2 * Copyright (C) 2012 Red Hat. All rights reserved.
4 * This file is released under the GPL.
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
22 #define DM_MSG_PREFIX "cache"
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
27 /*----------------------------------------------------------------*/
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
40 /*----------------------------------------------------------------*/
46 * Sectors of in-flight IO.
51 * The time, in jiffies, when this device became idle (if it is
54 unsigned long idle_time;
55 unsigned long last_update_time;
58 static void iot_init(struct io_tracker *iot)
60 spin_lock_init(&iot->lock);
63 iot->last_update_time = jiffies;
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
71 return time_after(jiffies, iot->idle_time + jifs);
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
100 iot->in_flight -= len;
102 iot->idle_time = jiffies;
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
114 /*----------------------------------------------------------------*/
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
120 struct continuation {
121 struct work_struct ws;
125 static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
128 INIT_WORK(&k->ws, fn);
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
135 queue_work(wq, &k->ws);
138 /*----------------------------------------------------------------*/
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
146 * The operation that everyone is waiting for.
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
155 void (*issue_op)(struct bio *bio, void *context);
159 * Queued work gets put on here after commit.
161 struct workqueue_struct *wq;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
168 bool commit_scheduled;
171 static void __commit(struct work_struct *_ws)
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
180 struct bio_list bios;
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
186 * We have to grab these before the commit_op to avoid a race
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
196 r = b->commit_op(b->commit_context);
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
205 while ((bio = bio_list_pop(&bios))) {
210 b->issue_op(bio, b->issue_context);
214 static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
219 struct workqueue_struct *wq)
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
234 static void async_commit(struct batcher *b)
236 queue_work(b->wq, &b->commit_work);
239 static void continue_after_commit(struct batcher *b, struct continuation *k)
242 bool commit_scheduled;
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
249 if (commit_scheduled)
254 * Bios are errored if commit failed.
256 static void issue_after_commit(struct batcher *b, struct bio *bio)
259 bool commit_scheduled;
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
266 if (commit_scheduled)
271 * Call this if some urgent work is waiting for the commit to complete.
273 static void schedule_commit(struct batcher *b)
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
292 struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
299 h->bi_end_io = bio->bi_end_io;
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
307 bio->bi_end_io = h->bi_end_io;
310 /*----------------------------------------------------------------*/
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323 enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
352 struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
373 struct dm_target *ti;
377 * Fields for converting from sectors to blocks.
379 int sectors_per_block_shift;
380 sector_t sectors_per_block;
382 struct dm_cache_metadata *cmd;
385 * Metadata is written to this device.
387 struct dm_dev *metadata_dev;
390 * The slower of the two data devices. Typically a spindle.
392 struct dm_dev *origin_dev;
395 * The faster of the two data devices. Typically an SSD.
397 struct dm_dev *cache_dev;
400 * Size of the origin device in _complete_ blocks and native sectors.
402 dm_oblock_t origin_blocks;
403 sector_t origin_sectors;
406 * Size of the cache device in blocks.
408 dm_cblock_t cache_size;
411 * Invalidation fields.
413 spinlock_t invalidation_lock;
414 struct list_head invalidation_requests;
416 sector_t migration_threshold;
417 wait_queue_head_t migration_wait;
418 atomic_t nr_allocated_migrations;
421 * The number of in flight migrations that are performing
422 * background io. eg, promotion, writeback.
424 atomic_t nr_io_migrations;
426 struct bio_list deferred_bios;
428 struct rw_semaphore quiesce_lock;
430 struct dm_target_callbacks callbacks;
433 * origin_blocks entries, discarded if set.
435 dm_dblock_t discard_nr_blocks;
436 unsigned long *discard_bitset;
437 uint32_t discard_block_size; /* a power of 2 times sectors per block */
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
443 unsigned nr_ctr_args;
444 const char **ctr_args;
446 struct dm_kcopyd_client *copier;
447 struct work_struct deferred_bio_worker;
448 struct work_struct migration_worker;
449 struct workqueue_struct *wq;
450 struct delayed_work waker;
451 struct dm_bio_prison_v2 *prison;
454 * cache_size entries, dirty if set
456 unsigned long *dirty_bitset;
459 unsigned policy_nr_args;
460 struct dm_cache_policy *policy;
463 * Cache features such as write-through.
465 struct cache_features features;
467 struct cache_stats stats;
469 bool need_tick_bio:1;
472 bool commit_requested:1;
473 bool loaded_mappings:1;
474 bool loaded_discards:1;
476 struct rw_semaphore background_work_lock;
478 struct batcher committer;
479 struct work_struct commit_ws;
481 struct io_tracker tracker;
483 mempool_t migration_pool;
488 struct per_bio_data {
491 struct dm_bio_prison_cell_v2 *cell;
492 struct dm_hook_info hook_info;
496 struct dm_cache_migration {
497 struct continuation k;
500 struct policy_work *op;
501 struct bio *overwrite_bio;
502 struct dm_bio_prison_cell_v2 *cell;
504 dm_cblock_t invalidate_cblock;
505 dm_oblock_t invalidate_oblock;
508 /*----------------------------------------------------------------*/
510 static bool writethrough_mode(struct cache *cache)
512 return cache->features.io_mode == CM_IO_WRITETHROUGH;
515 static bool writeback_mode(struct cache *cache)
517 return cache->features.io_mode == CM_IO_WRITEBACK;
520 static inline bool passthrough_mode(struct cache *cache)
522 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
525 /*----------------------------------------------------------------*/
527 static void wake_deferred_bio_worker(struct cache *cache)
529 queue_work(cache->wq, &cache->deferred_bio_worker);
532 static void wake_migration_worker(struct cache *cache)
534 if (passthrough_mode(cache))
537 queue_work(cache->wq, &cache->migration_worker);
540 /*----------------------------------------------------------------*/
542 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
544 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
547 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
549 dm_bio_prison_free_cell_v2(cache->prison, cell);
552 static struct dm_cache_migration *alloc_migration(struct cache *cache)
554 struct dm_cache_migration *mg;
556 mg = mempool_alloc(&cache->migration_pool, GFP_NOWAIT);
560 memset(mg, 0, sizeof(*mg));
563 atomic_inc(&cache->nr_allocated_migrations);
568 static void free_migration(struct dm_cache_migration *mg)
570 struct cache *cache = mg->cache;
572 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
573 wake_up(&cache->migration_wait);
575 mempool_free(mg, &cache->migration_pool);
578 /*----------------------------------------------------------------*/
580 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
582 return to_oblock(from_oblock(b) + 1ull);
585 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
589 key->block_begin = from_oblock(begin);
590 key->block_end = from_oblock(end);
594 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
595 * level 1 which prevents *both* READs and WRITEs.
597 #define WRITE_LOCK_LEVEL 0
598 #define READ_WRITE_LOCK_LEVEL 1
600 static unsigned lock_level(struct bio *bio)
602 return bio_data_dir(bio) == WRITE ?
604 READ_WRITE_LOCK_LEVEL;
607 /*----------------------------------------------------------------
609 *--------------------------------------------------------------*/
611 static struct per_bio_data *get_per_bio_data(struct bio *bio)
613 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
618 static struct per_bio_data *init_per_bio_data(struct bio *bio)
620 struct per_bio_data *pb = get_per_bio_data(bio);
623 pb->req_nr = dm_bio_get_target_bio_nr(bio);
630 /*----------------------------------------------------------------*/
632 static void defer_bio(struct cache *cache, struct bio *bio)
636 spin_lock_irqsave(&cache->lock, flags);
637 bio_list_add(&cache->deferred_bios, bio);
638 spin_unlock_irqrestore(&cache->lock, flags);
640 wake_deferred_bio_worker(cache);
643 static void defer_bios(struct cache *cache, struct bio_list *bios)
647 spin_lock_irqsave(&cache->lock, flags);
648 bio_list_merge(&cache->deferred_bios, bios);
650 spin_unlock_irqrestore(&cache->lock, flags);
652 wake_deferred_bio_worker(cache);
655 /*----------------------------------------------------------------*/
657 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
660 struct per_bio_data *pb;
661 struct dm_cell_key_v2 key;
662 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
663 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
665 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
666 if (!cell_prealloc) {
667 defer_bio(cache, bio);
671 build_key(oblock, end, &key);
672 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
675 * Failed to get the lock.
677 free_prison_cell(cache, cell_prealloc);
681 if (cell != cell_prealloc)
682 free_prison_cell(cache, cell_prealloc);
684 pb = get_per_bio_data(bio);
690 /*----------------------------------------------------------------*/
692 static bool is_dirty(struct cache *cache, dm_cblock_t b)
694 return test_bit(from_cblock(b), cache->dirty_bitset);
697 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
699 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
700 atomic_inc(&cache->nr_dirty);
701 policy_set_dirty(cache->policy, cblock);
706 * These two are called when setting after migrations to force the policy
707 * and dirty bitset to be in sync.
709 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
711 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
712 atomic_inc(&cache->nr_dirty);
713 policy_set_dirty(cache->policy, cblock);
716 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
718 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
719 if (atomic_dec_return(&cache->nr_dirty) == 0)
720 dm_table_event(cache->ti->table);
723 policy_clear_dirty(cache->policy, cblock);
726 /*----------------------------------------------------------------*/
728 static bool block_size_is_power_of_two(struct cache *cache)
730 return cache->sectors_per_block_shift >= 0;
733 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
734 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
737 static dm_block_t block_div(dm_block_t b, uint32_t n)
744 static dm_block_t oblocks_per_dblock(struct cache *cache)
746 dm_block_t oblocks = cache->discard_block_size;
748 if (block_size_is_power_of_two(cache))
749 oblocks >>= cache->sectors_per_block_shift;
751 oblocks = block_div(oblocks, cache->sectors_per_block);
756 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
758 return to_dblock(block_div(from_oblock(oblock),
759 oblocks_per_dblock(cache)));
762 static void set_discard(struct cache *cache, dm_dblock_t b)
766 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
767 atomic_inc(&cache->stats.discard_count);
769 spin_lock_irqsave(&cache->lock, flags);
770 set_bit(from_dblock(b), cache->discard_bitset);
771 spin_unlock_irqrestore(&cache->lock, flags);
774 static void clear_discard(struct cache *cache, dm_dblock_t b)
778 spin_lock_irqsave(&cache->lock, flags);
779 clear_bit(from_dblock(b), cache->discard_bitset);
780 spin_unlock_irqrestore(&cache->lock, flags);
783 static bool is_discarded(struct cache *cache, dm_dblock_t b)
788 spin_lock_irqsave(&cache->lock, flags);
789 r = test_bit(from_dblock(b), cache->discard_bitset);
790 spin_unlock_irqrestore(&cache->lock, flags);
795 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
800 spin_lock_irqsave(&cache->lock, flags);
801 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
802 cache->discard_bitset);
803 spin_unlock_irqrestore(&cache->lock, flags);
808 /*----------------------------------------------------------------
810 *--------------------------------------------------------------*/
811 static void remap_to_origin(struct cache *cache, struct bio *bio)
813 bio_set_dev(bio, cache->origin_dev->bdev);
816 static void remap_to_cache(struct cache *cache, struct bio *bio,
819 sector_t bi_sector = bio->bi_iter.bi_sector;
820 sector_t block = from_cblock(cblock);
822 bio_set_dev(bio, cache->cache_dev->bdev);
823 if (!block_size_is_power_of_two(cache))
824 bio->bi_iter.bi_sector =
825 (block * cache->sectors_per_block) +
826 sector_div(bi_sector, cache->sectors_per_block);
828 bio->bi_iter.bi_sector =
829 (block << cache->sectors_per_block_shift) |
830 (bi_sector & (cache->sectors_per_block - 1));
833 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
836 struct per_bio_data *pb;
838 spin_lock_irqsave(&cache->lock, flags);
839 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
840 bio_op(bio) != REQ_OP_DISCARD) {
841 pb = get_per_bio_data(bio);
843 cache->need_tick_bio = false;
845 spin_unlock_irqrestore(&cache->lock, flags);
848 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
849 dm_oblock_t oblock, bool bio_has_pbd)
852 check_if_tick_bio_needed(cache, bio);
853 remap_to_origin(cache, bio);
854 if (bio_data_dir(bio) == WRITE)
855 clear_discard(cache, oblock_to_dblock(cache, oblock));
858 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
861 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
862 __remap_to_origin_clear_discard(cache, bio, oblock, true);
865 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
866 dm_oblock_t oblock, dm_cblock_t cblock)
868 check_if_tick_bio_needed(cache, bio);
869 remap_to_cache(cache, bio, cblock);
870 if (bio_data_dir(bio) == WRITE) {
871 set_dirty(cache, cblock);
872 clear_discard(cache, oblock_to_dblock(cache, oblock));
876 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
878 sector_t block_nr = bio->bi_iter.bi_sector;
880 if (!block_size_is_power_of_two(cache))
881 (void) sector_div(block_nr, cache->sectors_per_block);
883 block_nr >>= cache->sectors_per_block_shift;
885 return to_oblock(block_nr);
888 static bool accountable_bio(struct cache *cache, struct bio *bio)
890 return bio_op(bio) != REQ_OP_DISCARD;
893 static void accounted_begin(struct cache *cache, struct bio *bio)
895 struct per_bio_data *pb;
897 if (accountable_bio(cache, bio)) {
898 pb = get_per_bio_data(bio);
899 pb->len = bio_sectors(bio);
900 iot_io_begin(&cache->tracker, pb->len);
904 static void accounted_complete(struct cache *cache, struct bio *bio)
906 struct per_bio_data *pb = get_per_bio_data(bio);
908 iot_io_end(&cache->tracker, pb->len);
911 static void accounted_request(struct cache *cache, struct bio *bio)
913 accounted_begin(cache, bio);
914 generic_make_request(bio);
917 static void issue_op(struct bio *bio, void *context)
919 struct cache *cache = context;
920 accounted_request(cache, bio);
924 * When running in writethrough mode we need to send writes to clean blocks
925 * to both the cache and origin devices. Clone the bio and send them in parallel.
927 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
928 dm_oblock_t oblock, dm_cblock_t cblock)
930 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
934 bio_chain(origin_bio, bio);
936 * Passing false to __remap_to_origin_clear_discard() skips
937 * all code that might use per_bio_data (since clone doesn't have it)
939 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
940 submit_bio(origin_bio);
942 remap_to_cache(cache, bio, cblock);
945 /*----------------------------------------------------------------
947 *--------------------------------------------------------------*/
948 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
950 return cache->features.mode;
953 static const char *cache_device_name(struct cache *cache)
955 return dm_device_name(dm_table_get_md(cache->ti->table));
958 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
960 const char *descs[] = {
966 dm_table_event(cache->ti->table);
967 DMINFO("%s: switching cache to %s mode",
968 cache_device_name(cache), descs[(int)mode]);
971 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
974 enum cache_metadata_mode old_mode = get_cache_mode(cache);
976 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
977 DMERR("%s: unable to read needs_check flag, setting failure mode.",
978 cache_device_name(cache));
982 if (new_mode == CM_WRITE && needs_check) {
983 DMERR("%s: unable to switch cache to write mode until repaired.",
984 cache_device_name(cache));
985 if (old_mode != new_mode)
988 new_mode = CM_READ_ONLY;
991 /* Never move out of fail mode */
992 if (old_mode == CM_FAIL)
998 dm_cache_metadata_set_read_only(cache->cmd);
1002 dm_cache_metadata_set_read_write(cache->cmd);
1006 cache->features.mode = new_mode;
1008 if (new_mode != old_mode)
1009 notify_mode_switch(cache, new_mode);
1012 static void abort_transaction(struct cache *cache)
1014 const char *dev_name = cache_device_name(cache);
1016 if (get_cache_mode(cache) >= CM_READ_ONLY)
1019 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1020 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1021 set_cache_mode(cache, CM_FAIL);
1024 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1025 if (dm_cache_metadata_abort(cache->cmd)) {
1026 DMERR("%s: failed to abort metadata transaction", dev_name);
1027 set_cache_mode(cache, CM_FAIL);
1031 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1033 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1034 cache_device_name(cache), op, r);
1035 abort_transaction(cache);
1036 set_cache_mode(cache, CM_READ_ONLY);
1039 /*----------------------------------------------------------------*/
1041 static void load_stats(struct cache *cache)
1043 struct dm_cache_statistics stats;
1045 dm_cache_metadata_get_stats(cache->cmd, &stats);
1046 atomic_set(&cache->stats.read_hit, stats.read_hits);
1047 atomic_set(&cache->stats.read_miss, stats.read_misses);
1048 atomic_set(&cache->stats.write_hit, stats.write_hits);
1049 atomic_set(&cache->stats.write_miss, stats.write_misses);
1052 static void save_stats(struct cache *cache)
1054 struct dm_cache_statistics stats;
1056 if (get_cache_mode(cache) >= CM_READ_ONLY)
1059 stats.read_hits = atomic_read(&cache->stats.read_hit);
1060 stats.read_misses = atomic_read(&cache->stats.read_miss);
1061 stats.write_hits = atomic_read(&cache->stats.write_hit);
1062 stats.write_misses = atomic_read(&cache->stats.write_miss);
1064 dm_cache_metadata_set_stats(cache->cmd, &stats);
1067 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1070 case POLICY_PROMOTE:
1071 atomic_inc(&stats->promotion);
1075 atomic_inc(&stats->demotion);
1078 case POLICY_WRITEBACK:
1079 atomic_inc(&stats->writeback);
1084 /*----------------------------------------------------------------
1085 * Migration processing
1087 * Migration covers moving data from the origin device to the cache, or
1089 *--------------------------------------------------------------*/
1091 static void inc_io_migrations(struct cache *cache)
1093 atomic_inc(&cache->nr_io_migrations);
1096 static void dec_io_migrations(struct cache *cache)
1098 atomic_dec(&cache->nr_io_migrations);
1101 static bool discard_or_flush(struct bio *bio)
1103 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1106 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1107 dm_dblock_t *b, dm_dblock_t *e)
1109 sector_t sb = bio->bi_iter.bi_sector;
1110 sector_t se = bio_end_sector(bio);
1112 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1114 if (se - sb < cache->discard_block_size)
1117 *e = to_dblock(block_div(se, cache->discard_block_size));
1120 /*----------------------------------------------------------------*/
1122 static void prevent_background_work(struct cache *cache)
1125 down_write(&cache->background_work_lock);
1129 static void allow_background_work(struct cache *cache)
1132 up_write(&cache->background_work_lock);
1136 static bool background_work_begin(struct cache *cache)
1141 r = down_read_trylock(&cache->background_work_lock);
1147 static void background_work_end(struct cache *cache)
1150 up_read(&cache->background_work_lock);
1154 /*----------------------------------------------------------------*/
1156 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1158 return (bio_data_dir(bio) == WRITE) &&
1159 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1162 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1164 return writeback_mode(cache) &&
1165 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1168 static void quiesce(struct dm_cache_migration *mg,
1169 void (*continuation)(struct work_struct *))
1171 init_continuation(&mg->k, continuation);
1172 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1175 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1177 struct continuation *k = container_of(ws, struct continuation, ws);
1178 return container_of(k, struct dm_cache_migration, k);
1181 static void copy_complete(int read_err, unsigned long write_err, void *context)
1183 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1185 if (read_err || write_err)
1186 mg->k.input = BLK_STS_IOERR;
1188 queue_continuation(mg->cache->wq, &mg->k);
1191 static void copy(struct dm_cache_migration *mg, bool promote)
1193 struct dm_io_region o_region, c_region;
1194 struct cache *cache = mg->cache;
1196 o_region.bdev = cache->origin_dev->bdev;
1197 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1198 o_region.count = cache->sectors_per_block;
1200 c_region.bdev = cache->cache_dev->bdev;
1201 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1202 c_region.count = cache->sectors_per_block;
1205 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1207 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1210 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1212 struct per_bio_data *pb = get_per_bio_data(bio);
1214 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215 free_prison_cell(cache, pb->cell);
1219 static void overwrite_endio(struct bio *bio)
1221 struct dm_cache_migration *mg = bio->bi_private;
1222 struct cache *cache = mg->cache;
1223 struct per_bio_data *pb = get_per_bio_data(bio);
1225 dm_unhook_bio(&pb->hook_info, bio);
1228 mg->k.input = bio->bi_status;
1230 queue_continuation(cache->wq, &mg->k);
1233 static void overwrite(struct dm_cache_migration *mg,
1234 void (*continuation)(struct work_struct *))
1236 struct bio *bio = mg->overwrite_bio;
1237 struct per_bio_data *pb = get_per_bio_data(bio);
1239 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
1245 if (mg->op->op == POLICY_PROMOTE)
1246 remap_to_cache(mg->cache, bio, mg->op->cblock);
1248 remap_to_origin(mg->cache, bio);
1250 init_continuation(&mg->k, continuation);
1251 accounted_request(mg->cache, bio);
1257 * 1) exclusive lock preventing WRITEs
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1262 * 6) update metadata and commit
1265 static void mg_complete(struct dm_cache_migration *mg, bool success)
1267 struct bio_list bios;
1268 struct cache *cache = mg->cache;
1269 struct policy_work *op = mg->op;
1270 dm_cblock_t cblock = op->cblock;
1273 update_stats(&cache->stats, op->op);
1276 case POLICY_PROMOTE:
1277 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278 policy_complete_background_work(cache->policy, op, success);
1280 if (mg->overwrite_bio) {
1282 force_set_dirty(cache, cblock);
1283 else if (mg->k.input)
1284 mg->overwrite_bio->bi_status = mg->k.input;
1286 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287 bio_endio(mg->overwrite_bio);
1290 force_clear_dirty(cache, cblock);
1291 dec_io_migrations(cache);
1297 * We clear dirty here to update the nr_dirty counter.
1300 force_clear_dirty(cache, cblock);
1301 policy_complete_background_work(cache->policy, op, success);
1302 dec_io_migrations(cache);
1305 case POLICY_WRITEBACK:
1307 force_clear_dirty(cache, cblock);
1308 policy_complete_background_work(cache->policy, op, success);
1309 dec_io_migrations(cache);
1313 bio_list_init(&bios);
1315 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316 free_prison_cell(cache, mg->cell);
1320 defer_bios(cache, &bios);
1321 wake_migration_worker(cache);
1323 background_work_end(cache);
1326 static void mg_success(struct work_struct *ws)
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 mg_complete(mg, mg->k.input == 0);
1332 static void mg_update_metadata(struct work_struct *ws)
1335 struct dm_cache_migration *mg = ws_to_mg(ws);
1336 struct cache *cache = mg->cache;
1337 struct policy_work *op = mg->op;
1340 case POLICY_PROMOTE:
1341 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache));
1345 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1347 mg_complete(mg, false);
1350 mg_complete(mg, true);
1354 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache));
1358 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1360 mg_complete(mg, false);
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1369 * - vblock x in a cache block
1371 * - cache block gets reallocated and over written
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1383 init_continuation(&mg->k, mg_success);
1384 continue_after_commit(&cache->committer, &mg->k);
1385 schedule_commit(&cache->committer);
1388 case POLICY_WRITEBACK:
1389 mg_complete(mg, true);
1394 static void mg_update_metadata_after_copy(struct work_struct *ws)
1396 struct dm_cache_migration *mg = ws_to_mg(ws);
1399 * Did the copy succeed?
1402 mg_complete(mg, false);
1404 mg_update_metadata(ws);
1407 static void mg_upgrade_lock(struct work_struct *ws)
1410 struct dm_cache_migration *mg = ws_to_mg(ws);
1413 * Did the copy succeed?
1416 mg_complete(mg, false);
1420 * Now we want the lock to prevent both reads and writes.
1422 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423 READ_WRITE_LOCK_LEVEL);
1425 mg_complete(mg, false);
1428 quiesce(mg, mg_update_metadata);
1431 mg_update_metadata(ws);
1435 static void mg_full_copy(struct work_struct *ws)
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438 struct cache *cache = mg->cache;
1439 struct policy_work *op = mg->op;
1440 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1442 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443 is_discarded_oblock(cache, op->oblock)) {
1444 mg_upgrade_lock(ws);
1448 init_continuation(&mg->k, mg_upgrade_lock);
1449 copy(mg, is_policy_promote);
1452 static void mg_copy(struct work_struct *ws)
1454 struct dm_cache_migration *mg = ws_to_mg(ws);
1456 if (mg->overwrite_bio) {
1458 * No exclusive lock was held when we last checked if the bio
1459 * was optimisable. So we have to check again in case things
1460 * have changed (eg, the block may no longer be discarded).
1462 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1464 * Fallback to a real full copy after doing some tidying up.
1466 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1467 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1468 mg->overwrite_bio = NULL;
1469 inc_io_migrations(mg->cache);
1475 * It's safe to do this here, even though it's new data
1476 * because all IO has been locked out of the block.
1478 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1479 * so _not_ using mg_upgrade_lock() as continutation.
1481 overwrite(mg, mg_update_metadata_after_copy);
1487 static int mg_lock_writes(struct dm_cache_migration *mg)
1490 struct dm_cell_key_v2 key;
1491 struct cache *cache = mg->cache;
1492 struct dm_bio_prison_cell_v2 *prealloc;
1494 prealloc = alloc_prison_cell(cache);
1496 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1497 mg_complete(mg, false);
1502 * Prevent writes to the block, but allow reads to continue.
1503 * Unless we're using an overwrite bio, in which case we lock
1506 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1507 r = dm_cell_lock_v2(cache->prison, &key,
1508 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1509 prealloc, &mg->cell);
1511 free_prison_cell(cache, prealloc);
1512 mg_complete(mg, false);
1516 if (mg->cell != prealloc)
1517 free_prison_cell(cache, prealloc);
1522 quiesce(mg, mg_copy);
1527 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1529 struct dm_cache_migration *mg;
1531 if (!background_work_begin(cache)) {
1532 policy_complete_background_work(cache->policy, op, false);
1536 mg = alloc_migration(cache);
1538 policy_complete_background_work(cache->policy, op, false);
1539 background_work_end(cache);
1544 mg->overwrite_bio = bio;
1547 inc_io_migrations(cache);
1549 return mg_lock_writes(mg);
1552 /*----------------------------------------------------------------
1553 * invalidation processing
1554 *--------------------------------------------------------------*/
1556 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1558 struct bio_list bios;
1559 struct cache *cache = mg->cache;
1561 bio_list_init(&bios);
1562 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1563 free_prison_cell(cache, mg->cell);
1565 if (!success && mg->overwrite_bio)
1566 bio_io_error(mg->overwrite_bio);
1569 defer_bios(cache, &bios);
1571 background_work_end(cache);
1574 static void invalidate_completed(struct work_struct *ws)
1576 struct dm_cache_migration *mg = ws_to_mg(ws);
1577 invalidate_complete(mg, !mg->k.input);
1580 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1582 int r = policy_invalidate_mapping(cache->policy, cblock);
1584 r = dm_cache_remove_mapping(cache->cmd, cblock);
1586 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1587 cache_device_name(cache));
1588 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1591 } else if (r == -ENODATA) {
1593 * Harmless, already unmapped.
1598 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1603 static void invalidate_remove(struct work_struct *ws)
1606 struct dm_cache_migration *mg = ws_to_mg(ws);
1607 struct cache *cache = mg->cache;
1609 r = invalidate_cblock(cache, mg->invalidate_cblock);
1611 invalidate_complete(mg, false);
1615 init_continuation(&mg->k, invalidate_completed);
1616 continue_after_commit(&cache->committer, &mg->k);
1617 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1618 mg->overwrite_bio = NULL;
1619 schedule_commit(&cache->committer);
1622 static int invalidate_lock(struct dm_cache_migration *mg)
1625 struct dm_cell_key_v2 key;
1626 struct cache *cache = mg->cache;
1627 struct dm_bio_prison_cell_v2 *prealloc;
1629 prealloc = alloc_prison_cell(cache);
1631 invalidate_complete(mg, false);
1635 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1636 r = dm_cell_lock_v2(cache->prison, &key,
1637 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1639 free_prison_cell(cache, prealloc);
1640 invalidate_complete(mg, false);
1644 if (mg->cell != prealloc)
1645 free_prison_cell(cache, prealloc);
1648 quiesce(mg, invalidate_remove);
1652 * We can't call invalidate_remove() directly here because we
1653 * might still be in request context.
1655 init_continuation(&mg->k, invalidate_remove);
1656 queue_work(cache->wq, &mg->k.ws);
1662 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1663 dm_oblock_t oblock, struct bio *bio)
1665 struct dm_cache_migration *mg;
1667 if (!background_work_begin(cache))
1670 mg = alloc_migration(cache);
1672 background_work_end(cache);
1676 mg->overwrite_bio = bio;
1677 mg->invalidate_cblock = cblock;
1678 mg->invalidate_oblock = oblock;
1680 return invalidate_lock(mg);
1683 /*----------------------------------------------------------------
1685 *--------------------------------------------------------------*/
1692 static enum busy spare_migration_bandwidth(struct cache *cache)
1694 bool idle = iot_idle_for(&cache->tracker, HZ);
1695 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1696 cache->sectors_per_block;
1698 if (idle && current_volume <= cache->migration_threshold)
1704 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1706 atomic_inc(bio_data_dir(bio) == READ ?
1707 &cache->stats.read_hit : &cache->stats.write_hit);
1710 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1712 atomic_inc(bio_data_dir(bio) == READ ?
1713 &cache->stats.read_miss : &cache->stats.write_miss);
1716 /*----------------------------------------------------------------*/
1718 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1719 bool *commit_needed)
1722 bool rb, background_queued;
1725 *commit_needed = false;
1727 rb = bio_detain_shared(cache, block, bio);
1730 * An exclusive lock is held for this block, so we have to
1731 * wait. We set the commit_needed flag so the current
1732 * transaction will be committed asap, allowing this lock
1735 *commit_needed = true;
1736 return DM_MAPIO_SUBMITTED;
1739 data_dir = bio_data_dir(bio);
1741 if (optimisable_bio(cache, bio, block)) {
1742 struct policy_work *op = NULL;
1744 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1745 if (unlikely(r && r != -ENOENT)) {
1746 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1747 cache_device_name(cache), r);
1749 return DM_MAPIO_SUBMITTED;
1752 if (r == -ENOENT && op) {
1753 bio_drop_shared_lock(cache, bio);
1754 BUG_ON(op->op != POLICY_PROMOTE);
1755 mg_start(cache, op, bio);
1756 return DM_MAPIO_SUBMITTED;
1759 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1760 if (unlikely(r && r != -ENOENT)) {
1761 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1762 cache_device_name(cache), r);
1764 return DM_MAPIO_SUBMITTED;
1767 if (background_queued)
1768 wake_migration_worker(cache);
1772 struct per_bio_data *pb = get_per_bio_data(bio);
1777 inc_miss_counter(cache, bio);
1778 if (pb->req_nr == 0) {
1779 accounted_begin(cache, bio);
1780 remap_to_origin_clear_discard(cache, bio, block);
1783 * This is a duplicate writethrough io that is no
1784 * longer needed because the block has been demoted.
1787 return DM_MAPIO_SUBMITTED;
1793 inc_hit_counter(cache, bio);
1796 * Passthrough always maps to the origin, invalidating any
1797 * cache blocks that are written to.
1799 if (passthrough_mode(cache)) {
1800 if (bio_data_dir(bio) == WRITE) {
1801 bio_drop_shared_lock(cache, bio);
1802 atomic_inc(&cache->stats.demotion);
1803 invalidate_start(cache, cblock, block, bio);
1805 remap_to_origin_clear_discard(cache, bio, block);
1807 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1808 !is_dirty(cache, cblock)) {
1809 remap_to_origin_and_cache(cache, bio, block, cblock);
1810 accounted_begin(cache, bio);
1812 remap_to_cache_dirty(cache, bio, block, cblock);
1817 * dm core turns FUA requests into a separate payload and FLUSH req.
1819 if (bio->bi_opf & REQ_FUA) {
1821 * issue_after_commit will call accounted_begin a second time. So
1822 * we call accounted_complete() to avoid double accounting.
1824 accounted_complete(cache, bio);
1825 issue_after_commit(&cache->committer, bio);
1826 *commit_needed = true;
1827 return DM_MAPIO_SUBMITTED;
1830 return DM_MAPIO_REMAPPED;
1833 static bool process_bio(struct cache *cache, struct bio *bio)
1837 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1838 generic_make_request(bio);
1840 return commit_needed;
1844 * A non-zero return indicates read_only or fail_io mode.
1846 static int commit(struct cache *cache, bool clean_shutdown)
1850 if (get_cache_mode(cache) >= CM_READ_ONLY)
1853 atomic_inc(&cache->stats.commit_count);
1854 r = dm_cache_commit(cache->cmd, clean_shutdown);
1856 metadata_operation_failed(cache, "dm_cache_commit", r);
1862 * Used by the batcher.
1864 static blk_status_t commit_op(void *context)
1866 struct cache *cache = context;
1868 if (dm_cache_changed_this_transaction(cache->cmd))
1869 return errno_to_blk_status(commit(cache, false));
1874 /*----------------------------------------------------------------*/
1876 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1878 struct per_bio_data *pb = get_per_bio_data(bio);
1881 remap_to_origin(cache, bio);
1883 remap_to_cache(cache, bio, 0);
1885 issue_after_commit(&cache->committer, bio);
1889 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1893 // FIXME: do we need to lock the region? Or can we just assume the
1894 // user wont be so foolish as to issue discard concurrently with
1896 calc_discard_block_range(cache, bio, &b, &e);
1898 set_discard(cache, b);
1899 b = to_dblock(from_dblock(b) + 1);
1907 static void process_deferred_bios(struct work_struct *ws)
1909 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1911 unsigned long flags;
1912 bool commit_needed = false;
1913 struct bio_list bios;
1916 bio_list_init(&bios);
1918 spin_lock_irqsave(&cache->lock, flags);
1919 bio_list_merge(&bios, &cache->deferred_bios);
1920 bio_list_init(&cache->deferred_bios);
1921 spin_unlock_irqrestore(&cache->lock, flags);
1923 while ((bio = bio_list_pop(&bios))) {
1924 if (bio->bi_opf & REQ_PREFLUSH)
1925 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1927 else if (bio_op(bio) == REQ_OP_DISCARD)
1928 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1931 commit_needed = process_bio(cache, bio) || commit_needed;
1935 schedule_commit(&cache->committer);
1938 /*----------------------------------------------------------------
1940 *--------------------------------------------------------------*/
1942 static void requeue_deferred_bios(struct cache *cache)
1945 struct bio_list bios;
1947 bio_list_init(&bios);
1948 bio_list_merge(&bios, &cache->deferred_bios);
1949 bio_list_init(&cache->deferred_bios);
1951 while ((bio = bio_list_pop(&bios))) {
1952 bio->bi_status = BLK_STS_DM_REQUEUE;
1958 * We want to commit periodically so that not too much
1959 * unwritten metadata builds up.
1961 static void do_waker(struct work_struct *ws)
1963 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1965 policy_tick(cache->policy, true);
1966 wake_migration_worker(cache);
1967 schedule_commit(&cache->committer);
1968 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1971 static void check_migrations(struct work_struct *ws)
1974 struct policy_work *op;
1975 struct cache *cache = container_of(ws, struct cache, migration_worker);
1979 b = spare_migration_bandwidth(cache);
1981 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1986 DMERR_LIMIT("%s: policy_background_work failed",
1987 cache_device_name(cache));
1991 r = mg_start(cache, op, NULL);
1997 /*----------------------------------------------------------------
1999 *--------------------------------------------------------------*/
2002 * This function gets called on the error paths of the constructor, so we
2003 * have to cope with a partially initialised struct.
2005 static void destroy(struct cache *cache)
2009 mempool_exit(&cache->migration_pool);
2012 dm_bio_prison_destroy_v2(cache->prison);
2015 destroy_workqueue(cache->wq);
2017 if (cache->dirty_bitset)
2018 free_bitset(cache->dirty_bitset);
2020 if (cache->discard_bitset)
2021 free_bitset(cache->discard_bitset);
2024 dm_kcopyd_client_destroy(cache->copier);
2027 dm_cache_metadata_close(cache->cmd);
2029 if (cache->metadata_dev)
2030 dm_put_device(cache->ti, cache->metadata_dev);
2032 if (cache->origin_dev)
2033 dm_put_device(cache->ti, cache->origin_dev);
2035 if (cache->cache_dev)
2036 dm_put_device(cache->ti, cache->cache_dev);
2039 dm_cache_policy_destroy(cache->policy);
2041 for (i = 0; i < cache->nr_ctr_args ; i++)
2042 kfree(cache->ctr_args[i]);
2043 kfree(cache->ctr_args);
2045 bioset_exit(&cache->bs);
2050 static void cache_dtr(struct dm_target *ti)
2052 struct cache *cache = ti->private;
2057 static sector_t get_dev_size(struct dm_dev *dev)
2059 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2062 /*----------------------------------------------------------------*/
2065 * Construct a cache device mapping.
2067 * cache <metadata dev> <cache dev> <origin dev> <block size>
2068 * <#feature args> [<feature arg>]*
2069 * <policy> <#policy args> [<policy arg>]*
2071 * metadata dev : fast device holding the persistent metadata
2072 * cache dev : fast device holding cached data blocks
2073 * origin dev : slow device holding original data blocks
2074 * block size : cache unit size in sectors
2076 * #feature args : number of feature arguments passed
2077 * feature args : writethrough. (The default is writeback.)
2079 * policy : the replacement policy to use
2080 * #policy args : an even number of policy arguments corresponding
2081 * to key/value pairs passed to the policy
2082 * policy args : key/value pairs passed to the policy
2083 * E.g. 'sequential_threshold 1024'
2084 * See cache-policies.txt for details.
2086 * Optional feature arguments are:
2087 * writethrough : write through caching that prohibits cache block
2088 * content from being different from origin block content.
2089 * Without this argument, the default behaviour is to write
2090 * back cache block contents later for performance reasons,
2091 * so they may differ from the corresponding origin blocks.
2094 struct dm_target *ti;
2096 struct dm_dev *metadata_dev;
2098 struct dm_dev *cache_dev;
2099 sector_t cache_sectors;
2101 struct dm_dev *origin_dev;
2102 sector_t origin_sectors;
2104 uint32_t block_size;
2106 const char *policy_name;
2108 const char **policy_argv;
2110 struct cache_features features;
2113 static void destroy_cache_args(struct cache_args *ca)
2115 if (ca->metadata_dev)
2116 dm_put_device(ca->ti, ca->metadata_dev);
2119 dm_put_device(ca->ti, ca->cache_dev);
2122 dm_put_device(ca->ti, ca->origin_dev);
2127 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2130 *error = "Insufficient args";
2137 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2141 sector_t metadata_dev_size;
2142 char b[BDEVNAME_SIZE];
2144 if (!at_least_one_arg(as, error))
2147 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2150 *error = "Error opening metadata device";
2154 metadata_dev_size = get_dev_size(ca->metadata_dev);
2155 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2156 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2157 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2162 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2167 if (!at_least_one_arg(as, error))
2170 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2173 *error = "Error opening cache device";
2176 ca->cache_sectors = get_dev_size(ca->cache_dev);
2181 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2186 if (!at_least_one_arg(as, error))
2189 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2192 *error = "Error opening origin device";
2196 ca->origin_sectors = get_dev_size(ca->origin_dev);
2197 if (ca->ti->len > ca->origin_sectors) {
2198 *error = "Device size larger than cached device";
2205 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2208 unsigned long block_size;
2210 if (!at_least_one_arg(as, error))
2213 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2214 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2215 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2216 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2217 *error = "Invalid data block size";
2221 if (block_size > ca->cache_sectors) {
2222 *error = "Data block size is larger than the cache device";
2226 ca->block_size = block_size;
2231 static void init_features(struct cache_features *cf)
2233 cf->mode = CM_WRITE;
2234 cf->io_mode = CM_IO_WRITEBACK;
2235 cf->metadata_version = 1;
2238 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2241 static const struct dm_arg _args[] = {
2242 {0, 2, "Invalid number of cache feature arguments"},
2245 int r, mode_ctr = 0;
2248 struct cache_features *cf = &ca->features;
2252 r = dm_read_arg_group(_args, as, &argc, error);
2257 arg = dm_shift_arg(as);
2259 if (!strcasecmp(arg, "writeback")) {
2260 cf->io_mode = CM_IO_WRITEBACK;
2264 else if (!strcasecmp(arg, "writethrough")) {
2265 cf->io_mode = CM_IO_WRITETHROUGH;
2269 else if (!strcasecmp(arg, "passthrough")) {
2270 cf->io_mode = CM_IO_PASSTHROUGH;
2274 else if (!strcasecmp(arg, "metadata2"))
2275 cf->metadata_version = 2;
2278 *error = "Unrecognised cache feature requested";
2284 *error = "Duplicate cache io_mode features requested";
2291 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2294 static const struct dm_arg _args[] = {
2295 {0, 1024, "Invalid number of policy arguments"},
2300 if (!at_least_one_arg(as, error))
2303 ca->policy_name = dm_shift_arg(as);
2305 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2309 ca->policy_argv = (const char **)as->argv;
2310 dm_consume_args(as, ca->policy_argc);
2315 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2319 struct dm_arg_set as;
2324 r = parse_metadata_dev(ca, &as, error);
2328 r = parse_cache_dev(ca, &as, error);
2332 r = parse_origin_dev(ca, &as, error);
2336 r = parse_block_size(ca, &as, error);
2340 r = parse_features(ca, &as, error);
2344 r = parse_policy(ca, &as, error);
2351 /*----------------------------------------------------------------*/
2353 static struct kmem_cache *migration_cache;
2355 #define NOT_CORE_OPTION 1
2357 static int process_config_option(struct cache *cache, const char *key, const char *value)
2361 if (!strcasecmp(key, "migration_threshold")) {
2362 if (kstrtoul(value, 10, &tmp))
2365 cache->migration_threshold = tmp;
2369 return NOT_CORE_OPTION;
2372 static int set_config_value(struct cache *cache, const char *key, const char *value)
2374 int r = process_config_option(cache, key, value);
2376 if (r == NOT_CORE_OPTION)
2377 r = policy_set_config_value(cache->policy, key, value);
2380 DMWARN("bad config value for %s: %s", key, value);
2385 static int set_config_values(struct cache *cache, int argc, const char **argv)
2390 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2395 r = set_config_value(cache, argv[0], argv[1]);
2406 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2409 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2411 cache->origin_sectors,
2412 cache->sectors_per_block);
2414 *error = "Error creating cache's policy";
2418 BUG_ON(!cache->policy);
2424 * We want the discard block size to be at least the size of the cache
2425 * block size and have no more than 2^14 discard blocks across the origin.
2427 #define MAX_DISCARD_BLOCKS (1 << 14)
2429 static bool too_many_discard_blocks(sector_t discard_block_size,
2430 sector_t origin_size)
2432 (void) sector_div(origin_size, discard_block_size);
2434 return origin_size > MAX_DISCARD_BLOCKS;
2437 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2438 sector_t origin_size)
2440 sector_t discard_block_size = cache_block_size;
2443 while (too_many_discard_blocks(discard_block_size, origin_size))
2444 discard_block_size *= 2;
2446 return discard_block_size;
2449 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2451 dm_block_t nr_blocks = from_cblock(size);
2453 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2454 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2455 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2456 "Please consider increasing the cache block size to reduce the overall cache block count.",
2457 (unsigned long long) nr_blocks);
2459 cache->cache_size = size;
2462 static int is_congested(struct dm_dev *dev, int bdi_bits)
2464 struct request_queue *q = bdev_get_queue(dev->bdev);
2465 return bdi_congested(q->backing_dev_info, bdi_bits);
2468 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2470 struct cache *cache = container_of(cb, struct cache, callbacks);
2472 return is_congested(cache->origin_dev, bdi_bits) ||
2473 is_congested(cache->cache_dev, bdi_bits);
2476 #define DEFAULT_MIGRATION_THRESHOLD 2048
2478 static int cache_create(struct cache_args *ca, struct cache **result)
2481 char **error = &ca->ti->error;
2482 struct cache *cache;
2483 struct dm_target *ti = ca->ti;
2484 dm_block_t origin_blocks;
2485 struct dm_cache_metadata *cmd;
2486 bool may_format = ca->features.mode == CM_WRITE;
2488 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2493 ti->private = cache;
2494 ti->num_flush_bios = 2;
2495 ti->flush_supported = true;
2497 ti->num_discard_bios = 1;
2498 ti->discards_supported = true;
2499 ti->split_discard_bios = false;
2501 ti->per_io_data_size = sizeof(struct per_bio_data);
2503 cache->features = ca->features;
2504 if (writethrough_mode(cache)) {
2505 /* Create bioset for writethrough bios issued to origin */
2506 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2511 cache->callbacks.congested_fn = cache_is_congested;
2512 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2514 cache->metadata_dev = ca->metadata_dev;
2515 cache->origin_dev = ca->origin_dev;
2516 cache->cache_dev = ca->cache_dev;
2518 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2520 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2521 origin_blocks = block_div(origin_blocks, ca->block_size);
2522 cache->origin_blocks = to_oblock(origin_blocks);
2524 cache->sectors_per_block = ca->block_size;
2525 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2530 if (ca->block_size & (ca->block_size - 1)) {
2531 dm_block_t cache_size = ca->cache_sectors;
2533 cache->sectors_per_block_shift = -1;
2534 cache_size = block_div(cache_size, ca->block_size);
2535 set_cache_size(cache, to_cblock(cache_size));
2537 cache->sectors_per_block_shift = __ffs(ca->block_size);
2538 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2541 r = create_cache_policy(cache, ca, error);
2545 cache->policy_nr_args = ca->policy_argc;
2546 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2548 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2550 *error = "Error setting cache policy's config values";
2554 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2555 ca->block_size, may_format,
2556 dm_cache_policy_get_hint_size(cache->policy),
2557 ca->features.metadata_version);
2559 *error = "Error creating metadata object";
2564 set_cache_mode(cache, CM_WRITE);
2565 if (get_cache_mode(cache) != CM_WRITE) {
2566 *error = "Unable to get write access to metadata, please check/repair metadata.";
2571 if (passthrough_mode(cache)) {
2574 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2576 *error = "dm_cache_metadata_all_clean() failed";
2581 *error = "Cannot enter passthrough mode unless all blocks are clean";
2586 policy_allow_migrations(cache->policy, false);
2589 spin_lock_init(&cache->lock);
2590 bio_list_init(&cache->deferred_bios);
2591 atomic_set(&cache->nr_allocated_migrations, 0);
2592 atomic_set(&cache->nr_io_migrations, 0);
2593 init_waitqueue_head(&cache->migration_wait);
2596 atomic_set(&cache->nr_dirty, 0);
2597 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2598 if (!cache->dirty_bitset) {
2599 *error = "could not allocate dirty bitset";
2602 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2604 cache->discard_block_size =
2605 calculate_discard_block_size(cache->sectors_per_block,
2606 cache->origin_sectors);
2607 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2608 cache->discard_block_size));
2609 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2610 if (!cache->discard_bitset) {
2611 *error = "could not allocate discard bitset";
2614 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2616 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2617 if (IS_ERR(cache->copier)) {
2618 *error = "could not create kcopyd client";
2619 r = PTR_ERR(cache->copier);
2623 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2625 *error = "could not create workqueue for metadata object";
2628 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2629 INIT_WORK(&cache->migration_worker, check_migrations);
2630 INIT_DELAYED_WORK(&cache->waker, do_waker);
2632 cache->prison = dm_bio_prison_create_v2(cache->wq);
2633 if (!cache->prison) {
2634 *error = "could not create bio prison";
2638 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2641 *error = "Error creating cache's migration mempool";
2645 cache->need_tick_bio = true;
2646 cache->sized = false;
2647 cache->invalidate = false;
2648 cache->commit_requested = false;
2649 cache->loaded_mappings = false;
2650 cache->loaded_discards = false;
2654 atomic_set(&cache->stats.demotion, 0);
2655 atomic_set(&cache->stats.promotion, 0);
2656 atomic_set(&cache->stats.copies_avoided, 0);
2657 atomic_set(&cache->stats.cache_cell_clash, 0);
2658 atomic_set(&cache->stats.commit_count, 0);
2659 atomic_set(&cache->stats.discard_count, 0);
2661 spin_lock_init(&cache->invalidation_lock);
2662 INIT_LIST_HEAD(&cache->invalidation_requests);
2664 batcher_init(&cache->committer, commit_op, cache,
2665 issue_op, cache, cache->wq);
2666 iot_init(&cache->tracker);
2668 init_rwsem(&cache->background_work_lock);
2669 prevent_background_work(cache);
2678 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2683 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2686 for (i = 0; i < argc; i++) {
2687 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2696 cache->nr_ctr_args = argc;
2697 cache->ctr_args = copy;
2702 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2705 struct cache_args *ca;
2706 struct cache *cache = NULL;
2708 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2710 ti->error = "Error allocating memory for cache";
2715 r = parse_cache_args(ca, argc, argv, &ti->error);
2719 r = cache_create(ca, &cache);
2723 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2729 ti->private = cache;
2731 destroy_cache_args(ca);
2735 /*----------------------------------------------------------------*/
2737 static int cache_map(struct dm_target *ti, struct bio *bio)
2739 struct cache *cache = ti->private;
2743 dm_oblock_t block = get_bio_block(cache, bio);
2745 init_per_bio_data(bio);
2746 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2748 * This can only occur if the io goes to a partial block at
2749 * the end of the origin device. We don't cache these.
2750 * Just remap to the origin and carry on.
2752 remap_to_origin(cache, bio);
2753 accounted_begin(cache, bio);
2754 return DM_MAPIO_REMAPPED;
2757 if (discard_or_flush(bio)) {
2758 defer_bio(cache, bio);
2759 return DM_MAPIO_SUBMITTED;
2762 r = map_bio(cache, bio, block, &commit_needed);
2764 schedule_commit(&cache->committer);
2769 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2771 struct cache *cache = ti->private;
2772 unsigned long flags;
2773 struct per_bio_data *pb = get_per_bio_data(bio);
2776 policy_tick(cache->policy, false);
2778 spin_lock_irqsave(&cache->lock, flags);
2779 cache->need_tick_bio = true;
2780 spin_unlock_irqrestore(&cache->lock, flags);
2783 bio_drop_shared_lock(cache, bio);
2784 accounted_complete(cache, bio);
2786 return DM_ENDIO_DONE;
2789 static int write_dirty_bitset(struct cache *cache)
2793 if (get_cache_mode(cache) >= CM_READ_ONLY)
2796 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2798 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2803 static int write_discard_bitset(struct cache *cache)
2807 if (get_cache_mode(cache) >= CM_READ_ONLY)
2810 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2811 cache->discard_nr_blocks);
2813 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2814 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2818 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2819 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2820 is_discarded(cache, to_dblock(i)));
2822 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2830 static int write_hints(struct cache *cache)
2834 if (get_cache_mode(cache) >= CM_READ_ONLY)
2837 r = dm_cache_write_hints(cache->cmd, cache->policy);
2839 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2847 * returns true on success
2849 static bool sync_metadata(struct cache *cache)
2853 r1 = write_dirty_bitset(cache);
2855 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2857 r2 = write_discard_bitset(cache);
2859 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2863 r3 = write_hints(cache);
2865 DMERR("%s: could not write hints", cache_device_name(cache));
2868 * If writing the above metadata failed, we still commit, but don't
2869 * set the clean shutdown flag. This will effectively force every
2870 * dirty bit to be set on reload.
2872 r4 = commit(cache, !r1 && !r2 && !r3);
2874 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2876 return !r1 && !r2 && !r3 && !r4;
2879 static void cache_postsuspend(struct dm_target *ti)
2881 struct cache *cache = ti->private;
2883 prevent_background_work(cache);
2884 BUG_ON(atomic_read(&cache->nr_io_migrations));
2886 cancel_delayed_work(&cache->waker);
2887 flush_workqueue(cache->wq);
2888 WARN_ON(cache->tracker.in_flight);
2891 * If it's a flush suspend there won't be any deferred bios, so this
2894 requeue_deferred_bios(cache);
2896 if (get_cache_mode(cache) == CM_WRITE)
2897 (void) sync_metadata(cache);
2900 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2901 bool dirty, uint32_t hint, bool hint_valid)
2904 struct cache *cache = context;
2907 set_bit(from_cblock(cblock), cache->dirty_bitset);
2908 atomic_inc(&cache->nr_dirty);
2910 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2912 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2920 * The discard block size in the on disk metadata is not
2921 * neccessarily the same as we're currently using. So we have to
2922 * be careful to only set the discarded attribute if we know it
2923 * covers a complete block of the new size.
2925 struct discard_load_info {
2926 struct cache *cache;
2929 * These blocks are sized using the on disk dblock size, rather
2930 * than the current one.
2932 dm_block_t block_size;
2933 dm_block_t discard_begin, discard_end;
2936 static void discard_load_info_init(struct cache *cache,
2937 struct discard_load_info *li)
2940 li->discard_begin = li->discard_end = 0;
2943 static void set_discard_range(struct discard_load_info *li)
2947 if (li->discard_begin == li->discard_end)
2951 * Convert to sectors.
2953 b = li->discard_begin * li->block_size;
2954 e = li->discard_end * li->block_size;
2957 * Then convert back to the current dblock size.
2959 b = dm_sector_div_up(b, li->cache->discard_block_size);
2960 sector_div(e, li->cache->discard_block_size);
2963 * The origin may have shrunk, so we need to check we're still in
2966 if (e > from_dblock(li->cache->discard_nr_blocks))
2967 e = from_dblock(li->cache->discard_nr_blocks);
2970 set_discard(li->cache, to_dblock(b));
2973 static int load_discard(void *context, sector_t discard_block_size,
2974 dm_dblock_t dblock, bool discard)
2976 struct discard_load_info *li = context;
2978 li->block_size = discard_block_size;
2981 if (from_dblock(dblock) == li->discard_end)
2983 * We're already in a discard range, just extend it.
2985 li->discard_end = li->discard_end + 1ULL;
2989 * Emit the old range and start a new one.
2991 set_discard_range(li);
2992 li->discard_begin = from_dblock(dblock);
2993 li->discard_end = li->discard_begin + 1ULL;
2996 set_discard_range(li);
2997 li->discard_begin = li->discard_end = 0;
3003 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3005 sector_t size = get_dev_size(cache->cache_dev);
3006 (void) sector_div(size, cache->sectors_per_block);
3007 return to_cblock(size);
3010 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3012 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3016 * We can't drop a dirty block when shrinking the cache.
3018 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3019 new_size = to_cblock(from_cblock(new_size) + 1);
3020 if (is_dirty(cache, new_size)) {
3021 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3022 cache_device_name(cache),
3023 (unsigned long long) from_cblock(new_size));
3031 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3035 r = dm_cache_resize(cache->cmd, new_size);
3037 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3038 metadata_operation_failed(cache, "dm_cache_resize", r);
3042 set_cache_size(cache, new_size);
3047 static int cache_preresume(struct dm_target *ti)
3050 struct cache *cache = ti->private;
3051 dm_cblock_t csize = get_cache_dev_size(cache);
3054 * Check to see if the cache has resized.
3056 if (!cache->sized) {
3057 r = resize_cache_dev(cache, csize);
3061 cache->sized = true;
3063 } else if (csize != cache->cache_size) {
3064 if (!can_resize(cache, csize))
3067 r = resize_cache_dev(cache, csize);
3072 if (!cache->loaded_mappings) {
3073 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3074 load_mapping, cache);
3076 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3077 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3081 cache->loaded_mappings = true;
3084 if (!cache->loaded_discards) {
3085 struct discard_load_info li;
3088 * The discard bitset could have been resized, or the
3089 * discard block size changed. To be safe we start by
3090 * setting every dblock to not discarded.
3092 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3094 discard_load_info_init(cache, &li);
3095 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3097 DMERR("%s: could not load origin discards", cache_device_name(cache));
3098 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3101 set_discard_range(&li);
3103 cache->loaded_discards = true;
3109 static void cache_resume(struct dm_target *ti)
3111 struct cache *cache = ti->private;
3113 cache->need_tick_bio = true;
3114 allow_background_work(cache);
3115 do_waker(&cache->waker.work);
3121 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3122 * <cache block size> <#used cache blocks>/<#total cache blocks>
3123 * <#read hits> <#read misses> <#write hits> <#write misses>
3124 * <#demotions> <#promotions> <#dirty>
3125 * <#features> <features>*
3126 * <#core args> <core args>
3127 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3129 static void cache_status(struct dm_target *ti, status_type_t type,
3130 unsigned status_flags, char *result, unsigned maxlen)
3135 dm_block_t nr_free_blocks_metadata = 0;
3136 dm_block_t nr_blocks_metadata = 0;
3137 char buf[BDEVNAME_SIZE];
3138 struct cache *cache = ti->private;
3139 dm_cblock_t residency;
3143 case STATUSTYPE_INFO:
3144 if (get_cache_mode(cache) == CM_FAIL) {
3149 /* Commit to ensure statistics aren't out-of-date */
3150 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3151 (void) commit(cache, false);
3153 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3155 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3156 cache_device_name(cache), r);
3160 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3162 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3163 cache_device_name(cache), r);
3167 residency = policy_residency(cache->policy);
3169 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3170 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3171 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3172 (unsigned long long)nr_blocks_metadata,
3173 (unsigned long long)cache->sectors_per_block,
3174 (unsigned long long) from_cblock(residency),
3175 (unsigned long long) from_cblock(cache->cache_size),
3176 (unsigned) atomic_read(&cache->stats.read_hit),
3177 (unsigned) atomic_read(&cache->stats.read_miss),
3178 (unsigned) atomic_read(&cache->stats.write_hit),
3179 (unsigned) atomic_read(&cache->stats.write_miss),
3180 (unsigned) atomic_read(&cache->stats.demotion),
3181 (unsigned) atomic_read(&cache->stats.promotion),
3182 (unsigned long) atomic_read(&cache->nr_dirty));
3184 if (cache->features.metadata_version == 2)
3185 DMEMIT("2 metadata2 ");
3189 if (writethrough_mode(cache))
3190 DMEMIT("writethrough ");
3192 else if (passthrough_mode(cache))
3193 DMEMIT("passthrough ");
3195 else if (writeback_mode(cache))
3196 DMEMIT("writeback ");
3199 DMERR("%s: internal error: unknown io mode: %d",
3200 cache_device_name(cache), (int) cache->features.io_mode);
3204 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3206 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3208 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3210 DMERR("%s: policy_emit_config_values returned %d",
3211 cache_device_name(cache), r);
3214 if (get_cache_mode(cache) == CM_READ_ONLY)
3219 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3221 if (r || needs_check)
3222 DMEMIT("needs_check ");
3228 case STATUSTYPE_TABLE:
3229 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3231 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3233 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3236 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3237 DMEMIT(" %s", cache->ctr_args[i]);
3238 if (cache->nr_ctr_args)
3239 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3249 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3250 * the one-past-the-end value.
3252 struct cblock_range {
3258 * A cache block range can take two forms:
3260 * i) A single cblock, eg. '3456'
3261 * ii) A begin and end cblock with a dash between, eg. 123-234
3263 static int parse_cblock_range(struct cache *cache, const char *str,
3264 struct cblock_range *result)
3271 * Try and parse form (ii) first.
3273 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278 result->begin = to_cblock(b);
3279 result->end = to_cblock(e);
3284 * That didn't work, try form (i).
3286 r = sscanf(str, "%llu%c", &b, &dummy);
3291 result->begin = to_cblock(b);
3292 result->end = to_cblock(from_cblock(result->begin) + 1u);
3296 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3300 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3302 uint64_t b = from_cblock(range->begin);
3303 uint64_t e = from_cblock(range->end);
3304 uint64_t n = from_cblock(cache->cache_size);
3307 DMERR("%s: begin cblock out of range: %llu >= %llu",
3308 cache_device_name(cache), b, n);
3313 DMERR("%s: end cblock out of range: %llu > %llu",
3314 cache_device_name(cache), e, n);
3319 DMERR("%s: invalid cblock range: %llu >= %llu",
3320 cache_device_name(cache), b, e);
3327 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3329 return to_cblock(from_cblock(b) + 1);
3332 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337 * We don't need to do any locking here because we know we're in
3338 * passthrough mode. There's is potential for a race between an
3339 * invalidation triggered by an io and an invalidation message. This
3340 * is harmless, we must not worry if the policy call fails.
3342 while (range->begin != range->end) {
3343 r = invalidate_cblock(cache, range->begin);
3347 range->begin = cblock_succ(range->begin);
3350 cache->commit_requested = true;
3354 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3355 const char **cblock_ranges)
3359 struct cblock_range range;
3361 if (!passthrough_mode(cache)) {
3362 DMERR("%s: cache has to be in passthrough mode for invalidation",
3363 cache_device_name(cache));
3367 for (i = 0; i < count; i++) {
3368 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3372 r = validate_cblock_range(cache, &range);
3377 * Pass begin and end origin blocks to the worker and wake it.
3379 r = request_invalidation(cache, &range);
3391 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3393 * The key migration_threshold is supported by the cache target core.
3395 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3396 char *result, unsigned maxlen)
3398 struct cache *cache = ti->private;
3403 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3404 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3405 cache_device_name(cache));
3409 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3410 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415 return set_config_value(cache, argv[0], argv[1]);
3418 static int cache_iterate_devices(struct dm_target *ti,
3419 iterate_devices_callout_fn fn, void *data)
3422 struct cache *cache = ti->private;
3424 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3426 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3434 * FIXME: these limits may be incompatible with the cache device
3436 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3437 cache->origin_sectors);
3438 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3441 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3443 struct cache *cache = ti->private;
3444 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3447 * If the system-determined stacked limits are compatible with the
3448 * cache's blocksize (io_opt is a factor) do not override them.
3450 if (io_opt_sectors < cache->sectors_per_block ||
3451 do_div(io_opt_sectors, cache->sectors_per_block)) {
3452 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3453 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3455 set_discard_limits(cache, limits);
3458 /*----------------------------------------------------------------*/
3460 static struct target_type cache_target = {
3462 .version = {2, 0, 0},
3463 .module = THIS_MODULE,
3467 .end_io = cache_end_io,
3468 .postsuspend = cache_postsuspend,
3469 .preresume = cache_preresume,
3470 .resume = cache_resume,
3471 .status = cache_status,
3472 .message = cache_message,
3473 .iterate_devices = cache_iterate_devices,
3474 .io_hints = cache_io_hints,
3477 static int __init dm_cache_init(void)
3481 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3482 if (!migration_cache) {
3483 dm_unregister_target(&cache_target);
3487 r = dm_register_target(&cache_target);
3489 DMERR("cache target registration failed: %d", r);
3496 static void __exit dm_cache_exit(void)
3498 dm_unregister_target(&cache_target);
3499 kmem_cache_destroy(migration_cache);
3502 module_init(dm_cache_init);
3503 module_exit(dm_cache_exit);
3505 MODULE_DESCRIPTION(DM_NAME " cache target");
3507 MODULE_LICENSE("GPL");