->display.get_display_clock_speed =
9217 i865_get_display_clock_speed;
9218 else if (IS_I85X(dev))
9219 dev_priv->display.get_display_clock_speed =
9220 i855_get_display_clock_speed;
9222 dev_priv->display.get_display_clock_speed =
9223 i830_get_display_clock_speed;
9225 /* For FIFO watermark updates */
9226 if (HAS_PCH_SPLIT(dev)) {
9227 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9228 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9230 /* IVB configs may use multi-threaded forcewake */
9231 if (IS_IVYBRIDGE(dev)) {
9234 /* A small trick here - if the bios hasn't configured MT forcewake,
9235 * and if the device is in RC6, then force_wake_mt_get will not wake
9236 * the device and the ECOBUS read will return zero. Which will be
9237 * (correctly) interpreted by the test below as MT forcewake being
9240 mutex_lock(&dev->struct_mutex);
9241 __gen6_gt_force_wake_mt_get(dev_priv);
9242 ecobus = I915_READ_NOTRACE(ECOBUS);
9243 __gen6_gt_force_wake_mt_put(dev_priv);
9244 mutex_unlock(&dev->struct_mutex);
9246 if (ecobus & FORCEWAKE_MT_ENABLE) {
9247 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9248 dev_priv->display.force_wake_get =
9249 __gen6_gt_force_wake_mt_get;
9250 dev_priv->display.force_wake_put =
9251 __gen6_gt_force_wake_mt_put;
9255 if (HAS_PCH_IBX(dev))
9256 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9257 else if (HAS_PCH_CPT(dev))
9258 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9261 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9262 dev_priv->display.update_wm = ironlake_update_wm;
9264 DRM_DEBUG_KMS("Failed to get proper latency. "
9266 dev_priv->display.update_wm = NULL;
9268 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9269 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9270 dev_priv->display.write_eld = ironlake_write_eld;
9271 } else if (IS_GEN6(dev)) {
9272 if (SNB_READ_WM0_LATENCY()) {
9273 dev_priv->display.update_wm = sandybridge_update_wm;
9274 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9276 DRM_DEBUG_KMS("Failed to read display plane latency. "
9278 dev_priv->display.update_wm = NULL;
9280 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9281 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9282 dev_priv->display.write_eld = ironlake_write_eld;
9283 } else if (IS_IVYBRIDGE(dev)) {
9284 /* FIXME: detect B0+ stepping and use auto training */
9285 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9286 if (SNB_READ_WM0_LATENCY()) {
9287 dev_priv->display.update_wm = sandybridge_update_wm;
9288 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9290 DRM_DEBUG_KMS("Failed to read display plane latency. "
9292 dev_priv->display.update_wm = NULL;
9294 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9295 dev_priv->display.write_eld = ironlake_write_eld;
9297 dev_priv->display.update_wm = NULL;
9298 } else if (IS_VALLEYVIEW(dev)) {
9299 dev_priv->display.update_wm = valleyview_update_wm;
9300 dev_priv->display.init_clock_gating =
9301 valleyview_init_clock_gating;
9302 dev_priv->display.force_wake_get = vlv_force_wake_get;
9303 dev_priv->display.force_wake_put = vlv_force_wake_put;
9304 } else if (IS_PINEVIEW(dev)) {
9305 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9308 dev_priv->mem_freq)) {
9309 DRM_INFO("failed to find known CxSR latency "
9310 "(found ddr%s fsb freq %d, mem freq %d), "
9312 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9313 dev_priv->fsb_freq, dev_priv->mem_freq);
9314 /* Disable CxSR and never update its watermark again */
9315 pineview_disable_cxsr(dev);
9316 dev_priv->display.update_wm = NULL;
9318 dev_priv->display.update_wm = pineview_update_wm;
9319 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9320 } else if (IS_G4X(dev)) {
9321 dev_priv->display.write_eld = g4x_write_eld;
9322 dev_priv->display.update_wm = g4x_update_wm;
9323 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9324 } else if (IS_GEN4(dev)) {
9325 dev_priv->display.update_wm = i965_update_wm;
9326 if (IS_CRESTLINE(dev))
9327 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9328 else if (IS_BROADWATER(dev))
9329 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9330 } else if (IS_GEN3(dev)) {
9331 dev_priv->display.update_wm = i9xx_update_wm;
9332 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9333 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9334 } else if (IS_I865G(dev)) {
9335 dev_priv->display.update_wm = i830_update_wm;
9336 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9337 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9338 } else if (IS_I85X(dev)) {
9339 dev_priv->display.update_wm = i9xx_update_wm;
9340 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9341 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9343 dev_priv->display.update_wm = i830_update_wm;
9344 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9346 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9348 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9351 /* Default just returns -ENODEV to indicate unsupported */
9352 dev_priv->display.queue_flip = intel_default_queue_flip;
9354 switch (INTEL_INFO(dev)->gen) {
9356 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9360 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9365 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9369 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9372 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9378 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9379 * resume, or other times. This quirk makes sure that's the case for
9382 static void quirk_pipea_force(struct drm_device *dev)
9384 struct drm_i915_private *dev_priv = dev->dev_private;
9386 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9387 DRM_INFO("applying pipe a force quirk\n");
9391 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9393 static void quirk_ssc_force_disable(struct drm_device *dev)
9395 struct drm_i915_private *dev_priv = dev->dev_private;
9396 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9397 DRM_INFO("applying lvds SSC disable quirk\n");
9401 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9404 static void quirk_invert_brightness(struct drm_device *dev)
9406 struct drm_i915_private *dev_priv = dev->dev_private;
9407 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9408 DRM_INFO("applying inverted panel brightness quirk\n");
9411 struct intel_quirk {
9413 int subsystem_vendor;
9414 int subsystem_device;
9415 void (*hook)(struct drm_device *dev);
9418 struct intel_quirk intel_quirks[] = {
9419 /* HP Mini needs pipe A force quirk (LP: #322104) */
9420 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9422 /* Thinkpad R31 needs pipe A force quirk */
9423 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9424 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9425 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9427 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9428 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9429 /* ThinkPad X40 needs pipe A force quirk */
9431 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9432 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9434 /* 855 & before need to leave pipe A & dpll A up */
9435 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9436 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9438 /* Lenovo U160 cannot use SSC on LVDS */
9439 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9441 /* Sony Vaio Y cannot use SSC on LVDS */
9442 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9444 /* Acer Aspire 5734Z must invert backlight brightness */
9445 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9448 static void intel_init_quirks(struct drm_device *dev)
9450 struct pci_dev *d = dev->pdev;
9453 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9454 struct intel_quirk *q = &intel_quirks[i];
9456 if (d->device == q->device &&
9457 (d->subsystem_vendor == q->subsystem_vendor ||
9458 q->subsystem_vendor == PCI_ANY_ID) &&
9459 (d->subsystem_device == q->subsystem_device ||
9460 q->subsystem_device == PCI_ANY_ID))
9465 /* Disable the VGA plane that we never use */
9466 static void i915_disable_vga(struct drm_device *dev)
9468 struct drm_i915_private *dev_priv = dev->dev_private;
9472 if (HAS_PCH_SPLIT(dev))
9473 vga_reg = CPU_VGACNTRL;
9477 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9478 outb(1, VGA_SR_INDEX);
9479 sr1 = inb(VGA_SR_DATA);
9480 outb(sr1 | 1<<5, VGA_SR_DATA);
9481 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9484 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9485 POSTING_READ(vga_reg);
9488 void intel_modeset_init(struct drm_device *dev)
9490 struct drm_i915_private *dev_priv = dev->dev_private;
9493 drm_mode_config_init(dev);
9495 dev->mode_config.min_width = 0;
9496 dev->mode_config.min_height = 0;
9498 dev->mode_config.preferred_depth = 24;
9499 dev->mode_config.prefer_shadow = 1;
9501 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9503 intel_init_quirks(dev);
9505 intel_init_display(dev);
9508 dev->mode_config.max_width = 2048;
9509 dev->mode_config.max_height = 2048;
9510 } else if (IS_GEN3(dev)) {
9511 dev->mode_config.max_width = 4096;
9512 dev->mode_config.max_height = 4096;
9514 dev->mode_config.max_width = 8192;
9515 dev->mode_config.max_height = 8192;
9517 dev->mode_config.fb_base = dev->agp->base;
9519 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9520 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9522 for (i = 0; i < dev_priv->num_pipe; i++) {
9523 intel_crtc_init(dev, i);
9524 ret = intel_plane_init(dev, i);
9526 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9529 /* Just disable it once at startup */
9530 i915_disable_vga(dev);
9531 intel_setup_outputs(dev);
9533 intel_init_clock_gating(dev);
9535 if (IS_IRONLAKE_M(dev)) {
9536 ironlake_enable_drps(dev);
9537 intel_init_emon(dev);
9540 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9541 gen6_enable_rps(dev_priv);
9542 gen6_update_ring_freq(dev_priv);
9545 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9546 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9547 (unsigned long)dev);
9550 void intel_modeset_gem_init(struct drm_device *dev)
9552 if (IS_IRONLAKE_M(dev))
9553 ironlake_enable_rc6(dev);
9555 intel_setup_overlay(dev);
9558 void intel_modeset_cleanup(struct drm_device *dev)
9560 struct drm_i915_private *dev_priv = dev->dev_private;
9561 struct drm_crtc *crtc;
9562 struct intel_crtc *intel_crtc;
9564 drm_kms_helper_poll_fini(dev);
9565 mutex_lock(&dev->struct_mutex);
9567 intel_unregister_dsm_handler();
9570 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9571 /* Skip inactive CRTCs */
9575 intel_crtc = to_intel_crtc(crtc);
9576 intel_increase_pllclock(crtc);
9579 intel_disable_fbc(dev);
9581 if (IS_IRONLAKE_M(dev))
9582 ironlake_disable_drps(dev);
9583 if (IS_GEN6(dev) || IS_GEN7(dev))
9584 gen6_disable_rps(dev);
9586 if (IS_IRONLAKE_M(dev))
9587 ironlake_disable_rc6(dev);
9589 if (IS_VALLEYVIEW(dev))
9592 mutex_unlock(&dev->struct_mutex);
9594 /* Disable the irq before mode object teardown, for the irq might
9595 * enqueue unpin/hotplug work. */
9596 drm_irq_uninstall(dev);
9597 cancel_work_sync(&dev_priv->hotplug_work);
9598 cancel_work_sync(&dev_priv->rps_work);
9600 /* flush any delayed tasks or pending work */
9601 flush_scheduled_work();
9603 /* Shut off idle work before the crtcs get freed. */
9604 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9605 intel_crtc = to_intel_crtc(crtc);
9606 del_timer_sync(&intel_crtc->idle_timer);
9608 del_timer_sync(&dev_priv->idle_timer);
9609 cancel_work_sync(&dev_priv->idle_work);
9611 drm_mode_config_cleanup(dev);
9615 * Return which encoder is currently attached for connector.
9617 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9619 return &intel_attached_encoder(connector)->base;
9622 void intel_connector_attach_encoder(struct intel_connector *connector,
9623 struct intel_encoder *encoder)
9625 connector->encoder = encoder;
9626 drm_mode_connector_attach_encoder(&connector->base,
9631 * set vga decode state - true == enable VGA decode
9633 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9635 struct drm_i915_private *dev_priv = dev->dev_private;
9638 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9640 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9642 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9643 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9647 #ifdef CONFIG_DEBUG_FS
9648 #include <linux/seq_file.h>
9650 struct intel_display_error_state {
9651 struct intel_cursor_error_state {
9658 struct intel_pipe_error_state {
9670 struct intel_plane_error_state {
9681 struct intel_display_error_state *
9682 intel_display_capture_error_state(struct drm_device *dev)
9684 drm_i915_private_t *dev_priv = dev->dev_private;
9685 struct intel_display_error_state *error;
9688 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9692 for (i = 0; i < 2; i++) {
9693 error->cursor[i].control = I915_READ(CURCNTR(i));
9694 error->cursor[i].position = I915_READ(CURPOS(i));
9695 error->cursor[i].base = I915_READ(CURBASE(i));
9697 error->plane[i].control = I915_READ(DSPCNTR(i));
9698 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9699 error->plane[i].size = I915_READ(DSPSIZE(i));
9700 error->plane[i].pos = I915_READ(DSPPOS(i));
9701 error->plane[i].addr = I915_READ(DSPADDR(i));
9702 if (INTEL_INFO(dev)->gen >= 4) {
9703 error->plane[i].surface = I915_READ(DSPSURF(i));
9704 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9707 error->pipe[i].conf = I915_READ(PIPECONF(i));
9708 error->pipe[i].source = I915_READ(PIPESRC(i));
9709 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9710 error->pipe[i].hblank = I915_READ(HBLANK(i));
9711 error->pipe[i].hsync = I915_READ(HSYNC(i));
9712 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9713 error->pipe[i].vblank = I915_READ(VBLANK(i));
9714 error->pipe[i].vsync = I915_READ(VSYNC(i));
9721 intel_display_print_error_state(struct seq_file *m,
9722 struct drm_device *dev,
9723 struct intel_display_error_state *error)
9727 for (i = 0; i < 2; i++) {
9728 seq_printf(m, "Pipe [%d]:\n", i);
9729 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9730 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9731 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9732 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9733 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9734 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9735 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9736 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9738 seq_printf(m, "Plane [%d]:\n", i);
9739 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9740 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9741 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9742 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9743 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9744 if (INTEL_INFO(dev)->gen >= 4) {
9745 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9746 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9749 seq_printf(m, "Cursor [%d]:\n", i);
9750 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9751 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9752 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);