]> Git Repo - linux.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'iio-for-4.7a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio...
[linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <[email protected]>
18  *          Christian Ehrhardt <[email protected]>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <asm/cputable.h>
31 #include <asm/uaccess.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cputhreads.h>
35 #include <asm/irqflags.h>
36 #include <asm/iommu.h>
37 #include "timing.h"
38 #include "irq.h"
39 #include "../mm/mmu_decl.h"
40
41 #define CREATE_TRACE_POINTS
42 #include "trace.h"
43
44 struct kvmppc_ops *kvmppc_hv_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
46 struct kvmppc_ops *kvmppc_pr_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
48
49
50 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
51 {
52         return !!(v->arch.pending_exceptions) ||
53                v->requests;
54 }
55
56 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
57 {
58         return 1;
59 }
60
61 /*
62  * Common checks before entering the guest world.  Call with interrupts
63  * disabled.
64  *
65  * returns:
66  *
67  * == 1 if we're ready to go into guest state
68  * <= 0 if we need to go back to the host with return value
69  */
70 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
71 {
72         int r;
73
74         WARN_ON(irqs_disabled());
75         hard_irq_disable();
76
77         while (true) {
78                 if (need_resched()) {
79                         local_irq_enable();
80                         cond_resched();
81                         hard_irq_disable();
82                         continue;
83                 }
84
85                 if (signal_pending(current)) {
86                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
87                         vcpu->run->exit_reason = KVM_EXIT_INTR;
88                         r = -EINTR;
89                         break;
90                 }
91
92                 vcpu->mode = IN_GUEST_MODE;
93
94                 /*
95                  * Reading vcpu->requests must happen after setting vcpu->mode,
96                  * so we don't miss a request because the requester sees
97                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
98                  * before next entering the guest (and thus doesn't IPI).
99                  * This also orders the write to mode from any reads
100                  * to the page tables done while the VCPU is running.
101                  * Please see the comment in kvm_flush_remote_tlbs.
102                  */
103                 smp_mb();
104
105                 if (vcpu->requests) {
106                         /* Make sure we process requests preemptable */
107                         local_irq_enable();
108                         trace_kvm_check_requests(vcpu);
109                         r = kvmppc_core_check_requests(vcpu);
110                         hard_irq_disable();
111                         if (r > 0)
112                                 continue;
113                         break;
114                 }
115
116                 if (kvmppc_core_prepare_to_enter(vcpu)) {
117                         /* interrupts got enabled in between, so we
118                            are back at square 1 */
119                         continue;
120                 }
121
122                 __kvm_guest_enter();
123                 return 1;
124         }
125
126         /* return to host */
127         local_irq_enable();
128         return r;
129 }
130 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
131
132 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
133 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
134 {
135         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
136         int i;
137
138         shared->sprg0 = swab64(shared->sprg0);
139         shared->sprg1 = swab64(shared->sprg1);
140         shared->sprg2 = swab64(shared->sprg2);
141         shared->sprg3 = swab64(shared->sprg3);
142         shared->srr0 = swab64(shared->srr0);
143         shared->srr1 = swab64(shared->srr1);
144         shared->dar = swab64(shared->dar);
145         shared->msr = swab64(shared->msr);
146         shared->dsisr = swab32(shared->dsisr);
147         shared->int_pending = swab32(shared->int_pending);
148         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
149                 shared->sr[i] = swab32(shared->sr[i]);
150 }
151 #endif
152
153 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
154 {
155         int nr = kvmppc_get_gpr(vcpu, 11);
156         int r;
157         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
158         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
159         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
160         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
161         unsigned long r2 = 0;
162
163         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
164                 /* 32 bit mode */
165                 param1 &= 0xffffffff;
166                 param2 &= 0xffffffff;
167                 param3 &= 0xffffffff;
168                 param4 &= 0xffffffff;
169         }
170
171         switch (nr) {
172         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
173         {
174 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
175                 /* Book3S can be little endian, find it out here */
176                 int shared_big_endian = true;
177                 if (vcpu->arch.intr_msr & MSR_LE)
178                         shared_big_endian = false;
179                 if (shared_big_endian != vcpu->arch.shared_big_endian)
180                         kvmppc_swab_shared(vcpu);
181                 vcpu->arch.shared_big_endian = shared_big_endian;
182 #endif
183
184                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
185                         /*
186                          * Older versions of the Linux magic page code had
187                          * a bug where they would map their trampoline code
188                          * NX. If that's the case, remove !PR NX capability.
189                          */
190                         vcpu->arch.disable_kernel_nx = true;
191                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
192                 }
193
194                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
195                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
196
197 #ifdef CONFIG_PPC_64K_PAGES
198                 /*
199                  * Make sure our 4k magic page is in the same window of a 64k
200                  * page within the guest and within the host's page.
201                  */
202                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
203                     ((ulong)vcpu->arch.shared & 0xf000)) {
204                         void *old_shared = vcpu->arch.shared;
205                         ulong shared = (ulong)vcpu->arch.shared;
206                         void *new_shared;
207
208                         shared &= PAGE_MASK;
209                         shared |= vcpu->arch.magic_page_pa & 0xf000;
210                         new_shared = (void*)shared;
211                         memcpy(new_shared, old_shared, 0x1000);
212                         vcpu->arch.shared = new_shared;
213                 }
214 #endif
215
216                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
217
218                 r = EV_SUCCESS;
219                 break;
220         }
221         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
222                 r = EV_SUCCESS;
223 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
224                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
225 #endif
226
227                 /* Second return value is in r4 */
228                 break;
229         case EV_HCALL_TOKEN(EV_IDLE):
230                 r = EV_SUCCESS;
231                 kvm_vcpu_block(vcpu);
232                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
233                 break;
234         default:
235                 r = EV_UNIMPLEMENTED;
236                 break;
237         }
238
239         kvmppc_set_gpr(vcpu, 4, r2);
240
241         return r;
242 }
243 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
244
245 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
246 {
247         int r = false;
248
249         /* We have to know what CPU to virtualize */
250         if (!vcpu->arch.pvr)
251                 goto out;
252
253         /* PAPR only works with book3s_64 */
254         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
255                 goto out;
256
257         /* HV KVM can only do PAPR mode for now */
258         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
259                 goto out;
260
261 #ifdef CONFIG_KVM_BOOKE_HV
262         if (!cpu_has_feature(CPU_FTR_EMB_HV))
263                 goto out;
264 #endif
265
266         r = true;
267
268 out:
269         vcpu->arch.sane = r;
270         return r ? 0 : -EINVAL;
271 }
272 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
273
274 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
275 {
276         enum emulation_result er;
277         int r;
278
279         er = kvmppc_emulate_loadstore(vcpu);
280         switch (er) {
281         case EMULATE_DONE:
282                 /* Future optimization: only reload non-volatiles if they were
283                  * actually modified. */
284                 r = RESUME_GUEST_NV;
285                 break;
286         case EMULATE_AGAIN:
287                 r = RESUME_GUEST;
288                 break;
289         case EMULATE_DO_MMIO:
290                 run->exit_reason = KVM_EXIT_MMIO;
291                 /* We must reload nonvolatiles because "update" load/store
292                  * instructions modify register state. */
293                 /* Future optimization: only reload non-volatiles if they were
294                  * actually modified. */
295                 r = RESUME_HOST_NV;
296                 break;
297         case EMULATE_FAIL:
298         {
299                 u32 last_inst;
300
301                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
302                 /* XXX Deliver Program interrupt to guest. */
303                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
304                 r = RESUME_HOST;
305                 break;
306         }
307         default:
308                 WARN_ON(1);
309                 r = RESUME_GUEST;
310         }
311
312         return r;
313 }
314 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
315
316 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
317               bool data)
318 {
319         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
320         struct kvmppc_pte pte;
321         int r;
322
323         vcpu->stat.st++;
324
325         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
326                          XLATE_WRITE, &pte);
327         if (r < 0)
328                 return r;
329
330         *eaddr = pte.raddr;
331
332         if (!pte.may_write)
333                 return -EPERM;
334
335         /* Magic page override */
336         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
337             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
338             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
339                 void *magic = vcpu->arch.shared;
340                 magic += pte.eaddr & 0xfff;
341                 memcpy(magic, ptr, size);
342                 return EMULATE_DONE;
343         }
344
345         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
346                 return EMULATE_DO_MMIO;
347
348         return EMULATE_DONE;
349 }
350 EXPORT_SYMBOL_GPL(kvmppc_st);
351
352 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
353                       bool data)
354 {
355         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
356         struct kvmppc_pte pte;
357         int rc;
358
359         vcpu->stat.ld++;
360
361         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
362                           XLATE_READ, &pte);
363         if (rc)
364                 return rc;
365
366         *eaddr = pte.raddr;
367
368         if (!pte.may_read)
369                 return -EPERM;
370
371         if (!data && !pte.may_execute)
372                 return -ENOEXEC;
373
374         /* Magic page override */
375         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
376             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
377             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
378                 void *magic = vcpu->arch.shared;
379                 magic += pte.eaddr & 0xfff;
380                 memcpy(ptr, magic, size);
381                 return EMULATE_DONE;
382         }
383
384         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
385                 return EMULATE_DO_MMIO;
386
387         return EMULATE_DONE;
388 }
389 EXPORT_SYMBOL_GPL(kvmppc_ld);
390
391 int kvm_arch_hardware_enable(void)
392 {
393         return 0;
394 }
395
396 int kvm_arch_hardware_setup(void)
397 {
398         return 0;
399 }
400
401 void kvm_arch_check_processor_compat(void *rtn)
402 {
403         *(int *)rtn = kvmppc_core_check_processor_compat();
404 }
405
406 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
407 {
408         struct kvmppc_ops *kvm_ops = NULL;
409         /*
410          * if we have both HV and PR enabled, default is HV
411          */
412         if (type == 0) {
413                 if (kvmppc_hv_ops)
414                         kvm_ops = kvmppc_hv_ops;
415                 else
416                         kvm_ops = kvmppc_pr_ops;
417                 if (!kvm_ops)
418                         goto err_out;
419         } else  if (type == KVM_VM_PPC_HV) {
420                 if (!kvmppc_hv_ops)
421                         goto err_out;
422                 kvm_ops = kvmppc_hv_ops;
423         } else if (type == KVM_VM_PPC_PR) {
424                 if (!kvmppc_pr_ops)
425                         goto err_out;
426                 kvm_ops = kvmppc_pr_ops;
427         } else
428                 goto err_out;
429
430         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
431                 return -ENOENT;
432
433         kvm->arch.kvm_ops = kvm_ops;
434         return kvmppc_core_init_vm(kvm);
435 err_out:
436         return -EINVAL;
437 }
438
439 void kvm_arch_destroy_vm(struct kvm *kvm)
440 {
441         unsigned int i;
442         struct kvm_vcpu *vcpu;
443
444 #ifdef CONFIG_KVM_XICS
445         /*
446          * We call kick_all_cpus_sync() to ensure that all
447          * CPUs have executed any pending IPIs before we
448          * continue and free VCPUs structures below.
449          */
450         if (is_kvmppc_hv_enabled(kvm))
451                 kick_all_cpus_sync();
452 #endif
453
454         kvm_for_each_vcpu(i, vcpu, kvm)
455                 kvm_arch_vcpu_free(vcpu);
456
457         mutex_lock(&kvm->lock);
458         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
459                 kvm->vcpus[i] = NULL;
460
461         atomic_set(&kvm->online_vcpus, 0);
462
463         kvmppc_core_destroy_vm(kvm);
464
465         mutex_unlock(&kvm->lock);
466
467         /* drop the module reference */
468         module_put(kvm->arch.kvm_ops->owner);
469 }
470
471 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
472 {
473         int r;
474         /* Assume we're using HV mode when the HV module is loaded */
475         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
476
477         if (kvm) {
478                 /*
479                  * Hooray - we know which VM type we're running on. Depend on
480                  * that rather than the guess above.
481                  */
482                 hv_enabled = is_kvmppc_hv_enabled(kvm);
483         }
484
485         switch (ext) {
486 #ifdef CONFIG_BOOKE
487         case KVM_CAP_PPC_BOOKE_SREGS:
488         case KVM_CAP_PPC_BOOKE_WATCHDOG:
489         case KVM_CAP_PPC_EPR:
490 #else
491         case KVM_CAP_PPC_SEGSTATE:
492         case KVM_CAP_PPC_HIOR:
493         case KVM_CAP_PPC_PAPR:
494 #endif
495         case KVM_CAP_PPC_UNSET_IRQ:
496         case KVM_CAP_PPC_IRQ_LEVEL:
497         case KVM_CAP_ENABLE_CAP:
498         case KVM_CAP_ENABLE_CAP_VM:
499         case KVM_CAP_ONE_REG:
500         case KVM_CAP_IOEVENTFD:
501         case KVM_CAP_DEVICE_CTRL:
502                 r = 1;
503                 break;
504         case KVM_CAP_PPC_PAIRED_SINGLES:
505         case KVM_CAP_PPC_OSI:
506         case KVM_CAP_PPC_GET_PVINFO:
507 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
508         case KVM_CAP_SW_TLB:
509 #endif
510                 /* We support this only for PR */
511                 r = !hv_enabled;
512                 break;
513 #ifdef CONFIG_KVM_MMIO
514         case KVM_CAP_COALESCED_MMIO:
515                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
516                 break;
517 #endif
518 #ifdef CONFIG_KVM_MPIC
519         case KVM_CAP_IRQ_MPIC:
520                 r = 1;
521                 break;
522 #endif
523
524 #ifdef CONFIG_PPC_BOOK3S_64
525         case KVM_CAP_SPAPR_TCE:
526         case KVM_CAP_SPAPR_TCE_64:
527         case KVM_CAP_PPC_ALLOC_HTAB:
528         case KVM_CAP_PPC_RTAS:
529         case KVM_CAP_PPC_FIXUP_HCALL:
530         case KVM_CAP_PPC_ENABLE_HCALL:
531 #ifdef CONFIG_KVM_XICS
532         case KVM_CAP_IRQ_XICS:
533 #endif
534                 r = 1;
535                 break;
536 #endif /* CONFIG_PPC_BOOK3S_64 */
537 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
538         case KVM_CAP_PPC_SMT:
539                 if (hv_enabled)
540                         r = threads_per_subcore;
541                 else
542                         r = 0;
543                 break;
544         case KVM_CAP_PPC_RMA:
545                 r = 0;
546                 break;
547         case KVM_CAP_PPC_HWRNG:
548                 r = kvmppc_hwrng_present();
549                 break;
550 #endif
551         case KVM_CAP_SYNC_MMU:
552 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
553                 r = hv_enabled;
554 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
555                 r = 1;
556 #else
557                 r = 0;
558 #endif
559                 break;
560 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
561         case KVM_CAP_PPC_HTAB_FD:
562                 r = hv_enabled;
563                 break;
564 #endif
565         case KVM_CAP_NR_VCPUS:
566                 /*
567                  * Recommending a number of CPUs is somewhat arbitrary; we
568                  * return the number of present CPUs for -HV (since a host
569                  * will have secondary threads "offline"), and for other KVM
570                  * implementations just count online CPUs.
571                  */
572                 if (hv_enabled)
573                         r = num_present_cpus();
574                 else
575                         r = num_online_cpus();
576                 break;
577         case KVM_CAP_NR_MEMSLOTS:
578                 r = KVM_USER_MEM_SLOTS;
579                 break;
580         case KVM_CAP_MAX_VCPUS:
581                 r = KVM_MAX_VCPUS;
582                 break;
583 #ifdef CONFIG_PPC_BOOK3S_64
584         case KVM_CAP_PPC_GET_SMMU_INFO:
585                 r = 1;
586                 break;
587         case KVM_CAP_SPAPR_MULTITCE:
588                 r = 1;
589                 break;
590 #endif
591         default:
592                 r = 0;
593                 break;
594         }
595         return r;
596
597 }
598
599 long kvm_arch_dev_ioctl(struct file *filp,
600                         unsigned int ioctl, unsigned long arg)
601 {
602         return -EINVAL;
603 }
604
605 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
606                            struct kvm_memory_slot *dont)
607 {
608         kvmppc_core_free_memslot(kvm, free, dont);
609 }
610
611 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
612                             unsigned long npages)
613 {
614         return kvmppc_core_create_memslot(kvm, slot, npages);
615 }
616
617 int kvm_arch_prepare_memory_region(struct kvm *kvm,
618                                    struct kvm_memory_slot *memslot,
619                                    const struct kvm_userspace_memory_region *mem,
620                                    enum kvm_mr_change change)
621 {
622         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
623 }
624
625 void kvm_arch_commit_memory_region(struct kvm *kvm,
626                                    const struct kvm_userspace_memory_region *mem,
627                                    const struct kvm_memory_slot *old,
628                                    const struct kvm_memory_slot *new,
629                                    enum kvm_mr_change change)
630 {
631         kvmppc_core_commit_memory_region(kvm, mem, old, new);
632 }
633
634 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
635                                    struct kvm_memory_slot *slot)
636 {
637         kvmppc_core_flush_memslot(kvm, slot);
638 }
639
640 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
641 {
642         struct kvm_vcpu *vcpu;
643         vcpu = kvmppc_core_vcpu_create(kvm, id);
644         if (!IS_ERR(vcpu)) {
645                 vcpu->arch.wqp = &vcpu->wq;
646                 kvmppc_create_vcpu_debugfs(vcpu, id);
647         }
648         return vcpu;
649 }
650
651 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
652 {
653 }
654
655 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
656 {
657         /* Make sure we're not using the vcpu anymore */
658         hrtimer_cancel(&vcpu->arch.dec_timer);
659
660         kvmppc_remove_vcpu_debugfs(vcpu);
661
662         switch (vcpu->arch.irq_type) {
663         case KVMPPC_IRQ_MPIC:
664                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
665                 break;
666         case KVMPPC_IRQ_XICS:
667                 kvmppc_xics_free_icp(vcpu);
668                 break;
669         }
670
671         kvmppc_core_vcpu_free(vcpu);
672 }
673
674 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
675 {
676         kvm_arch_vcpu_free(vcpu);
677 }
678
679 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
680 {
681         return kvmppc_core_pending_dec(vcpu);
682 }
683
684 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
685 {
686         struct kvm_vcpu *vcpu;
687
688         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
689         kvmppc_decrementer_func(vcpu);
690
691         return HRTIMER_NORESTART;
692 }
693
694 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
695 {
696         int ret;
697
698         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
699         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
700         vcpu->arch.dec_expires = ~(u64)0;
701
702 #ifdef CONFIG_KVM_EXIT_TIMING
703         mutex_init(&vcpu->arch.exit_timing_lock);
704 #endif
705         ret = kvmppc_subarch_vcpu_init(vcpu);
706         return ret;
707 }
708
709 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
710 {
711         kvmppc_mmu_destroy(vcpu);
712         kvmppc_subarch_vcpu_uninit(vcpu);
713 }
714
715 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
716 {
717 #ifdef CONFIG_BOOKE
718         /*
719          * vrsave (formerly usprg0) isn't used by Linux, but may
720          * be used by the guest.
721          *
722          * On non-booke this is associated with Altivec and
723          * is handled by code in book3s.c.
724          */
725         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
726 #endif
727         kvmppc_core_vcpu_load(vcpu, cpu);
728 }
729
730 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
731 {
732         kvmppc_core_vcpu_put(vcpu);
733 #ifdef CONFIG_BOOKE
734         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
735 #endif
736 }
737
738 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
739                                       struct kvm_run *run)
740 {
741         u64 uninitialized_var(gpr);
742
743         if (run->mmio.len > sizeof(gpr)) {
744                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
745                 return;
746         }
747
748         if (!vcpu->arch.mmio_host_swabbed) {
749                 switch (run->mmio.len) {
750                 case 8: gpr = *(u64 *)run->mmio.data; break;
751                 case 4: gpr = *(u32 *)run->mmio.data; break;
752                 case 2: gpr = *(u16 *)run->mmio.data; break;
753                 case 1: gpr = *(u8 *)run->mmio.data; break;
754                 }
755         } else {
756                 switch (run->mmio.len) {
757                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
758                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
759                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
760                 case 1: gpr = *(u8 *)run->mmio.data; break;
761                 }
762         }
763
764         if (vcpu->arch.mmio_sign_extend) {
765                 switch (run->mmio.len) {
766 #ifdef CONFIG_PPC64
767                 case 4:
768                         gpr = (s64)(s32)gpr;
769                         break;
770 #endif
771                 case 2:
772                         gpr = (s64)(s16)gpr;
773                         break;
774                 case 1:
775                         gpr = (s64)(s8)gpr;
776                         break;
777                 }
778         }
779
780         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
781
782         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
783         case KVM_MMIO_REG_GPR:
784                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
785                 break;
786         case KVM_MMIO_REG_FPR:
787                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
788                 break;
789 #ifdef CONFIG_PPC_BOOK3S
790         case KVM_MMIO_REG_QPR:
791                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
792                 break;
793         case KVM_MMIO_REG_FQPR:
794                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
795                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
796                 break;
797 #endif
798         default:
799                 BUG();
800         }
801 }
802
803 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
804                        unsigned int rt, unsigned int bytes,
805                        int is_default_endian)
806 {
807         int idx, ret;
808         bool host_swabbed;
809
810         /* Pity C doesn't have a logical XOR operator */
811         if (kvmppc_need_byteswap(vcpu)) {
812                 host_swabbed = is_default_endian;
813         } else {
814                 host_swabbed = !is_default_endian;
815         }
816
817         if (bytes > sizeof(run->mmio.data)) {
818                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
819                        run->mmio.len);
820         }
821
822         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
823         run->mmio.len = bytes;
824         run->mmio.is_write = 0;
825
826         vcpu->arch.io_gpr = rt;
827         vcpu->arch.mmio_host_swabbed = host_swabbed;
828         vcpu->mmio_needed = 1;
829         vcpu->mmio_is_write = 0;
830         vcpu->arch.mmio_sign_extend = 0;
831
832         idx = srcu_read_lock(&vcpu->kvm->srcu);
833
834         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
835                               bytes, &run->mmio.data);
836
837         srcu_read_unlock(&vcpu->kvm->srcu, idx);
838
839         if (!ret) {
840                 kvmppc_complete_mmio_load(vcpu, run);
841                 vcpu->mmio_needed = 0;
842                 return EMULATE_DONE;
843         }
844
845         return EMULATE_DO_MMIO;
846 }
847 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
848
849 /* Same as above, but sign extends */
850 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
851                         unsigned int rt, unsigned int bytes,
852                         int is_default_endian)
853 {
854         int r;
855
856         vcpu->arch.mmio_sign_extend = 1;
857         r = kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian);
858
859         return r;
860 }
861
862 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
863                         u64 val, unsigned int bytes, int is_default_endian)
864 {
865         void *data = run->mmio.data;
866         int idx, ret;
867         bool host_swabbed;
868
869         /* Pity C doesn't have a logical XOR operator */
870         if (kvmppc_need_byteswap(vcpu)) {
871                 host_swabbed = is_default_endian;
872         } else {
873                 host_swabbed = !is_default_endian;
874         }
875
876         if (bytes > sizeof(run->mmio.data)) {
877                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
878                        run->mmio.len);
879         }
880
881         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
882         run->mmio.len = bytes;
883         run->mmio.is_write = 1;
884         vcpu->mmio_needed = 1;
885         vcpu->mmio_is_write = 1;
886
887         /* Store the value at the lowest bytes in 'data'. */
888         if (!host_swabbed) {
889                 switch (bytes) {
890                 case 8: *(u64 *)data = val; break;
891                 case 4: *(u32 *)data = val; break;
892                 case 2: *(u16 *)data = val; break;
893                 case 1: *(u8  *)data = val; break;
894                 }
895         } else {
896                 switch (bytes) {
897                 case 8: *(u64 *)data = swab64(val); break;
898                 case 4: *(u32 *)data = swab32(val); break;
899                 case 2: *(u16 *)data = swab16(val); break;
900                 case 1: *(u8  *)data = val; break;
901                 }
902         }
903
904         idx = srcu_read_lock(&vcpu->kvm->srcu);
905
906         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
907                                bytes, &run->mmio.data);
908
909         srcu_read_unlock(&vcpu->kvm->srcu, idx);
910
911         if (!ret) {
912                 vcpu->mmio_needed = 0;
913                 return EMULATE_DONE;
914         }
915
916         return EMULATE_DO_MMIO;
917 }
918 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
919
920 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
921 {
922         int r = 0;
923         union kvmppc_one_reg val;
924         int size;
925
926         size = one_reg_size(reg->id);
927         if (size > sizeof(val))
928                 return -EINVAL;
929
930         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
931         if (r == -EINVAL) {
932                 r = 0;
933                 switch (reg->id) {
934 #ifdef CONFIG_ALTIVEC
935                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
936                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
937                                 r = -ENXIO;
938                                 break;
939                         }
940                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
941                         break;
942                 case KVM_REG_PPC_VSCR:
943                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
944                                 r = -ENXIO;
945                                 break;
946                         }
947                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
948                         break;
949                 case KVM_REG_PPC_VRSAVE:
950                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
951                         break;
952 #endif /* CONFIG_ALTIVEC */
953                 default:
954                         r = -EINVAL;
955                         break;
956                 }
957         }
958
959         if (r)
960                 return r;
961
962         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
963                 r = -EFAULT;
964
965         return r;
966 }
967
968 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
969 {
970         int r;
971         union kvmppc_one_reg val;
972         int size;
973
974         size = one_reg_size(reg->id);
975         if (size > sizeof(val))
976                 return -EINVAL;
977
978         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
979                 return -EFAULT;
980
981         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
982         if (r == -EINVAL) {
983                 r = 0;
984                 switch (reg->id) {
985 #ifdef CONFIG_ALTIVEC
986                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
987                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
988                                 r = -ENXIO;
989                                 break;
990                         }
991                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
992                         break;
993                 case KVM_REG_PPC_VSCR:
994                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
995                                 r = -ENXIO;
996                                 break;
997                         }
998                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
999                         break;
1000                 case KVM_REG_PPC_VRSAVE:
1001                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1002                                 r = -ENXIO;
1003                                 break;
1004                         }
1005                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1006                         break;
1007 #endif /* CONFIG_ALTIVEC */
1008                 default:
1009                         r = -EINVAL;
1010                         break;
1011                 }
1012         }
1013
1014         return r;
1015 }
1016
1017 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1018 {
1019         int r;
1020         sigset_t sigsaved;
1021
1022         if (vcpu->sigset_active)
1023                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1024
1025         if (vcpu->mmio_needed) {
1026                 if (!vcpu->mmio_is_write)
1027                         kvmppc_complete_mmio_load(vcpu, run);
1028                 vcpu->mmio_needed = 0;
1029         } else if (vcpu->arch.osi_needed) {
1030                 u64 *gprs = run->osi.gprs;
1031                 int i;
1032
1033                 for (i = 0; i < 32; i++)
1034                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1035                 vcpu->arch.osi_needed = 0;
1036         } else if (vcpu->arch.hcall_needed) {
1037                 int i;
1038
1039                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1040                 for (i = 0; i < 9; ++i)
1041                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1042                 vcpu->arch.hcall_needed = 0;
1043 #ifdef CONFIG_BOOKE
1044         } else if (vcpu->arch.epr_needed) {
1045                 kvmppc_set_epr(vcpu, run->epr.epr);
1046                 vcpu->arch.epr_needed = 0;
1047 #endif
1048         }
1049
1050         r = kvmppc_vcpu_run(run, vcpu);
1051
1052         if (vcpu->sigset_active)
1053                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1054
1055         return r;
1056 }
1057
1058 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1059 {
1060         if (irq->irq == KVM_INTERRUPT_UNSET) {
1061                 kvmppc_core_dequeue_external(vcpu);
1062                 return 0;
1063         }
1064
1065         kvmppc_core_queue_external(vcpu, irq);
1066
1067         kvm_vcpu_kick(vcpu);
1068
1069         return 0;
1070 }
1071
1072 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1073                                      struct kvm_enable_cap *cap)
1074 {
1075         int r;
1076
1077         if (cap->flags)
1078                 return -EINVAL;
1079
1080         switch (cap->cap) {
1081         case KVM_CAP_PPC_OSI:
1082                 r = 0;
1083                 vcpu->arch.osi_enabled = true;
1084                 break;
1085         case KVM_CAP_PPC_PAPR:
1086                 r = 0;
1087                 vcpu->arch.papr_enabled = true;
1088                 break;
1089         case KVM_CAP_PPC_EPR:
1090                 r = 0;
1091                 if (cap->args[0])
1092                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1093                 else
1094                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1095                 break;
1096 #ifdef CONFIG_BOOKE
1097         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1098                 r = 0;
1099                 vcpu->arch.watchdog_enabled = true;
1100                 break;
1101 #endif
1102 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1103         case KVM_CAP_SW_TLB: {
1104                 struct kvm_config_tlb cfg;
1105                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1106
1107                 r = -EFAULT;
1108                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1109                         break;
1110
1111                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1112                 break;
1113         }
1114 #endif
1115 #ifdef CONFIG_KVM_MPIC
1116         case KVM_CAP_IRQ_MPIC: {
1117                 struct fd f;
1118                 struct kvm_device *dev;
1119
1120                 r = -EBADF;
1121                 f = fdget(cap->args[0]);
1122                 if (!f.file)
1123                         break;
1124
1125                 r = -EPERM;
1126                 dev = kvm_device_from_filp(f.file);
1127                 if (dev)
1128                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1129
1130                 fdput(f);
1131                 break;
1132         }
1133 #endif
1134 #ifdef CONFIG_KVM_XICS
1135         case KVM_CAP_IRQ_XICS: {
1136                 struct fd f;
1137                 struct kvm_device *dev;
1138
1139                 r = -EBADF;
1140                 f = fdget(cap->args[0]);
1141                 if (!f.file)
1142                         break;
1143
1144                 r = -EPERM;
1145                 dev = kvm_device_from_filp(f.file);
1146                 if (dev)
1147                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1148
1149                 fdput(f);
1150                 break;
1151         }
1152 #endif /* CONFIG_KVM_XICS */
1153         default:
1154                 r = -EINVAL;
1155                 break;
1156         }
1157
1158         if (!r)
1159                 r = kvmppc_sanity_check(vcpu);
1160
1161         return r;
1162 }
1163
1164 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1165                                     struct kvm_mp_state *mp_state)
1166 {
1167         return -EINVAL;
1168 }
1169
1170 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1171                                     struct kvm_mp_state *mp_state)
1172 {
1173         return -EINVAL;
1174 }
1175
1176 long kvm_arch_vcpu_ioctl(struct file *filp,
1177                          unsigned int ioctl, unsigned long arg)
1178 {
1179         struct kvm_vcpu *vcpu = filp->private_data;
1180         void __user *argp = (void __user *)arg;
1181         long r;
1182
1183         switch (ioctl) {
1184         case KVM_INTERRUPT: {
1185                 struct kvm_interrupt irq;
1186                 r = -EFAULT;
1187                 if (copy_from_user(&irq, argp, sizeof(irq)))
1188                         goto out;
1189                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1190                 goto out;
1191         }
1192
1193         case KVM_ENABLE_CAP:
1194         {
1195                 struct kvm_enable_cap cap;
1196                 r = -EFAULT;
1197                 if (copy_from_user(&cap, argp, sizeof(cap)))
1198                         goto out;
1199                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1200                 break;
1201         }
1202
1203         case KVM_SET_ONE_REG:
1204         case KVM_GET_ONE_REG:
1205         {
1206                 struct kvm_one_reg reg;
1207                 r = -EFAULT;
1208                 if (copy_from_user(&reg, argp, sizeof(reg)))
1209                         goto out;
1210                 if (ioctl == KVM_SET_ONE_REG)
1211                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1212                 else
1213                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1214                 break;
1215         }
1216
1217 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1218         case KVM_DIRTY_TLB: {
1219                 struct kvm_dirty_tlb dirty;
1220                 r = -EFAULT;
1221                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1222                         goto out;
1223                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1224                 break;
1225         }
1226 #endif
1227         default:
1228                 r = -EINVAL;
1229         }
1230
1231 out:
1232         return r;
1233 }
1234
1235 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1236 {
1237         return VM_FAULT_SIGBUS;
1238 }
1239
1240 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1241 {
1242         u32 inst_nop = 0x60000000;
1243 #ifdef CONFIG_KVM_BOOKE_HV
1244         u32 inst_sc1 = 0x44000022;
1245         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1246         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1247         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1248         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1249 #else
1250         u32 inst_lis = 0x3c000000;
1251         u32 inst_ori = 0x60000000;
1252         u32 inst_sc = 0x44000002;
1253         u32 inst_imm_mask = 0xffff;
1254
1255         /*
1256          * The hypercall to get into KVM from within guest context is as
1257          * follows:
1258          *
1259          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1260          *    ori r0, KVM_SC_MAGIC_R0@l
1261          *    sc
1262          *    nop
1263          */
1264         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1265         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1266         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1267         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1268 #endif
1269
1270         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1271
1272         return 0;
1273 }
1274
1275 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1276                           bool line_status)
1277 {
1278         if (!irqchip_in_kernel(kvm))
1279                 return -ENXIO;
1280
1281         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1282                                         irq_event->irq, irq_event->level,
1283                                         line_status);
1284         return 0;
1285 }
1286
1287
1288 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1289                                    struct kvm_enable_cap *cap)
1290 {
1291         int r;
1292
1293         if (cap->flags)
1294                 return -EINVAL;
1295
1296         switch (cap->cap) {
1297 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1298         case KVM_CAP_PPC_ENABLE_HCALL: {
1299                 unsigned long hcall = cap->args[0];
1300
1301                 r = -EINVAL;
1302                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1303                     cap->args[1] > 1)
1304                         break;
1305                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1306                         break;
1307                 if (cap->args[1])
1308                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1309                 else
1310                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1311                 r = 0;
1312                 break;
1313         }
1314 #endif
1315         default:
1316                 r = -EINVAL;
1317                 break;
1318         }
1319
1320         return r;
1321 }
1322
1323 long kvm_arch_vm_ioctl(struct file *filp,
1324                        unsigned int ioctl, unsigned long arg)
1325 {
1326         struct kvm *kvm __maybe_unused = filp->private_data;
1327         void __user *argp = (void __user *)arg;
1328         long r;
1329
1330         switch (ioctl) {
1331         case KVM_PPC_GET_PVINFO: {
1332                 struct kvm_ppc_pvinfo pvinfo;
1333                 memset(&pvinfo, 0, sizeof(pvinfo));
1334                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1335                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1336                         r = -EFAULT;
1337                         goto out;
1338                 }
1339
1340                 break;
1341         }
1342         case KVM_ENABLE_CAP:
1343         {
1344                 struct kvm_enable_cap cap;
1345                 r = -EFAULT;
1346                 if (copy_from_user(&cap, argp, sizeof(cap)))
1347                         goto out;
1348                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1349                 break;
1350         }
1351 #ifdef CONFIG_PPC_BOOK3S_64
1352         case KVM_CREATE_SPAPR_TCE_64: {
1353                 struct kvm_create_spapr_tce_64 create_tce_64;
1354
1355                 r = -EFAULT;
1356                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1357                         goto out;
1358                 if (create_tce_64.flags) {
1359                         r = -EINVAL;
1360                         goto out;
1361                 }
1362                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1363                 goto out;
1364         }
1365         case KVM_CREATE_SPAPR_TCE: {
1366                 struct kvm_create_spapr_tce create_tce;
1367                 struct kvm_create_spapr_tce_64 create_tce_64;
1368
1369                 r = -EFAULT;
1370                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1371                         goto out;
1372
1373                 create_tce_64.liobn = create_tce.liobn;
1374                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1375                 create_tce_64.offset = 0;
1376                 create_tce_64.size = create_tce.window_size >>
1377                                 IOMMU_PAGE_SHIFT_4K;
1378                 create_tce_64.flags = 0;
1379                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1380                 goto out;
1381         }
1382         case KVM_PPC_GET_SMMU_INFO: {
1383                 struct kvm_ppc_smmu_info info;
1384                 struct kvm *kvm = filp->private_data;
1385
1386                 memset(&info, 0, sizeof(info));
1387                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1388                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1389                         r = -EFAULT;
1390                 break;
1391         }
1392         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1393                 struct kvm *kvm = filp->private_data;
1394
1395                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1396                 break;
1397         }
1398         default: {
1399                 struct kvm *kvm = filp->private_data;
1400                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1401         }
1402 #else /* CONFIG_PPC_BOOK3S_64 */
1403         default:
1404                 r = -ENOTTY;
1405 #endif
1406         }
1407 out:
1408         return r;
1409 }
1410
1411 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1412 static unsigned long nr_lpids;
1413
1414 long kvmppc_alloc_lpid(void)
1415 {
1416         long lpid;
1417
1418         do {
1419                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1420                 if (lpid >= nr_lpids) {
1421                         pr_err("%s: No LPIDs free\n", __func__);
1422                         return -ENOMEM;
1423                 }
1424         } while (test_and_set_bit(lpid, lpid_inuse));
1425
1426         return lpid;
1427 }
1428 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1429
1430 void kvmppc_claim_lpid(long lpid)
1431 {
1432         set_bit(lpid, lpid_inuse);
1433 }
1434 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1435
1436 void kvmppc_free_lpid(long lpid)
1437 {
1438         clear_bit(lpid, lpid_inuse);
1439 }
1440 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1441
1442 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1443 {
1444         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1445         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1446 }
1447 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1448
1449 int kvm_arch_init(void *opaque)
1450 {
1451         return 0;
1452 }
1453
1454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
This page took 0.118371 seconds and 4 git commands to generate.