1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static void hpage_pincount_add(struct page *page, int refs)
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
37 atomic_add(refs, compound_pincount_ptr(page));
40 static void hpage_pincount_sub(struct page *page, int refs)
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
45 atomic_sub(refs, compound_pincount_ptr(page));
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
51 #ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
61 page_ref_sub(page, refs - 1);
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
71 struct page *head = compound_head(page);
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
75 if (unlikely(!page_cache_add_speculative(head, refs)))
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
99 * "grab" names in this file mean, "look at flags to decide whether to use
100 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
102 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
103 * same time. (That's true throughout the get_user_pages*() and
104 * pin_user_pages*() APIs.) Cases:
106 * FOLL_GET: page's refcount will be incremented by 1.
107 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
109 * Return: head page (with refcount appropriately incremented) for success, or
110 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
111 * considered failure, and furthermore, a likely bug in the caller, so a warning
114 __maybe_unused struct page *try_grab_compound_head(struct page *page,
115 int refs, unsigned int flags)
117 if (flags & FOLL_GET)
118 return try_get_compound_head(page, refs);
119 else if (flags & FOLL_PIN) {
120 int orig_refs = refs;
123 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
124 * right zone, so fail and let the caller fall back to the slow
127 if (unlikely((flags & FOLL_LONGTERM) &&
128 !is_pinnable_page(page)))
132 * CAUTION: Don't use compound_head() on the page before this
133 * point, the result won't be stable.
135 page = try_get_compound_head(page, refs);
140 * When pinning a compound page of order > 1 (which is what
141 * hpage_pincount_available() checks for), use an exact count to
142 * track it, via hpage_pincount_add/_sub().
144 * However, be sure to *also* increment the normal page refcount
145 * field at least once, so that the page really is pinned.
147 if (hpage_pincount_available(page))
148 hpage_pincount_add(page, refs);
150 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
152 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
162 static void put_compound_head(struct page *page, int refs, unsigned int flags)
164 if (flags & FOLL_PIN) {
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
168 if (hpage_pincount_available(page))
169 hpage_pincount_sub(page, refs);
171 refs *= GUP_PIN_COUNTING_BIAS;
174 put_page_refs(page, refs);
178 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
180 * This might not do anything at all, depending on the flags argument.
182 * "grab" names in this file mean, "look at flags to decide whether to use
183 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
185 * @page: pointer to page to be grabbed
186 * @flags: gup flags: these are the FOLL_* flag values.
188 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
191 * FOLL_GET: page's refcount will be incremented by 1.
192 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
194 * Return: true for success, or if no action was required (if neither FOLL_PIN
195 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
196 * FOLL_PIN was set, but the page could not be grabbed.
198 bool __must_check try_grab_page(struct page *page, unsigned int flags)
200 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
202 if (flags & FOLL_GET)
203 return try_get_page(page);
204 else if (flags & FOLL_PIN) {
207 page = compound_head(page);
209 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
212 if (hpage_pincount_available(page))
213 hpage_pincount_add(page, 1);
215 refs = GUP_PIN_COUNTING_BIAS;
218 * Similar to try_grab_compound_head(): even if using the
219 * hpage_pincount_add/_sub() routines, be sure to
220 * *also* increment the normal page refcount field at least
221 * once, so that the page really is pinned.
223 page_ref_add(page, refs);
225 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
240 void unpin_user_page(struct page *page)
242 put_compound_head(compound_head(page), 1, FOLL_PIN);
244 EXPORT_SYMBOL(unpin_user_page);
246 static inline void compound_range_next(unsigned long i, unsigned long npages,
247 struct page **list, struct page **head,
248 unsigned int *ntails)
250 struct page *next, *page;
257 page = compound_head(next);
258 if (PageCompound(page) && compound_order(page) >= 1)
259 nr = min_t(unsigned int,
260 page + compound_nr(page) - next, npages - i);
266 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
268 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
269 __i < __npages; __i += __ntails, \
270 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
272 static inline void compound_next(unsigned long i, unsigned long npages,
273 struct page **list, struct page **head,
274 unsigned int *ntails)
282 page = compound_head(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (compound_head(list[nr]) != page)
292 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
294 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
295 __i < __npages; __i += __ntails, \
296 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
299 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
300 * @pages: array of pages to be maybe marked dirty, and definitely released.
301 * @npages: number of pages in the @pages array.
302 * @make_dirty: whether to mark the pages dirty
304 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
305 * variants called on that page.
307 * For each page in the @pages array, make that page (or its head page, if a
308 * compound page) dirty, if @make_dirty is true, and if the page was previously
309 * listed as clean. In any case, releases all pages using unpin_user_page(),
310 * possibly via unpin_user_pages(), for the non-dirty case.
312 * Please see the unpin_user_page() documentation for details.
314 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
315 * required, then the caller should a) verify that this is really correct,
316 * because _lock() is usually required, and b) hand code it:
317 * set_page_dirty_lock(), unpin_user_page().
320 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
328 unpin_user_pages(pages, npages);
332 for_each_compound_head(index, pages, npages, head, ntails) {
334 * Checking PageDirty at this point may race with
335 * clear_page_dirty_for_io(), but that's OK. Two key
338 * 1) This code sees the page as already dirty, so it
339 * skips the call to set_page_dirty(). That could happen
340 * because clear_page_dirty_for_io() called
341 * page_mkclean(), followed by set_page_dirty().
342 * However, now the page is going to get written back,
343 * which meets the original intention of setting it
344 * dirty, so all is well: clear_page_dirty_for_io() goes
345 * on to call TestClearPageDirty(), and write the page
348 * 2) This code sees the page as clean, so it calls
349 * set_page_dirty(). The page stays dirty, despite being
350 * written back, so it gets written back again in the
351 * next writeback cycle. This is harmless.
353 if (!PageDirty(head))
354 set_page_dirty_lock(head);
355 put_compound_head(head, ntails, FOLL_PIN);
358 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
361 * unpin_user_page_range_dirty_lock() - release and optionally dirty
362 * gup-pinned page range
364 * @page: the starting page of a range maybe marked dirty, and definitely released.
365 * @npages: number of consecutive pages to release.
366 * @make_dirty: whether to mark the pages dirty
368 * "gup-pinned page range" refers to a range of pages that has had one of the
369 * pin_user_pages() variants called on that page.
371 * For the page ranges defined by [page .. page+npages], make that range (or
372 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
373 * page range was previously listed as clean.
375 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
376 * required, then the caller should a) verify that this is really correct,
377 * because _lock() is usually required, and b) hand code it:
378 * set_page_dirty_lock(), unpin_user_page().
381 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
388 for_each_compound_range(index, &page, npages, head, ntails) {
389 if (make_dirty && !PageDirty(head))
390 set_page_dirty_lock(head);
391 put_compound_head(head, ntails, FOLL_PIN);
394 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
397 * unpin_user_pages() - release an array of gup-pinned pages.
398 * @pages: array of pages to be marked dirty and released.
399 * @npages: number of pages in the @pages array.
401 * For each page in the @pages array, release the page using unpin_user_page().
403 * Please see the unpin_user_page() documentation for details.
405 void unpin_user_pages(struct page **pages, unsigned long npages)
412 * If this WARN_ON() fires, then the system *might* be leaking pages (by
413 * leaving them pinned), but probably not. More likely, gup/pup returned
414 * a hard -ERRNO error to the caller, who erroneously passed it here.
416 if (WARN_ON(IS_ERR_VALUE(npages)))
419 for_each_compound_head(index, pages, npages, head, ntails)
420 put_compound_head(head, ntails, FOLL_PIN);
422 EXPORT_SYMBOL(unpin_user_pages);
425 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
426 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
427 * cache bouncing on large SMP machines for concurrent pinned gups.
429 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
431 if (!test_bit(MMF_HAS_PINNED, mm_flags))
432 set_bit(MMF_HAS_PINNED, mm_flags);
436 static struct page *no_page_table(struct vm_area_struct *vma,
440 * When core dumping an enormous anonymous area that nobody
441 * has touched so far, we don't want to allocate unnecessary pages or
442 * page tables. Return error instead of NULL to skip handle_mm_fault,
443 * then get_dump_page() will return NULL to leave a hole in the dump.
444 * But we can only make this optimization where a hole would surely
445 * be zero-filled if handle_mm_fault() actually did handle it.
447 if ((flags & FOLL_DUMP) &&
448 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
449 return ERR_PTR(-EFAULT);
453 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
454 pte_t *pte, unsigned int flags)
456 /* No page to get reference */
457 if (flags & FOLL_GET)
460 if (flags & FOLL_TOUCH) {
463 if (flags & FOLL_WRITE)
464 entry = pte_mkdirty(entry);
465 entry = pte_mkyoung(entry);
467 if (!pte_same(*pte, entry)) {
468 set_pte_at(vma->vm_mm, address, pte, entry);
469 update_mmu_cache(vma, address, pte);
473 /* Proper page table entry exists, but no corresponding struct page */
478 * FOLL_FORCE can write to even unwritable pte's, but only
479 * after we've gone through a COW cycle and they are dirty.
481 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
483 return pte_write(pte) ||
484 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
487 static struct page *follow_page_pte(struct vm_area_struct *vma,
488 unsigned long address, pmd_t *pmd, unsigned int flags,
489 struct dev_pagemap **pgmap)
491 struct mm_struct *mm = vma->vm_mm;
497 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
498 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
499 (FOLL_PIN | FOLL_GET)))
500 return ERR_PTR(-EINVAL);
502 if (unlikely(pmd_bad(*pmd)))
503 return no_page_table(vma, flags);
505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
507 if (!pte_present(pte)) {
510 * KSM's break_ksm() relies upon recognizing a ksm page
511 * even while it is being migrated, so for that case we
512 * need migration_entry_wait().
514 if (likely(!(flags & FOLL_MIGRATION)))
518 entry = pte_to_swp_entry(pte);
519 if (!is_migration_entry(entry))
521 pte_unmap_unlock(ptep, ptl);
522 migration_entry_wait(mm, pmd, address);
525 if ((flags & FOLL_NUMA) && pte_protnone(pte))
527 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
528 pte_unmap_unlock(ptep, ptl);
532 page = vm_normal_page(vma, address, pte);
533 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
535 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
536 * case since they are only valid while holding the pgmap
539 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
541 page = pte_page(pte);
544 } else if (unlikely(!page)) {
545 if (flags & FOLL_DUMP) {
546 /* Avoid special (like zero) pages in core dumps */
547 page = ERR_PTR(-EFAULT);
551 if (is_zero_pfn(pte_pfn(pte))) {
552 page = pte_page(pte);
554 ret = follow_pfn_pte(vma, address, ptep, flags);
560 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
561 if (unlikely(!try_grab_page(page, flags))) {
562 page = ERR_PTR(-ENOMEM);
566 * We need to make the page accessible if and only if we are going
567 * to access its content (the FOLL_PIN case). Please see
568 * Documentation/core-api/pin_user_pages.rst for details.
570 if (flags & FOLL_PIN) {
571 ret = arch_make_page_accessible(page);
573 unpin_user_page(page);
578 if (flags & FOLL_TOUCH) {
579 if ((flags & FOLL_WRITE) &&
580 !pte_dirty(pte) && !PageDirty(page))
581 set_page_dirty(page);
583 * pte_mkyoung() would be more correct here, but atomic care
584 * is needed to avoid losing the dirty bit: it is easier to use
585 * mark_page_accessed().
587 mark_page_accessed(page);
589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
590 /* Do not mlock pte-mapped THP */
591 if (PageTransCompound(page))
595 * The preliminary mapping check is mainly to avoid the
596 * pointless overhead of lock_page on the ZERO_PAGE
597 * which might bounce very badly if there is contention.
599 * If the page is already locked, we don't need to
600 * handle it now - vmscan will handle it later if and
601 * when it attempts to reclaim the page.
603 if (page->mapping && trylock_page(page)) {
604 lru_add_drain(); /* push cached pages to LRU */
606 * Because we lock page here, and migration is
607 * blocked by the pte's page reference, and we
608 * know the page is still mapped, we don't even
609 * need to check for file-cache page truncation.
611 mlock_vma_page(page);
616 pte_unmap_unlock(ptep, ptl);
619 pte_unmap_unlock(ptep, ptl);
622 return no_page_table(vma, flags);
625 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
626 unsigned long address, pud_t *pudp,
628 struct follow_page_context *ctx)
633 struct mm_struct *mm = vma->vm_mm;
635 pmd = pmd_offset(pudp, address);
637 * The READ_ONCE() will stabilize the pmdval in a register or
638 * on the stack so that it will stop changing under the code.
640 pmdval = READ_ONCE(*pmd);
641 if (pmd_none(pmdval))
642 return no_page_table(vma, flags);
643 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
644 page = follow_huge_pmd(mm, address, pmd, flags);
647 return no_page_table(vma, flags);
649 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
650 page = follow_huge_pd(vma, address,
651 __hugepd(pmd_val(pmdval)), flags,
655 return no_page_table(vma, flags);
658 if (!pmd_present(pmdval)) {
659 if (likely(!(flags & FOLL_MIGRATION)))
660 return no_page_table(vma, flags);
661 VM_BUG_ON(thp_migration_supported() &&
662 !is_pmd_migration_entry(pmdval));
663 if (is_pmd_migration_entry(pmdval))
664 pmd_migration_entry_wait(mm, pmd);
665 pmdval = READ_ONCE(*pmd);
667 * MADV_DONTNEED may convert the pmd to null because
668 * mmap_lock is held in read mode
670 if (pmd_none(pmdval))
671 return no_page_table(vma, flags);
674 if (pmd_devmap(pmdval)) {
675 ptl = pmd_lock(mm, pmd);
676 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
681 if (likely(!pmd_trans_huge(pmdval)))
682 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
684 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
685 return no_page_table(vma, flags);
688 ptl = pmd_lock(mm, pmd);
689 if (unlikely(pmd_none(*pmd))) {
691 return no_page_table(vma, flags);
693 if (unlikely(!pmd_present(*pmd))) {
695 if (likely(!(flags & FOLL_MIGRATION)))
696 return no_page_table(vma, flags);
697 pmd_migration_entry_wait(mm, pmd);
700 if (unlikely(!pmd_trans_huge(*pmd))) {
702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
704 if (flags & FOLL_SPLIT_PMD) {
706 page = pmd_page(*pmd);
707 if (is_huge_zero_page(page)) {
710 split_huge_pmd(vma, pmd, address);
711 if (pmd_trans_unstable(pmd))
715 split_huge_pmd(vma, pmd, address);
716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
719 return ret ? ERR_PTR(ret) :
720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
722 page = follow_trans_huge_pmd(vma, address, pmd, flags);
724 ctx->page_mask = HPAGE_PMD_NR - 1;
728 static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 unsigned long address, p4d_t *p4dp,
731 struct follow_page_context *ctx)
736 struct mm_struct *mm = vma->vm_mm;
738 pud = pud_offset(p4dp, address);
740 return no_page_table(vma, flags);
741 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
742 page = follow_huge_pud(mm, address, pud, flags);
745 return no_page_table(vma, flags);
747 if (is_hugepd(__hugepd(pud_val(*pud)))) {
748 page = follow_huge_pd(vma, address,
749 __hugepd(pud_val(*pud)), flags,
753 return no_page_table(vma, flags);
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
765 return follow_pmd_mask(vma, address, pud, flags, ctx);
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
771 struct follow_page_context *ctx)
776 p4d = p4d_offset(pgdp, address);
778 return no_page_table(vma, flags);
779 BUILD_BUG_ON(p4d_huge(*p4d));
780 if (unlikely(p4d_bad(*p4d)))
781 return no_page_table(vma, flags);
783 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
784 page = follow_huge_pd(vma, address,
785 __hugepd(p4d_val(*p4d)), flags,
789 return no_page_table(vma, flags);
791 return follow_pud_mask(vma, address, p4d, flags, ctx);
795 * follow_page_mask - look up a page descriptor from a user-virtual address
796 * @vma: vm_area_struct mapping @address
797 * @address: virtual address to look up
798 * @flags: flags modifying lookup behaviour
799 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
800 * pointer to output page_mask
802 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
804 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
805 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
807 * On output, the @ctx->page_mask is set according to the size of the page.
809 * Return: the mapped (struct page *), %NULL if no mapping exists, or
810 * an error pointer if there is a mapping to something not represented
811 * by a page descriptor (see also vm_normal_page()).
813 static struct page *follow_page_mask(struct vm_area_struct *vma,
814 unsigned long address, unsigned int flags,
815 struct follow_page_context *ctx)
819 struct mm_struct *mm = vma->vm_mm;
823 /* make this handle hugepd */
824 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
826 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
830 pgd = pgd_offset(mm, address);
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
835 if (pgd_huge(*pgd)) {
836 page = follow_huge_pgd(mm, address, pgd, flags);
839 return no_page_table(vma, flags);
841 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
842 page = follow_huge_pd(vma, address,
843 __hugepd(pgd_val(*pgd)), flags,
847 return no_page_table(vma, flags);
850 return follow_p4d_mask(vma, address, pgd, flags, ctx);
853 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
854 unsigned int foll_flags)
856 struct follow_page_context ctx = { NULL };
859 if (vma_is_secretmem(vma))
862 page = follow_page_mask(vma, address, foll_flags, &ctx);
864 put_dev_pagemap(ctx.pgmap);
868 static int get_gate_page(struct mm_struct *mm, unsigned long address,
869 unsigned int gup_flags, struct vm_area_struct **vma,
879 /* user gate pages are read-only */
880 if (gup_flags & FOLL_WRITE)
882 if (address > TASK_SIZE)
883 pgd = pgd_offset_k(address);
885 pgd = pgd_offset_gate(mm, address);
888 p4d = p4d_offset(pgd, address);
891 pud = pud_offset(p4d, address);
894 pmd = pmd_offset(pud, address);
895 if (!pmd_present(*pmd))
897 VM_BUG_ON(pmd_trans_huge(*pmd));
898 pte = pte_offset_map(pmd, address);
901 *vma = get_gate_vma(mm);
904 *page = vm_normal_page(*vma, address, *pte);
906 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
908 *page = pte_page(*pte);
910 if (unlikely(!try_grab_page(*page, gup_flags))) {
922 * mmap_lock must be held on entry. If @locked != NULL and *@flags
923 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
924 * is, *@locked will be set to 0 and -EBUSY returned.
926 static int faultin_page(struct vm_area_struct *vma,
927 unsigned long address, unsigned int *flags, int *locked)
929 unsigned int fault_flags = 0;
932 /* mlock all present pages, but do not fault in new pages */
933 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
935 if (*flags & FOLL_WRITE)
936 fault_flags |= FAULT_FLAG_WRITE;
937 if (*flags & FOLL_REMOTE)
938 fault_flags |= FAULT_FLAG_REMOTE;
940 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
943 if (*flags & FOLL_TRIED) {
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
948 fault_flags |= FAULT_FLAG_TRIED;
951 ret = handle_mm_fault(vma, address, fault_flags, NULL);
952 if (ret & VM_FAULT_ERROR) {
953 int err = vm_fault_to_errno(ret, *flags);
960 if (ret & VM_FAULT_RETRY) {
961 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
967 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
968 * necessary, even if maybe_mkwrite decided not to set pte_write. We
969 * can thus safely do subsequent page lookups as if they were reads.
970 * But only do so when looping for pte_write is futile: in some cases
971 * userspace may also be wanting to write to the gotten user page,
972 * which a read fault here might prevent (a readonly page might get
973 * reCOWed by userspace write).
975 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
980 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
982 vm_flags_t vm_flags = vma->vm_flags;
983 int write = (gup_flags & FOLL_WRITE);
984 int foreign = (gup_flags & FOLL_REMOTE);
986 if (vm_flags & (VM_IO | VM_PFNMAP))
989 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
992 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
995 if (vma_is_secretmem(vma))
999 if (!(vm_flags & VM_WRITE)) {
1000 if (!(gup_flags & FOLL_FORCE))
1003 * We used to let the write,force case do COW in a
1004 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1005 * set a breakpoint in a read-only mapping of an
1006 * executable, without corrupting the file (yet only
1007 * when that file had been opened for writing!).
1008 * Anon pages in shared mappings are surprising: now
1011 if (!is_cow_mapping(vm_flags))
1014 } else if (!(vm_flags & VM_READ)) {
1015 if (!(gup_flags & FOLL_FORCE))
1018 * Is there actually any vma we can reach here which does not
1019 * have VM_MAYREAD set?
1021 if (!(vm_flags & VM_MAYREAD))
1025 * gups are always data accesses, not instruction
1026 * fetches, so execute=false here
1028 if (!arch_vma_access_permitted(vma, write, false, foreign))
1034 * __get_user_pages() - pin user pages in memory
1035 * @mm: mm_struct of target mm
1036 * @start: starting user address
1037 * @nr_pages: number of pages from start to pin
1038 * @gup_flags: flags modifying pin behaviour
1039 * @pages: array that receives pointers to the pages pinned.
1040 * Should be at least nr_pages long. Or NULL, if caller
1041 * only intends to ensure the pages are faulted in.
1042 * @vmas: array of pointers to vmas corresponding to each page.
1043 * Or NULL if the caller does not require them.
1044 * @locked: whether we're still with the mmap_lock held
1046 * Returns either number of pages pinned (which may be less than the
1047 * number requested), or an error. Details about the return value:
1049 * -- If nr_pages is 0, returns 0.
1050 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1051 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1052 * pages pinned. Again, this may be less than nr_pages.
1053 * -- 0 return value is possible when the fault would need to be retried.
1055 * The caller is responsible for releasing returned @pages, via put_page().
1057 * @vmas are valid only as long as mmap_lock is held.
1059 * Must be called with mmap_lock held. It may be released. See below.
1061 * __get_user_pages walks a process's page tables and takes a reference to
1062 * each struct page that each user address corresponds to at a given
1063 * instant. That is, it takes the page that would be accessed if a user
1064 * thread accesses the given user virtual address at that instant.
1066 * This does not guarantee that the page exists in the user mappings when
1067 * __get_user_pages returns, and there may even be a completely different
1068 * page there in some cases (eg. if mmapped pagecache has been invalidated
1069 * and subsequently re faulted). However it does guarantee that the page
1070 * won't be freed completely. And mostly callers simply care that the page
1071 * contains data that was valid *at some point in time*. Typically, an IO
1072 * or similar operation cannot guarantee anything stronger anyway because
1073 * locks can't be held over the syscall boundary.
1075 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1076 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1077 * appropriate) must be called after the page is finished with, and
1078 * before put_page is called.
1080 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1081 * released by an up_read(). That can happen if @gup_flags does not
1084 * A caller using such a combination of @locked and @gup_flags
1085 * must therefore hold the mmap_lock for reading only, and recognize
1086 * when it's been released. Otherwise, it must be held for either
1087 * reading or writing and will not be released.
1089 * In most cases, get_user_pages or get_user_pages_fast should be used
1090 * instead of __get_user_pages. __get_user_pages should be used only if
1091 * you need some special @gup_flags.
1093 static long __get_user_pages(struct mm_struct *mm,
1094 unsigned long start, unsigned long nr_pages,
1095 unsigned int gup_flags, struct page **pages,
1096 struct vm_area_struct **vmas, int *locked)
1098 long ret = 0, i = 0;
1099 struct vm_area_struct *vma = NULL;
1100 struct follow_page_context ctx = { NULL };
1105 start = untagged_addr(start);
1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1110 * If FOLL_FORCE is set then do not force a full fault as the hinting
1111 * fault information is unrelated to the reference behaviour of a task
1112 * using the address space
1114 if (!(gup_flags & FOLL_FORCE))
1115 gup_flags |= FOLL_NUMA;
1119 unsigned int foll_flags = gup_flags;
1120 unsigned int page_increm;
1122 /* first iteration or cross vma bound */
1123 if (!vma || start >= vma->vm_end) {
1124 vma = find_extend_vma(mm, start);
1125 if (!vma && in_gate_area(mm, start)) {
1126 ret = get_gate_page(mm, start & PAGE_MASK,
1128 pages ? &pages[i] : NULL);
1139 ret = check_vma_flags(vma, gup_flags);
1143 if (is_vm_hugetlb_page(vma)) {
1144 i = follow_hugetlb_page(mm, vma, pages, vmas,
1145 &start, &nr_pages, i,
1147 if (locked && *locked == 0) {
1149 * We've got a VM_FAULT_RETRY
1150 * and we've lost mmap_lock.
1151 * We must stop here.
1153 BUG_ON(gup_flags & FOLL_NOWAIT);
1162 * If we have a pending SIGKILL, don't keep faulting pages and
1163 * potentially allocating memory.
1165 if (fatal_signal_pending(current)) {
1171 page = follow_page_mask(vma, start, foll_flags, &ctx);
1173 ret = faultin_page(vma, start, &foll_flags, locked);
1188 } else if (PTR_ERR(page) == -EEXIST) {
1190 * Proper page table entry exists, but no corresponding
1194 } else if (IS_ERR(page)) {
1195 ret = PTR_ERR(page);
1200 flush_anon_page(vma, page, start);
1201 flush_dcache_page(page);
1209 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1210 if (page_increm > nr_pages)
1211 page_increm = nr_pages;
1213 start += page_increm * PAGE_SIZE;
1214 nr_pages -= page_increm;
1218 put_dev_pagemap(ctx.pgmap);
1222 static bool vma_permits_fault(struct vm_area_struct *vma,
1223 unsigned int fault_flags)
1225 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1226 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1227 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1229 if (!(vm_flags & vma->vm_flags))
1233 * The architecture might have a hardware protection
1234 * mechanism other than read/write that can deny access.
1236 * gup always represents data access, not instruction
1237 * fetches, so execute=false here:
1239 if (!arch_vma_access_permitted(vma, write, false, foreign))
1246 * fixup_user_fault() - manually resolve a user page fault
1247 * @mm: mm_struct of target mm
1248 * @address: user address
1249 * @fault_flags:flags to pass down to handle_mm_fault()
1250 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1251 * does not allow retry. If NULL, the caller must guarantee
1252 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1254 * This is meant to be called in the specific scenario where for locking reasons
1255 * we try to access user memory in atomic context (within a pagefault_disable()
1256 * section), this returns -EFAULT, and we want to resolve the user fault before
1259 * Typically this is meant to be used by the futex code.
1261 * The main difference with get_user_pages() is that this function will
1262 * unconditionally call handle_mm_fault() which will in turn perform all the
1263 * necessary SW fixup of the dirty and young bits in the PTE, while
1264 * get_user_pages() only guarantees to update these in the struct page.
1266 * This is important for some architectures where those bits also gate the
1267 * access permission to the page because they are maintained in software. On
1268 * such architectures, gup() will not be enough to make a subsequent access
1271 * This function will not return with an unlocked mmap_lock. So it has not the
1272 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1274 int fixup_user_fault(struct mm_struct *mm,
1275 unsigned long address, unsigned int fault_flags,
1278 struct vm_area_struct *vma;
1279 vm_fault_t ret, major = 0;
1281 address = untagged_addr(address);
1284 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1287 vma = find_extend_vma(mm, address);
1288 if (!vma || address < vma->vm_start)
1291 if (!vma_permits_fault(vma, fault_flags))
1294 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1295 fatal_signal_pending(current))
1298 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1299 major |= ret & VM_FAULT_MAJOR;
1300 if (ret & VM_FAULT_ERROR) {
1301 int err = vm_fault_to_errno(ret, 0);
1308 if (ret & VM_FAULT_RETRY) {
1311 fault_flags |= FAULT_FLAG_TRIED;
1317 EXPORT_SYMBOL_GPL(fixup_user_fault);
1320 * Please note that this function, unlike __get_user_pages will not
1321 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1323 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1324 unsigned long start,
1325 unsigned long nr_pages,
1326 struct page **pages,
1327 struct vm_area_struct **vmas,
1331 long ret, pages_done;
1335 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1337 /* check caller initialized locked */
1338 BUG_ON(*locked != 1);
1341 if (flags & FOLL_PIN)
1342 mm_set_has_pinned_flag(&mm->flags);
1345 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1346 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1347 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1348 * for FOLL_GET, not for the newer FOLL_PIN.
1350 * FOLL_PIN always expects pages to be non-null, but no need to assert
1351 * that here, as any failures will be obvious enough.
1353 if (pages && !(flags & FOLL_PIN))
1357 lock_dropped = false;
1359 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1362 /* VM_FAULT_RETRY couldn't trigger, bypass */
1365 /* VM_FAULT_RETRY cannot return errors */
1368 BUG_ON(ret >= nr_pages);
1379 * VM_FAULT_RETRY didn't trigger or it was a
1387 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1388 * For the prefault case (!pages) we only update counts.
1392 start += ret << PAGE_SHIFT;
1393 lock_dropped = true;
1397 * Repeat on the address that fired VM_FAULT_RETRY
1398 * with both FAULT_FLAG_ALLOW_RETRY and
1399 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1400 * by fatal signals, so we need to check it before we
1401 * start trying again otherwise it can loop forever.
1404 if (fatal_signal_pending(current)) {
1406 pages_done = -EINTR;
1410 ret = mmap_read_lock_killable(mm);
1419 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1420 pages, NULL, locked);
1422 /* Continue to retry until we succeeded */
1440 if (lock_dropped && *locked) {
1442 * We must let the caller know we temporarily dropped the lock
1443 * and so the critical section protected by it was lost.
1445 mmap_read_unlock(mm);
1452 * populate_vma_page_range() - populate a range of pages in the vma.
1454 * @start: start address
1456 * @locked: whether the mmap_lock is still held
1458 * This takes care of mlocking the pages too if VM_LOCKED is set.
1460 * Return either number of pages pinned in the vma, or a negative error
1463 * vma->vm_mm->mmap_lock must be held.
1465 * If @locked is NULL, it may be held for read or write and will
1468 * If @locked is non-NULL, it must held for read only and may be
1469 * released. If it's released, *@locked will be set to 0.
1471 long populate_vma_page_range(struct vm_area_struct *vma,
1472 unsigned long start, unsigned long end, int *locked)
1474 struct mm_struct *mm = vma->vm_mm;
1475 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1478 VM_BUG_ON(start & ~PAGE_MASK);
1479 VM_BUG_ON(end & ~PAGE_MASK);
1480 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1481 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1482 mmap_assert_locked(mm);
1484 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1485 if (vma->vm_flags & VM_LOCKONFAULT)
1486 gup_flags &= ~FOLL_POPULATE;
1488 * We want to touch writable mappings with a write fault in order
1489 * to break COW, except for shared mappings because these don't COW
1490 * and we would not want to dirty them for nothing.
1492 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1493 gup_flags |= FOLL_WRITE;
1496 * We want mlock to succeed for regions that have any permissions
1497 * other than PROT_NONE.
1499 if (vma_is_accessible(vma))
1500 gup_flags |= FOLL_FORCE;
1503 * We made sure addr is within a VMA, so the following will
1504 * not result in a stack expansion that recurses back here.
1506 return __get_user_pages(mm, start, nr_pages, gup_flags,
1507 NULL, NULL, locked);
1511 * faultin_vma_page_range() - populate (prefault) page tables inside the
1512 * given VMA range readable/writable
1514 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1517 * @start: start address
1519 * @write: whether to prefault readable or writable
1520 * @locked: whether the mmap_lock is still held
1522 * Returns either number of processed pages in the vma, or a negative error
1523 * code on error (see __get_user_pages()).
1525 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1526 * covered by the VMA.
1528 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1530 * If @locked is non-NULL, it must held for read only and may be released. If
1531 * it's released, *@locked will be set to 0.
1533 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1534 unsigned long end, bool write, int *locked)
1536 struct mm_struct *mm = vma->vm_mm;
1537 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1540 VM_BUG_ON(!PAGE_ALIGNED(start));
1541 VM_BUG_ON(!PAGE_ALIGNED(end));
1542 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1543 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1544 mmap_assert_locked(mm);
1547 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1548 * the page dirty with FOLL_WRITE -- which doesn't make a
1549 * difference with !FOLL_FORCE, because the page is writable
1550 * in the page table.
1551 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1553 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1554 * !FOLL_FORCE: Require proper access permissions.
1556 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1558 gup_flags |= FOLL_WRITE;
1561 * We want to report -EINVAL instead of -EFAULT for any permission
1562 * problems or incompatible mappings.
1564 if (check_vma_flags(vma, gup_flags))
1567 return __get_user_pages(mm, start, nr_pages, gup_flags,
1568 NULL, NULL, locked);
1572 * __mm_populate - populate and/or mlock pages within a range of address space.
1574 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1575 * flags. VMAs must be already marked with the desired vm_flags, and
1576 * mmap_lock must not be held.
1578 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1580 struct mm_struct *mm = current->mm;
1581 unsigned long end, nstart, nend;
1582 struct vm_area_struct *vma = NULL;
1588 for (nstart = start; nstart < end; nstart = nend) {
1590 * We want to fault in pages for [nstart; end) address range.
1591 * Find first corresponding VMA.
1596 vma = find_vma(mm, nstart);
1597 } else if (nstart >= vma->vm_end)
1599 if (!vma || vma->vm_start >= end)
1602 * Set [nstart; nend) to intersection of desired address
1603 * range with the first VMA. Also, skip undesirable VMA types.
1605 nend = min(end, vma->vm_end);
1606 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1608 if (nstart < vma->vm_start)
1609 nstart = vma->vm_start;
1611 * Now fault in a range of pages. populate_vma_page_range()
1612 * double checks the vma flags, so that it won't mlock pages
1613 * if the vma was already munlocked.
1615 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1617 if (ignore_errors) {
1619 continue; /* continue at next VMA */
1623 nend = nstart + ret * PAGE_SIZE;
1627 mmap_read_unlock(mm);
1628 return ret; /* 0 or negative error code */
1630 #else /* CONFIG_MMU */
1631 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1632 unsigned long nr_pages, struct page **pages,
1633 struct vm_area_struct **vmas, int *locked,
1634 unsigned int foll_flags)
1636 struct vm_area_struct *vma;
1637 unsigned long vm_flags;
1640 /* calculate required read or write permissions.
1641 * If FOLL_FORCE is set, we only require the "MAY" flags.
1643 vm_flags = (foll_flags & FOLL_WRITE) ?
1644 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1645 vm_flags &= (foll_flags & FOLL_FORCE) ?
1646 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1648 for (i = 0; i < nr_pages; i++) {
1649 vma = find_vma(mm, start);
1651 goto finish_or_fault;
1653 /* protect what we can, including chardevs */
1654 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1655 !(vm_flags & vma->vm_flags))
1656 goto finish_or_fault;
1659 pages[i] = virt_to_page(start);
1665 start = (start + PAGE_SIZE) & PAGE_MASK;
1671 return i ? : -EFAULT;
1673 #endif /* !CONFIG_MMU */
1676 * get_dump_page() - pin user page in memory while writing it to core dump
1677 * @addr: user address
1679 * Returns struct page pointer of user page pinned for dump,
1680 * to be freed afterwards by put_page().
1682 * Returns NULL on any kind of failure - a hole must then be inserted into
1683 * the corefile, to preserve alignment with its headers; and also returns
1684 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1685 * allowing a hole to be left in the corefile to save disk space.
1687 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1689 #ifdef CONFIG_ELF_CORE
1690 struct page *get_dump_page(unsigned long addr)
1692 struct mm_struct *mm = current->mm;
1697 if (mmap_read_lock_killable(mm))
1699 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1700 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1702 mmap_read_unlock(mm);
1703 return (ret == 1) ? page : NULL;
1705 #endif /* CONFIG_ELF_CORE */
1707 #ifdef CONFIG_MIGRATION
1709 * Check whether all pages are pinnable, if so return number of pages. If some
1710 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1711 * pages were migrated, or if some pages were not successfully isolated.
1712 * Return negative error if migration fails.
1714 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1715 struct page **pages,
1716 unsigned int gup_flags)
1719 unsigned long isolation_error_count = 0;
1720 bool drain_allow = true;
1721 LIST_HEAD(movable_page_list);
1723 struct page *prev_head = NULL;
1725 struct migration_target_control mtc = {
1726 .nid = NUMA_NO_NODE,
1727 .gfp_mask = GFP_USER | __GFP_NOWARN,
1730 for (i = 0; i < nr_pages; i++) {
1731 head = compound_head(pages[i]);
1732 if (head == prev_head)
1736 * If we get a movable page, since we are going to be pinning
1737 * these entries, try to move them out if possible.
1739 if (!is_pinnable_page(head)) {
1740 if (PageHuge(head)) {
1741 if (!isolate_huge_page(head, &movable_page_list))
1742 isolation_error_count++;
1744 if (!PageLRU(head) && drain_allow) {
1745 lru_add_drain_all();
1746 drain_allow = false;
1749 if (isolate_lru_page(head)) {
1750 isolation_error_count++;
1753 list_add_tail(&head->lru, &movable_page_list);
1754 mod_node_page_state(page_pgdat(head),
1756 page_is_file_lru(head),
1757 thp_nr_pages(head));
1763 * If list is empty, and no isolation errors, means that all pages are
1764 * in the correct zone.
1766 if (list_empty(&movable_page_list) && !isolation_error_count)
1769 if (gup_flags & FOLL_PIN) {
1770 unpin_user_pages(pages, nr_pages);
1772 for (i = 0; i < nr_pages; i++)
1775 if (!list_empty(&movable_page_list)) {
1776 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1777 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1779 if (ret && !list_empty(&movable_page_list))
1780 putback_movable_pages(&movable_page_list);
1783 return ret > 0 ? -ENOMEM : ret;
1786 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1787 struct page **pages,
1788 unsigned int gup_flags)
1792 #endif /* CONFIG_MIGRATION */
1795 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1796 * allows us to process the FOLL_LONGTERM flag.
1798 static long __gup_longterm_locked(struct mm_struct *mm,
1799 unsigned long start,
1800 unsigned long nr_pages,
1801 struct page **pages,
1802 struct vm_area_struct **vmas,
1803 unsigned int gup_flags)
1808 if (!(gup_flags & FOLL_LONGTERM))
1809 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 flags = memalloc_pin_save();
1813 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1817 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1819 memalloc_pin_restore(flags);
1824 static bool is_valid_gup_flags(unsigned int gup_flags)
1827 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1828 * never directly by the caller, so enforce that with an assertion:
1830 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1833 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1834 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1837 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1844 static long __get_user_pages_remote(struct mm_struct *mm,
1845 unsigned long start, unsigned long nr_pages,
1846 unsigned int gup_flags, struct page **pages,
1847 struct vm_area_struct **vmas, int *locked)
1850 * Parts of FOLL_LONGTERM behavior are incompatible with
1851 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1852 * vmas. However, this only comes up if locked is set, and there are
1853 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1854 * allow what we can.
1856 if (gup_flags & FOLL_LONGTERM) {
1857 if (WARN_ON_ONCE(locked))
1860 * This will check the vmas (even if our vmas arg is NULL)
1861 * and return -ENOTSUPP if DAX isn't allowed in this case:
1863 return __gup_longterm_locked(mm, start, nr_pages, pages,
1864 vmas, gup_flags | FOLL_TOUCH |
1868 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1870 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1874 * get_user_pages_remote() - pin user pages in memory
1875 * @mm: mm_struct of target mm
1876 * @start: starting user address
1877 * @nr_pages: number of pages from start to pin
1878 * @gup_flags: flags modifying lookup behaviour
1879 * @pages: array that receives pointers to the pages pinned.
1880 * Should be at least nr_pages long. Or NULL, if caller
1881 * only intends to ensure the pages are faulted in.
1882 * @vmas: array of pointers to vmas corresponding to each page.
1883 * Or NULL if the caller does not require them.
1884 * @locked: pointer to lock flag indicating whether lock is held and
1885 * subsequently whether VM_FAULT_RETRY functionality can be
1886 * utilised. Lock must initially be held.
1888 * Returns either number of pages pinned (which may be less than the
1889 * number requested), or an error. Details about the return value:
1891 * -- If nr_pages is 0, returns 0.
1892 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1893 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1894 * pages pinned. Again, this may be less than nr_pages.
1896 * The caller is responsible for releasing returned @pages, via put_page().
1898 * @vmas are valid only as long as mmap_lock is held.
1900 * Must be called with mmap_lock held for read or write.
1902 * get_user_pages_remote walks a process's page tables and takes a reference
1903 * to each struct page that each user address corresponds to at a given
1904 * instant. That is, it takes the page that would be accessed if a user
1905 * thread accesses the given user virtual address at that instant.
1907 * This does not guarantee that the page exists in the user mappings when
1908 * get_user_pages_remote returns, and there may even be a completely different
1909 * page there in some cases (eg. if mmapped pagecache has been invalidated
1910 * and subsequently re faulted). However it does guarantee that the page
1911 * won't be freed completely. And mostly callers simply care that the page
1912 * contains data that was valid *at some point in time*. Typically, an IO
1913 * or similar operation cannot guarantee anything stronger anyway because
1914 * locks can't be held over the syscall boundary.
1916 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1917 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1918 * be called after the page is finished with, and before put_page is called.
1920 * get_user_pages_remote is typically used for fewer-copy IO operations,
1921 * to get a handle on the memory by some means other than accesses
1922 * via the user virtual addresses. The pages may be submitted for
1923 * DMA to devices or accessed via their kernel linear mapping (via the
1924 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1926 * See also get_user_pages_fast, for performance critical applications.
1928 * get_user_pages_remote should be phased out in favor of
1929 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1930 * should use get_user_pages_remote because it cannot pass
1931 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1933 long get_user_pages_remote(struct mm_struct *mm,
1934 unsigned long start, unsigned long nr_pages,
1935 unsigned int gup_flags, struct page **pages,
1936 struct vm_area_struct **vmas, int *locked)
1938 if (!is_valid_gup_flags(gup_flags))
1941 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1942 pages, vmas, locked);
1944 EXPORT_SYMBOL(get_user_pages_remote);
1946 #else /* CONFIG_MMU */
1947 long get_user_pages_remote(struct mm_struct *mm,
1948 unsigned long start, unsigned long nr_pages,
1949 unsigned int gup_flags, struct page **pages,
1950 struct vm_area_struct **vmas, int *locked)
1955 static long __get_user_pages_remote(struct mm_struct *mm,
1956 unsigned long start, unsigned long nr_pages,
1957 unsigned int gup_flags, struct page **pages,
1958 struct vm_area_struct **vmas, int *locked)
1962 #endif /* !CONFIG_MMU */
1965 * get_user_pages() - pin user pages in memory
1966 * @start: starting user address
1967 * @nr_pages: number of pages from start to pin
1968 * @gup_flags: flags modifying lookup behaviour
1969 * @pages: array that receives pointers to the pages pinned.
1970 * Should be at least nr_pages long. Or NULL, if caller
1971 * only intends to ensure the pages are faulted in.
1972 * @vmas: array of pointers to vmas corresponding to each page.
1973 * Or NULL if the caller does not require them.
1975 * This is the same as get_user_pages_remote(), just with a less-flexible
1976 * calling convention where we assume that the mm being operated on belongs to
1977 * the current task, and doesn't allow passing of a locked parameter. We also
1978 * obviously don't pass FOLL_REMOTE in here.
1980 long get_user_pages(unsigned long start, unsigned long nr_pages,
1981 unsigned int gup_flags, struct page **pages,
1982 struct vm_area_struct **vmas)
1984 if (!is_valid_gup_flags(gup_flags))
1987 return __gup_longterm_locked(current->mm, start, nr_pages,
1988 pages, vmas, gup_flags | FOLL_TOUCH);
1990 EXPORT_SYMBOL(get_user_pages);
1993 * get_user_pages_locked() - variant of get_user_pages()
1995 * @start: starting user address
1996 * @nr_pages: number of pages from start to pin
1997 * @gup_flags: flags modifying lookup behaviour
1998 * @pages: array that receives pointers to the pages pinned.
1999 * Should be at least nr_pages long. Or NULL, if caller
2000 * only intends to ensure the pages are faulted in.
2001 * @locked: pointer to lock flag indicating whether lock is held and
2002 * subsequently whether VM_FAULT_RETRY functionality can be
2003 * utilised. Lock must initially be held.
2005 * It is suitable to replace the form:
2007 * mmap_read_lock(mm);
2009 * get_user_pages(mm, ..., pages, NULL);
2010 * mmap_read_unlock(mm);
2015 * mmap_read_lock(mm);
2017 * get_user_pages_locked(mm, ..., pages, &locked);
2019 * mmap_read_unlock(mm);
2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022 * paths better by using either get_user_pages_locked() or
2023 * get_user_pages_unlocked().
2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 unsigned int gup_flags, struct page **pages,
2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 * vmas. As there are no users of this flag in this call we simply
2034 * disallow this option for now.
2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2039 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2040 * never directly by the caller, so enforce that:
2042 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2045 return __get_user_pages_locked(current->mm, start, nr_pages,
2046 pages, NULL, locked,
2047 gup_flags | FOLL_TOUCH);
2049 EXPORT_SYMBOL(get_user_pages_locked);
2052 * get_user_pages_unlocked() is suitable to replace the form:
2054 * mmap_read_lock(mm);
2055 * get_user_pages(mm, ..., pages, NULL);
2056 * mmap_read_unlock(mm);
2060 * get_user_pages_unlocked(mm, ..., pages);
2062 * It is functionally equivalent to get_user_pages_fast so
2063 * get_user_pages_fast should be used instead if specific gup_flags
2064 * (e.g. FOLL_FORCE) are not required.
2066 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2067 struct page **pages, unsigned int gup_flags)
2069 struct mm_struct *mm = current->mm;
2074 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2075 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2076 * vmas. As there are no users of this flag in this call we simply
2077 * disallow this option for now.
2079 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2083 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2084 &locked, gup_flags | FOLL_TOUCH);
2086 mmap_read_unlock(mm);
2089 EXPORT_SYMBOL(get_user_pages_unlocked);
2094 * get_user_pages_fast attempts to pin user pages by walking the page
2095 * tables directly and avoids taking locks. Thus the walker needs to be
2096 * protected from page table pages being freed from under it, and should
2097 * block any THP splits.
2099 * One way to achieve this is to have the walker disable interrupts, and
2100 * rely on IPIs from the TLB flushing code blocking before the page table
2101 * pages are freed. This is unsuitable for architectures that do not need
2102 * to broadcast an IPI when invalidating TLBs.
2104 * Another way to achieve this is to batch up page table containing pages
2105 * belonging to more than one mm_user, then rcu_sched a callback to free those
2106 * pages. Disabling interrupts will allow the fast_gup walker to both block
2107 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2108 * (which is a relatively rare event). The code below adopts this strategy.
2110 * Before activating this code, please be aware that the following assumptions
2111 * are currently made:
2113 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2114 * free pages containing page tables or TLB flushing requires IPI broadcast.
2116 * *) ptes can be read atomically by the architecture.
2118 * *) access_ok is sufficient to validate userspace address ranges.
2120 * The last two assumptions can be relaxed by the addition of helper functions.
2122 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2124 #ifdef CONFIG_HAVE_FAST_GUP
2126 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2128 struct page **pages)
2130 while ((*nr) - nr_start) {
2131 struct page *page = pages[--(*nr)];
2133 ClearPageReferenced(page);
2134 if (flags & FOLL_PIN)
2135 unpin_user_page(page);
2141 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2142 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2143 unsigned int flags, struct page **pages, int *nr)
2145 struct dev_pagemap *pgmap = NULL;
2146 int nr_start = *nr, ret = 0;
2149 ptem = ptep = pte_offset_map(&pmd, addr);
2151 pte_t pte = ptep_get_lockless(ptep);
2152 struct page *head, *page;
2155 * Similar to the PMD case below, NUMA hinting must take slow
2156 * path using the pte_protnone check.
2158 if (pte_protnone(pte))
2161 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2164 if (pte_devmap(pte)) {
2165 if (unlikely(flags & FOLL_LONGTERM))
2168 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2169 if (unlikely(!pgmap)) {
2170 undo_dev_pagemap(nr, nr_start, flags, pages);
2173 } else if (pte_special(pte))
2176 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2177 page = pte_page(pte);
2179 head = try_grab_compound_head(page, 1, flags);
2183 if (unlikely(page_is_secretmem(page))) {
2184 put_compound_head(head, 1, flags);
2188 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2189 put_compound_head(head, 1, flags);
2193 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2196 * We need to make the page accessible if and only if we are
2197 * going to access its content (the FOLL_PIN case). Please
2198 * see Documentation/core-api/pin_user_pages.rst for
2201 if (flags & FOLL_PIN) {
2202 ret = arch_make_page_accessible(page);
2204 unpin_user_page(page);
2208 SetPageReferenced(page);
2212 } while (ptep++, addr += PAGE_SIZE, addr != end);
2218 put_dev_pagemap(pgmap);
2225 * If we can't determine whether or not a pte is special, then fail immediately
2226 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2229 * For a futex to be placed on a THP tail page, get_futex_key requires a
2230 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2231 * useful to have gup_huge_pmd even if we can't operate on ptes.
2233 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2234 unsigned int flags, struct page **pages, int *nr)
2238 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2240 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2241 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2242 unsigned long end, unsigned int flags,
2243 struct page **pages, int *nr)
2246 struct dev_pagemap *pgmap = NULL;
2249 struct page *page = pfn_to_page(pfn);
2251 pgmap = get_dev_pagemap(pfn, pgmap);
2252 if (unlikely(!pgmap)) {
2253 undo_dev_pagemap(nr, nr_start, flags, pages);
2256 SetPageReferenced(page);
2258 if (unlikely(!try_grab_page(page, flags))) {
2259 undo_dev_pagemap(nr, nr_start, flags, pages);
2264 } while (addr += PAGE_SIZE, addr != end);
2267 put_dev_pagemap(pgmap);
2271 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2272 unsigned long end, unsigned int flags,
2273 struct page **pages, int *nr)
2275 unsigned long fault_pfn;
2278 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2279 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2282 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2283 undo_dev_pagemap(nr, nr_start, flags, pages);
2289 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2290 unsigned long end, unsigned int flags,
2291 struct page **pages, int *nr)
2293 unsigned long fault_pfn;
2296 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2297 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2300 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2301 undo_dev_pagemap(nr, nr_start, flags, pages);
2307 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2308 unsigned long end, unsigned int flags,
2309 struct page **pages, int *nr)
2315 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2316 unsigned long end, unsigned int flags,
2317 struct page **pages, int *nr)
2324 static int record_subpages(struct page *page, unsigned long addr,
2325 unsigned long end, struct page **pages)
2329 for (nr = 0; addr != end; addr += PAGE_SIZE)
2330 pages[nr++] = page++;
2335 #ifdef CONFIG_ARCH_HAS_HUGEPD
2336 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2339 unsigned long __boundary = (addr + sz) & ~(sz-1);
2340 return (__boundary - 1 < end - 1) ? __boundary : end;
2343 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2344 unsigned long end, unsigned int flags,
2345 struct page **pages, int *nr)
2347 unsigned long pte_end;
2348 struct page *head, *page;
2352 pte_end = (addr + sz) & ~(sz-1);
2356 pte = huge_ptep_get(ptep);
2358 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2361 /* hugepages are never "special" */
2362 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2364 head = pte_page(pte);
2365 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2366 refs = record_subpages(page, addr, end, pages + *nr);
2368 head = try_grab_compound_head(head, refs, flags);
2372 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2373 put_compound_head(head, refs, flags);
2378 SetPageReferenced(head);
2382 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2383 unsigned int pdshift, unsigned long end, unsigned int flags,
2384 struct page **pages, int *nr)
2387 unsigned long sz = 1UL << hugepd_shift(hugepd);
2390 ptep = hugepte_offset(hugepd, addr, pdshift);
2392 next = hugepte_addr_end(addr, end, sz);
2393 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2395 } while (ptep++, addr = next, addr != end);
2400 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2401 unsigned int pdshift, unsigned long end, unsigned int flags,
2402 struct page **pages, int *nr)
2406 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2408 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2409 unsigned long end, unsigned int flags,
2410 struct page **pages, int *nr)
2412 struct page *head, *page;
2415 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2418 if (pmd_devmap(orig)) {
2419 if (unlikely(flags & FOLL_LONGTERM))
2421 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2425 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2426 refs = record_subpages(page, addr, end, pages + *nr);
2428 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2432 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2433 put_compound_head(head, refs, flags);
2438 SetPageReferenced(head);
2442 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2443 unsigned long end, unsigned int flags,
2444 struct page **pages, int *nr)
2446 struct page *head, *page;
2449 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2452 if (pud_devmap(orig)) {
2453 if (unlikely(flags & FOLL_LONGTERM))
2455 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2459 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2460 refs = record_subpages(page, addr, end, pages + *nr);
2462 head = try_grab_compound_head(pud_page(orig), refs, flags);
2466 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2467 put_compound_head(head, refs, flags);
2472 SetPageReferenced(head);
2476 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2477 unsigned long end, unsigned int flags,
2478 struct page **pages, int *nr)
2481 struct page *head, *page;
2483 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2486 BUILD_BUG_ON(pgd_devmap(orig));
2488 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2489 refs = record_subpages(page, addr, end, pages + *nr);
2491 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2495 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2496 put_compound_head(head, refs, flags);
2501 SetPageReferenced(head);
2505 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2506 unsigned int flags, struct page **pages, int *nr)
2511 pmdp = pmd_offset_lockless(pudp, pud, addr);
2513 pmd_t pmd = READ_ONCE(*pmdp);
2515 next = pmd_addr_end(addr, end);
2516 if (!pmd_present(pmd))
2519 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2522 * NUMA hinting faults need to be handled in the GUP
2523 * slowpath for accounting purposes and so that they
2524 * can be serialised against THP migration.
2526 if (pmd_protnone(pmd))
2529 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2533 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2535 * architecture have different format for hugetlbfs
2536 * pmd format and THP pmd format
2538 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2539 PMD_SHIFT, next, flags, pages, nr))
2541 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2543 } while (pmdp++, addr = next, addr != end);
2548 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2549 unsigned int flags, struct page **pages, int *nr)
2554 pudp = pud_offset_lockless(p4dp, p4d, addr);
2556 pud_t pud = READ_ONCE(*pudp);
2558 next = pud_addr_end(addr, end);
2559 if (unlikely(!pud_present(pud)))
2561 if (unlikely(pud_huge(pud))) {
2562 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2565 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2566 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2567 PUD_SHIFT, next, flags, pages, nr))
2569 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2571 } while (pudp++, addr = next, addr != end);
2576 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2577 unsigned int flags, struct page **pages, int *nr)
2582 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2584 p4d_t p4d = READ_ONCE(*p4dp);
2586 next = p4d_addr_end(addr, end);
2589 BUILD_BUG_ON(p4d_huge(p4d));
2590 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2591 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2592 P4D_SHIFT, next, flags, pages, nr))
2594 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2596 } while (p4dp++, addr = next, addr != end);
2601 static void gup_pgd_range(unsigned long addr, unsigned long end,
2602 unsigned int flags, struct page **pages, int *nr)
2607 pgdp = pgd_offset(current->mm, addr);
2609 pgd_t pgd = READ_ONCE(*pgdp);
2611 next = pgd_addr_end(addr, end);
2614 if (unlikely(pgd_huge(pgd))) {
2615 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2618 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2619 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2620 PGDIR_SHIFT, next, flags, pages, nr))
2622 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2624 } while (pgdp++, addr = next, addr != end);
2627 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2628 unsigned int flags, struct page **pages, int *nr)
2631 #endif /* CONFIG_HAVE_FAST_GUP */
2633 #ifndef gup_fast_permitted
2635 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2636 * we need to fall back to the slow version:
2638 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2644 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2645 unsigned int gup_flags, struct page **pages)
2650 * FIXME: FOLL_LONGTERM does not work with
2651 * get_user_pages_unlocked() (see comments in that function)
2653 if (gup_flags & FOLL_LONGTERM) {
2654 mmap_read_lock(current->mm);
2655 ret = __gup_longterm_locked(current->mm,
2657 pages, NULL, gup_flags);
2658 mmap_read_unlock(current->mm);
2660 ret = get_user_pages_unlocked(start, nr_pages,
2667 static unsigned long lockless_pages_from_mm(unsigned long start,
2669 unsigned int gup_flags,
2670 struct page **pages)
2672 unsigned long flags;
2676 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2677 !gup_fast_permitted(start, end))
2680 if (gup_flags & FOLL_PIN) {
2681 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2687 * Disable interrupts. The nested form is used, in order to allow full,
2688 * general purpose use of this routine.
2690 * With interrupts disabled, we block page table pages from being freed
2691 * from under us. See struct mmu_table_batch comments in
2692 * include/asm-generic/tlb.h for more details.
2694 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2695 * that come from THPs splitting.
2697 local_irq_save(flags);
2698 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2699 local_irq_restore(flags);
2702 * When pinning pages for DMA there could be a concurrent write protect
2703 * from fork() via copy_page_range(), in this case always fail fast GUP.
2705 if (gup_flags & FOLL_PIN) {
2706 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2707 unpin_user_pages(pages, nr_pinned);
2714 static int internal_get_user_pages_fast(unsigned long start,
2715 unsigned long nr_pages,
2716 unsigned int gup_flags,
2717 struct page **pages)
2719 unsigned long len, end;
2720 unsigned long nr_pinned;
2723 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2724 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2728 if (gup_flags & FOLL_PIN)
2729 mm_set_has_pinned_flag(¤t->mm->flags);
2731 if (!(gup_flags & FOLL_FAST_ONLY))
2732 might_lock_read(¤t->mm->mmap_lock);
2734 start = untagged_addr(start) & PAGE_MASK;
2735 len = nr_pages << PAGE_SHIFT;
2736 if (check_add_overflow(start, len, &end))
2738 if (unlikely(!access_ok((void __user *)start, len)))
2741 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2742 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2745 /* Slow path: try to get the remaining pages with get_user_pages */
2746 start += nr_pinned << PAGE_SHIFT;
2748 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2752 * The caller has to unpin the pages we already pinned so
2753 * returning -errno is not an option
2759 return ret + nr_pinned;
2763 * get_user_pages_fast_only() - pin user pages in memory
2764 * @start: starting user address
2765 * @nr_pages: number of pages from start to pin
2766 * @gup_flags: flags modifying pin behaviour
2767 * @pages: array that receives pointers to the pages pinned.
2768 * Should be at least nr_pages long.
2770 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2772 * Note a difference with get_user_pages_fast: this always returns the
2773 * number of pages pinned, 0 if no pages were pinned.
2775 * If the architecture does not support this function, simply return with no
2778 * Careful, careful! COW breaking can go either way, so a non-write
2779 * access can get ambiguous page results. If you call this function without
2780 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2782 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2783 unsigned int gup_flags, struct page **pages)
2787 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2788 * because gup fast is always a "pin with a +1 page refcount" request.
2790 * FOLL_FAST_ONLY is required in order to match the API description of
2791 * this routine: no fall back to regular ("slow") GUP.
2793 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2795 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2799 * As specified in the API description above, this routine is not
2800 * allowed to return negative values. However, the common core
2801 * routine internal_get_user_pages_fast() *can* return -errno.
2802 * Therefore, correct for that here:
2809 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2812 * get_user_pages_fast() - pin user pages in memory
2813 * @start: starting user address
2814 * @nr_pages: number of pages from start to pin
2815 * @gup_flags: flags modifying pin behaviour
2816 * @pages: array that receives pointers to the pages pinned.
2817 * Should be at least nr_pages long.
2819 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2820 * If not successful, it will fall back to taking the lock and
2821 * calling get_user_pages().
2823 * Returns number of pages pinned. This may be fewer than the number requested.
2824 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2827 int get_user_pages_fast(unsigned long start, int nr_pages,
2828 unsigned int gup_flags, struct page **pages)
2830 if (!is_valid_gup_flags(gup_flags))
2834 * The caller may or may not have explicitly set FOLL_GET; either way is
2835 * OK. However, internally (within mm/gup.c), gup fast variants must set
2836 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2839 gup_flags |= FOLL_GET;
2840 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2842 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2845 * pin_user_pages_fast() - pin user pages in memory without taking locks
2847 * @start: starting user address
2848 * @nr_pages: number of pages from start to pin
2849 * @gup_flags: flags modifying pin behaviour
2850 * @pages: array that receives pointers to the pages pinned.
2851 * Should be at least nr_pages long.
2853 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2854 * get_user_pages_fast() for documentation on the function arguments, because
2855 * the arguments here are identical.
2857 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2858 * see Documentation/core-api/pin_user_pages.rst for further details.
2860 int pin_user_pages_fast(unsigned long start, int nr_pages,
2861 unsigned int gup_flags, struct page **pages)
2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2867 gup_flags |= FOLL_PIN;
2868 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2870 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2873 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2874 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2876 * The API rules are the same, too: no negative values may be returned.
2878 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2879 unsigned int gup_flags, struct page **pages)
2884 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2885 * rules require returning 0, rather than -errno:
2887 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2890 * FOLL_FAST_ONLY is required in order to match the API description of
2891 * this routine: no fall back to regular ("slow") GUP.
2893 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2894 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2897 * This routine is not allowed to return negative values. However,
2898 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2899 * correct for that here:
2906 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2909 * pin_user_pages_remote() - pin pages of a remote process
2911 * @mm: mm_struct of target mm
2912 * @start: starting user address
2913 * @nr_pages: number of pages from start to pin
2914 * @gup_flags: flags modifying lookup behaviour
2915 * @pages: array that receives pointers to the pages pinned.
2916 * Should be at least nr_pages long. Or NULL, if caller
2917 * only intends to ensure the pages are faulted in.
2918 * @vmas: array of pointers to vmas corresponding to each page.
2919 * Or NULL if the caller does not require them.
2920 * @locked: pointer to lock flag indicating whether lock is held and
2921 * subsequently whether VM_FAULT_RETRY functionality can be
2922 * utilised. Lock must initially be held.
2924 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2925 * get_user_pages_remote() for documentation on the function arguments, because
2926 * the arguments here are identical.
2928 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2929 * see Documentation/core-api/pin_user_pages.rst for details.
2931 long pin_user_pages_remote(struct mm_struct *mm,
2932 unsigned long start, unsigned long nr_pages,
2933 unsigned int gup_flags, struct page **pages,
2934 struct vm_area_struct **vmas, int *locked)
2936 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2937 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2940 gup_flags |= FOLL_PIN;
2941 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2942 pages, vmas, locked);
2944 EXPORT_SYMBOL(pin_user_pages_remote);
2947 * pin_user_pages() - pin user pages in memory for use by other devices
2949 * @start: starting user address
2950 * @nr_pages: number of pages from start to pin
2951 * @gup_flags: flags modifying lookup behaviour
2952 * @pages: array that receives pointers to the pages pinned.
2953 * Should be at least nr_pages long. Or NULL, if caller
2954 * only intends to ensure the pages are faulted in.
2955 * @vmas: array of pointers to vmas corresponding to each page.
2956 * Or NULL if the caller does not require them.
2958 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2961 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2962 * see Documentation/core-api/pin_user_pages.rst for details.
2964 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2965 unsigned int gup_flags, struct page **pages,
2966 struct vm_area_struct **vmas)
2968 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2969 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2972 gup_flags |= FOLL_PIN;
2973 return __gup_longterm_locked(current->mm, start, nr_pages,
2974 pages, vmas, gup_flags);
2976 EXPORT_SYMBOL(pin_user_pages);
2979 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2980 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2981 * FOLL_PIN and rejects FOLL_GET.
2983 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2984 struct page **pages, unsigned int gup_flags)
2986 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2987 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2990 gup_flags |= FOLL_PIN;
2991 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2993 EXPORT_SYMBOL(pin_user_pages_unlocked);
2996 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2997 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3000 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3001 unsigned int gup_flags, struct page **pages,
3005 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3006 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3007 * vmas. As there are no users of this flag in this call we simply
3008 * disallow this option for now.
3010 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3013 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3014 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3017 gup_flags |= FOLL_PIN;
3018 return __get_user_pages_locked(current->mm, start, nr_pages,
3019 pages, NULL, locked,
3020 gup_flags | FOLL_TOUCH);
3022 EXPORT_SYMBOL(pin_user_pages_locked);