1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
28 * A fs_path is a helper to dynamically build path names with unknown size.
29 * It reallocates the internal buffer on demand.
30 * It allows fast adding of path elements on the right side (normal path) and
31 * fast adding to the left side (reversed path). A reversed path can also be
32 * unreversed if needed.
41 unsigned short buf_len:15;
42 unsigned short reversed:1;
46 * Average path length does not exceed 200 bytes, we'll have
47 * better packing in the slab and higher chance to satisfy
48 * a allocation later during send.
53 #define FS_PATH_INLINE_SIZE \
54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
57 /* reused for each extent */
59 struct btrfs_root *root;
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
70 struct file *send_filp;
76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
79 struct btrfs_root *send_root;
80 struct btrfs_root *parent_root;
81 struct clone_root *clone_roots;
84 /* current state of the compare_tree call */
85 struct btrfs_path *left_path;
86 struct btrfs_path *right_path;
87 struct btrfs_key *cmp_key;
90 * infos of the currently processed inode. In case of deleted inodes,
91 * these are the values from the deleted inode.
96 int cur_inode_new_gen;
97 int cur_inode_deleted;
101 u64 cur_inode_last_extent;
102 u64 cur_inode_next_write_offset;
103 bool ignore_cur_inode;
107 struct list_head new_refs;
108 struct list_head deleted_refs;
110 struct radix_tree_root name_cache;
111 struct list_head name_cache_list;
114 struct file_ra_state ra;
119 * We process inodes by their increasing order, so if before an
120 * incremental send we reverse the parent/child relationship of
121 * directories such that a directory with a lower inode number was
122 * the parent of a directory with a higher inode number, and the one
123 * becoming the new parent got renamed too, we can't rename/move the
124 * directory with lower inode number when we finish processing it - we
125 * must process the directory with higher inode number first, then
126 * rename/move it and then rename/move the directory with lower inode
127 * number. Example follows.
129 * Tree state when the first send was performed:
141 * Tree state when the second (incremental) send is performed:
150 * The sequence of steps that lead to the second state was:
152 * mv /a/b/c/d /a/b/c2/d2
153 * mv /a/b/c /a/b/c2/d2/cc
155 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 * before we move "d", which has higher inode number.
158 * So we just memorize which move/rename operations must be performed
159 * later when their respective parent is processed and moved/renamed.
162 /* Indexed by parent directory inode number. */
163 struct rb_root pending_dir_moves;
166 * Reverse index, indexed by the inode number of a directory that
167 * is waiting for the move/rename of its immediate parent before its
168 * own move/rename can be performed.
170 struct rb_root waiting_dir_moves;
173 * A directory that is going to be rm'ed might have a child directory
174 * which is in the pending directory moves index above. In this case,
175 * the directory can only be removed after the move/rename of its child
176 * is performed. Example:
196 * Sequence of steps that lead to the send snapshot:
197 * rm -f /a/b/c/foo.txt
199 * mv /a/b/c/x /a/b/YY
202 * When the child is processed, its move/rename is delayed until its
203 * parent is processed (as explained above), but all other operations
204 * like update utimes, chown, chgrp, etc, are performed and the paths
205 * that it uses for those operations must use the orphanized name of
206 * its parent (the directory we're going to rm later), so we need to
207 * memorize that name.
209 * Indexed by the inode number of the directory to be deleted.
211 struct rb_root orphan_dirs;
214 struct pending_dir_move {
216 struct list_head list;
220 struct list_head update_refs;
223 struct waiting_dir_move {
227 * There might be some directory that could not be removed because it
228 * was waiting for this directory inode to be moved first. Therefore
229 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
235 struct orphan_dir_info {
239 u64 last_dir_index_offset;
242 struct name_cache_entry {
243 struct list_head list;
245 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 * more then one inum would fall into the same entry, we use radix_list
248 * to store the additional entries. radix_list is also used to store
249 * entries where two entries have the same inum but different
252 struct list_head radix_list;
258 int need_later_update;
264 static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 enum btrfs_compare_tree_result result,
268 const char *result_string;
271 case BTRFS_COMPARE_TREE_NEW:
272 result_string = "new";
274 case BTRFS_COMPARE_TREE_DELETED:
275 result_string = "deleted";
277 case BTRFS_COMPARE_TREE_CHANGED:
278 result_string = "updated";
280 case BTRFS_COMPARE_TREE_SAME:
282 result_string = "unchanged";
286 result_string = "unexpected";
289 btrfs_err(sctx->send_root->fs_info,
290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 result_string, what, sctx->cmp_key->objectid,
292 sctx->send_root->root_key.objectid,
294 sctx->parent_root->root_key.objectid : 0));
297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
299 static struct waiting_dir_move *
300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
304 static int need_send_hole(struct send_ctx *sctx)
306 return (sctx->parent_root && !sctx->cur_inode_new &&
307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 S_ISREG(sctx->cur_inode_mode));
311 static void fs_path_reset(struct fs_path *p)
314 p->start = p->buf + p->buf_len - 1;
324 static struct fs_path *fs_path_alloc(void)
328 p = kmalloc(sizeof(*p), GFP_KERNEL);
332 p->buf = p->inline_buf;
333 p->buf_len = FS_PATH_INLINE_SIZE;
338 static struct fs_path *fs_path_alloc_reversed(void)
350 static void fs_path_free(struct fs_path *p)
354 if (p->buf != p->inline_buf)
359 static int fs_path_len(struct fs_path *p)
361 return p->end - p->start;
364 static int fs_path_ensure_buf(struct fs_path *p, int len)
372 if (p->buf_len >= len)
375 if (len > PATH_MAX) {
380 path_len = p->end - p->start;
381 old_buf_len = p->buf_len;
384 * First time the inline_buf does not suffice
386 if (p->buf == p->inline_buf) {
387 tmp_buf = kmalloc(len, GFP_KERNEL);
389 memcpy(tmp_buf, p->buf, old_buf_len);
391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
397 * The real size of the buffer is bigger, this will let the fast path
398 * happen most of the time
400 p->buf_len = ksize(p->buf);
403 tmp_buf = p->buf + old_buf_len - path_len - 1;
404 p->end = p->buf + p->buf_len - 1;
405 p->start = p->end - path_len;
406 memmove(p->start, tmp_buf, path_len + 1);
409 p->end = p->start + path_len;
414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
420 new_len = p->end - p->start + name_len;
421 if (p->start != p->end)
423 ret = fs_path_ensure_buf(p, new_len);
428 if (p->start != p->end)
430 p->start -= name_len;
431 *prepared = p->start;
433 if (p->start != p->end)
444 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
449 ret = fs_path_prepare_for_add(p, name_len, &prepared);
452 memcpy(prepared, name, name_len);
458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
466 memcpy(prepared, p2->start, p2->end - p2->start);
472 static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 struct extent_buffer *eb,
474 unsigned long off, int len)
479 ret = fs_path_prepare_for_add(p, len, &prepared);
483 read_extent_buffer(eb, prepared, off, len);
489 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
493 p->reversed = from->reversed;
496 ret = fs_path_add_path(p, from);
502 static void fs_path_unreverse(struct fs_path *p)
511 len = p->end - p->start;
513 p->end = p->start + len;
514 memmove(p->start, tmp, len + 1);
518 static struct btrfs_path *alloc_path_for_send(void)
520 struct btrfs_path *path;
522 path = btrfs_alloc_path();
525 path->search_commit_root = 1;
526 path->skip_locking = 1;
527 path->need_commit_sem = 1;
531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
537 ret = kernel_write(filp, buf + pos, len - pos, off);
538 /* TODO handle that correctly */
539 /*if (ret == -ERESTARTSYS) {
553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
555 struct btrfs_tlv_header *hdr;
556 int total_len = sizeof(*hdr) + len;
557 int left = sctx->send_max_size - sctx->send_size;
559 if (unlikely(left < total_len))
562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 hdr->tlv_type = cpu_to_le16(attr);
564 hdr->tlv_len = cpu_to_le16(len);
565 memcpy(hdr + 1, data, len);
566 sctx->send_size += total_len;
571 #define TLV_PUT_DEFINE_INT(bits) \
572 static int tlv_put_u##bits(struct send_ctx *sctx, \
573 u##bits attr, u##bits value) \
575 __le##bits __tmp = cpu_to_le##bits(value); \
576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
579 TLV_PUT_DEFINE_INT(64)
581 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 const char *str, int len)
586 return tlv_put(sctx, attr, str, len);
589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 struct extent_buffer *eb,
597 struct btrfs_timespec *ts)
599 struct btrfs_timespec bts;
600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 return tlv_put(sctx, attr, &bts, sizeof(bts));
605 #define TLV_PUT(sctx, attrtype, data, attrlen) \
607 ret = tlv_put(sctx, attrtype, data, attrlen); \
609 goto tlv_put_failure; \
612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
614 ret = tlv_put_u##bits(sctx, attrtype, value); \
616 goto tlv_put_failure; \
619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
625 ret = tlv_put_string(sctx, attrtype, str, len); \
627 goto tlv_put_failure; \
629 #define TLV_PUT_PATH(sctx, attrtype, p) \
631 ret = tlv_put_string(sctx, attrtype, p->start, \
632 p->end - p->start); \
634 goto tlv_put_failure; \
636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
638 ret = tlv_put_uuid(sctx, attrtype, uuid); \
640 goto tlv_put_failure; \
642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
646 goto tlv_put_failure; \
649 static int send_header(struct send_ctx *sctx)
651 struct btrfs_stream_header hdr;
653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
661 * For each command/item we want to send to userspace, we call this function.
663 static int begin_cmd(struct send_ctx *sctx, int cmd)
665 struct btrfs_cmd_header *hdr;
667 if (WARN_ON(!sctx->send_buf))
670 BUG_ON(sctx->send_size);
672 sctx->send_size += sizeof(*hdr);
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->cmd = cpu_to_le16(cmd);
679 static int send_cmd(struct send_ctx *sctx)
682 struct btrfs_cmd_header *hdr;
685 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
690 hdr->crc = cpu_to_le32(crc);
692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
695 sctx->total_send_size += sctx->send_size;
696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
703 * Sends a move instruction to user space
705 static int send_rename(struct send_ctx *sctx,
706 struct fs_path *from, struct fs_path *to)
708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
720 ret = send_cmd(sctx);
728 * Sends a link instruction to user space
730 static int send_link(struct send_ctx *sctx,
731 struct fs_path *path, struct fs_path *lnk)
733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
745 ret = send_cmd(sctx);
753 * Sends an unlink instruction to user space
755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
760 btrfs_debug(fs_info, "send_unlink %s", path->start);
762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
768 ret = send_cmd(sctx);
776 * Sends a rmdir instruction to user space
778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
783 btrfs_debug(fs_info, "send_rmdir %s", path->start);
785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
791 ret = send_cmd(sctx);
799 * Helper function to retrieve some fields from an inode item.
801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
806 struct btrfs_inode_item *ii;
807 struct btrfs_key key;
810 key.type = BTRFS_INODE_ITEM_KEY;
812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 struct btrfs_inode_item);
822 *size = btrfs_inode_size(path->nodes[0], ii);
824 *gen = btrfs_inode_generation(path->nodes[0], ii);
826 *mode = btrfs_inode_mode(path->nodes[0], ii);
828 *uid = btrfs_inode_uid(path->nodes[0], ii);
830 *gid = btrfs_inode_gid(path->nodes[0], ii);
832 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
837 static int get_inode_info(struct btrfs_root *root,
838 u64 ino, u64 *size, u64 *gen,
839 u64 *mode, u64 *uid, u64 *gid,
842 struct btrfs_path *path;
845 path = alloc_path_for_send();
848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
850 btrfs_free_path(path);
854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
860 * btrfs_inode_extref.
861 * The iterate callback may return a non zero value to stop iteration. This can
862 * be a negative value for error codes or 1 to simply stop it.
864 * path must point to the INODE_REF or INODE_EXTREF when called.
866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
867 struct btrfs_key *found_key, int resolve,
868 iterate_inode_ref_t iterate, void *ctx)
870 struct extent_buffer *eb = path->nodes[0];
871 struct btrfs_item *item;
872 struct btrfs_inode_ref *iref;
873 struct btrfs_inode_extref *extref;
874 struct btrfs_path *tmp_path;
878 int slot = path->slots[0];
885 unsigned long name_off;
886 unsigned long elem_size;
889 p = fs_path_alloc_reversed();
893 tmp_path = alloc_path_for_send();
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 struct btrfs_inode_ref);
903 item = btrfs_item_nr(slot);
904 total = btrfs_item_size(eb, item);
905 elem_size = sizeof(*iref);
907 ptr = btrfs_item_ptr_offset(eb, slot);
908 total = btrfs_item_size_nr(eb, slot);
909 elem_size = sizeof(*extref);
912 while (cur < total) {
915 if (found_key->type == BTRFS_INODE_REF_KEY) {
916 iref = (struct btrfs_inode_ref *)(ptr + cur);
917 name_len = btrfs_inode_ref_name_len(eb, iref);
918 name_off = (unsigned long)(iref + 1);
919 index = btrfs_inode_ref_index(eb, iref);
920 dir = found_key->offset;
922 extref = (struct btrfs_inode_extref *)(ptr + cur);
923 name_len = btrfs_inode_extref_name_len(eb, extref);
924 name_off = (unsigned long)&extref->name;
925 index = btrfs_inode_extref_index(eb, extref);
926 dir = btrfs_inode_extref_parent(eb, extref);
930 start = btrfs_ref_to_path(root, tmp_path, name_len,
934 ret = PTR_ERR(start);
937 if (start < p->buf) {
938 /* overflow , try again with larger buffer */
939 ret = fs_path_ensure_buf(p,
940 p->buf_len + p->buf - start);
943 start = btrfs_ref_to_path(root, tmp_path,
948 ret = PTR_ERR(start);
951 BUG_ON(start < p->buf);
955 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
961 cur += elem_size + name_len;
962 ret = iterate(num, dir, index, p, ctx);
969 btrfs_free_path(tmp_path);
974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 const char *name, int name_len,
976 const char *data, int data_len,
980 * Helper function to iterate the entries in ONE btrfs_dir_item.
981 * The iterate callback may return a non zero value to stop iteration. This can
982 * be a negative value for error codes or 1 to simply stop it.
984 * path must point to the dir item when called.
986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
987 iterate_dir_item_t iterate, void *ctx)
990 struct extent_buffer *eb;
991 struct btrfs_item *item;
992 struct btrfs_dir_item *di;
993 struct btrfs_key di_key;
1006 * Start with a small buffer (1 page). If later we end up needing more
1007 * space, which can happen for xattrs on a fs with a leaf size greater
1008 * then the page size, attempt to increase the buffer. Typically xattr
1012 buf = kmalloc(buf_len, GFP_KERNEL);
1018 eb = path->nodes[0];
1019 slot = path->slots[0];
1020 item = btrfs_item_nr(slot);
1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1024 total = btrfs_item_size(eb, item);
1027 while (cur < total) {
1028 name_len = btrfs_dir_name_len(eb, di);
1029 data_len = btrfs_dir_data_len(eb, di);
1030 type = btrfs_dir_type(eb, di);
1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1033 if (type == BTRFS_FT_XATTR) {
1034 if (name_len > XATTR_NAME_MAX) {
1035 ret = -ENAMETOOLONG;
1038 if (name_len + data_len >
1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1047 if (name_len + data_len > PATH_MAX) {
1048 ret = -ENAMETOOLONG;
1053 if (name_len + data_len > buf_len) {
1054 buf_len = name_len + data_len;
1055 if (is_vmalloc_addr(buf)) {
1059 char *tmp = krealloc(buf, buf_len,
1060 GFP_KERNEL | __GFP_NOWARN);
1067 buf = kvmalloc(buf_len, GFP_KERNEL);
1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 name_len + data_len);
1078 len = sizeof(*di) + name_len + data_len;
1079 di = (struct btrfs_dir_item *)((char *)di + len);
1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 data_len, type, ctx);
1099 static int __copy_first_ref(int num, u64 dir, int index,
1100 struct fs_path *p, void *ctx)
1103 struct fs_path *pt = ctx;
1105 ret = fs_path_copy(pt, p);
1109 /* we want the first only */
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1117 static int get_inode_path(struct btrfs_root *root,
1118 u64 ino, struct fs_path *path)
1121 struct btrfs_key key, found_key;
1122 struct btrfs_path *p;
1124 p = alloc_path_for_send();
1128 fs_path_reset(path);
1131 key.type = BTRFS_INODE_REF_KEY;
1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 if (found_key.objectid != ino ||
1143 (found_key.type != BTRFS_INODE_REF_KEY &&
1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1149 ret = iterate_inode_ref(root, p, &found_key, 1,
1150 __copy_first_ref, path);
1160 struct backref_ctx {
1161 struct send_ctx *sctx;
1163 struct btrfs_path *path;
1164 /* number of total found references */
1168 * used for clones found in send_root. clones found behind cur_objectid
1169 * and cur_offset are not considered as allowed clones.
1174 /* may be truncated in case it's the last extent in a file */
1177 /* data offset in the file extent item */
1180 /* Just to check for bugs in backref resolving */
1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1186 u64 root = (u64)(uintptr_t)key;
1187 struct clone_root *cr = (struct clone_root *)elt;
1189 if (root < cr->root->objectid)
1191 if (root > cr->root->objectid)
1196 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1198 struct clone_root *cr1 = (struct clone_root *)e1;
1199 struct clone_root *cr2 = (struct clone_root *)e2;
1201 if (cr1->root->objectid < cr2->root->objectid)
1203 if (cr1->root->objectid > cr2->root->objectid)
1209 * Called for every backref that is found for the current extent.
1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1214 struct backref_ctx *bctx = ctx_;
1215 struct clone_root *found;
1219 /* First check if the root is in the list of accepted clone sources */
1220 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221 bctx->sctx->clone_roots_cnt,
1222 sizeof(struct clone_root),
1223 __clone_root_cmp_bsearch);
1227 if (found->root == bctx->sctx->send_root &&
1228 ino == bctx->cur_objectid &&
1229 offset == bctx->cur_offset) {
1230 bctx->found_itself = 1;
1234 * There are inodes that have extents that lie behind its i_size. Don't
1235 * accept clones from these extents.
1237 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1239 btrfs_release_path(bctx->path);
1243 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1247 * Make sure we don't consider clones from send_root that are
1248 * behind the current inode/offset.
1250 if (found->root == bctx->sctx->send_root) {
1252 * TODO for the moment we don't accept clones from the inode
1253 * that is currently send. We may change this when
1254 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1257 if (ino >= bctx->cur_objectid)
1262 found->found_refs++;
1263 if (ino < found->ino) {
1265 found->offset = offset;
1266 } else if (found->ino == ino) {
1268 * same extent found more then once in the same file.
1270 if (found->offset > offset + bctx->extent_len)
1271 found->offset = offset;
1278 * Given an inode, offset and extent item, it finds a good clone for a clone
1279 * instruction. Returns -ENOENT when none could be found. The function makes
1280 * sure that the returned clone is usable at the point where sending is at the
1281 * moment. This means, that no clones are accepted which lie behind the current
1284 * path must point to the extent item when called.
1286 static int find_extent_clone(struct send_ctx *sctx,
1287 struct btrfs_path *path,
1288 u64 ino, u64 data_offset,
1290 struct clone_root **found)
1292 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1298 u64 extent_item_pos;
1300 struct btrfs_file_extent_item *fi;
1301 struct extent_buffer *eb = path->nodes[0];
1302 struct backref_ctx *backref_ctx = NULL;
1303 struct clone_root *cur_clone_root;
1304 struct btrfs_key found_key;
1305 struct btrfs_path *tmp_path;
1309 tmp_path = alloc_path_for_send();
1313 /* We only use this path under the commit sem */
1314 tmp_path->need_commit_sem = 0;
1316 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1322 backref_ctx->path = tmp_path;
1324 if (data_offset >= ino_size) {
1326 * There may be extents that lie behind the file's size.
1327 * I at least had this in combination with snapshotting while
1328 * writing large files.
1334 fi = btrfs_item_ptr(eb, path->slots[0],
1335 struct btrfs_file_extent_item);
1336 extent_type = btrfs_file_extent_type(eb, fi);
1337 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1341 compressed = btrfs_file_extent_compression(eb, fi);
1343 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 if (disk_byte == 0) {
1349 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1351 down_read(&fs_info->commit_root_sem);
1352 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353 &found_key, &flags);
1354 up_read(&fs_info->commit_root_sem);
1355 btrfs_release_path(tmp_path);
1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1365 * Setup the clone roots.
1367 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 cur_clone_root = sctx->clone_roots + i;
1369 cur_clone_root->ino = (u64)-1;
1370 cur_clone_root->offset = 0;
1371 cur_clone_root->found_refs = 0;
1374 backref_ctx->sctx = sctx;
1375 backref_ctx->found = 0;
1376 backref_ctx->cur_objectid = ino;
1377 backref_ctx->cur_offset = data_offset;
1378 backref_ctx->found_itself = 0;
1379 backref_ctx->extent_len = num_bytes;
1381 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 * offsets that already take into account the data offset, but not for
1383 * compressed extents, since the offset is logical and not relative to
1384 * the physical extent locations. We must take this into account to
1385 * avoid sending clone offsets that go beyond the source file's size,
1386 * which would result in the clone ioctl failing with -EINVAL on the
1389 if (compressed == BTRFS_COMPRESS_NONE)
1390 backref_ctx->data_offset = 0;
1392 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1395 * The last extent of a file may be too large due to page alignment.
1396 * We need to adjust extent_len in this case so that the checks in
1397 * __iterate_backrefs work.
1399 if (data_offset + num_bytes >= ino_size)
1400 backref_ctx->extent_len = ino_size - data_offset;
1403 * Now collect all backrefs.
1405 if (compressed == BTRFS_COMPRESS_NONE)
1406 extent_item_pos = logical - found_key.objectid;
1408 extent_item_pos = 0;
1409 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 extent_item_pos, 1, __iterate_backrefs,
1411 backref_ctx, false);
1416 if (!backref_ctx->found_itself) {
1417 /* found a bug in backref code? */
1420 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421 ino, data_offset, disk_byte, found_key.objectid);
1425 btrfs_debug(fs_info,
1426 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 data_offset, ino, num_bytes, logical);
1429 if (!backref_ctx->found)
1430 btrfs_debug(fs_info, "no clones found");
1432 cur_clone_root = NULL;
1433 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 if (sctx->clone_roots[i].found_refs) {
1435 if (!cur_clone_root)
1436 cur_clone_root = sctx->clone_roots + i;
1437 else if (sctx->clone_roots[i].root == sctx->send_root)
1438 /* prefer clones from send_root over others */
1439 cur_clone_root = sctx->clone_roots + i;
1444 if (cur_clone_root) {
1445 *found = cur_clone_root;
1452 btrfs_free_path(tmp_path);
1457 static int read_symlink(struct btrfs_root *root,
1459 struct fs_path *dest)
1462 struct btrfs_path *path;
1463 struct btrfs_key key;
1464 struct btrfs_file_extent_item *ei;
1470 path = alloc_path_for_send();
1475 key.type = BTRFS_EXTENT_DATA_KEY;
1477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1482 * An empty symlink inode. Can happen in rare error paths when
1483 * creating a symlink (transaction committed before the inode
1484 * eviction handler removed the symlink inode items and a crash
1485 * happened in between or the subvol was snapshoted in between).
1486 * Print an informative message to dmesg/syslog so that the user
1487 * can delete the symlink.
1489 btrfs_err(root->fs_info,
1490 "Found empty symlink inode %llu at root %llu",
1491 ino, root->root_key.objectid);
1496 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 struct btrfs_file_extent_item);
1498 type = btrfs_file_extent_type(path->nodes[0], ei);
1499 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 BUG_ON(compression);
1503 off = btrfs_file_extent_inline_start(ei);
1504 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1506 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1509 btrfs_free_path(path);
1514 * Helper function to generate a file name that is unique in the root of
1515 * send_root and parent_root. This is used to generate names for orphan inodes.
1517 static int gen_unique_name(struct send_ctx *sctx,
1519 struct fs_path *dest)
1522 struct btrfs_path *path;
1523 struct btrfs_dir_item *di;
1528 path = alloc_path_for_send();
1533 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1535 ASSERT(len < sizeof(tmp));
1537 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 path, BTRFS_FIRST_FREE_OBJECTID,
1539 tmp, strlen(tmp), 0);
1540 btrfs_release_path(path);
1546 /* not unique, try again */
1551 if (!sctx->parent_root) {
1557 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 path, BTRFS_FIRST_FREE_OBJECTID,
1559 tmp, strlen(tmp), 0);
1560 btrfs_release_path(path);
1566 /* not unique, try again */
1574 ret = fs_path_add(dest, tmp, strlen(tmp));
1577 btrfs_free_path(path);
1582 inode_state_no_change,
1583 inode_state_will_create,
1584 inode_state_did_create,
1585 inode_state_will_delete,
1586 inode_state_did_delete,
1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1597 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1599 if (ret < 0 && ret != -ENOENT)
1603 if (!sctx->parent_root) {
1604 right_ret = -ENOENT;
1606 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607 NULL, NULL, NULL, NULL);
1608 if (ret < 0 && ret != -ENOENT)
1613 if (!left_ret && !right_ret) {
1614 if (left_gen == gen && right_gen == gen) {
1615 ret = inode_state_no_change;
1616 } else if (left_gen == gen) {
1617 if (ino < sctx->send_progress)
1618 ret = inode_state_did_create;
1620 ret = inode_state_will_create;
1621 } else if (right_gen == gen) {
1622 if (ino < sctx->send_progress)
1623 ret = inode_state_did_delete;
1625 ret = inode_state_will_delete;
1629 } else if (!left_ret) {
1630 if (left_gen == gen) {
1631 if (ino < sctx->send_progress)
1632 ret = inode_state_did_create;
1634 ret = inode_state_will_create;
1638 } else if (!right_ret) {
1639 if (right_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_delete;
1643 ret = inode_state_will_delete;
1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1659 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1662 ret = get_cur_inode_state(sctx, ino, gen);
1666 if (ret == inode_state_no_change ||
1667 ret == inode_state_did_create ||
1668 ret == inode_state_will_delete)
1678 * Helper function to lookup a dir item in a dir.
1680 static int lookup_dir_item_inode(struct btrfs_root *root,
1681 u64 dir, const char *name, int name_len,
1686 struct btrfs_dir_item *di;
1687 struct btrfs_key key;
1688 struct btrfs_path *path;
1690 path = alloc_path_for_send();
1694 di = btrfs_lookup_dir_item(NULL, root, path,
1695 dir, name, name_len, 0);
1704 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1705 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1709 *found_inode = key.objectid;
1710 *found_type = btrfs_dir_type(path->nodes[0], di);
1713 btrfs_free_path(path);
1718 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1719 * generation of the parent dir and the name of the dir entry.
1721 static int get_first_ref(struct btrfs_root *root, u64 ino,
1722 u64 *dir, u64 *dir_gen, struct fs_path *name)
1725 struct btrfs_key key;
1726 struct btrfs_key found_key;
1727 struct btrfs_path *path;
1731 path = alloc_path_for_send();
1736 key.type = BTRFS_INODE_REF_KEY;
1739 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1743 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1745 if (ret || found_key.objectid != ino ||
1746 (found_key.type != BTRFS_INODE_REF_KEY &&
1747 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1752 if (found_key.type == BTRFS_INODE_REF_KEY) {
1753 struct btrfs_inode_ref *iref;
1754 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1755 struct btrfs_inode_ref);
1756 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1757 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1758 (unsigned long)(iref + 1),
1760 parent_dir = found_key.offset;
1762 struct btrfs_inode_extref *extref;
1763 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 struct btrfs_inode_extref);
1765 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1766 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 (unsigned long)&extref->name, len);
1768 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1772 btrfs_release_path(path);
1775 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1784 btrfs_free_path(path);
1788 static int is_first_ref(struct btrfs_root *root,
1790 const char *name, int name_len)
1793 struct fs_path *tmp_name;
1796 tmp_name = fs_path_alloc();
1800 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1804 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1809 ret = !memcmp(tmp_name->start, name, name_len);
1812 fs_path_free(tmp_name);
1817 * Used by process_recorded_refs to determine if a new ref would overwrite an
1818 * already existing ref. In case it detects an overwrite, it returns the
1819 * inode/gen in who_ino/who_gen.
1820 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1821 * to make sure later references to the overwritten inode are possible.
1822 * Orphanizing is however only required for the first ref of an inode.
1823 * process_recorded_refs does an additional is_first_ref check to see if
1824 * orphanizing is really required.
1826 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1827 const char *name, int name_len,
1828 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1832 u64 other_inode = 0;
1835 if (!sctx->parent_root)
1838 ret = is_inode_existent(sctx, dir, dir_gen);
1843 * If we have a parent root we need to verify that the parent dir was
1844 * not deleted and then re-created, if it was then we have no overwrite
1845 * and we can just unlink this entry.
1847 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1848 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1850 if (ret < 0 && ret != -ENOENT)
1860 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1861 &other_inode, &other_type);
1862 if (ret < 0 && ret != -ENOENT)
1870 * Check if the overwritten ref was already processed. If yes, the ref
1871 * was already unlinked/moved, so we can safely assume that we will not
1872 * overwrite anything at this point in time.
1874 if (other_inode > sctx->send_progress ||
1875 is_waiting_for_move(sctx, other_inode)) {
1876 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1877 who_gen, who_mode, NULL, NULL, NULL);
1882 *who_ino = other_inode;
1892 * Checks if the ref was overwritten by an already processed inode. This is
1893 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1894 * thus the orphan name needs be used.
1895 * process_recorded_refs also uses it to avoid unlinking of refs that were
1898 static int did_overwrite_ref(struct send_ctx *sctx,
1899 u64 dir, u64 dir_gen,
1900 u64 ino, u64 ino_gen,
1901 const char *name, int name_len)
1908 if (!sctx->parent_root)
1911 ret = is_inode_existent(sctx, dir, dir_gen);
1915 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1916 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1918 if (ret < 0 && ret != -ENOENT)
1928 /* check if the ref was overwritten by another ref */
1929 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1930 &ow_inode, &other_type);
1931 if (ret < 0 && ret != -ENOENT)
1934 /* was never and will never be overwritten */
1939 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1944 if (ow_inode == ino && gen == ino_gen) {
1950 * We know that it is or will be overwritten. Check this now.
1951 * The current inode being processed might have been the one that caused
1952 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1953 * the current inode being processed.
1955 if ((ow_inode < sctx->send_progress) ||
1956 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1957 gen == sctx->cur_inode_gen))
1967 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1968 * that got overwritten. This is used by process_recorded_refs to determine
1969 * if it has to use the path as returned by get_cur_path or the orphan name.
1971 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1974 struct fs_path *name = NULL;
1978 if (!sctx->parent_root)
1981 name = fs_path_alloc();
1985 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1989 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1990 name->start, fs_path_len(name));
1998 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1999 * so we need to do some special handling in case we have clashes. This function
2000 * takes care of this with the help of name_cache_entry::radix_list.
2001 * In case of error, nce is kfreed.
2003 static int name_cache_insert(struct send_ctx *sctx,
2004 struct name_cache_entry *nce)
2007 struct list_head *nce_head;
2009 nce_head = radix_tree_lookup(&sctx->name_cache,
2010 (unsigned long)nce->ino);
2012 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2017 INIT_LIST_HEAD(nce_head);
2019 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2026 list_add_tail(&nce->radix_list, nce_head);
2027 list_add_tail(&nce->list, &sctx->name_cache_list);
2028 sctx->name_cache_size++;
2033 static void name_cache_delete(struct send_ctx *sctx,
2034 struct name_cache_entry *nce)
2036 struct list_head *nce_head;
2038 nce_head = radix_tree_lookup(&sctx->name_cache,
2039 (unsigned long)nce->ino);
2041 btrfs_err(sctx->send_root->fs_info,
2042 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2043 nce->ino, sctx->name_cache_size);
2046 list_del(&nce->radix_list);
2047 list_del(&nce->list);
2048 sctx->name_cache_size--;
2051 * We may not get to the final release of nce_head if the lookup fails
2053 if (nce_head && list_empty(nce_head)) {
2054 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2059 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2062 struct list_head *nce_head;
2063 struct name_cache_entry *cur;
2065 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2069 list_for_each_entry(cur, nce_head, radix_list) {
2070 if (cur->ino == ino && cur->gen == gen)
2077 * Removes the entry from the list and adds it back to the end. This marks the
2078 * entry as recently used so that name_cache_clean_unused does not remove it.
2080 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2082 list_del(&nce->list);
2083 list_add_tail(&nce->list, &sctx->name_cache_list);
2087 * Remove some entries from the beginning of name_cache_list.
2089 static void name_cache_clean_unused(struct send_ctx *sctx)
2091 struct name_cache_entry *nce;
2093 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2096 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2097 nce = list_entry(sctx->name_cache_list.next,
2098 struct name_cache_entry, list);
2099 name_cache_delete(sctx, nce);
2104 static void name_cache_free(struct send_ctx *sctx)
2106 struct name_cache_entry *nce;
2108 while (!list_empty(&sctx->name_cache_list)) {
2109 nce = list_entry(sctx->name_cache_list.next,
2110 struct name_cache_entry, list);
2111 name_cache_delete(sctx, nce);
2117 * Used by get_cur_path for each ref up to the root.
2118 * Returns 0 if it succeeded.
2119 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2120 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2121 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2122 * Returns <0 in case of error.
2124 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2128 struct fs_path *dest)
2132 struct name_cache_entry *nce = NULL;
2135 * First check if we already did a call to this function with the same
2136 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2137 * return the cached result.
2139 nce = name_cache_search(sctx, ino, gen);
2141 if (ino < sctx->send_progress && nce->need_later_update) {
2142 name_cache_delete(sctx, nce);
2146 name_cache_used(sctx, nce);
2147 *parent_ino = nce->parent_ino;
2148 *parent_gen = nce->parent_gen;
2149 ret = fs_path_add(dest, nce->name, nce->name_len);
2158 * If the inode is not existent yet, add the orphan name and return 1.
2159 * This should only happen for the parent dir that we determine in
2162 ret = is_inode_existent(sctx, ino, gen);
2167 ret = gen_unique_name(sctx, ino, gen, dest);
2175 * Depending on whether the inode was already processed or not, use
2176 * send_root or parent_root for ref lookup.
2178 if (ino < sctx->send_progress)
2179 ret = get_first_ref(sctx->send_root, ino,
2180 parent_ino, parent_gen, dest);
2182 ret = get_first_ref(sctx->parent_root, ino,
2183 parent_ino, parent_gen, dest);
2188 * Check if the ref was overwritten by an inode's ref that was processed
2189 * earlier. If yes, treat as orphan and return 1.
2191 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 dest->start, dest->end - dest->start);
2196 fs_path_reset(dest);
2197 ret = gen_unique_name(sctx, ino, gen, dest);
2205 * Store the result of the lookup in the name cache.
2207 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2215 nce->parent_ino = *parent_ino;
2216 nce->parent_gen = *parent_gen;
2217 nce->name_len = fs_path_len(dest);
2219 strcpy(nce->name, dest->start);
2221 if (ino < sctx->send_progress)
2222 nce->need_later_update = 0;
2224 nce->need_later_update = 1;
2226 nce_ret = name_cache_insert(sctx, nce);
2229 name_cache_clean_unused(sctx);
2236 * Magic happens here. This function returns the first ref to an inode as it
2237 * would look like while receiving the stream at this point in time.
2238 * We walk the path up to the root. For every inode in between, we check if it
2239 * was already processed/sent. If yes, we continue with the parent as found
2240 * in send_root. If not, we continue with the parent as found in parent_root.
2241 * If we encounter an inode that was deleted at this point in time, we use the
2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243 * that were not created yet and overwritten inodes/refs.
2245 * When do we have have orphan inodes:
2246 * 1. When an inode is freshly created and thus no valid refs are available yet
2247 * 2. When a directory lost all it's refs (deleted) but still has dir items
2248 * inside which were not processed yet (pending for move/delete). If anyone
2249 * tried to get the path to the dir items, it would get a path inside that
2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252 * of an unprocessed inode. If in that case the first ref would be
2253 * overwritten, the overwritten inode gets "orphanized". Later when we
2254 * process this overwritten inode, it is restored at a new place by moving
2257 * sctx->send_progress tells this function at which point in time receiving
2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 struct fs_path *dest)
2264 struct fs_path *name = NULL;
2265 u64 parent_inode = 0;
2269 name = fs_path_alloc();
2276 fs_path_reset(dest);
2278 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279 struct waiting_dir_move *wdm;
2281 fs_path_reset(name);
2283 if (is_waiting_for_rm(sctx, ino)) {
2284 ret = gen_unique_name(sctx, ino, gen, name);
2287 ret = fs_path_add_path(dest, name);
2291 wdm = get_waiting_dir_move(sctx, ino);
2292 if (wdm && wdm->orphanized) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2296 ret = get_first_ref(sctx->parent_root, ino,
2297 &parent_inode, &parent_gen, name);
2299 ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 ret = fs_path_add_path(dest, name);
2320 fs_path_unreverse(dest);
2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2327 static int send_subvol_begin(struct send_ctx *sctx)
2330 struct btrfs_root *send_root = sctx->send_root;
2331 struct btrfs_root *parent_root = sctx->parent_root;
2332 struct btrfs_path *path;
2333 struct btrfs_key key;
2334 struct btrfs_root_ref *ref;
2335 struct extent_buffer *leaf;
2339 path = btrfs_alloc_path();
2343 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2345 btrfs_free_path(path);
2349 key.objectid = send_root->objectid;
2350 key.type = BTRFS_ROOT_BACKREF_KEY;
2353 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2362 leaf = path->nodes[0];
2363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 key.objectid != send_root->objectid) {
2369 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 namelen = btrfs_root_ref_name_len(leaf, ref);
2371 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 btrfs_release_path(path);
2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2384 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2386 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 sctx->send_root->root_item.received_uuid);
2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 sctx->send_root->root_item.uuid);
2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394 le64_to_cpu(sctx->send_root->root_item.ctransid));
2396 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 parent_root->root_item.received_uuid);
2400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 parent_root->root_item.uuid);
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2406 ret = send_cmd(sctx);
2410 btrfs_free_path(path);
2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2421 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2423 p = fs_path_alloc();
2427 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2431 ret = get_cur_path(sctx, ino, gen, p);
2434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2437 ret = send_cmd(sctx);
2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2451 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2453 p = fs_path_alloc();
2457 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2461 ret = get_cur_path(sctx, ino, gen, p);
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2467 ret = send_cmd(sctx);
2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2477 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2481 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2484 p = fs_path_alloc();
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2492 ret = get_cur_path(sctx, ino, gen, p);
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2499 ret = send_cmd(sctx);
2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2509 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2511 struct fs_path *p = NULL;
2512 struct btrfs_inode_item *ii;
2513 struct btrfs_path *path = NULL;
2514 struct extent_buffer *eb;
2515 struct btrfs_key key;
2518 btrfs_debug(fs_info, "send_utimes %llu", ino);
2520 p = fs_path_alloc();
2524 path = alloc_path_for_send();
2531 key.type = BTRFS_INODE_ITEM_KEY;
2533 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2539 eb = path->nodes[0];
2540 slot = path->slots[0];
2541 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2543 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2547 ret = get_cur_path(sctx, ino, gen, p);
2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554 /* TODO Add otime support when the otime patches get into upstream */
2556 ret = send_cmd(sctx);
2561 btrfs_free_path(path);
2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567 * a valid path yet because we did not process the refs yet. So, the inode
2568 * is created as orphan.
2570 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2572 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2580 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2582 p = fs_path_alloc();
2586 if (ino != sctx->cur_ino) {
2587 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2592 gen = sctx->cur_inode_gen;
2593 mode = sctx->cur_inode_mode;
2594 rdev = sctx->cur_inode_rdev;
2597 if (S_ISREG(mode)) {
2598 cmd = BTRFS_SEND_C_MKFILE;
2599 } else if (S_ISDIR(mode)) {
2600 cmd = BTRFS_SEND_C_MKDIR;
2601 } else if (S_ISLNK(mode)) {
2602 cmd = BTRFS_SEND_C_SYMLINK;
2603 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604 cmd = BTRFS_SEND_C_MKNOD;
2605 } else if (S_ISFIFO(mode)) {
2606 cmd = BTRFS_SEND_C_MKFIFO;
2607 } else if (S_ISSOCK(mode)) {
2608 cmd = BTRFS_SEND_C_MKSOCK;
2610 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611 (int)(mode & S_IFMT));
2616 ret = begin_cmd(sctx, cmd);
2620 ret = gen_unique_name(sctx, ino, gen, p);
2624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2627 if (S_ISLNK(mode)) {
2629 ret = read_symlink(sctx->send_root, ino, p);
2632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2639 ret = send_cmd(sctx);
2651 * We need some special handling for inodes that get processed before the parent
2652 * directory got created. See process_recorded_refs for details.
2653 * This function does the check if we already created the dir out of order.
2655 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2658 struct btrfs_path *path = NULL;
2659 struct btrfs_key key;
2660 struct btrfs_key found_key;
2661 struct btrfs_key di_key;
2662 struct extent_buffer *eb;
2663 struct btrfs_dir_item *di;
2666 path = alloc_path_for_send();
2673 key.type = BTRFS_DIR_INDEX_KEY;
2675 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2680 eb = path->nodes[0];
2681 slot = path->slots[0];
2682 if (slot >= btrfs_header_nritems(eb)) {
2683 ret = btrfs_next_leaf(sctx->send_root, path);
2686 } else if (ret > 0) {
2693 btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 if (found_key.objectid != key.objectid ||
2695 found_key.type != key.type) {
2700 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2703 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 di_key.objectid < sctx->send_progress) {
2713 btrfs_free_path(path);
2718 * Only creates the inode if it is:
2719 * 1. Not a directory
2720 * 2. Or a directory which was not created already due to out of order
2721 * directories. See did_create_dir and process_recorded_refs for details.
2723 static int send_create_inode_if_needed(struct send_ctx *sctx)
2727 if (S_ISDIR(sctx->cur_inode_mode)) {
2728 ret = did_create_dir(sctx, sctx->cur_ino);
2737 ret = send_create_inode(sctx, sctx->cur_ino);
2745 struct recorded_ref {
2746 struct list_head list;
2748 struct fs_path *full_path;
2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2756 ref->full_path = path;
2757 ref->name = (char *)kbasename(ref->full_path->start);
2758 ref->name_len = ref->full_path->end - ref->name;
2762 * We need to process new refs before deleted refs, but compare_tree gives us
2763 * everything mixed. So we first record all refs and later process them.
2764 * This function is a helper to record one ref.
2766 static int __record_ref(struct list_head *head, u64 dir,
2767 u64 dir_gen, struct fs_path *path)
2769 struct recorded_ref *ref;
2771 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2776 ref->dir_gen = dir_gen;
2777 set_ref_path(ref, path);
2778 list_add_tail(&ref->list, head);
2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2784 struct recorded_ref *new;
2786 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2790 new->dir = ref->dir;
2791 new->dir_gen = ref->dir_gen;
2792 new->full_path = NULL;
2793 INIT_LIST_HEAD(&new->list);
2794 list_add_tail(&new->list, list);
2798 static void __free_recorded_refs(struct list_head *head)
2800 struct recorded_ref *cur;
2802 while (!list_empty(head)) {
2803 cur = list_entry(head->next, struct recorded_ref, list);
2804 fs_path_free(cur->full_path);
2805 list_del(&cur->list);
2810 static void free_recorded_refs(struct send_ctx *sctx)
2812 __free_recorded_refs(&sctx->new_refs);
2813 __free_recorded_refs(&sctx->deleted_refs);
2817 * Renames/moves a file/dir to its orphan name. Used when the first
2818 * ref of an unprocessed inode gets overwritten and for all non empty
2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 struct fs_path *path)
2825 struct fs_path *orphan;
2827 orphan = fs_path_alloc();
2831 ret = gen_unique_name(sctx, ino, gen, orphan);
2835 ret = send_rename(sctx, path, orphan);
2838 fs_path_free(orphan);
2842 static struct orphan_dir_info *
2843 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2845 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 struct rb_node *parent = NULL;
2847 struct orphan_dir_info *entry, *odi;
2851 entry = rb_entry(parent, struct orphan_dir_info, node);
2852 if (dir_ino < entry->ino) {
2854 } else if (dir_ino > entry->ino) {
2855 p = &(*p)->rb_right;
2861 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2863 return ERR_PTR(-ENOMEM);
2866 odi->last_dir_index_offset = 0;
2868 rb_link_node(&odi->node, parent, p);
2869 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2873 static struct orphan_dir_info *
2874 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2876 struct rb_node *n = sctx->orphan_dirs.rb_node;
2877 struct orphan_dir_info *entry;
2880 entry = rb_entry(n, struct orphan_dir_info, node);
2881 if (dir_ino < entry->ino)
2883 else if (dir_ino > entry->ino)
2891 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2893 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2898 static void free_orphan_dir_info(struct send_ctx *sctx,
2899 struct orphan_dir_info *odi)
2903 rb_erase(&odi->node, &sctx->orphan_dirs);
2908 * Returns 1 if a directory can be removed at this point in time.
2909 * We check this by iterating all dir items and checking if the inode behind
2910 * the dir item was already processed.
2912 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2916 struct btrfs_root *root = sctx->parent_root;
2917 struct btrfs_path *path;
2918 struct btrfs_key key;
2919 struct btrfs_key found_key;
2920 struct btrfs_key loc;
2921 struct btrfs_dir_item *di;
2922 struct orphan_dir_info *odi = NULL;
2925 * Don't try to rmdir the top/root subvolume dir.
2927 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2930 path = alloc_path_for_send();
2935 key.type = BTRFS_DIR_INDEX_KEY;
2938 odi = get_orphan_dir_info(sctx, dir);
2940 key.offset = odi->last_dir_index_offset;
2942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2947 struct waiting_dir_move *dm;
2949 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2950 ret = btrfs_next_leaf(root, path);
2957 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2959 if (found_key.objectid != key.objectid ||
2960 found_key.type != key.type)
2963 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2964 struct btrfs_dir_item);
2965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2967 dm = get_waiting_dir_move(sctx, loc.objectid);
2969 odi = add_orphan_dir_info(sctx, dir);
2975 odi->last_dir_index_offset = found_key.offset;
2976 dm->rmdir_ino = dir;
2981 if (loc.objectid > send_progress) {
2982 odi = add_orphan_dir_info(sctx, dir);
2988 odi->last_dir_index_offset = found_key.offset;
2995 free_orphan_dir_info(sctx, odi);
3000 btrfs_free_path(path);
3004 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3006 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3008 return entry != NULL;
3011 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3013 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 struct rb_node *parent = NULL;
3015 struct waiting_dir_move *entry, *dm;
3017 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3022 dm->orphanized = orphanized;
3026 entry = rb_entry(parent, struct waiting_dir_move, node);
3027 if (ino < entry->ino) {
3029 } else if (ino > entry->ino) {
3030 p = &(*p)->rb_right;
3037 rb_link_node(&dm->node, parent, p);
3038 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3042 static struct waiting_dir_move *
3043 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3045 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 struct waiting_dir_move *entry;
3049 entry = rb_entry(n, struct waiting_dir_move, node);
3050 if (ino < entry->ino)
3052 else if (ino > entry->ino)
3060 static void free_waiting_dir_move(struct send_ctx *sctx,
3061 struct waiting_dir_move *dm)
3065 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3069 static int add_pending_dir_move(struct send_ctx *sctx,
3073 struct list_head *new_refs,
3074 struct list_head *deleted_refs,
3075 const bool is_orphan)
3077 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 struct rb_node *parent = NULL;
3079 struct pending_dir_move *entry = NULL, *pm;
3080 struct recorded_ref *cur;
3084 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3087 pm->parent_ino = parent_ino;
3090 INIT_LIST_HEAD(&pm->list);
3091 INIT_LIST_HEAD(&pm->update_refs);
3092 RB_CLEAR_NODE(&pm->node);
3096 entry = rb_entry(parent, struct pending_dir_move, node);
3097 if (parent_ino < entry->parent_ino) {
3099 } else if (parent_ino > entry->parent_ino) {
3100 p = &(*p)->rb_right;
3107 list_for_each_entry(cur, deleted_refs, list) {
3108 ret = dup_ref(cur, &pm->update_refs);
3112 list_for_each_entry(cur, new_refs, list) {
3113 ret = dup_ref(cur, &pm->update_refs);
3118 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3123 list_add_tail(&pm->list, &entry->list);
3125 rb_link_node(&pm->node, parent, p);
3126 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3131 __free_recorded_refs(&pm->update_refs);
3137 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3140 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 struct pending_dir_move *entry;
3144 entry = rb_entry(n, struct pending_dir_move, node);
3145 if (parent_ino < entry->parent_ino)
3147 else if (parent_ino > entry->parent_ino)
3155 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 u64 ino, u64 gen, u64 *ancestor_ino)
3159 u64 parent_inode = 0;
3161 u64 start_ino = ino;
3164 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 fs_path_reset(name);
3167 if (is_waiting_for_rm(sctx, ino))
3169 if (is_waiting_for_move(sctx, ino)) {
3170 if (*ancestor_ino == 0)
3171 *ancestor_ino = ino;
3172 ret = get_first_ref(sctx->parent_root, ino,
3173 &parent_inode, &parent_gen, name);
3175 ret = __get_cur_name_and_parent(sctx, ino, gen,
3185 if (parent_inode == start_ino) {
3187 if (*ancestor_ino == 0)
3188 *ancestor_ino = ino;
3197 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3199 struct fs_path *from_path = NULL;
3200 struct fs_path *to_path = NULL;
3201 struct fs_path *name = NULL;
3202 u64 orig_progress = sctx->send_progress;
3203 struct recorded_ref *cur;
3204 u64 parent_ino, parent_gen;
3205 struct waiting_dir_move *dm = NULL;
3211 name = fs_path_alloc();
3212 from_path = fs_path_alloc();
3213 if (!name || !from_path) {
3218 dm = get_waiting_dir_move(sctx, pm->ino);
3220 rmdir_ino = dm->rmdir_ino;
3221 is_orphan = dm->orphanized;
3222 free_waiting_dir_move(sctx, dm);
3225 ret = gen_unique_name(sctx, pm->ino,
3226 pm->gen, from_path);
3228 ret = get_first_ref(sctx->parent_root, pm->ino,
3229 &parent_ino, &parent_gen, name);
3232 ret = get_cur_path(sctx, parent_ino, parent_gen,
3236 ret = fs_path_add_path(from_path, name);
3241 sctx->send_progress = sctx->cur_ino + 1;
3242 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3246 LIST_HEAD(deleted_refs);
3247 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 &pm->update_refs, &deleted_refs,
3254 dm = get_waiting_dir_move(sctx, pm->ino);
3256 dm->rmdir_ino = rmdir_ino;
3260 fs_path_reset(name);
3263 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3267 ret = send_rename(sctx, from_path, to_path);
3272 struct orphan_dir_info *odi;
3275 odi = get_orphan_dir_info(sctx, rmdir_ino);
3277 /* already deleted */
3282 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3288 name = fs_path_alloc();
3293 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3296 ret = send_rmdir(sctx, name);
3302 ret = send_utimes(sctx, pm->ino, pm->gen);
3307 * After rename/move, need to update the utimes of both new parent(s)
3308 * and old parent(s).
3310 list_for_each_entry(cur, &pm->update_refs, list) {
3312 * The parent inode might have been deleted in the send snapshot
3314 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3315 NULL, NULL, NULL, NULL, NULL);
3316 if (ret == -ENOENT) {
3323 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3330 fs_path_free(from_path);
3331 fs_path_free(to_path);
3332 sctx->send_progress = orig_progress;
3337 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3339 if (!list_empty(&m->list))
3341 if (!RB_EMPTY_NODE(&m->node))
3342 rb_erase(&m->node, &sctx->pending_dir_moves);
3343 __free_recorded_refs(&m->update_refs);
3347 static void tail_append_pending_moves(struct pending_dir_move *moves,
3348 struct list_head *stack)
3350 if (list_empty(&moves->list)) {
3351 list_add_tail(&moves->list, stack);
3354 list_splice_init(&moves->list, &list);
3355 list_add_tail(&moves->list, stack);
3356 list_splice_tail(&list, stack);
3360 static int apply_children_dir_moves(struct send_ctx *sctx)
3362 struct pending_dir_move *pm;
3363 struct list_head stack;
3364 u64 parent_ino = sctx->cur_ino;
3367 pm = get_pending_dir_moves(sctx, parent_ino);
3371 INIT_LIST_HEAD(&stack);
3372 tail_append_pending_moves(pm, &stack);
3374 while (!list_empty(&stack)) {
3375 pm = list_first_entry(&stack, struct pending_dir_move, list);
3376 parent_ino = pm->ino;
3377 ret = apply_dir_move(sctx, pm);
3378 free_pending_move(sctx, pm);
3381 pm = get_pending_dir_moves(sctx, parent_ino);
3383 tail_append_pending_moves(pm, &stack);
3388 while (!list_empty(&stack)) {
3389 pm = list_first_entry(&stack, struct pending_dir_move, list);
3390 free_pending_move(sctx, pm);
3396 * We might need to delay a directory rename even when no ancestor directory
3397 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3398 * renamed. This happens when we rename a directory to the old name (the name
3399 * in the parent root) of some other unrelated directory that got its rename
3400 * delayed due to some ancestor with higher number that got renamed.
3406 * |---- a/ (ino 257)
3407 * | |---- file (ino 260)
3409 * |---- b/ (ino 258)
3410 * |---- c/ (ino 259)
3414 * |---- a/ (ino 258)
3415 * |---- x/ (ino 259)
3416 * |---- y/ (ino 257)
3417 * |----- file (ino 260)
3419 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3420 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3421 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3424 * 1 - rename 259 from 'c' to 'x'
3425 * 2 - rename 257 from 'a' to 'x/y'
3426 * 3 - rename 258 from 'b' to 'a'
3428 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3429 * be done right away and < 0 on error.
3431 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3432 struct recorded_ref *parent_ref,
3433 const bool is_orphan)
3435 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3436 struct btrfs_path *path;
3437 struct btrfs_key key;
3438 struct btrfs_key di_key;
3439 struct btrfs_dir_item *di;
3443 struct waiting_dir_move *wdm;
3445 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3448 path = alloc_path_for_send();
3452 key.objectid = parent_ref->dir;
3453 key.type = BTRFS_DIR_ITEM_KEY;
3454 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3456 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3459 } else if (ret > 0) {
3464 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3465 parent_ref->name_len);
3471 * di_key.objectid has the number of the inode that has a dentry in the
3472 * parent directory with the same name that sctx->cur_ino is being
3473 * renamed to. We need to check if that inode is in the send root as
3474 * well and if it is currently marked as an inode with a pending rename,
3475 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3476 * that it happens after that other inode is renamed.
3478 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3479 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3485 &left_gen, NULL, NULL, NULL, NULL);
3488 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3489 &right_gen, NULL, NULL, NULL, NULL);
3496 /* Different inode, no need to delay the rename of sctx->cur_ino */
3497 if (right_gen != left_gen) {
3502 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3503 if (wdm && !wdm->orphanized) {
3504 ret = add_pending_dir_move(sctx,
3506 sctx->cur_inode_gen,
3509 &sctx->deleted_refs,
3515 btrfs_free_path(path);
3520 * Check if inode ino2, or any of its ancestors, is inode ino1.
3521 * Return 1 if true, 0 if false and < 0 on error.
3523 static int check_ino_in_path(struct btrfs_root *root,
3528 struct fs_path *fs_path)
3533 return ino1_gen == ino2_gen;
3535 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3540 fs_path_reset(fs_path);
3541 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3545 return parent_gen == ino1_gen;
3552 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3553 * possible path (in case ino2 is not a directory and has multiple hard links).
3554 * Return 1 if true, 0 if false and < 0 on error.
3556 static int is_ancestor(struct btrfs_root *root,
3560 struct fs_path *fs_path)
3562 bool free_fs_path = false;
3564 struct btrfs_path *path = NULL;
3565 struct btrfs_key key;
3568 fs_path = fs_path_alloc();
3571 free_fs_path = true;
3574 path = alloc_path_for_send();
3580 key.objectid = ino2;
3581 key.type = BTRFS_INODE_REF_KEY;
3584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3589 struct extent_buffer *leaf = path->nodes[0];
3590 int slot = path->slots[0];
3594 if (slot >= btrfs_header_nritems(leaf)) {
3595 ret = btrfs_next_leaf(root, path);
3603 btrfs_item_key_to_cpu(leaf, &key, slot);
3604 if (key.objectid != ino2)
3606 if (key.type != BTRFS_INODE_REF_KEY &&
3607 key.type != BTRFS_INODE_EXTREF_KEY)
3610 item_size = btrfs_item_size_nr(leaf, slot);
3611 while (cur_offset < item_size) {
3615 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3617 struct btrfs_inode_extref *extref;
3619 ptr = btrfs_item_ptr_offset(leaf, slot);
3620 extref = (struct btrfs_inode_extref *)
3622 parent = btrfs_inode_extref_parent(leaf,
3624 cur_offset += sizeof(*extref);
3625 cur_offset += btrfs_inode_extref_name_len(leaf,
3628 parent = key.offset;
3629 cur_offset = item_size;
3632 ret = get_inode_info(root, parent, NULL, &parent_gen,
3633 NULL, NULL, NULL, NULL);
3636 ret = check_ino_in_path(root, ino1, ino1_gen,
3637 parent, parent_gen, fs_path);
3645 btrfs_free_path(path);
3647 fs_path_free(fs_path);
3651 static int wait_for_parent_move(struct send_ctx *sctx,
3652 struct recorded_ref *parent_ref,
3653 const bool is_orphan)
3656 u64 ino = parent_ref->dir;
3657 u64 ino_gen = parent_ref->dir_gen;
3658 u64 parent_ino_before, parent_ino_after;
3659 struct fs_path *path_before = NULL;
3660 struct fs_path *path_after = NULL;
3663 path_after = fs_path_alloc();
3664 path_before = fs_path_alloc();
3665 if (!path_after || !path_before) {
3671 * Our current directory inode may not yet be renamed/moved because some
3672 * ancestor (immediate or not) has to be renamed/moved first. So find if
3673 * such ancestor exists and make sure our own rename/move happens after
3674 * that ancestor is processed to avoid path build infinite loops (done
3675 * at get_cur_path()).
3677 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3678 u64 parent_ino_after_gen;
3680 if (is_waiting_for_move(sctx, ino)) {
3682 * If the current inode is an ancestor of ino in the
3683 * parent root, we need to delay the rename of the
3684 * current inode, otherwise don't delayed the rename
3685 * because we can end up with a circular dependency
3686 * of renames, resulting in some directories never
3687 * getting the respective rename operations issued in
3688 * the send stream or getting into infinite path build
3691 ret = is_ancestor(sctx->parent_root,
3692 sctx->cur_ino, sctx->cur_inode_gen,
3698 fs_path_reset(path_before);
3699 fs_path_reset(path_after);
3701 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3702 &parent_ino_after_gen, path_after);
3705 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3707 if (ret < 0 && ret != -ENOENT) {
3709 } else if (ret == -ENOENT) {
3714 len1 = fs_path_len(path_before);
3715 len2 = fs_path_len(path_after);
3716 if (ino > sctx->cur_ino &&
3717 (parent_ino_before != parent_ino_after || len1 != len2 ||
3718 memcmp(path_before->start, path_after->start, len1))) {
3721 ret = get_inode_info(sctx->parent_root, ino, NULL,
3722 &parent_ino_gen, NULL, NULL, NULL,
3726 if (ino_gen == parent_ino_gen) {
3731 ino = parent_ino_after;
3732 ino_gen = parent_ino_after_gen;
3736 fs_path_free(path_before);
3737 fs_path_free(path_after);
3740 ret = add_pending_dir_move(sctx,
3742 sctx->cur_inode_gen,
3745 &sctx->deleted_refs,
3754 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3757 struct fs_path *new_path;
3760 * Our reference's name member points to its full_path member string, so
3761 * we use here a new path.
3763 new_path = fs_path_alloc();
3767 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3769 fs_path_free(new_path);
3772 ret = fs_path_add(new_path, ref->name, ref->name_len);
3774 fs_path_free(new_path);
3778 fs_path_free(ref->full_path);
3779 set_ref_path(ref, new_path);
3785 * This does all the move/link/unlink/rmdir magic.
3787 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3791 struct recorded_ref *cur;
3792 struct recorded_ref *cur2;
3793 struct list_head check_dirs;
3794 struct fs_path *valid_path = NULL;
3798 int did_overwrite = 0;
3800 u64 last_dir_ino_rm = 0;
3801 bool can_rename = true;
3802 bool orphanized_dir = false;
3803 bool orphanized_ancestor = false;
3805 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3808 * This should never happen as the root dir always has the same ref
3809 * which is always '..'
3811 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3812 INIT_LIST_HEAD(&check_dirs);
3814 valid_path = fs_path_alloc();
3821 * First, check if the first ref of the current inode was overwritten
3822 * before. If yes, we know that the current inode was already orphanized
3823 * and thus use the orphan name. If not, we can use get_cur_path to
3824 * get the path of the first ref as it would like while receiving at
3825 * this point in time.
3826 * New inodes are always orphan at the beginning, so force to use the
3827 * orphan name in this case.
3828 * The first ref is stored in valid_path and will be updated if it
3829 * gets moved around.
3831 if (!sctx->cur_inode_new) {
3832 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3833 sctx->cur_inode_gen);
3839 if (sctx->cur_inode_new || did_overwrite) {
3840 ret = gen_unique_name(sctx, sctx->cur_ino,
3841 sctx->cur_inode_gen, valid_path);
3846 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3852 list_for_each_entry(cur, &sctx->new_refs, list) {
3854 * We may have refs where the parent directory does not exist
3855 * yet. This happens if the parent directories inum is higher
3856 * the the current inum. To handle this case, we create the
3857 * parent directory out of order. But we need to check if this
3858 * did already happen before due to other refs in the same dir.
3860 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3863 if (ret == inode_state_will_create) {
3866 * First check if any of the current inodes refs did
3867 * already create the dir.
3869 list_for_each_entry(cur2, &sctx->new_refs, list) {
3872 if (cur2->dir == cur->dir) {
3879 * If that did not happen, check if a previous inode
3880 * did already create the dir.
3883 ret = did_create_dir(sctx, cur->dir);
3887 ret = send_create_inode(sctx, cur->dir);
3894 * Check if this new ref would overwrite the first ref of
3895 * another unprocessed inode. If yes, orphanize the
3896 * overwritten inode. If we find an overwritten ref that is
3897 * not the first ref, simply unlink it.
3899 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3900 cur->name, cur->name_len,
3901 &ow_inode, &ow_gen, &ow_mode);
3905 ret = is_first_ref(sctx->parent_root,
3906 ow_inode, cur->dir, cur->name,
3911 struct name_cache_entry *nce;
3912 struct waiting_dir_move *wdm;
3914 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3918 if (S_ISDIR(ow_mode))
3919 orphanized_dir = true;
3922 * If ow_inode has its rename operation delayed
3923 * make sure that its orphanized name is used in
3924 * the source path when performing its rename
3927 if (is_waiting_for_move(sctx, ow_inode)) {
3928 wdm = get_waiting_dir_move(sctx,
3931 wdm->orphanized = true;
3935 * Make sure we clear our orphanized inode's
3936 * name from the name cache. This is because the
3937 * inode ow_inode might be an ancestor of some
3938 * other inode that will be orphanized as well
3939 * later and has an inode number greater than
3940 * sctx->send_progress. We need to prevent
3941 * future name lookups from using the old name
3942 * and get instead the orphan name.
3944 nce = name_cache_search(sctx, ow_inode, ow_gen);
3946 name_cache_delete(sctx, nce);
3951 * ow_inode might currently be an ancestor of
3952 * cur_ino, therefore compute valid_path (the
3953 * current path of cur_ino) again because it
3954 * might contain the pre-orphanization name of
3955 * ow_inode, which is no longer valid.
3957 ret = is_ancestor(sctx->parent_root,
3959 sctx->cur_ino, NULL);
3961 orphanized_ancestor = true;
3962 fs_path_reset(valid_path);
3963 ret = get_cur_path(sctx, sctx->cur_ino,
3964 sctx->cur_inode_gen,
3970 ret = send_unlink(sctx, cur->full_path);
3976 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3977 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3986 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3988 ret = wait_for_parent_move(sctx, cur, is_orphan);
3998 * link/move the ref to the new place. If we have an orphan
3999 * inode, move it and update valid_path. If not, link or move
4000 * it depending on the inode mode.
4002 if (is_orphan && can_rename) {
4003 ret = send_rename(sctx, valid_path, cur->full_path);
4007 ret = fs_path_copy(valid_path, cur->full_path);
4010 } else if (can_rename) {
4011 if (S_ISDIR(sctx->cur_inode_mode)) {
4013 * Dirs can't be linked, so move it. For moved
4014 * dirs, we always have one new and one deleted
4015 * ref. The deleted ref is ignored later.
4017 ret = send_rename(sctx, valid_path,
4020 ret = fs_path_copy(valid_path,
4026 * We might have previously orphanized an inode
4027 * which is an ancestor of our current inode,
4028 * so our reference's full path, which was
4029 * computed before any such orphanizations, must
4032 if (orphanized_dir) {
4033 ret = update_ref_path(sctx, cur);
4037 ret = send_link(sctx, cur->full_path,
4043 ret = dup_ref(cur, &check_dirs);
4048 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4050 * Check if we can already rmdir the directory. If not,
4051 * orphanize it. For every dir item inside that gets deleted
4052 * later, we do this check again and rmdir it then if possible.
4053 * See the use of check_dirs for more details.
4055 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4060 ret = send_rmdir(sctx, valid_path);
4063 } else if (!is_orphan) {
4064 ret = orphanize_inode(sctx, sctx->cur_ino,
4065 sctx->cur_inode_gen, valid_path);
4071 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4072 ret = dup_ref(cur, &check_dirs);
4076 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4077 !list_empty(&sctx->deleted_refs)) {
4079 * We have a moved dir. Add the old parent to check_dirs
4081 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4083 ret = dup_ref(cur, &check_dirs);
4086 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4088 * We have a non dir inode. Go through all deleted refs and
4089 * unlink them if they were not already overwritten by other
4092 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4094 sctx->cur_ino, sctx->cur_inode_gen,
4095 cur->name, cur->name_len);
4100 * If we orphanized any ancestor before, we need
4101 * to recompute the full path for deleted names,
4102 * since any such path was computed before we
4103 * processed any references and orphanized any
4106 if (orphanized_ancestor) {
4107 ret = update_ref_path(sctx, cur);
4111 ret = send_unlink(sctx, cur->full_path);
4115 ret = dup_ref(cur, &check_dirs);
4120 * If the inode is still orphan, unlink the orphan. This may
4121 * happen when a previous inode did overwrite the first ref
4122 * of this inode and no new refs were added for the current
4123 * inode. Unlinking does not mean that the inode is deleted in
4124 * all cases. There may still be links to this inode in other
4128 ret = send_unlink(sctx, valid_path);
4135 * We did collect all parent dirs where cur_inode was once located. We
4136 * now go through all these dirs and check if they are pending for
4137 * deletion and if it's finally possible to perform the rmdir now.
4138 * We also update the inode stats of the parent dirs here.
4140 list_for_each_entry(cur, &check_dirs, list) {
4142 * In case we had refs into dirs that were not processed yet,
4143 * we don't need to do the utime and rmdir logic for these dirs.
4144 * The dir will be processed later.
4146 if (cur->dir > sctx->cur_ino)
4149 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4153 if (ret == inode_state_did_create ||
4154 ret == inode_state_no_change) {
4155 /* TODO delayed utimes */
4156 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4159 } else if (ret == inode_state_did_delete &&
4160 cur->dir != last_dir_ino_rm) {
4161 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4166 ret = get_cur_path(sctx, cur->dir,
4167 cur->dir_gen, valid_path);
4170 ret = send_rmdir(sctx, valid_path);
4173 last_dir_ino_rm = cur->dir;
4181 __free_recorded_refs(&check_dirs);
4182 free_recorded_refs(sctx);
4183 fs_path_free(valid_path);
4187 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4188 void *ctx, struct list_head *refs)
4191 struct send_ctx *sctx = ctx;
4195 p = fs_path_alloc();
4199 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4204 ret = get_cur_path(sctx, dir, gen, p);
4207 ret = fs_path_add_path(p, name);
4211 ret = __record_ref(refs, dir, gen, p);
4219 static int __record_new_ref(int num, u64 dir, int index,
4220 struct fs_path *name,
4223 struct send_ctx *sctx = ctx;
4224 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4228 static int __record_deleted_ref(int num, u64 dir, int index,
4229 struct fs_path *name,
4232 struct send_ctx *sctx = ctx;
4233 return record_ref(sctx->parent_root, dir, name, ctx,
4234 &sctx->deleted_refs);
4237 static int record_new_ref(struct send_ctx *sctx)
4241 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4242 sctx->cmp_key, 0, __record_new_ref, sctx);
4251 static int record_deleted_ref(struct send_ctx *sctx)
4255 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4256 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4265 struct find_ref_ctx {
4268 struct btrfs_root *root;
4269 struct fs_path *name;
4273 static int __find_iref(int num, u64 dir, int index,
4274 struct fs_path *name,
4277 struct find_ref_ctx *ctx = ctx_;
4281 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4282 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4284 * To avoid doing extra lookups we'll only do this if everything
4287 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4291 if (dir_gen != ctx->dir_gen)
4293 ctx->found_idx = num;
4299 static int find_iref(struct btrfs_root *root,
4300 struct btrfs_path *path,
4301 struct btrfs_key *key,
4302 u64 dir, u64 dir_gen, struct fs_path *name)
4305 struct find_ref_ctx ctx;
4309 ctx.dir_gen = dir_gen;
4313 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4317 if (ctx.found_idx == -1)
4320 return ctx.found_idx;
4323 static int __record_changed_new_ref(int num, u64 dir, int index,
4324 struct fs_path *name,
4329 struct send_ctx *sctx = ctx;
4331 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4336 ret = find_iref(sctx->parent_root, sctx->right_path,
4337 sctx->cmp_key, dir, dir_gen, name);
4339 ret = __record_new_ref(num, dir, index, name, sctx);
4346 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4347 struct fs_path *name,
4352 struct send_ctx *sctx = ctx;
4354 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4359 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4360 dir, dir_gen, name);
4362 ret = __record_deleted_ref(num, dir, index, name, sctx);
4369 static int record_changed_ref(struct send_ctx *sctx)
4373 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4374 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4377 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4378 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4388 * Record and process all refs at once. Needed when an inode changes the
4389 * generation number, which means that it was deleted and recreated.
4391 static int process_all_refs(struct send_ctx *sctx,
4392 enum btrfs_compare_tree_result cmd)
4395 struct btrfs_root *root;
4396 struct btrfs_path *path;
4397 struct btrfs_key key;
4398 struct btrfs_key found_key;
4399 struct extent_buffer *eb;
4401 iterate_inode_ref_t cb;
4402 int pending_move = 0;
4404 path = alloc_path_for_send();
4408 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4409 root = sctx->send_root;
4410 cb = __record_new_ref;
4411 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4412 root = sctx->parent_root;
4413 cb = __record_deleted_ref;
4415 btrfs_err(sctx->send_root->fs_info,
4416 "Wrong command %d in process_all_refs", cmd);
4421 key.objectid = sctx->cmp_key->objectid;
4422 key.type = BTRFS_INODE_REF_KEY;
4424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4429 eb = path->nodes[0];
4430 slot = path->slots[0];
4431 if (slot >= btrfs_header_nritems(eb)) {
4432 ret = btrfs_next_leaf(root, path);
4440 btrfs_item_key_to_cpu(eb, &found_key, slot);
4442 if (found_key.objectid != key.objectid ||
4443 (found_key.type != BTRFS_INODE_REF_KEY &&
4444 found_key.type != BTRFS_INODE_EXTREF_KEY))
4447 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4453 btrfs_release_path(path);
4456 * We don't actually care about pending_move as we are simply
4457 * re-creating this inode and will be rename'ing it into place once we
4458 * rename the parent directory.
4460 ret = process_recorded_refs(sctx, &pending_move);
4462 btrfs_free_path(path);
4466 static int send_set_xattr(struct send_ctx *sctx,
4467 struct fs_path *path,
4468 const char *name, int name_len,
4469 const char *data, int data_len)
4473 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4477 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4478 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4479 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4481 ret = send_cmd(sctx);
4488 static int send_remove_xattr(struct send_ctx *sctx,
4489 struct fs_path *path,
4490 const char *name, int name_len)
4494 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4498 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4501 ret = send_cmd(sctx);
4508 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4509 const char *name, int name_len,
4510 const char *data, int data_len,
4514 struct send_ctx *sctx = ctx;
4516 struct posix_acl_xattr_header dummy_acl;
4518 p = fs_path_alloc();
4523 * This hack is needed because empty acls are stored as zero byte
4524 * data in xattrs. Problem with that is, that receiving these zero byte
4525 * acls will fail later. To fix this, we send a dummy acl list that
4526 * only contains the version number and no entries.
4528 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4529 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4530 if (data_len == 0) {
4531 dummy_acl.a_version =
4532 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4533 data = (char *)&dummy_acl;
4534 data_len = sizeof(dummy_acl);
4538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4542 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4549 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4550 const char *name, int name_len,
4551 const char *data, int data_len,
4555 struct send_ctx *sctx = ctx;
4558 p = fs_path_alloc();
4562 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4566 ret = send_remove_xattr(sctx, p, name, name_len);
4573 static int process_new_xattr(struct send_ctx *sctx)
4577 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4578 __process_new_xattr, sctx);
4583 static int process_deleted_xattr(struct send_ctx *sctx)
4585 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4586 __process_deleted_xattr, sctx);
4589 struct find_xattr_ctx {
4597 static int __find_xattr(int num, struct btrfs_key *di_key,
4598 const char *name, int name_len,
4599 const char *data, int data_len,
4600 u8 type, void *vctx)
4602 struct find_xattr_ctx *ctx = vctx;
4604 if (name_len == ctx->name_len &&
4605 strncmp(name, ctx->name, name_len) == 0) {
4606 ctx->found_idx = num;
4607 ctx->found_data_len = data_len;
4608 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4609 if (!ctx->found_data)
4616 static int find_xattr(struct btrfs_root *root,
4617 struct btrfs_path *path,
4618 struct btrfs_key *key,
4619 const char *name, int name_len,
4620 char **data, int *data_len)
4623 struct find_xattr_ctx ctx;
4626 ctx.name_len = name_len;
4628 ctx.found_data = NULL;
4629 ctx.found_data_len = 0;
4631 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4635 if (ctx.found_idx == -1)
4638 *data = ctx.found_data;
4639 *data_len = ctx.found_data_len;
4641 kfree(ctx.found_data);
4643 return ctx.found_idx;
4647 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4648 const char *name, int name_len,
4649 const char *data, int data_len,
4653 struct send_ctx *sctx = ctx;
4654 char *found_data = NULL;
4655 int found_data_len = 0;
4657 ret = find_xattr(sctx->parent_root, sctx->right_path,
4658 sctx->cmp_key, name, name_len, &found_data,
4660 if (ret == -ENOENT) {
4661 ret = __process_new_xattr(num, di_key, name, name_len, data,
4662 data_len, type, ctx);
4663 } else if (ret >= 0) {
4664 if (data_len != found_data_len ||
4665 memcmp(data, found_data, data_len)) {
4666 ret = __process_new_xattr(num, di_key, name, name_len,
4667 data, data_len, type, ctx);
4677 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4678 const char *name, int name_len,
4679 const char *data, int data_len,
4683 struct send_ctx *sctx = ctx;
4685 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4686 name, name_len, NULL, NULL);
4688 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4689 data_len, type, ctx);
4696 static int process_changed_xattr(struct send_ctx *sctx)
4700 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4701 __process_changed_new_xattr, sctx);
4704 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4705 __process_changed_deleted_xattr, sctx);
4711 static int process_all_new_xattrs(struct send_ctx *sctx)
4714 struct btrfs_root *root;
4715 struct btrfs_path *path;
4716 struct btrfs_key key;
4717 struct btrfs_key found_key;
4718 struct extent_buffer *eb;
4721 path = alloc_path_for_send();
4725 root = sctx->send_root;
4727 key.objectid = sctx->cmp_key->objectid;
4728 key.type = BTRFS_XATTR_ITEM_KEY;
4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4735 eb = path->nodes[0];
4736 slot = path->slots[0];
4737 if (slot >= btrfs_header_nritems(eb)) {
4738 ret = btrfs_next_leaf(root, path);
4741 } else if (ret > 0) {
4748 btrfs_item_key_to_cpu(eb, &found_key, slot);
4749 if (found_key.objectid != key.objectid ||
4750 found_key.type != key.type) {
4755 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4763 btrfs_free_path(path);
4767 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4769 struct btrfs_root *root = sctx->send_root;
4770 struct btrfs_fs_info *fs_info = root->fs_info;
4771 struct inode *inode;
4774 struct btrfs_key key;
4775 pgoff_t index = offset >> PAGE_SHIFT;
4777 unsigned pg_offset = offset & ~PAGE_MASK;
4780 key.objectid = sctx->cur_ino;
4781 key.type = BTRFS_INODE_ITEM_KEY;
4784 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4786 return PTR_ERR(inode);
4788 if (offset + len > i_size_read(inode)) {
4789 if (offset > i_size_read(inode))
4792 len = offset - i_size_read(inode);
4797 last_index = (offset + len - 1) >> PAGE_SHIFT;
4799 /* initial readahead */
4800 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4801 file_ra_state_init(&sctx->ra, inode->i_mapping);
4803 while (index <= last_index) {
4804 unsigned cur_len = min_t(unsigned, len,
4805 PAGE_SIZE - pg_offset);
4807 page = find_lock_page(inode->i_mapping, index);
4809 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4810 NULL, index, last_index + 1 - index);
4812 page = find_or_create_page(inode->i_mapping, index,
4820 if (PageReadahead(page)) {
4821 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4822 NULL, page, index, last_index + 1 - index);
4825 if (!PageUptodate(page)) {
4826 btrfs_readpage(NULL, page);
4828 if (!PageUptodate(page)) {
4837 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4852 * Read some bytes from the current inode/file and send a write command to
4855 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4857 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4860 ssize_t num_read = 0;
4862 p = fs_path_alloc();
4866 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4868 num_read = fill_read_buf(sctx, offset, len);
4869 if (num_read <= 0) {
4875 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4879 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4884 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4885 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4887 ret = send_cmd(sctx);
4898 * Send a clone command to user space.
4900 static int send_clone(struct send_ctx *sctx,
4901 u64 offset, u32 len,
4902 struct clone_root *clone_root)
4908 btrfs_debug(sctx->send_root->fs_info,
4909 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4910 offset, len, clone_root->root->objectid, clone_root->ino,
4911 clone_root->offset);
4913 p = fs_path_alloc();
4917 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4921 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4925 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4929 if (clone_root->root == sctx->send_root) {
4930 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4931 &gen, NULL, NULL, NULL, NULL);
4934 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4936 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4942 * If the parent we're using has a received_uuid set then use that as
4943 * our clone source as that is what we will look for when doing a
4946 * This covers the case that we create a snapshot off of a received
4947 * subvolume and then use that as the parent and try to receive on a
4950 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4951 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4952 clone_root->root->root_item.received_uuid);
4954 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4955 clone_root->root->root_item.uuid);
4956 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4957 le64_to_cpu(clone_root->root->root_item.ctransid));
4958 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4959 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4960 clone_root->offset);
4962 ret = send_cmd(sctx);
4971 * Send an update extent command to user space.
4973 static int send_update_extent(struct send_ctx *sctx,
4974 u64 offset, u32 len)
4979 p = fs_path_alloc();
4983 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4987 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4991 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4992 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4993 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4995 ret = send_cmd(sctx);
5003 static int send_hole(struct send_ctx *sctx, u64 end)
5005 struct fs_path *p = NULL;
5006 u64 offset = sctx->cur_inode_last_extent;
5011 * A hole that starts at EOF or beyond it. Since we do not yet support
5012 * fallocate (for extent preallocation and hole punching), sending a
5013 * write of zeroes starting at EOF or beyond would later require issuing
5014 * a truncate operation which would undo the write and achieve nothing.
5016 if (offset >= sctx->cur_inode_size)
5019 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5020 return send_update_extent(sctx, offset, end - offset);
5022 p = fs_path_alloc();
5025 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5027 goto tlv_put_failure;
5028 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5029 while (offset < end) {
5030 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5032 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5035 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5036 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5037 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5038 ret = send_cmd(sctx);
5043 sctx->cur_inode_next_write_offset = offset;
5049 static int send_extent_data(struct send_ctx *sctx,
5055 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 return send_update_extent(sctx, offset, len);
5058 while (sent < len) {
5059 u64 size = len - sent;
5062 if (size > BTRFS_SEND_READ_SIZE)
5063 size = BTRFS_SEND_READ_SIZE;
5064 ret = send_write(sctx, offset + sent, size);
5074 static int clone_range(struct send_ctx *sctx,
5075 struct clone_root *clone_root,
5076 const u64 disk_byte,
5081 struct btrfs_path *path;
5082 struct btrfs_key key;
5086 * Prevent cloning from a zero offset with a length matching the sector
5087 * size because in some scenarios this will make the receiver fail.
5089 * For example, if in the source filesystem the extent at offset 0
5090 * has a length of sectorsize and it was written using direct IO, then
5091 * it can never be an inline extent (even if compression is enabled).
5092 * Then this extent can be cloned in the original filesystem to a non
5093 * zero file offset, but it may not be possible to clone in the
5094 * destination filesystem because it can be inlined due to compression
5095 * on the destination filesystem (as the receiver's write operations are
5096 * always done using buffered IO). The same happens when the original
5097 * filesystem does not have compression enabled but the destination
5100 if (clone_root->offset == 0 &&
5101 len == sctx->send_root->fs_info->sectorsize)
5102 return send_extent_data(sctx, offset, len);
5104 path = alloc_path_for_send();
5109 * We can't send a clone operation for the entire range if we find
5110 * extent items in the respective range in the source file that
5111 * refer to different extents or if we find holes.
5112 * So check for that and do a mix of clone and regular write/copy
5113 * operations if needed.
5117 * mkfs.btrfs -f /dev/sda
5118 * mount /dev/sda /mnt
5119 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5120 * cp --reflink=always /mnt/foo /mnt/bar
5121 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5122 * btrfs subvolume snapshot -r /mnt /mnt/snap
5124 * If when we send the snapshot and we are processing file bar (which
5125 * has a higher inode number than foo) we blindly send a clone operation
5126 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5127 * a file bar that matches the content of file foo - iow, doesn't match
5128 * the content from bar in the original filesystem.
5130 key.objectid = clone_root->ino;
5131 key.type = BTRFS_EXTENT_DATA_KEY;
5132 key.offset = clone_root->offset;
5133 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5136 if (ret > 0 && path->slots[0] > 0) {
5137 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5138 if (key.objectid == clone_root->ino &&
5139 key.type == BTRFS_EXTENT_DATA_KEY)
5144 struct extent_buffer *leaf = path->nodes[0];
5145 int slot = path->slots[0];
5146 struct btrfs_file_extent_item *ei;
5151 if (slot >= btrfs_header_nritems(leaf)) {
5152 ret = btrfs_next_leaf(clone_root->root, path);
5160 btrfs_item_key_to_cpu(leaf, &key, slot);
5163 * We might have an implicit trailing hole (NO_HOLES feature
5164 * enabled). We deal with it after leaving this loop.
5166 if (key.objectid != clone_root->ino ||
5167 key.type != BTRFS_EXTENT_DATA_KEY)
5170 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5171 type = btrfs_file_extent_type(leaf, ei);
5172 if (type == BTRFS_FILE_EXTENT_INLINE) {
5173 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5174 ext_len = PAGE_ALIGN(ext_len);
5176 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5179 if (key.offset + ext_len <= clone_root->offset)
5182 if (key.offset > clone_root->offset) {
5183 /* Implicit hole, NO_HOLES feature enabled. */
5184 u64 hole_len = key.offset - clone_root->offset;
5188 ret = send_extent_data(sctx, offset, hole_len);
5196 clone_root->offset += hole_len;
5197 data_offset += hole_len;
5200 if (key.offset >= clone_root->offset + len)
5203 clone_len = min_t(u64, ext_len, len);
5205 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5206 btrfs_file_extent_offset(leaf, ei) == data_offset)
5207 ret = send_clone(sctx, offset, clone_len, clone_root);
5209 ret = send_extent_data(sctx, offset, clone_len);
5217 offset += clone_len;
5218 clone_root->offset += clone_len;
5219 data_offset += clone_len;
5225 ret = send_extent_data(sctx, offset, len);
5229 btrfs_free_path(path);
5233 static int send_write_or_clone(struct send_ctx *sctx,
5234 struct btrfs_path *path,
5235 struct btrfs_key *key,
5236 struct clone_root *clone_root)
5239 struct btrfs_file_extent_item *ei;
5240 u64 offset = key->offset;
5243 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5245 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5246 struct btrfs_file_extent_item);
5247 type = btrfs_file_extent_type(path->nodes[0], ei);
5248 if (type == BTRFS_FILE_EXTENT_INLINE) {
5249 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5251 * it is possible the inline item won't cover the whole page,
5252 * but there may be items after this page. Make
5253 * sure to send the whole thing
5255 len = PAGE_ALIGN(len);
5257 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5260 if (offset >= sctx->cur_inode_size) {
5264 if (offset + len > sctx->cur_inode_size)
5265 len = sctx->cur_inode_size - offset;
5271 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5275 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5276 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5277 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5280 ret = send_extent_data(sctx, offset, len);
5282 sctx->cur_inode_next_write_offset = offset + len;
5287 static int is_extent_unchanged(struct send_ctx *sctx,
5288 struct btrfs_path *left_path,
5289 struct btrfs_key *ekey)
5292 struct btrfs_key key;
5293 struct btrfs_path *path = NULL;
5294 struct extent_buffer *eb;
5296 struct btrfs_key found_key;
5297 struct btrfs_file_extent_item *ei;
5302 u64 left_offset_fixed;
5310 path = alloc_path_for_send();
5314 eb = left_path->nodes[0];
5315 slot = left_path->slots[0];
5316 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5317 left_type = btrfs_file_extent_type(eb, ei);
5319 if (left_type != BTRFS_FILE_EXTENT_REG) {
5323 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5324 left_len = btrfs_file_extent_num_bytes(eb, ei);
5325 left_offset = btrfs_file_extent_offset(eb, ei);
5326 left_gen = btrfs_file_extent_generation(eb, ei);
5329 * Following comments will refer to these graphics. L is the left
5330 * extents which we are checking at the moment. 1-8 are the right
5331 * extents that we iterate.
5334 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5337 * |--1--|-2b-|...(same as above)
5339 * Alternative situation. Happens on files where extents got split.
5341 * |-----------7-----------|-6-|
5343 * Alternative situation. Happens on files which got larger.
5346 * Nothing follows after 8.
5349 key.objectid = ekey->objectid;
5350 key.type = BTRFS_EXTENT_DATA_KEY;
5351 key.offset = ekey->offset;
5352 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5361 * Handle special case where the right side has no extents at all.
5363 eb = path->nodes[0];
5364 slot = path->slots[0];
5365 btrfs_item_key_to_cpu(eb, &found_key, slot);
5366 if (found_key.objectid != key.objectid ||
5367 found_key.type != key.type) {
5368 /* If we're a hole then just pretend nothing changed */
5369 ret = (left_disknr) ? 0 : 1;
5374 * We're now on 2a, 2b or 7.
5377 while (key.offset < ekey->offset + left_len) {
5378 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5379 right_type = btrfs_file_extent_type(eb, ei);
5380 if (right_type != BTRFS_FILE_EXTENT_REG &&
5381 right_type != BTRFS_FILE_EXTENT_INLINE) {
5386 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5387 right_len = btrfs_file_extent_ram_bytes(eb, ei);
5388 right_len = PAGE_ALIGN(right_len);
5390 right_len = btrfs_file_extent_num_bytes(eb, ei);
5394 * Are we at extent 8? If yes, we know the extent is changed.
5395 * This may only happen on the first iteration.
5397 if (found_key.offset + right_len <= ekey->offset) {
5398 /* If we're a hole just pretend nothing changed */
5399 ret = (left_disknr) ? 0 : 1;
5404 * We just wanted to see if when we have an inline extent, what
5405 * follows it is a regular extent (wanted to check the above
5406 * condition for inline extents too). This should normally not
5407 * happen but it's possible for example when we have an inline
5408 * compressed extent representing data with a size matching
5409 * the page size (currently the same as sector size).
5411 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5416 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5417 right_offset = btrfs_file_extent_offset(eb, ei);
5418 right_gen = btrfs_file_extent_generation(eb, ei);
5420 left_offset_fixed = left_offset;
5421 if (key.offset < ekey->offset) {
5422 /* Fix the right offset for 2a and 7. */
5423 right_offset += ekey->offset - key.offset;
5425 /* Fix the left offset for all behind 2a and 2b */
5426 left_offset_fixed += key.offset - ekey->offset;
5430 * Check if we have the same extent.
5432 if (left_disknr != right_disknr ||
5433 left_offset_fixed != right_offset ||
5434 left_gen != right_gen) {
5440 * Go to the next extent.
5442 ret = btrfs_next_item(sctx->parent_root, path);
5446 eb = path->nodes[0];
5447 slot = path->slots[0];
5448 btrfs_item_key_to_cpu(eb, &found_key, slot);
5450 if (ret || found_key.objectid != key.objectid ||
5451 found_key.type != key.type) {
5452 key.offset += right_len;
5455 if (found_key.offset != key.offset + right_len) {
5463 * We're now behind the left extent (treat as unchanged) or at the end
5464 * of the right side (treat as changed).
5466 if (key.offset >= ekey->offset + left_len)
5473 btrfs_free_path(path);
5477 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5479 struct btrfs_path *path;
5480 struct btrfs_root *root = sctx->send_root;
5481 struct btrfs_file_extent_item *fi;
5482 struct btrfs_key key;
5487 path = alloc_path_for_send();
5491 sctx->cur_inode_last_extent = 0;
5493 key.objectid = sctx->cur_ino;
5494 key.type = BTRFS_EXTENT_DATA_KEY;
5495 key.offset = offset;
5496 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5500 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5501 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5504 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5505 struct btrfs_file_extent_item);
5506 type = btrfs_file_extent_type(path->nodes[0], fi);
5507 if (type == BTRFS_FILE_EXTENT_INLINE) {
5508 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5509 extent_end = ALIGN(key.offset + size,
5510 sctx->send_root->fs_info->sectorsize);
5512 extent_end = key.offset +
5513 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5515 sctx->cur_inode_last_extent = extent_end;
5517 btrfs_free_path(path);
5521 static int range_is_hole_in_parent(struct send_ctx *sctx,
5525 struct btrfs_path *path;
5526 struct btrfs_key key;
5527 struct btrfs_root *root = sctx->parent_root;
5528 u64 search_start = start;
5531 path = alloc_path_for_send();
5535 key.objectid = sctx->cur_ino;
5536 key.type = BTRFS_EXTENT_DATA_KEY;
5537 key.offset = search_start;
5538 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5541 if (ret > 0 && path->slots[0] > 0)
5544 while (search_start < end) {
5545 struct extent_buffer *leaf = path->nodes[0];
5546 int slot = path->slots[0];
5547 struct btrfs_file_extent_item *fi;
5550 if (slot >= btrfs_header_nritems(leaf)) {
5551 ret = btrfs_next_leaf(root, path);
5559 btrfs_item_key_to_cpu(leaf, &key, slot);
5560 if (key.objectid < sctx->cur_ino ||
5561 key.type < BTRFS_EXTENT_DATA_KEY)
5563 if (key.objectid > sctx->cur_ino ||
5564 key.type > BTRFS_EXTENT_DATA_KEY ||
5568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5569 if (btrfs_file_extent_type(leaf, fi) ==
5570 BTRFS_FILE_EXTENT_INLINE) {
5571 u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5573 extent_end = ALIGN(key.offset + size,
5574 root->fs_info->sectorsize);
5576 extent_end = key.offset +
5577 btrfs_file_extent_num_bytes(leaf, fi);
5579 if (extent_end <= start)
5581 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5582 search_start = extent_end;
5592 btrfs_free_path(path);
5596 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5597 struct btrfs_key *key)
5599 struct btrfs_file_extent_item *fi;
5604 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5607 if (sctx->cur_inode_last_extent == (u64)-1) {
5608 ret = get_last_extent(sctx, key->offset - 1);
5613 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5614 struct btrfs_file_extent_item);
5615 type = btrfs_file_extent_type(path->nodes[0], fi);
5616 if (type == BTRFS_FILE_EXTENT_INLINE) {
5617 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5618 extent_end = ALIGN(key->offset + size,
5619 sctx->send_root->fs_info->sectorsize);
5621 extent_end = key->offset +
5622 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5625 if (path->slots[0] == 0 &&
5626 sctx->cur_inode_last_extent < key->offset) {
5628 * We might have skipped entire leafs that contained only
5629 * file extent items for our current inode. These leafs have
5630 * a generation number smaller (older) than the one in the
5631 * current leaf and the leaf our last extent came from, and
5632 * are located between these 2 leafs.
5634 ret = get_last_extent(sctx, key->offset - 1);
5639 if (sctx->cur_inode_last_extent < key->offset) {
5640 ret = range_is_hole_in_parent(sctx,
5641 sctx->cur_inode_last_extent,
5646 ret = send_hole(sctx, key->offset);
5650 sctx->cur_inode_last_extent = extent_end;
5654 static int process_extent(struct send_ctx *sctx,
5655 struct btrfs_path *path,
5656 struct btrfs_key *key)
5658 struct clone_root *found_clone = NULL;
5661 if (S_ISLNK(sctx->cur_inode_mode))
5664 if (sctx->parent_root && !sctx->cur_inode_new) {
5665 ret = is_extent_unchanged(sctx, path, key);
5673 struct btrfs_file_extent_item *ei;
5676 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5677 struct btrfs_file_extent_item);
5678 type = btrfs_file_extent_type(path->nodes[0], ei);
5679 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5680 type == BTRFS_FILE_EXTENT_REG) {
5682 * The send spec does not have a prealloc command yet,
5683 * so just leave a hole for prealloc'ed extents until
5684 * we have enough commands queued up to justify rev'ing
5687 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5692 /* Have a hole, just skip it. */
5693 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5700 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5701 sctx->cur_inode_size, &found_clone);
5702 if (ret != -ENOENT && ret < 0)
5705 ret = send_write_or_clone(sctx, path, key, found_clone);
5709 ret = maybe_send_hole(sctx, path, key);
5714 static int process_all_extents(struct send_ctx *sctx)
5717 struct btrfs_root *root;
5718 struct btrfs_path *path;
5719 struct btrfs_key key;
5720 struct btrfs_key found_key;
5721 struct extent_buffer *eb;
5724 root = sctx->send_root;
5725 path = alloc_path_for_send();
5729 key.objectid = sctx->cmp_key->objectid;
5730 key.type = BTRFS_EXTENT_DATA_KEY;
5732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 eb = path->nodes[0];
5738 slot = path->slots[0];
5740 if (slot >= btrfs_header_nritems(eb)) {
5741 ret = btrfs_next_leaf(root, path);
5744 } else if (ret > 0) {
5751 btrfs_item_key_to_cpu(eb, &found_key, slot);
5753 if (found_key.objectid != key.objectid ||
5754 found_key.type != key.type) {
5759 ret = process_extent(sctx, path, &found_key);
5767 btrfs_free_path(path);
5771 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5773 int *refs_processed)
5777 if (sctx->cur_ino == 0)
5779 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5780 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5782 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5785 ret = process_recorded_refs(sctx, pending_move);
5789 *refs_processed = 1;
5794 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5805 int need_truncate = 1;
5806 int pending_move = 0;
5807 int refs_processed = 0;
5809 if (sctx->ignore_cur_inode)
5812 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5818 * We have processed the refs and thus need to advance send_progress.
5819 * Now, calls to get_cur_xxx will take the updated refs of the current
5820 * inode into account.
5822 * On the other hand, if our current inode is a directory and couldn't
5823 * be moved/renamed because its parent was renamed/moved too and it has
5824 * a higher inode number, we can only move/rename our current inode
5825 * after we moved/renamed its parent. Therefore in this case operate on
5826 * the old path (pre move/rename) of our current inode, and the
5827 * move/rename will be performed later.
5829 if (refs_processed && !pending_move)
5830 sctx->send_progress = sctx->cur_ino + 1;
5832 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5834 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5837 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5838 &left_mode, &left_uid, &left_gid, NULL);
5842 if (!sctx->parent_root || sctx->cur_inode_new) {
5844 if (!S_ISLNK(sctx->cur_inode_mode))
5846 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5851 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5852 &old_size, NULL, &right_mode, &right_uid,
5857 if (left_uid != right_uid || left_gid != right_gid)
5859 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5861 if ((old_size == sctx->cur_inode_size) ||
5862 (sctx->cur_inode_size > old_size &&
5863 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5867 if (S_ISREG(sctx->cur_inode_mode)) {
5868 if (need_send_hole(sctx)) {
5869 if (sctx->cur_inode_last_extent == (u64)-1 ||
5870 sctx->cur_inode_last_extent <
5871 sctx->cur_inode_size) {
5872 ret = get_last_extent(sctx, (u64)-1);
5876 if (sctx->cur_inode_last_extent <
5877 sctx->cur_inode_size) {
5878 ret = send_hole(sctx, sctx->cur_inode_size);
5883 if (need_truncate) {
5884 ret = send_truncate(sctx, sctx->cur_ino,
5885 sctx->cur_inode_gen,
5886 sctx->cur_inode_size);
5893 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5894 left_uid, left_gid);
5899 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5906 * If other directory inodes depended on our current directory
5907 * inode's move/rename, now do their move/rename operations.
5909 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5910 ret = apply_children_dir_moves(sctx);
5914 * Need to send that every time, no matter if it actually
5915 * changed between the two trees as we have done changes to
5916 * the inode before. If our inode is a directory and it's
5917 * waiting to be moved/renamed, we will send its utimes when
5918 * it's moved/renamed, therefore we don't need to do it here.
5920 sctx->send_progress = sctx->cur_ino + 1;
5921 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5930 struct parent_paths_ctx {
5931 struct list_head *refs;
5932 struct send_ctx *sctx;
5935 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5938 struct parent_paths_ctx *ppctx = ctx;
5940 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5945 * Issue unlink operations for all paths of the current inode found in the
5948 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5950 LIST_HEAD(deleted_refs);
5951 struct btrfs_path *path;
5952 struct btrfs_key key;
5953 struct parent_paths_ctx ctx;
5956 path = alloc_path_for_send();
5960 key.objectid = sctx->cur_ino;
5961 key.type = BTRFS_INODE_REF_KEY;
5963 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5967 ctx.refs = &deleted_refs;
5971 struct extent_buffer *eb = path->nodes[0];
5972 int slot = path->slots[0];
5974 if (slot >= btrfs_header_nritems(eb)) {
5975 ret = btrfs_next_leaf(sctx->parent_root, path);
5983 btrfs_item_key_to_cpu(eb, &key, slot);
5984 if (key.objectid != sctx->cur_ino)
5986 if (key.type != BTRFS_INODE_REF_KEY &&
5987 key.type != BTRFS_INODE_EXTREF_KEY)
5990 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5991 record_parent_ref, &ctx);
5998 while (!list_empty(&deleted_refs)) {
5999 struct recorded_ref *ref;
6001 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6002 ret = send_unlink(sctx, ref->full_path);
6005 fs_path_free(ref->full_path);
6006 list_del(&ref->list);
6011 btrfs_free_path(path);
6013 __free_recorded_refs(&deleted_refs);
6017 static int changed_inode(struct send_ctx *sctx,
6018 enum btrfs_compare_tree_result result)
6021 struct btrfs_key *key = sctx->cmp_key;
6022 struct btrfs_inode_item *left_ii = NULL;
6023 struct btrfs_inode_item *right_ii = NULL;
6027 sctx->cur_ino = key->objectid;
6028 sctx->cur_inode_new_gen = 0;
6029 sctx->cur_inode_last_extent = (u64)-1;
6030 sctx->cur_inode_next_write_offset = 0;
6031 sctx->ignore_cur_inode = false;
6034 * Set send_progress to current inode. This will tell all get_cur_xxx
6035 * functions that the current inode's refs are not updated yet. Later,
6036 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6038 sctx->send_progress = sctx->cur_ino;
6040 if (result == BTRFS_COMPARE_TREE_NEW ||
6041 result == BTRFS_COMPARE_TREE_CHANGED) {
6042 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6043 sctx->left_path->slots[0],
6044 struct btrfs_inode_item);
6045 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6048 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6049 sctx->right_path->slots[0],
6050 struct btrfs_inode_item);
6051 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6054 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6055 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6056 sctx->right_path->slots[0],
6057 struct btrfs_inode_item);
6059 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6063 * The cur_ino = root dir case is special here. We can't treat
6064 * the inode as deleted+reused because it would generate a
6065 * stream that tries to delete/mkdir the root dir.
6067 if (left_gen != right_gen &&
6068 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6069 sctx->cur_inode_new_gen = 1;
6073 * Normally we do not find inodes with a link count of zero (orphans)
6074 * because the most common case is to create a snapshot and use it
6075 * for a send operation. However other less common use cases involve
6076 * using a subvolume and send it after turning it to RO mode just
6077 * after deleting all hard links of a file while holding an open
6078 * file descriptor against it or turning a RO snapshot into RW mode,
6079 * keep an open file descriptor against a file, delete it and then
6080 * turn the snapshot back to RO mode before using it for a send
6081 * operation. So if we find such cases, ignore the inode and all its
6082 * items completely if it's a new inode, or if it's a changed inode
6083 * make sure all its previous paths (from the parent snapshot) are all
6084 * unlinked and all other the inode items are ignored.
6086 if (result == BTRFS_COMPARE_TREE_NEW ||
6087 result == BTRFS_COMPARE_TREE_CHANGED) {
6090 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6092 sctx->ignore_cur_inode = true;
6093 if (result == BTRFS_COMPARE_TREE_CHANGED)
6094 ret = btrfs_unlink_all_paths(sctx);
6099 if (result == BTRFS_COMPARE_TREE_NEW) {
6100 sctx->cur_inode_gen = left_gen;
6101 sctx->cur_inode_new = 1;
6102 sctx->cur_inode_deleted = 0;
6103 sctx->cur_inode_size = btrfs_inode_size(
6104 sctx->left_path->nodes[0], left_ii);
6105 sctx->cur_inode_mode = btrfs_inode_mode(
6106 sctx->left_path->nodes[0], left_ii);
6107 sctx->cur_inode_rdev = btrfs_inode_rdev(
6108 sctx->left_path->nodes[0], left_ii);
6109 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6110 ret = send_create_inode_if_needed(sctx);
6111 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6112 sctx->cur_inode_gen = right_gen;
6113 sctx->cur_inode_new = 0;
6114 sctx->cur_inode_deleted = 1;
6115 sctx->cur_inode_size = btrfs_inode_size(
6116 sctx->right_path->nodes[0], right_ii);
6117 sctx->cur_inode_mode = btrfs_inode_mode(
6118 sctx->right_path->nodes[0], right_ii);
6119 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6121 * We need to do some special handling in case the inode was
6122 * reported as changed with a changed generation number. This
6123 * means that the original inode was deleted and new inode
6124 * reused the same inum. So we have to treat the old inode as
6125 * deleted and the new one as new.
6127 if (sctx->cur_inode_new_gen) {
6129 * First, process the inode as if it was deleted.
6131 sctx->cur_inode_gen = right_gen;
6132 sctx->cur_inode_new = 0;
6133 sctx->cur_inode_deleted = 1;
6134 sctx->cur_inode_size = btrfs_inode_size(
6135 sctx->right_path->nodes[0], right_ii);
6136 sctx->cur_inode_mode = btrfs_inode_mode(
6137 sctx->right_path->nodes[0], right_ii);
6138 ret = process_all_refs(sctx,
6139 BTRFS_COMPARE_TREE_DELETED);
6144 * Now process the inode as if it was new.
6146 sctx->cur_inode_gen = left_gen;
6147 sctx->cur_inode_new = 1;
6148 sctx->cur_inode_deleted = 0;
6149 sctx->cur_inode_size = btrfs_inode_size(
6150 sctx->left_path->nodes[0], left_ii);
6151 sctx->cur_inode_mode = btrfs_inode_mode(
6152 sctx->left_path->nodes[0], left_ii);
6153 sctx->cur_inode_rdev = btrfs_inode_rdev(
6154 sctx->left_path->nodes[0], left_ii);
6155 ret = send_create_inode_if_needed(sctx);
6159 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6163 * Advance send_progress now as we did not get into
6164 * process_recorded_refs_if_needed in the new_gen case.
6166 sctx->send_progress = sctx->cur_ino + 1;
6169 * Now process all extents and xattrs of the inode as if
6170 * they were all new.
6172 ret = process_all_extents(sctx);
6175 ret = process_all_new_xattrs(sctx);
6179 sctx->cur_inode_gen = left_gen;
6180 sctx->cur_inode_new = 0;
6181 sctx->cur_inode_new_gen = 0;
6182 sctx->cur_inode_deleted = 0;
6183 sctx->cur_inode_size = btrfs_inode_size(
6184 sctx->left_path->nodes[0], left_ii);
6185 sctx->cur_inode_mode = btrfs_inode_mode(
6186 sctx->left_path->nodes[0], left_ii);
6195 * We have to process new refs before deleted refs, but compare_trees gives us
6196 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6197 * first and later process them in process_recorded_refs.
6198 * For the cur_inode_new_gen case, we skip recording completely because
6199 * changed_inode did already initiate processing of refs. The reason for this is
6200 * that in this case, compare_tree actually compares the refs of 2 different
6201 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6202 * refs of the right tree as deleted and all refs of the left tree as new.
6204 static int changed_ref(struct send_ctx *sctx,
6205 enum btrfs_compare_tree_result result)
6209 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6210 inconsistent_snapshot_error(sctx, result, "reference");
6214 if (!sctx->cur_inode_new_gen &&
6215 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6216 if (result == BTRFS_COMPARE_TREE_NEW)
6217 ret = record_new_ref(sctx);
6218 else if (result == BTRFS_COMPARE_TREE_DELETED)
6219 ret = record_deleted_ref(sctx);
6220 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6221 ret = record_changed_ref(sctx);
6228 * Process new/deleted/changed xattrs. We skip processing in the
6229 * cur_inode_new_gen case because changed_inode did already initiate processing
6230 * of xattrs. The reason is the same as in changed_ref
6232 static int changed_xattr(struct send_ctx *sctx,
6233 enum btrfs_compare_tree_result result)
6237 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6238 inconsistent_snapshot_error(sctx, result, "xattr");
6242 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6243 if (result == BTRFS_COMPARE_TREE_NEW)
6244 ret = process_new_xattr(sctx);
6245 else if (result == BTRFS_COMPARE_TREE_DELETED)
6246 ret = process_deleted_xattr(sctx);
6247 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6248 ret = process_changed_xattr(sctx);
6255 * Process new/deleted/changed extents. We skip processing in the
6256 * cur_inode_new_gen case because changed_inode did already initiate processing
6257 * of extents. The reason is the same as in changed_ref
6259 static int changed_extent(struct send_ctx *sctx,
6260 enum btrfs_compare_tree_result result)
6264 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6266 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6267 struct extent_buffer *leaf_l;
6268 struct extent_buffer *leaf_r;
6269 struct btrfs_file_extent_item *ei_l;
6270 struct btrfs_file_extent_item *ei_r;
6272 leaf_l = sctx->left_path->nodes[0];
6273 leaf_r = sctx->right_path->nodes[0];
6274 ei_l = btrfs_item_ptr(leaf_l,
6275 sctx->left_path->slots[0],
6276 struct btrfs_file_extent_item);
6277 ei_r = btrfs_item_ptr(leaf_r,
6278 sctx->right_path->slots[0],
6279 struct btrfs_file_extent_item);
6282 * We may have found an extent item that has changed
6283 * only its disk_bytenr field and the corresponding
6284 * inode item was not updated. This case happens due to
6285 * very specific timings during relocation when a leaf
6286 * that contains file extent items is COWed while
6287 * relocation is ongoing and its in the stage where it
6288 * updates data pointers. So when this happens we can
6289 * safely ignore it since we know it's the same extent,
6290 * but just at different logical and physical locations
6291 * (when an extent is fully replaced with a new one, we
6292 * know the generation number must have changed too,
6293 * since snapshot creation implies committing the current
6294 * transaction, and the inode item must have been updated
6296 * This replacement of the disk_bytenr happens at
6297 * relocation.c:replace_file_extents() through
6298 * relocation.c:btrfs_reloc_cow_block().
6300 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6301 btrfs_file_extent_generation(leaf_r, ei_r) &&
6302 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6303 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6304 btrfs_file_extent_compression(leaf_l, ei_l) ==
6305 btrfs_file_extent_compression(leaf_r, ei_r) &&
6306 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6307 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6308 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6309 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6310 btrfs_file_extent_type(leaf_l, ei_l) ==
6311 btrfs_file_extent_type(leaf_r, ei_r) &&
6312 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6313 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6314 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6315 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6316 btrfs_file_extent_offset(leaf_l, ei_l) ==
6317 btrfs_file_extent_offset(leaf_r, ei_r) &&
6318 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6319 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6323 inconsistent_snapshot_error(sctx, result, "extent");
6327 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6328 if (result != BTRFS_COMPARE_TREE_DELETED)
6329 ret = process_extent(sctx, sctx->left_path,
6336 static int dir_changed(struct send_ctx *sctx, u64 dir)
6338 u64 orig_gen, new_gen;
6341 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6346 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6351 return (orig_gen != new_gen) ? 1 : 0;
6354 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6355 struct btrfs_key *key)
6357 struct btrfs_inode_extref *extref;
6358 struct extent_buffer *leaf;
6359 u64 dirid = 0, last_dirid = 0;
6366 /* Easy case, just check this one dirid */
6367 if (key->type == BTRFS_INODE_REF_KEY) {
6368 dirid = key->offset;
6370 ret = dir_changed(sctx, dirid);
6374 leaf = path->nodes[0];
6375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6376 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6377 while (cur_offset < item_size) {
6378 extref = (struct btrfs_inode_extref *)(ptr +
6380 dirid = btrfs_inode_extref_parent(leaf, extref);
6381 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6382 cur_offset += ref_name_len + sizeof(*extref);
6383 if (dirid == last_dirid)
6385 ret = dir_changed(sctx, dirid);
6395 * Updates compare related fields in sctx and simply forwards to the actual
6396 * changed_xxx functions.
6398 static int changed_cb(struct btrfs_path *left_path,
6399 struct btrfs_path *right_path,
6400 struct btrfs_key *key,
6401 enum btrfs_compare_tree_result result,
6405 struct send_ctx *sctx = ctx;
6407 if (result == BTRFS_COMPARE_TREE_SAME) {
6408 if (key->type == BTRFS_INODE_REF_KEY ||
6409 key->type == BTRFS_INODE_EXTREF_KEY) {
6410 ret = compare_refs(sctx, left_path, key);
6415 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6416 return maybe_send_hole(sctx, left_path, key);
6420 result = BTRFS_COMPARE_TREE_CHANGED;
6424 sctx->left_path = left_path;
6425 sctx->right_path = right_path;
6426 sctx->cmp_key = key;
6428 ret = finish_inode_if_needed(sctx, 0);
6432 /* Ignore non-FS objects */
6433 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6434 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6437 if (key->type == BTRFS_INODE_ITEM_KEY) {
6438 ret = changed_inode(sctx, result);
6439 } else if (!sctx->ignore_cur_inode) {
6440 if (key->type == BTRFS_INODE_REF_KEY ||
6441 key->type == BTRFS_INODE_EXTREF_KEY)
6442 ret = changed_ref(sctx, result);
6443 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6444 ret = changed_xattr(sctx, result);
6445 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6446 ret = changed_extent(sctx, result);
6453 static int full_send_tree(struct send_ctx *sctx)
6456 struct btrfs_root *send_root = sctx->send_root;
6457 struct btrfs_key key;
6458 struct btrfs_path *path;
6459 struct extent_buffer *eb;
6462 path = alloc_path_for_send();
6466 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6467 key.type = BTRFS_INODE_ITEM_KEY;
6470 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6477 eb = path->nodes[0];
6478 slot = path->slots[0];
6479 btrfs_item_key_to_cpu(eb, &key, slot);
6481 ret = changed_cb(path, NULL, &key,
6482 BTRFS_COMPARE_TREE_NEW, sctx);
6486 ret = btrfs_next_item(send_root, path);
6496 ret = finish_inode_if_needed(sctx, 1);
6499 btrfs_free_path(path);
6503 static int send_subvol(struct send_ctx *sctx)
6507 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6508 ret = send_header(sctx);
6513 ret = send_subvol_begin(sctx);
6517 if (sctx->parent_root) {
6518 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6522 ret = finish_inode_if_needed(sctx, 1);
6526 ret = full_send_tree(sctx);
6532 free_recorded_refs(sctx);
6537 * If orphan cleanup did remove any orphans from a root, it means the tree
6538 * was modified and therefore the commit root is not the same as the current
6539 * root anymore. This is a problem, because send uses the commit root and
6540 * therefore can see inode items that don't exist in the current root anymore,
6541 * and for example make calls to btrfs_iget, which will do tree lookups based
6542 * on the current root and not on the commit root. Those lookups will fail,
6543 * returning a -ESTALE error, and making send fail with that error. So make
6544 * sure a send does not see any orphans we have just removed, and that it will
6545 * see the same inodes regardless of whether a transaction commit happened
6546 * before it started (meaning that the commit root will be the same as the
6547 * current root) or not.
6549 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6552 struct btrfs_trans_handle *trans = NULL;
6555 if (sctx->parent_root &&
6556 sctx->parent_root->node != sctx->parent_root->commit_root)
6559 for (i = 0; i < sctx->clone_roots_cnt; i++)
6560 if (sctx->clone_roots[i].root->node !=
6561 sctx->clone_roots[i].root->commit_root)
6565 return btrfs_end_transaction(trans);
6570 /* Use any root, all fs roots will get their commit roots updated. */
6572 trans = btrfs_join_transaction(sctx->send_root);
6574 return PTR_ERR(trans);
6578 return btrfs_commit_transaction(trans);
6581 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6583 spin_lock(&root->root_item_lock);
6584 root->send_in_progress--;
6586 * Not much left to do, we don't know why it's unbalanced and
6587 * can't blindly reset it to 0.
6589 if (root->send_in_progress < 0)
6590 btrfs_err(root->fs_info,
6591 "send_in_progress unbalanced %d root %llu",
6592 root->send_in_progress, root->root_key.objectid);
6593 spin_unlock(&root->root_item_lock);
6596 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6599 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6600 struct btrfs_fs_info *fs_info = send_root->fs_info;
6601 struct btrfs_root *clone_root;
6602 struct btrfs_key key;
6603 struct send_ctx *sctx = NULL;
6605 u64 *clone_sources_tmp = NULL;
6606 int clone_sources_to_rollback = 0;
6607 unsigned alloc_size;
6608 int sort_clone_roots = 0;
6611 if (!capable(CAP_SYS_ADMIN))
6615 * The subvolume must remain read-only during send, protect against
6616 * making it RW. This also protects against deletion.
6618 spin_lock(&send_root->root_item_lock);
6619 send_root->send_in_progress++;
6620 spin_unlock(&send_root->root_item_lock);
6623 * This is done when we lookup the root, it should already be complete
6624 * by the time we get here.
6626 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6629 * Userspace tools do the checks and warn the user if it's
6632 if (!btrfs_root_readonly(send_root)) {
6638 * Check that we don't overflow at later allocations, we request
6639 * clone_sources_count + 1 items, and compare to unsigned long inside
6642 if (arg->clone_sources_count >
6643 ULONG_MAX / sizeof(struct clone_root) - 1) {
6648 if (!access_ok(VERIFY_READ, arg->clone_sources,
6649 sizeof(*arg->clone_sources) *
6650 arg->clone_sources_count)) {
6655 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6660 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6666 INIT_LIST_HEAD(&sctx->new_refs);
6667 INIT_LIST_HEAD(&sctx->deleted_refs);
6668 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6669 INIT_LIST_HEAD(&sctx->name_cache_list);
6671 sctx->flags = arg->flags;
6673 sctx->send_filp = fget(arg->send_fd);
6674 if (!sctx->send_filp) {
6679 sctx->send_root = send_root;
6681 * Unlikely but possible, if the subvolume is marked for deletion but
6682 * is slow to remove the directory entry, send can still be started
6684 if (btrfs_root_dead(sctx->send_root)) {
6689 sctx->clone_roots_cnt = arg->clone_sources_count;
6691 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6692 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6693 if (!sctx->send_buf) {
6698 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6699 if (!sctx->read_buf) {
6704 sctx->pending_dir_moves = RB_ROOT;
6705 sctx->waiting_dir_moves = RB_ROOT;
6706 sctx->orphan_dirs = RB_ROOT;
6708 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6710 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6711 if (!sctx->clone_roots) {
6716 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6718 if (arg->clone_sources_count) {
6719 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6720 if (!clone_sources_tmp) {
6725 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6732 for (i = 0; i < arg->clone_sources_count; i++) {
6733 key.objectid = clone_sources_tmp[i];
6734 key.type = BTRFS_ROOT_ITEM_KEY;
6735 key.offset = (u64)-1;
6737 index = srcu_read_lock(&fs_info->subvol_srcu);
6739 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6740 if (IS_ERR(clone_root)) {
6741 srcu_read_unlock(&fs_info->subvol_srcu, index);
6742 ret = PTR_ERR(clone_root);
6745 spin_lock(&clone_root->root_item_lock);
6746 if (!btrfs_root_readonly(clone_root) ||
6747 btrfs_root_dead(clone_root)) {
6748 spin_unlock(&clone_root->root_item_lock);
6749 srcu_read_unlock(&fs_info->subvol_srcu, index);
6753 clone_root->send_in_progress++;
6754 spin_unlock(&clone_root->root_item_lock);
6755 srcu_read_unlock(&fs_info->subvol_srcu, index);
6757 sctx->clone_roots[i].root = clone_root;
6758 clone_sources_to_rollback = i + 1;
6760 kvfree(clone_sources_tmp);
6761 clone_sources_tmp = NULL;
6764 if (arg->parent_root) {
6765 key.objectid = arg->parent_root;
6766 key.type = BTRFS_ROOT_ITEM_KEY;
6767 key.offset = (u64)-1;
6769 index = srcu_read_lock(&fs_info->subvol_srcu);
6771 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6772 if (IS_ERR(sctx->parent_root)) {
6773 srcu_read_unlock(&fs_info->subvol_srcu, index);
6774 ret = PTR_ERR(sctx->parent_root);
6778 spin_lock(&sctx->parent_root->root_item_lock);
6779 sctx->parent_root->send_in_progress++;
6780 if (!btrfs_root_readonly(sctx->parent_root) ||
6781 btrfs_root_dead(sctx->parent_root)) {
6782 spin_unlock(&sctx->parent_root->root_item_lock);
6783 srcu_read_unlock(&fs_info->subvol_srcu, index);
6787 spin_unlock(&sctx->parent_root->root_item_lock);
6789 srcu_read_unlock(&fs_info->subvol_srcu, index);
6793 * Clones from send_root are allowed, but only if the clone source
6794 * is behind the current send position. This is checked while searching
6795 * for possible clone sources.
6797 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6799 /* We do a bsearch later */
6800 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6801 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6803 sort_clone_roots = 1;
6805 ret = ensure_commit_roots_uptodate(sctx);
6809 current->journal_info = BTRFS_SEND_TRANS_STUB;
6810 ret = send_subvol(sctx);
6811 current->journal_info = NULL;
6815 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6816 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6819 ret = send_cmd(sctx);
6825 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6826 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6828 struct pending_dir_move *pm;
6830 n = rb_first(&sctx->pending_dir_moves);
6831 pm = rb_entry(n, struct pending_dir_move, node);
6832 while (!list_empty(&pm->list)) {
6833 struct pending_dir_move *pm2;
6835 pm2 = list_first_entry(&pm->list,
6836 struct pending_dir_move, list);
6837 free_pending_move(sctx, pm2);
6839 free_pending_move(sctx, pm);
6842 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6843 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6845 struct waiting_dir_move *dm;
6847 n = rb_first(&sctx->waiting_dir_moves);
6848 dm = rb_entry(n, struct waiting_dir_move, node);
6849 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6853 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6854 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6856 struct orphan_dir_info *odi;
6858 n = rb_first(&sctx->orphan_dirs);
6859 odi = rb_entry(n, struct orphan_dir_info, node);
6860 free_orphan_dir_info(sctx, odi);
6863 if (sort_clone_roots) {
6864 for (i = 0; i < sctx->clone_roots_cnt; i++)
6865 btrfs_root_dec_send_in_progress(
6866 sctx->clone_roots[i].root);
6868 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6869 btrfs_root_dec_send_in_progress(
6870 sctx->clone_roots[i].root);
6872 btrfs_root_dec_send_in_progress(send_root);
6874 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6875 btrfs_root_dec_send_in_progress(sctx->parent_root);
6877 kvfree(clone_sources_tmp);
6880 if (sctx->send_filp)
6881 fput(sctx->send_filp);
6883 kvfree(sctx->clone_roots);
6884 kvfree(sctx->send_buf);
6885 kvfree(sctx->read_buf);
6887 name_cache_free(sctx);