1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
50 #include "pgalloc-track.h"
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 static int __init set_nohugeiomap(char *str)
57 ioremap_max_page_shift = PAGE_SHIFT;
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
68 static int __init set_nohugevmalloc(char *str)
70 vmap_allow_huge = false;
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 bool is_vmalloc_addr(const void *x)
80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
84 EXPORT_SYMBOL(is_vmalloc_addr);
86 struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 static void __vunmap(const void *, int);
94 static void free_work(struct work_struct *w)
96 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
97 struct llist_node *t, *llnode;
99 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
100 __vunmap((void *)llnode, 1);
103 /*** Page table manipulation functions ***/
104 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
105 phys_addr_t phys_addr, pgprot_t prot,
106 unsigned int max_page_shift, pgtbl_mod_mask *mask)
110 unsigned long size = PAGE_SIZE;
112 pfn = phys_addr >> PAGE_SHIFT;
113 pte = pte_alloc_kernel_track(pmd, addr, mask);
117 BUG_ON(!pte_none(*pte));
119 #ifdef CONFIG_HUGETLB_PAGE
120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 if (size != PAGE_SIZE) {
122 pte_t entry = pfn_pte(pfn, prot);
124 entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 set_huge_pte_at(&init_mm, addr, pte, entry);
126 pfn += PFN_DOWN(size);
130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
132 } while (pte += PFN_DOWN(size), addr += size, addr != end);
133 *mask |= PGTBL_PTE_MODIFIED;
137 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 phys_addr_t phys_addr, pgprot_t prot,
139 unsigned int max_page_shift)
141 if (max_page_shift < PMD_SHIFT)
144 if (!arch_vmap_pmd_supported(prot))
147 if ((end - addr) != PMD_SIZE)
150 if (!IS_ALIGNED(addr, PMD_SIZE))
153 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
156 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
159 return pmd_set_huge(pmd, phys_addr, prot);
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 phys_addr_t phys_addr, pgprot_t prot,
164 unsigned int max_page_shift, pgtbl_mod_mask *mask)
169 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
173 next = pmd_addr_end(addr, end);
175 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
177 *mask |= PGTBL_PMD_MODIFIED;
181 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
183 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
187 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 phys_addr_t phys_addr, pgprot_t prot,
189 unsigned int max_page_shift)
191 if (max_page_shift < PUD_SHIFT)
194 if (!arch_vmap_pud_supported(prot))
197 if ((end - addr) != PUD_SIZE)
200 if (!IS_ALIGNED(addr, PUD_SIZE))
203 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
206 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
209 return pud_set_huge(pud, phys_addr, prot);
212 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 phys_addr_t phys_addr, pgprot_t prot,
214 unsigned int max_page_shift, pgtbl_mod_mask *mask)
219 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
223 next = pud_addr_end(addr, end);
225 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
227 *mask |= PGTBL_PUD_MODIFIED;
231 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 max_page_shift, mask))
234 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
238 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 phys_addr_t phys_addr, pgprot_t prot,
240 unsigned int max_page_shift)
242 if (max_page_shift < P4D_SHIFT)
245 if (!arch_vmap_p4d_supported(prot))
248 if ((end - addr) != P4D_SIZE)
251 if (!IS_ALIGNED(addr, P4D_SIZE))
254 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
257 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
260 return p4d_set_huge(p4d, phys_addr, prot);
263 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 phys_addr_t phys_addr, pgprot_t prot,
265 unsigned int max_page_shift, pgtbl_mod_mask *mask)
270 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
274 next = p4d_addr_end(addr, end);
276 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
278 *mask |= PGTBL_P4D_MODIFIED;
282 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 max_page_shift, mask))
285 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
289 static int vmap_range_noflush(unsigned long addr, unsigned long end,
290 phys_addr_t phys_addr, pgprot_t prot,
291 unsigned int max_page_shift)
297 pgtbl_mod_mask mask = 0;
303 pgd = pgd_offset_k(addr);
305 next = pgd_addr_end(addr, end);
306 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 max_page_shift, &mask);
310 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
312 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 arch_sync_kernel_mappings(start, end);
318 int ioremap_page_range(unsigned long addr, unsigned long end,
319 phys_addr_t phys_addr, pgprot_t prot)
323 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
324 ioremap_max_page_shift);
325 flush_cache_vmap(addr, end);
327 kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 ioremap_max_page_shift);
332 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
333 pgtbl_mod_mask *mask)
337 pte = pte_offset_kernel(pmd, addr);
339 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
340 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
341 } while (pte++, addr += PAGE_SIZE, addr != end);
342 *mask |= PGTBL_PTE_MODIFIED;
345 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
346 pgtbl_mod_mask *mask)
352 pmd = pmd_offset(pud, addr);
354 next = pmd_addr_end(addr, end);
356 cleared = pmd_clear_huge(pmd);
357 if (cleared || pmd_bad(*pmd))
358 *mask |= PGTBL_PMD_MODIFIED;
362 if (pmd_none_or_clear_bad(pmd))
364 vunmap_pte_range(pmd, addr, next, mask);
367 } while (pmd++, addr = next, addr != end);
370 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
371 pgtbl_mod_mask *mask)
377 pud = pud_offset(p4d, addr);
379 next = pud_addr_end(addr, end);
381 cleared = pud_clear_huge(pud);
382 if (cleared || pud_bad(*pud))
383 *mask |= PGTBL_PUD_MODIFIED;
387 if (pud_none_or_clear_bad(pud))
389 vunmap_pmd_range(pud, addr, next, mask);
390 } while (pud++, addr = next, addr != end);
393 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
394 pgtbl_mod_mask *mask)
399 p4d = p4d_offset(pgd, addr);
401 next = p4d_addr_end(addr, end);
405 *mask |= PGTBL_P4D_MODIFIED;
407 if (p4d_none_or_clear_bad(p4d))
409 vunmap_pud_range(p4d, addr, next, mask);
410 } while (p4d++, addr = next, addr != end);
414 * vunmap_range_noflush is similar to vunmap_range, but does not
415 * flush caches or TLBs.
417 * The caller is responsible for calling flush_cache_vmap() before calling
418 * this function, and flush_tlb_kernel_range after it has returned
419 * successfully (and before the addresses are expected to cause a page fault
420 * or be re-mapped for something else, if TLB flushes are being delayed or
423 * This is an internal function only. Do not use outside mm/.
425 void __vunmap_range_noflush(unsigned long start, unsigned long end)
429 unsigned long addr = start;
430 pgtbl_mod_mask mask = 0;
433 pgd = pgd_offset_k(addr);
435 next = pgd_addr_end(addr, end);
437 mask |= PGTBL_PGD_MODIFIED;
438 if (pgd_none_or_clear_bad(pgd))
440 vunmap_p4d_range(pgd, addr, next, &mask);
441 } while (pgd++, addr = next, addr != end);
443 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
444 arch_sync_kernel_mappings(start, end);
447 void vunmap_range_noflush(unsigned long start, unsigned long end)
449 kmsan_vunmap_range_noflush(start, end);
450 __vunmap_range_noflush(start, end);
454 * vunmap_range - unmap kernel virtual addresses
455 * @addr: start of the VM area to unmap
456 * @end: end of the VM area to unmap (non-inclusive)
458 * Clears any present PTEs in the virtual address range, flushes TLBs and
459 * caches. Any subsequent access to the address before it has been re-mapped
462 void vunmap_range(unsigned long addr, unsigned long end)
464 flush_cache_vunmap(addr, end);
465 vunmap_range_noflush(addr, end);
466 flush_tlb_kernel_range(addr, end);
469 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
471 pgtbl_mod_mask *mask)
476 * nr is a running index into the array which helps higher level
477 * callers keep track of where we're up to.
480 pte = pte_alloc_kernel_track(pmd, addr, mask);
484 struct page *page = pages[*nr];
486 if (WARN_ON(!pte_none(*pte)))
490 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
493 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
495 } while (pte++, addr += PAGE_SIZE, addr != end);
496 *mask |= PGTBL_PTE_MODIFIED;
500 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
501 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
502 pgtbl_mod_mask *mask)
507 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
511 next = pmd_addr_end(addr, end);
512 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
514 } while (pmd++, addr = next, addr != end);
518 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
519 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
520 pgtbl_mod_mask *mask)
525 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
529 next = pud_addr_end(addr, end);
530 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
532 } while (pud++, addr = next, addr != end);
536 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
537 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
538 pgtbl_mod_mask *mask)
543 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
547 next = p4d_addr_end(addr, end);
548 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
550 } while (p4d++, addr = next, addr != end);
554 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
555 pgprot_t prot, struct page **pages)
557 unsigned long start = addr;
562 pgtbl_mod_mask mask = 0;
565 pgd = pgd_offset_k(addr);
567 next = pgd_addr_end(addr, end);
569 mask |= PGTBL_PGD_MODIFIED;
570 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
573 } while (pgd++, addr = next, addr != end);
575 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
576 arch_sync_kernel_mappings(start, end);
582 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
585 * The caller is responsible for calling flush_cache_vmap() after this
586 * function returns successfully and before the addresses are accessed.
588 * This is an internal function only. Do not use outside mm/.
590 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
591 pgprot_t prot, struct page **pages, unsigned int page_shift)
593 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
595 WARN_ON(page_shift < PAGE_SHIFT);
597 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
598 page_shift == PAGE_SHIFT)
599 return vmap_small_pages_range_noflush(addr, end, prot, pages);
601 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
604 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
605 page_to_phys(pages[i]), prot,
610 addr += 1UL << page_shift;
616 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
617 pgprot_t prot, struct page **pages, unsigned int page_shift)
619 kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
620 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
624 * vmap_pages_range - map pages to a kernel virtual address
625 * @addr: start of the VM area to map
626 * @end: end of the VM area to map (non-inclusive)
627 * @prot: page protection flags to use
628 * @pages: pages to map (always PAGE_SIZE pages)
629 * @page_shift: maximum shift that the pages may be mapped with, @pages must
630 * be aligned and contiguous up to at least this shift.
633 * 0 on success, -errno on failure.
635 static int vmap_pages_range(unsigned long addr, unsigned long end,
636 pgprot_t prot, struct page **pages, unsigned int page_shift)
640 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
641 flush_cache_vmap(addr, end);
645 int is_vmalloc_or_module_addr(const void *x)
648 * ARM, x86-64 and sparc64 put modules in a special place,
649 * and fall back on vmalloc() if that fails. Others
650 * just put it in the vmalloc space.
652 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
653 unsigned long addr = (unsigned long)kasan_reset_tag(x);
654 if (addr >= MODULES_VADDR && addr < MODULES_END)
657 return is_vmalloc_addr(x);
661 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
662 * return the tail page that corresponds to the base page address, which
663 * matches small vmap mappings.
665 struct page *vmalloc_to_page(const void *vmalloc_addr)
667 unsigned long addr = (unsigned long) vmalloc_addr;
668 struct page *page = NULL;
669 pgd_t *pgd = pgd_offset_k(addr);
676 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
677 * architectures that do not vmalloc module space
679 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
683 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
684 return NULL; /* XXX: no allowance for huge pgd */
685 if (WARN_ON_ONCE(pgd_bad(*pgd)))
688 p4d = p4d_offset(pgd, addr);
692 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
693 if (WARN_ON_ONCE(p4d_bad(*p4d)))
696 pud = pud_offset(p4d, addr);
700 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
701 if (WARN_ON_ONCE(pud_bad(*pud)))
704 pmd = pmd_offset(pud, addr);
708 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
709 if (WARN_ON_ONCE(pmd_bad(*pmd)))
712 ptep = pte_offset_map(pmd, addr);
714 if (pte_present(pte))
715 page = pte_page(pte);
720 EXPORT_SYMBOL(vmalloc_to_page);
723 * Map a vmalloc()-space virtual address to the physical page frame number.
725 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
727 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
729 EXPORT_SYMBOL(vmalloc_to_pfn);
732 /*** Global kva allocator ***/
734 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
735 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
738 static DEFINE_SPINLOCK(vmap_area_lock);
739 static DEFINE_SPINLOCK(free_vmap_area_lock);
740 /* Export for kexec only */
741 LIST_HEAD(vmap_area_list);
742 static struct rb_root vmap_area_root = RB_ROOT;
743 static bool vmap_initialized __read_mostly;
745 static struct rb_root purge_vmap_area_root = RB_ROOT;
746 static LIST_HEAD(purge_vmap_area_list);
747 static DEFINE_SPINLOCK(purge_vmap_area_lock);
750 * This kmem_cache is used for vmap_area objects. Instead of
751 * allocating from slab we reuse an object from this cache to
752 * make things faster. Especially in "no edge" splitting of
755 static struct kmem_cache *vmap_area_cachep;
758 * This linked list is used in pair with free_vmap_area_root.
759 * It gives O(1) access to prev/next to perform fast coalescing.
761 static LIST_HEAD(free_vmap_area_list);
764 * This augment red-black tree represents the free vmap space.
765 * All vmap_area objects in this tree are sorted by va->va_start
766 * address. It is used for allocation and merging when a vmap
767 * object is released.
769 * Each vmap_area node contains a maximum available free block
770 * of its sub-tree, right or left. Therefore it is possible to
771 * find a lowest match of free area.
773 static struct rb_root free_vmap_area_root = RB_ROOT;
776 * Preload a CPU with one object for "no edge" split case. The
777 * aim is to get rid of allocations from the atomic context, thus
778 * to use more permissive allocation masks.
780 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
782 static __always_inline unsigned long
783 va_size(struct vmap_area *va)
785 return (va->va_end - va->va_start);
788 static __always_inline unsigned long
789 get_subtree_max_size(struct rb_node *node)
791 struct vmap_area *va;
793 va = rb_entry_safe(node, struct vmap_area, rb_node);
794 return va ? va->subtree_max_size : 0;
797 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
798 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
800 static void purge_vmap_area_lazy(void);
801 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
802 static void drain_vmap_area_work(struct work_struct *work);
803 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
805 static atomic_long_t nr_vmalloc_pages;
807 unsigned long vmalloc_nr_pages(void)
809 return atomic_long_read(&nr_vmalloc_pages);
812 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
813 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
815 struct vmap_area *va = NULL;
816 struct rb_node *n = vmap_area_root.rb_node;
818 addr = (unsigned long)kasan_reset_tag((void *)addr);
821 struct vmap_area *tmp;
823 tmp = rb_entry(n, struct vmap_area, rb_node);
824 if (tmp->va_end > addr) {
826 if (tmp->va_start <= addr)
837 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
839 struct rb_node *n = root->rb_node;
841 addr = (unsigned long)kasan_reset_tag((void *)addr);
844 struct vmap_area *va;
846 va = rb_entry(n, struct vmap_area, rb_node);
847 if (addr < va->va_start)
849 else if (addr >= va->va_end)
859 * This function returns back addresses of parent node
860 * and its left or right link for further processing.
862 * Otherwise NULL is returned. In that case all further
863 * steps regarding inserting of conflicting overlap range
864 * have to be declined and actually considered as a bug.
866 static __always_inline struct rb_node **
867 find_va_links(struct vmap_area *va,
868 struct rb_root *root, struct rb_node *from,
869 struct rb_node **parent)
871 struct vmap_area *tmp_va;
872 struct rb_node **link;
875 link = &root->rb_node;
876 if (unlikely(!*link)) {
885 * Go to the bottom of the tree. When we hit the last point
886 * we end up with parent rb_node and correct direction, i name
887 * it link, where the new va->rb_node will be attached to.
890 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
893 * During the traversal we also do some sanity check.
894 * Trigger the BUG() if there are sides(left/right)
897 if (va->va_end <= tmp_va->va_start)
898 link = &(*link)->rb_left;
899 else if (va->va_start >= tmp_va->va_end)
900 link = &(*link)->rb_right;
902 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
903 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
909 *parent = &tmp_va->rb_node;
913 static __always_inline struct list_head *
914 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
916 struct list_head *list;
918 if (unlikely(!parent))
920 * The red-black tree where we try to find VA neighbors
921 * before merging or inserting is empty, i.e. it means
922 * there is no free vmap space. Normally it does not
923 * happen but we handle this case anyway.
927 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 return (&parent->rb_right == link ? list->next : list);
931 static __always_inline void
932 __link_va(struct vmap_area *va, struct rb_root *root,
933 struct rb_node *parent, struct rb_node **link,
934 struct list_head *head, bool augment)
937 * VA is still not in the list, but we can
938 * identify its future previous list_head node.
940 if (likely(parent)) {
941 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
942 if (&parent->rb_right != link)
946 /* Insert to the rb-tree */
947 rb_link_node(&va->rb_node, parent, link);
950 * Some explanation here. Just perform simple insertion
951 * to the tree. We do not set va->subtree_max_size to
952 * its current size before calling rb_insert_augmented().
953 * It is because we populate the tree from the bottom
954 * to parent levels when the node _is_ in the tree.
956 * Therefore we set subtree_max_size to zero after insertion,
957 * to let __augment_tree_propagate_from() puts everything to
958 * the correct order later on.
960 rb_insert_augmented(&va->rb_node,
961 root, &free_vmap_area_rb_augment_cb);
962 va->subtree_max_size = 0;
964 rb_insert_color(&va->rb_node, root);
967 /* Address-sort this list */
968 list_add(&va->list, head);
971 static __always_inline void
972 link_va(struct vmap_area *va, struct rb_root *root,
973 struct rb_node *parent, struct rb_node **link,
974 struct list_head *head)
976 __link_va(va, root, parent, link, head, false);
979 static __always_inline void
980 link_va_augment(struct vmap_area *va, struct rb_root *root,
981 struct rb_node *parent, struct rb_node **link,
982 struct list_head *head)
984 __link_va(va, root, parent, link, head, true);
987 static __always_inline void
988 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
990 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
994 rb_erase_augmented(&va->rb_node,
995 root, &free_vmap_area_rb_augment_cb);
997 rb_erase(&va->rb_node, root);
999 list_del_init(&va->list);
1000 RB_CLEAR_NODE(&va->rb_node);
1003 static __always_inline void
1004 unlink_va(struct vmap_area *va, struct rb_root *root)
1006 __unlink_va(va, root, false);
1009 static __always_inline void
1010 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1012 __unlink_va(va, root, true);
1015 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1017 * Gets called when remove the node and rotate.
1019 static __always_inline unsigned long
1020 compute_subtree_max_size(struct vmap_area *va)
1022 return max3(va_size(va),
1023 get_subtree_max_size(va->rb_node.rb_left),
1024 get_subtree_max_size(va->rb_node.rb_right));
1028 augment_tree_propagate_check(void)
1030 struct vmap_area *va;
1031 unsigned long computed_size;
1033 list_for_each_entry(va, &free_vmap_area_list, list) {
1034 computed_size = compute_subtree_max_size(va);
1035 if (computed_size != va->subtree_max_size)
1036 pr_emerg("tree is corrupted: %lu, %lu\n",
1037 va_size(va), va->subtree_max_size);
1043 * This function populates subtree_max_size from bottom to upper
1044 * levels starting from VA point. The propagation must be done
1045 * when VA size is modified by changing its va_start/va_end. Or
1046 * in case of newly inserting of VA to the tree.
1048 * It means that __augment_tree_propagate_from() must be called:
1049 * - After VA has been inserted to the tree(free path);
1050 * - After VA has been shrunk(allocation path);
1051 * - After VA has been increased(merging path).
1053 * Please note that, it does not mean that upper parent nodes
1054 * and their subtree_max_size are recalculated all the time up
1063 * For example if we modify the node 4, shrinking it to 2, then
1064 * no any modification is required. If we shrink the node 2 to 1
1065 * its subtree_max_size is updated only, and set to 1. If we shrink
1066 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1067 * node becomes 4--6.
1069 static __always_inline void
1070 augment_tree_propagate_from(struct vmap_area *va)
1073 * Populate the tree from bottom towards the root until
1074 * the calculated maximum available size of checked node
1075 * is equal to its current one.
1077 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1079 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1080 augment_tree_propagate_check();
1085 insert_vmap_area(struct vmap_area *va,
1086 struct rb_root *root, struct list_head *head)
1088 struct rb_node **link;
1089 struct rb_node *parent;
1091 link = find_va_links(va, root, NULL, &parent);
1093 link_va(va, root, parent, link, head);
1097 insert_vmap_area_augment(struct vmap_area *va,
1098 struct rb_node *from, struct rb_root *root,
1099 struct list_head *head)
1101 struct rb_node **link;
1102 struct rb_node *parent;
1105 link = find_va_links(va, NULL, from, &parent);
1107 link = find_va_links(va, root, NULL, &parent);
1110 link_va_augment(va, root, parent, link, head);
1111 augment_tree_propagate_from(va);
1116 * Merge de-allocated chunk of VA memory with previous
1117 * and next free blocks. If coalesce is not done a new
1118 * free area is inserted. If VA has been merged, it is
1121 * Please note, it can return NULL in case of overlap
1122 * ranges, followed by WARN() report. Despite it is a
1123 * buggy behaviour, a system can be alive and keep
1126 static __always_inline struct vmap_area *
1127 __merge_or_add_vmap_area(struct vmap_area *va,
1128 struct rb_root *root, struct list_head *head, bool augment)
1130 struct vmap_area *sibling;
1131 struct list_head *next;
1132 struct rb_node **link;
1133 struct rb_node *parent;
1134 bool merged = false;
1137 * Find a place in the tree where VA potentially will be
1138 * inserted, unless it is merged with its sibling/siblings.
1140 link = find_va_links(va, root, NULL, &parent);
1145 * Get next node of VA to check if merging can be done.
1147 next = get_va_next_sibling(parent, link);
1148 if (unlikely(next == NULL))
1154 * |<------VA------>|<-----Next----->|
1159 sibling = list_entry(next, struct vmap_area, list);
1160 if (sibling->va_start == va->va_end) {
1161 sibling->va_start = va->va_start;
1163 /* Free vmap_area object. */
1164 kmem_cache_free(vmap_area_cachep, va);
1166 /* Point to the new merged area. */
1175 * |<-----Prev----->|<------VA------>|
1179 if (next->prev != head) {
1180 sibling = list_entry(next->prev, struct vmap_area, list);
1181 if (sibling->va_end == va->va_start) {
1183 * If both neighbors are coalesced, it is important
1184 * to unlink the "next" node first, followed by merging
1185 * with "previous" one. Otherwise the tree might not be
1186 * fully populated if a sibling's augmented value is
1187 * "normalized" because of rotation operations.
1190 __unlink_va(va, root, augment);
1192 sibling->va_end = va->va_end;
1194 /* Free vmap_area object. */
1195 kmem_cache_free(vmap_area_cachep, va);
1197 /* Point to the new merged area. */
1205 __link_va(va, root, parent, link, head, augment);
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area(struct vmap_area *va,
1212 struct rb_root *root, struct list_head *head)
1214 return __merge_or_add_vmap_area(va, root, head, false);
1217 static __always_inline struct vmap_area *
1218 merge_or_add_vmap_area_augment(struct vmap_area *va,
1219 struct rb_root *root, struct list_head *head)
1221 va = __merge_or_add_vmap_area(va, root, head, true);
1223 augment_tree_propagate_from(va);
1228 static __always_inline bool
1229 is_within_this_va(struct vmap_area *va, unsigned long size,
1230 unsigned long align, unsigned long vstart)
1232 unsigned long nva_start_addr;
1234 if (va->va_start > vstart)
1235 nva_start_addr = ALIGN(va->va_start, align);
1237 nva_start_addr = ALIGN(vstart, align);
1239 /* Can be overflowed due to big size or alignment. */
1240 if (nva_start_addr + size < nva_start_addr ||
1241 nva_start_addr < vstart)
1244 return (nva_start_addr + size <= va->va_end);
1248 * Find the first free block(lowest start address) in the tree,
1249 * that will accomplish the request corresponding to passing
1250 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1251 * a search length is adjusted to account for worst case alignment
1254 static __always_inline struct vmap_area *
1255 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1256 unsigned long align, unsigned long vstart, bool adjust_search_size)
1258 struct vmap_area *va;
1259 struct rb_node *node;
1260 unsigned long length;
1262 /* Start from the root. */
1263 node = root->rb_node;
1265 /* Adjust the search size for alignment overhead. */
1266 length = adjust_search_size ? size + align - 1 : size;
1269 va = rb_entry(node, struct vmap_area, rb_node);
1271 if (get_subtree_max_size(node->rb_left) >= length &&
1272 vstart < va->va_start) {
1273 node = node->rb_left;
1275 if (is_within_this_va(va, size, align, vstart))
1279 * Does not make sense to go deeper towards the right
1280 * sub-tree if it does not have a free block that is
1281 * equal or bigger to the requested search length.
1283 if (get_subtree_max_size(node->rb_right) >= length) {
1284 node = node->rb_right;
1289 * OK. We roll back and find the first right sub-tree,
1290 * that will satisfy the search criteria. It can happen
1291 * due to "vstart" restriction or an alignment overhead
1292 * that is bigger then PAGE_SIZE.
1294 while ((node = rb_parent(node))) {
1295 va = rb_entry(node, struct vmap_area, rb_node);
1296 if (is_within_this_va(va, size, align, vstart))
1299 if (get_subtree_max_size(node->rb_right) >= length &&
1300 vstart <= va->va_start) {
1302 * Shift the vstart forward. Please note, we update it with
1303 * parent's start address adding "1" because we do not want
1304 * to enter same sub-tree after it has already been checked
1305 * and no suitable free block found there.
1307 vstart = va->va_start + 1;
1308 node = node->rb_right;
1318 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1319 #include <linux/random.h>
1321 static struct vmap_area *
1322 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1323 unsigned long align, unsigned long vstart)
1325 struct vmap_area *va;
1327 list_for_each_entry(va, head, list) {
1328 if (!is_within_this_va(va, size, align, vstart))
1338 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1339 unsigned long size, unsigned long align)
1341 struct vmap_area *va_1, *va_2;
1342 unsigned long vstart;
1345 get_random_bytes(&rnd, sizeof(rnd));
1346 vstart = VMALLOC_START + rnd;
1348 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1349 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1352 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1353 va_1, va_2, vstart);
1359 FL_FIT_TYPE = 1, /* full fit */
1360 LE_FIT_TYPE = 2, /* left edge fit */
1361 RE_FIT_TYPE = 3, /* right edge fit */
1362 NE_FIT_TYPE = 4 /* no edge fit */
1365 static __always_inline enum fit_type
1366 classify_va_fit_type(struct vmap_area *va,
1367 unsigned long nva_start_addr, unsigned long size)
1371 /* Check if it is within VA. */
1372 if (nva_start_addr < va->va_start ||
1373 nva_start_addr + size > va->va_end)
1377 if (va->va_start == nva_start_addr) {
1378 if (va->va_end == nva_start_addr + size)
1382 } else if (va->va_end == nva_start_addr + size) {
1391 static __always_inline int
1392 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1393 struct vmap_area *va, unsigned long nva_start_addr,
1396 struct vmap_area *lva = NULL;
1397 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1399 if (type == FL_FIT_TYPE) {
1401 * No need to split VA, it fully fits.
1407 unlink_va_augment(va, root);
1408 kmem_cache_free(vmap_area_cachep, va);
1409 } else if (type == LE_FIT_TYPE) {
1411 * Split left edge of fit VA.
1417 va->va_start += size;
1418 } else if (type == RE_FIT_TYPE) {
1420 * Split right edge of fit VA.
1426 va->va_end = nva_start_addr;
1427 } else if (type == NE_FIT_TYPE) {
1429 * Split no edge of fit VA.
1435 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1436 if (unlikely(!lva)) {
1438 * For percpu allocator we do not do any pre-allocation
1439 * and leave it as it is. The reason is it most likely
1440 * never ends up with NE_FIT_TYPE splitting. In case of
1441 * percpu allocations offsets and sizes are aligned to
1442 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1443 * are its main fitting cases.
1445 * There are a few exceptions though, as an example it is
1446 * a first allocation (early boot up) when we have "one"
1447 * big free space that has to be split.
1449 * Also we can hit this path in case of regular "vmap"
1450 * allocations, if "this" current CPU was not preloaded.
1451 * See the comment in alloc_vmap_area() why. If so, then
1452 * GFP_NOWAIT is used instead to get an extra object for
1453 * split purpose. That is rare and most time does not
1456 * What happens if an allocation gets failed. Basically,
1457 * an "overflow" path is triggered to purge lazily freed
1458 * areas to free some memory, then, the "retry" path is
1459 * triggered to repeat one more time. See more details
1460 * in alloc_vmap_area() function.
1462 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1468 * Build the remainder.
1470 lva->va_start = va->va_start;
1471 lva->va_end = nva_start_addr;
1474 * Shrink this VA to remaining size.
1476 va->va_start = nva_start_addr + size;
1481 if (type != FL_FIT_TYPE) {
1482 augment_tree_propagate_from(va);
1484 if (lva) /* type == NE_FIT_TYPE */
1485 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1492 * Returns a start address of the newly allocated area, if success.
1493 * Otherwise a vend is returned that indicates failure.
1495 static __always_inline unsigned long
1496 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1497 unsigned long size, unsigned long align,
1498 unsigned long vstart, unsigned long vend)
1500 bool adjust_search_size = true;
1501 unsigned long nva_start_addr;
1502 struct vmap_area *va;
1506 * Do not adjust when:
1507 * a) align <= PAGE_SIZE, because it does not make any sense.
1508 * All blocks(their start addresses) are at least PAGE_SIZE
1510 * b) a short range where a requested size corresponds to exactly
1511 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1512 * With adjusted search length an allocation would not succeed.
1514 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1515 adjust_search_size = false;
1517 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1521 if (va->va_start > vstart)
1522 nva_start_addr = ALIGN(va->va_start, align);
1524 nva_start_addr = ALIGN(vstart, align);
1526 /* Check the "vend" restriction. */
1527 if (nva_start_addr + size > vend)
1530 /* Update the free vmap_area. */
1531 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1532 if (WARN_ON_ONCE(ret))
1535 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1536 find_vmap_lowest_match_check(root, head, size, align);
1539 return nva_start_addr;
1543 * Free a region of KVA allocated by alloc_vmap_area
1545 static void free_vmap_area(struct vmap_area *va)
1548 * Remove from the busy tree/list.
1550 spin_lock(&vmap_area_lock);
1551 unlink_va(va, &vmap_area_root);
1552 spin_unlock(&vmap_area_lock);
1555 * Insert/Merge it back to the free tree/list.
1557 spin_lock(&free_vmap_area_lock);
1558 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1559 spin_unlock(&free_vmap_area_lock);
1563 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1565 struct vmap_area *va = NULL;
1568 * Preload this CPU with one extra vmap_area object. It is used
1569 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1570 * a CPU that does an allocation is preloaded.
1572 * We do it in non-atomic context, thus it allows us to use more
1573 * permissive allocation masks to be more stable under low memory
1574 * condition and high memory pressure.
1576 if (!this_cpu_read(ne_fit_preload_node))
1577 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1581 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1582 kmem_cache_free(vmap_area_cachep, va);
1586 * Allocate a region of KVA of the specified size and alignment, within the
1589 static struct vmap_area *alloc_vmap_area(unsigned long size,
1590 unsigned long align,
1591 unsigned long vstart, unsigned long vend,
1592 int node, gfp_t gfp_mask)
1594 struct vmap_area *va;
1595 unsigned long freed;
1601 BUG_ON(offset_in_page(size));
1602 BUG_ON(!is_power_of_2(align));
1604 if (unlikely(!vmap_initialized))
1605 return ERR_PTR(-EBUSY);
1608 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1610 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1612 return ERR_PTR(-ENOMEM);
1615 * Only scan the relevant parts containing pointers to other objects
1616 * to avoid false negatives.
1618 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1621 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1622 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1623 size, align, vstart, vend);
1624 spin_unlock(&free_vmap_area_lock);
1626 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1629 * If an allocation fails, the "vend" address is
1630 * returned. Therefore trigger the overflow path.
1632 if (unlikely(addr == vend))
1635 va->va_start = addr;
1636 va->va_end = addr + size;
1639 spin_lock(&vmap_area_lock);
1640 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1641 spin_unlock(&vmap_area_lock);
1643 BUG_ON(!IS_ALIGNED(va->va_start, align));
1644 BUG_ON(va->va_start < vstart);
1645 BUG_ON(va->va_end > vend);
1647 ret = kasan_populate_vmalloc(addr, size);
1650 return ERR_PTR(ret);
1657 purge_vmap_area_lazy();
1663 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1670 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1671 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1674 kmem_cache_free(vmap_area_cachep, va);
1675 return ERR_PTR(-EBUSY);
1678 int register_vmap_purge_notifier(struct notifier_block *nb)
1680 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1682 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1684 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1686 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1688 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1691 * lazy_max_pages is the maximum amount of virtual address space we gather up
1692 * before attempting to purge with a TLB flush.
1694 * There is a tradeoff here: a larger number will cover more kernel page tables
1695 * and take slightly longer to purge, but it will linearly reduce the number of
1696 * global TLB flushes that must be performed. It would seem natural to scale
1697 * this number up linearly with the number of CPUs (because vmapping activity
1698 * could also scale linearly with the number of CPUs), however it is likely
1699 * that in practice, workloads might be constrained in other ways that mean
1700 * vmap activity will not scale linearly with CPUs. Also, I want to be
1701 * conservative and not introduce a big latency on huge systems, so go with
1702 * a less aggressive log scale. It will still be an improvement over the old
1703 * code, and it will be simple to change the scale factor if we find that it
1704 * becomes a problem on bigger systems.
1706 static unsigned long lazy_max_pages(void)
1710 log = fls(num_online_cpus());
1712 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1715 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1718 * Serialize vmap purging. There is no actual critical section protected
1719 * by this lock, but we want to avoid concurrent calls for performance
1720 * reasons and to make the pcpu_get_vm_areas more deterministic.
1722 static DEFINE_MUTEX(vmap_purge_lock);
1724 /* for per-CPU blocks */
1725 static void purge_fragmented_blocks_allcpus(void);
1728 * Purges all lazily-freed vmap areas.
1730 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1732 unsigned long resched_threshold;
1733 unsigned int num_purged_areas = 0;
1734 struct list_head local_purge_list;
1735 struct vmap_area *va, *n_va;
1737 lockdep_assert_held(&vmap_purge_lock);
1739 spin_lock(&purge_vmap_area_lock);
1740 purge_vmap_area_root = RB_ROOT;
1741 list_replace_init(&purge_vmap_area_list, &local_purge_list);
1742 spin_unlock(&purge_vmap_area_lock);
1744 if (unlikely(list_empty(&local_purge_list)))
1748 list_first_entry(&local_purge_list,
1749 struct vmap_area, list)->va_start);
1752 list_last_entry(&local_purge_list,
1753 struct vmap_area, list)->va_end);
1755 flush_tlb_kernel_range(start, end);
1756 resched_threshold = lazy_max_pages() << 1;
1758 spin_lock(&free_vmap_area_lock);
1759 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1760 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1761 unsigned long orig_start = va->va_start;
1762 unsigned long orig_end = va->va_end;
1765 * Finally insert or merge lazily-freed area. It is
1766 * detached and there is no need to "unlink" it from
1769 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1770 &free_vmap_area_list);
1775 if (is_vmalloc_or_module_addr((void *)orig_start))
1776 kasan_release_vmalloc(orig_start, orig_end,
1777 va->va_start, va->va_end);
1779 atomic_long_sub(nr, &vmap_lazy_nr);
1782 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1783 cond_resched_lock(&free_vmap_area_lock);
1785 spin_unlock(&free_vmap_area_lock);
1788 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1789 return num_purged_areas > 0;
1793 * Kick off a purge of the outstanding lazy areas.
1795 static void purge_vmap_area_lazy(void)
1797 mutex_lock(&vmap_purge_lock);
1798 purge_fragmented_blocks_allcpus();
1799 __purge_vmap_area_lazy(ULONG_MAX, 0);
1800 mutex_unlock(&vmap_purge_lock);
1803 static void drain_vmap_area_work(struct work_struct *work)
1805 unsigned long nr_lazy;
1808 mutex_lock(&vmap_purge_lock);
1809 __purge_vmap_area_lazy(ULONG_MAX, 0);
1810 mutex_unlock(&vmap_purge_lock);
1812 /* Recheck if further work is required. */
1813 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1814 } while (nr_lazy > lazy_max_pages());
1818 * Free a vmap area, caller ensuring that the area has been unmapped,
1819 * unlinked and flush_cache_vunmap had been called for the correct
1822 static void free_vmap_area_noflush(struct vmap_area *va)
1824 unsigned long nr_lazy_max = lazy_max_pages();
1825 unsigned long va_start = va->va_start;
1826 unsigned long nr_lazy;
1828 if (WARN_ON_ONCE(!list_empty(&va->list)))
1831 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1832 PAGE_SHIFT, &vmap_lazy_nr);
1835 * Merge or place it to the purge tree/list.
1837 spin_lock(&purge_vmap_area_lock);
1838 merge_or_add_vmap_area(va,
1839 &purge_vmap_area_root, &purge_vmap_area_list);
1840 spin_unlock(&purge_vmap_area_lock);
1842 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1844 /* After this point, we may free va at any time */
1845 if (unlikely(nr_lazy > nr_lazy_max))
1846 schedule_work(&drain_vmap_work);
1850 * Free and unmap a vmap area
1852 static void free_unmap_vmap_area(struct vmap_area *va)
1854 flush_cache_vunmap(va->va_start, va->va_end);
1855 vunmap_range_noflush(va->va_start, va->va_end);
1856 if (debug_pagealloc_enabled_static())
1857 flush_tlb_kernel_range(va->va_start, va->va_end);
1859 free_vmap_area_noflush(va);
1862 struct vmap_area *find_vmap_area(unsigned long addr)
1864 struct vmap_area *va;
1866 spin_lock(&vmap_area_lock);
1867 va = __find_vmap_area(addr, &vmap_area_root);
1868 spin_unlock(&vmap_area_lock);
1873 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1875 struct vmap_area *va;
1877 spin_lock(&vmap_area_lock);
1878 va = __find_vmap_area(addr, &vmap_area_root);
1880 unlink_va(va, &vmap_area_root);
1881 spin_unlock(&vmap_area_lock);
1886 /*** Per cpu kva allocator ***/
1889 * vmap space is limited especially on 32 bit architectures. Ensure there is
1890 * room for at least 16 percpu vmap blocks per CPU.
1893 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1894 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1895 * instead (we just need a rough idea)
1897 #if BITS_PER_LONG == 32
1898 #define VMALLOC_SPACE (128UL*1024*1024)
1900 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1903 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1904 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1905 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1906 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1907 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1908 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1909 #define VMAP_BBMAP_BITS \
1910 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1911 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1912 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1914 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1916 struct vmap_block_queue {
1918 struct list_head free;
1923 struct vmap_area *va;
1924 unsigned long free, dirty;
1925 unsigned long dirty_min, dirty_max; /*< dirty range */
1926 struct list_head free_list;
1927 struct rcu_head rcu_head;
1928 struct list_head purge;
1931 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1935 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1936 * in the free path. Could get rid of this if we change the API to return a
1937 * "cookie" from alloc, to be passed to free. But no big deal yet.
1939 static DEFINE_XARRAY(vmap_blocks);
1942 * We should probably have a fallback mechanism to allocate virtual memory
1943 * out of partially filled vmap blocks. However vmap block sizing should be
1944 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1948 static unsigned long addr_to_vb_idx(unsigned long addr)
1950 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 addr /= VMAP_BLOCK_SIZE;
1955 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1959 addr = va_start + (pages_off << PAGE_SHIFT);
1960 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 return (void *)addr;
1965 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967 * @order: how many 2^order pages should be occupied in newly allocated block
1968 * @gfp_mask: flags for the page level allocator
1970 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1972 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1974 struct vmap_block_queue *vbq;
1975 struct vmap_block *vb;
1976 struct vmap_area *va;
1977 unsigned long vb_idx;
1981 node = numa_node_id();
1983 vb = kmalloc_node(sizeof(struct vmap_block),
1984 gfp_mask & GFP_RECLAIM_MASK, node);
1986 return ERR_PTR(-ENOMEM);
1988 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 VMALLOC_START, VMALLOC_END,
1993 return ERR_CAST(va);
1996 vaddr = vmap_block_vaddr(va->va_start, 0);
1997 spin_lock_init(&vb->lock);
1999 /* At least something should be left free */
2000 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2001 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2003 vb->dirty_min = VMAP_BBMAP_BITS;
2005 INIT_LIST_HEAD(&vb->free_list);
2007 vb_idx = addr_to_vb_idx(va->va_start);
2008 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2012 return ERR_PTR(err);
2015 vbq = raw_cpu_ptr(&vmap_block_queue);
2016 spin_lock(&vbq->lock);
2017 list_add_tail_rcu(&vb->free_list, &vbq->free);
2018 spin_unlock(&vbq->lock);
2023 static void free_vmap_block(struct vmap_block *vb)
2025 struct vmap_block *tmp;
2027 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2030 spin_lock(&vmap_area_lock);
2031 unlink_va(vb->va, &vmap_area_root);
2032 spin_unlock(&vmap_area_lock);
2034 free_vmap_area_noflush(vb->va);
2035 kfree_rcu(vb, rcu_head);
2038 static void purge_fragmented_blocks(int cpu)
2041 struct vmap_block *vb;
2042 struct vmap_block *n_vb;
2043 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2046 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2048 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2051 spin_lock(&vb->lock);
2052 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2053 vb->free = 0; /* prevent further allocs after releasing lock */
2054 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2056 vb->dirty_max = VMAP_BBMAP_BITS;
2057 spin_lock(&vbq->lock);
2058 list_del_rcu(&vb->free_list);
2059 spin_unlock(&vbq->lock);
2060 spin_unlock(&vb->lock);
2061 list_add_tail(&vb->purge, &purge);
2063 spin_unlock(&vb->lock);
2067 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2068 list_del(&vb->purge);
2069 free_vmap_block(vb);
2073 static void purge_fragmented_blocks_allcpus(void)
2077 for_each_possible_cpu(cpu)
2078 purge_fragmented_blocks(cpu);
2081 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2083 struct vmap_block_queue *vbq;
2084 struct vmap_block *vb;
2088 BUG_ON(offset_in_page(size));
2089 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2090 if (WARN_ON(size == 0)) {
2092 * Allocating 0 bytes isn't what caller wants since
2093 * get_order(0) returns funny result. Just warn and terminate
2098 order = get_order(size);
2101 vbq = raw_cpu_ptr(&vmap_block_queue);
2102 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2103 unsigned long pages_off;
2105 spin_lock(&vb->lock);
2106 if (vb->free < (1UL << order)) {
2107 spin_unlock(&vb->lock);
2111 pages_off = VMAP_BBMAP_BITS - vb->free;
2112 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2113 vb->free -= 1UL << order;
2114 if (vb->free == 0) {
2115 spin_lock(&vbq->lock);
2116 list_del_rcu(&vb->free_list);
2117 spin_unlock(&vbq->lock);
2120 spin_unlock(&vb->lock);
2126 /* Allocate new block if nothing was found */
2128 vaddr = new_vmap_block(order, gfp_mask);
2133 static void vb_free(unsigned long addr, unsigned long size)
2135 unsigned long offset;
2137 struct vmap_block *vb;
2139 BUG_ON(offset_in_page(size));
2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2142 flush_cache_vunmap(addr, addr + size);
2144 order = get_order(size);
2145 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2146 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2148 vunmap_range_noflush(addr, addr + size);
2150 if (debug_pagealloc_enabled_static())
2151 flush_tlb_kernel_range(addr, addr + size);
2153 spin_lock(&vb->lock);
2155 /* Expand dirty range */
2156 vb->dirty_min = min(vb->dirty_min, offset);
2157 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2159 vb->dirty += 1UL << order;
2160 if (vb->dirty == VMAP_BBMAP_BITS) {
2162 spin_unlock(&vb->lock);
2163 free_vmap_block(vb);
2165 spin_unlock(&vb->lock);
2168 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2172 if (unlikely(!vmap_initialized))
2177 for_each_possible_cpu(cpu) {
2178 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2179 struct vmap_block *vb;
2182 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2183 spin_lock(&vb->lock);
2184 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2185 unsigned long va_start = vb->va->va_start;
2188 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2189 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2191 start = min(s, start);
2196 spin_unlock(&vb->lock);
2201 mutex_lock(&vmap_purge_lock);
2202 purge_fragmented_blocks_allcpus();
2203 if (!__purge_vmap_area_lazy(start, end) && flush)
2204 flush_tlb_kernel_range(start, end);
2205 mutex_unlock(&vmap_purge_lock);
2209 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2211 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2212 * to amortize TLB flushing overheads. What this means is that any page you
2213 * have now, may, in a former life, have been mapped into kernel virtual
2214 * address by the vmap layer and so there might be some CPUs with TLB entries
2215 * still referencing that page (additional to the regular 1:1 kernel mapping).
2217 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2218 * be sure that none of the pages we have control over will have any aliases
2219 * from the vmap layer.
2221 void vm_unmap_aliases(void)
2223 unsigned long start = ULONG_MAX, end = 0;
2226 _vm_unmap_aliases(start, end, flush);
2228 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2231 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2232 * @mem: the pointer returned by vm_map_ram
2233 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2235 void vm_unmap_ram(const void *mem, unsigned int count)
2237 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2238 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2239 struct vmap_area *va;
2243 BUG_ON(addr < VMALLOC_START);
2244 BUG_ON(addr > VMALLOC_END);
2245 BUG_ON(!PAGE_ALIGNED(addr));
2247 kasan_poison_vmalloc(mem, size);
2249 if (likely(count <= VMAP_MAX_ALLOC)) {
2250 debug_check_no_locks_freed(mem, size);
2251 vb_free(addr, size);
2255 va = find_unlink_vmap_area(addr);
2256 if (WARN_ON_ONCE(!va))
2259 debug_check_no_locks_freed((void *)va->va_start,
2260 (va->va_end - va->va_start));
2261 free_unmap_vmap_area(va);
2263 EXPORT_SYMBOL(vm_unmap_ram);
2266 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2267 * @pages: an array of pointers to the pages to be mapped
2268 * @count: number of pages
2269 * @node: prefer to allocate data structures on this node
2271 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2272 * faster than vmap so it's good. But if you mix long-life and short-life
2273 * objects with vm_map_ram(), it could consume lots of address space through
2274 * fragmentation (especially on a 32bit machine). You could see failures in
2275 * the end. Please use this function for short-lived objects.
2277 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2279 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2281 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2285 if (likely(count <= VMAP_MAX_ALLOC)) {
2286 mem = vb_alloc(size, GFP_KERNEL);
2289 addr = (unsigned long)mem;
2291 struct vmap_area *va;
2292 va = alloc_vmap_area(size, PAGE_SIZE,
2293 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2297 addr = va->va_start;
2301 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2302 pages, PAGE_SHIFT) < 0) {
2303 vm_unmap_ram(mem, count);
2308 * Mark the pages as accessible, now that they are mapped.
2309 * With hardware tag-based KASAN, marking is skipped for
2310 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2312 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2316 EXPORT_SYMBOL(vm_map_ram);
2318 static struct vm_struct *vmlist __initdata;
2320 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2322 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2323 return vm->page_order;
2329 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2331 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2332 vm->page_order = order;
2339 * vm_area_add_early - add vmap area early during boot
2340 * @vm: vm_struct to add
2342 * This function is used to add fixed kernel vm area to vmlist before
2343 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2344 * should contain proper values and the other fields should be zero.
2346 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2348 void __init vm_area_add_early(struct vm_struct *vm)
2350 struct vm_struct *tmp, **p;
2352 BUG_ON(vmap_initialized);
2353 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2354 if (tmp->addr >= vm->addr) {
2355 BUG_ON(tmp->addr < vm->addr + vm->size);
2358 BUG_ON(tmp->addr + tmp->size > vm->addr);
2365 * vm_area_register_early - register vmap area early during boot
2366 * @vm: vm_struct to register
2367 * @align: requested alignment
2369 * This function is used to register kernel vm area before
2370 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2371 * proper values on entry and other fields should be zero. On return,
2372 * vm->addr contains the allocated address.
2374 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2376 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2378 unsigned long addr = ALIGN(VMALLOC_START, align);
2379 struct vm_struct *cur, **p;
2381 BUG_ON(vmap_initialized);
2383 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2384 if ((unsigned long)cur->addr - addr >= vm->size)
2386 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2389 BUG_ON(addr > VMALLOC_END - vm->size);
2390 vm->addr = (void *)addr;
2393 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2396 static void vmap_init_free_space(void)
2398 unsigned long vmap_start = 1;
2399 const unsigned long vmap_end = ULONG_MAX;
2400 struct vmap_area *busy, *free;
2404 * -|-----|.....|-----|-----|-----|.....|-
2406 * |<--------------------------------->|
2408 list_for_each_entry(busy, &vmap_area_list, list) {
2409 if (busy->va_start - vmap_start > 0) {
2410 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2411 if (!WARN_ON_ONCE(!free)) {
2412 free->va_start = vmap_start;
2413 free->va_end = busy->va_start;
2415 insert_vmap_area_augment(free, NULL,
2416 &free_vmap_area_root,
2417 &free_vmap_area_list);
2421 vmap_start = busy->va_end;
2424 if (vmap_end - vmap_start > 0) {
2425 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2426 if (!WARN_ON_ONCE(!free)) {
2427 free->va_start = vmap_start;
2428 free->va_end = vmap_end;
2430 insert_vmap_area_augment(free, NULL,
2431 &free_vmap_area_root,
2432 &free_vmap_area_list);
2437 void __init vmalloc_init(void)
2439 struct vmap_area *va;
2440 struct vm_struct *tmp;
2444 * Create the cache for vmap_area objects.
2446 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2448 for_each_possible_cpu(i) {
2449 struct vmap_block_queue *vbq;
2450 struct vfree_deferred *p;
2452 vbq = &per_cpu(vmap_block_queue, i);
2453 spin_lock_init(&vbq->lock);
2454 INIT_LIST_HEAD(&vbq->free);
2455 p = &per_cpu(vfree_deferred, i);
2456 init_llist_head(&p->list);
2457 INIT_WORK(&p->wq, free_work);
2460 /* Import existing vmlist entries. */
2461 for (tmp = vmlist; tmp; tmp = tmp->next) {
2462 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2463 if (WARN_ON_ONCE(!va))
2466 va->va_start = (unsigned long)tmp->addr;
2467 va->va_end = va->va_start + tmp->size;
2469 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2473 * Now we can initialize a free vmap space.
2475 vmap_init_free_space();
2476 vmap_initialized = true;
2479 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2480 struct vmap_area *va, unsigned long flags, const void *caller)
2483 vm->addr = (void *)va->va_start;
2484 vm->size = va->va_end - va->va_start;
2485 vm->caller = caller;
2489 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2490 unsigned long flags, const void *caller)
2492 spin_lock(&vmap_area_lock);
2493 setup_vmalloc_vm_locked(vm, va, flags, caller);
2494 spin_unlock(&vmap_area_lock);
2497 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2500 * Before removing VM_UNINITIALIZED,
2501 * we should make sure that vm has proper values.
2502 * Pair with smp_rmb() in show_numa_info().
2505 vm->flags &= ~VM_UNINITIALIZED;
2508 static struct vm_struct *__get_vm_area_node(unsigned long size,
2509 unsigned long align, unsigned long shift, unsigned long flags,
2510 unsigned long start, unsigned long end, int node,
2511 gfp_t gfp_mask, const void *caller)
2513 struct vmap_area *va;
2514 struct vm_struct *area;
2515 unsigned long requested_size = size;
2517 BUG_ON(in_interrupt());
2518 size = ALIGN(size, 1ul << shift);
2519 if (unlikely(!size))
2522 if (flags & VM_IOREMAP)
2523 align = 1ul << clamp_t(int, get_count_order_long(size),
2524 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2526 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2527 if (unlikely(!area))
2530 if (!(flags & VM_NO_GUARD))
2533 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2539 setup_vmalloc_vm(area, va, flags, caller);
2542 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2543 * best-effort approach, as they can be mapped outside of vmalloc code.
2544 * For VM_ALLOC mappings, the pages are marked as accessible after
2545 * getting mapped in __vmalloc_node_range().
2546 * With hardware tag-based KASAN, marking is skipped for
2547 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2549 if (!(flags & VM_ALLOC))
2550 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2551 KASAN_VMALLOC_PROT_NORMAL);
2556 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2557 unsigned long start, unsigned long end,
2560 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2561 NUMA_NO_NODE, GFP_KERNEL, caller);
2565 * get_vm_area - reserve a contiguous kernel virtual area
2566 * @size: size of the area
2567 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2569 * Search an area of @size in the kernel virtual mapping area,
2570 * and reserved it for out purposes. Returns the area descriptor
2571 * on success or %NULL on failure.
2573 * Return: the area descriptor on success or %NULL on failure.
2575 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2577 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2578 VMALLOC_START, VMALLOC_END,
2579 NUMA_NO_NODE, GFP_KERNEL,
2580 __builtin_return_address(0));
2583 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2586 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2587 VMALLOC_START, VMALLOC_END,
2588 NUMA_NO_NODE, GFP_KERNEL, caller);
2592 * find_vm_area - find a continuous kernel virtual area
2593 * @addr: base address
2595 * Search for the kernel VM area starting at @addr, and return it.
2596 * It is up to the caller to do all required locking to keep the returned
2599 * Return: the area descriptor on success or %NULL on failure.
2601 struct vm_struct *find_vm_area(const void *addr)
2603 struct vmap_area *va;
2605 va = find_vmap_area((unsigned long)addr);
2612 static struct vm_struct *__remove_vm_area(struct vmap_area *va)
2614 struct vm_struct *vm;
2620 kasan_free_module_shadow(vm);
2621 free_unmap_vmap_area(va);
2627 * remove_vm_area - find and remove a continuous kernel virtual area
2628 * @addr: base address
2630 * Search for the kernel VM area starting at @addr, and remove it.
2631 * This function returns the found VM area, but using it is NOT safe
2632 * on SMP machines, except for its size or flags.
2634 * Return: the area descriptor on success or %NULL on failure.
2636 struct vm_struct *remove_vm_area(const void *addr)
2640 return __remove_vm_area(
2641 find_unlink_vmap_area((unsigned long) addr));
2644 static inline void set_area_direct_map(const struct vm_struct *area,
2645 int (*set_direct_map)(struct page *page))
2649 /* HUGE_VMALLOC passes small pages to set_direct_map */
2650 for (i = 0; i < area->nr_pages; i++)
2651 if (page_address(area->pages[i]))
2652 set_direct_map(area->pages[i]);
2655 /* Handle removing and resetting vm mappings related to the VA's vm_struct. */
2656 static void va_remove_mappings(struct vmap_area *va, int deallocate_pages)
2658 struct vm_struct *area = va->vm;
2659 unsigned long start = ULONG_MAX, end = 0;
2660 unsigned int page_order = vm_area_page_order(area);
2661 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2665 __remove_vm_area(va);
2667 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2672 * If not deallocating pages, just do the flush of the VM area and
2675 if (!deallocate_pages) {
2681 * If execution gets here, flush the vm mapping and reset the direct
2682 * map. Find the start and end range of the direct mappings to make sure
2683 * the vm_unmap_aliases() flush includes the direct map.
2685 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2686 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2688 unsigned long page_size;
2690 page_size = PAGE_SIZE << page_order;
2691 start = min(addr, start);
2692 end = max(addr + page_size, end);
2698 * Set direct map to something invalid so that it won't be cached if
2699 * there are any accesses after the TLB flush, then flush the TLB and
2700 * reset the direct map permissions to the default.
2702 set_area_direct_map(area, set_direct_map_invalid_noflush);
2703 _vm_unmap_aliases(start, end, flush_dmap);
2704 set_area_direct_map(area, set_direct_map_default_noflush);
2707 static void __vunmap(const void *addr, int deallocate_pages)
2709 struct vm_struct *area;
2710 struct vmap_area *va;
2715 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2719 va = find_unlink_vmap_area((unsigned long)addr);
2720 if (unlikely(!va)) {
2721 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2727 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2728 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2730 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2732 va_remove_mappings(va, deallocate_pages);
2734 if (deallocate_pages) {
2737 for (i = 0; i < area->nr_pages; i++) {
2738 struct page *page = area->pages[i];
2741 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2743 * High-order allocs for huge vmallocs are split, so
2744 * can be freed as an array of order-0 allocations
2746 __free_pages(page, 0);
2749 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2751 kvfree(area->pages);
2757 static inline void __vfree_deferred(const void *addr)
2760 * Use raw_cpu_ptr() because this can be called from preemptible
2761 * context. Preemption is absolutely fine here, because the llist_add()
2762 * implementation is lockless, so it works even if we are adding to
2763 * another cpu's list. schedule_work() should be fine with this too.
2765 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2767 if (llist_add((struct llist_node *)addr, &p->list))
2768 schedule_work(&p->wq);
2772 * vfree_atomic - release memory allocated by vmalloc()
2773 * @addr: memory base address
2775 * This one is just like vfree() but can be called in any atomic context
2778 void vfree_atomic(const void *addr)
2782 kmemleak_free(addr);
2786 __vfree_deferred(addr);
2789 static void __vfree(const void *addr)
2791 if (unlikely(in_interrupt()))
2792 __vfree_deferred(addr);
2798 * vfree - Release memory allocated by vmalloc()
2799 * @addr: Memory base address
2801 * Free the virtually continuous memory area starting at @addr, as obtained
2802 * from one of the vmalloc() family of APIs. This will usually also free the
2803 * physical memory underlying the virtual allocation, but that memory is
2804 * reference counted, so it will not be freed until the last user goes away.
2806 * If @addr is NULL, no operation is performed.
2809 * May sleep if called *not* from interrupt context.
2810 * Must not be called in NMI context (strictly speaking, it could be
2811 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2812 * conventions for vfree() arch-dependent would be a really bad idea).
2814 void vfree(const void *addr)
2818 kmemleak_free(addr);
2820 might_sleep_if(!in_interrupt());
2827 EXPORT_SYMBOL(vfree);
2830 * vunmap - release virtual mapping obtained by vmap()
2831 * @addr: memory base address
2833 * Free the virtually contiguous memory area starting at @addr,
2834 * which was created from the page array passed to vmap().
2836 * Must not be called in interrupt context.
2838 void vunmap(const void *addr)
2840 BUG_ON(in_interrupt());
2845 EXPORT_SYMBOL(vunmap);
2848 * vmap - map an array of pages into virtually contiguous space
2849 * @pages: array of page pointers
2850 * @count: number of pages to map
2851 * @flags: vm_area->flags
2852 * @prot: page protection for the mapping
2854 * Maps @count pages from @pages into contiguous kernel virtual space.
2855 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2856 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2857 * are transferred from the caller to vmap(), and will be freed / dropped when
2858 * vfree() is called on the return value.
2860 * Return: the address of the area or %NULL on failure
2862 void *vmap(struct page **pages, unsigned int count,
2863 unsigned long flags, pgprot_t prot)
2865 struct vm_struct *area;
2867 unsigned long size; /* In bytes */
2872 * Your top guard is someone else's bottom guard. Not having a top
2873 * guard compromises someone else's mappings too.
2875 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2876 flags &= ~VM_NO_GUARD;
2878 if (count > totalram_pages())
2881 size = (unsigned long)count << PAGE_SHIFT;
2882 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2886 addr = (unsigned long)area->addr;
2887 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2888 pages, PAGE_SHIFT) < 0) {
2893 if (flags & VM_MAP_PUT_PAGES) {
2894 area->pages = pages;
2895 area->nr_pages = count;
2899 EXPORT_SYMBOL(vmap);
2901 #ifdef CONFIG_VMAP_PFN
2902 struct vmap_pfn_data {
2903 unsigned long *pfns;
2908 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2910 struct vmap_pfn_data *data = private;
2912 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2914 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2919 * vmap_pfn - map an array of PFNs into virtually contiguous space
2920 * @pfns: array of PFNs
2921 * @count: number of pages to map
2922 * @prot: page protection for the mapping
2924 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2925 * the start address of the mapping.
2927 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2929 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2930 struct vm_struct *area;
2932 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2933 __builtin_return_address(0));
2936 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2937 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2943 EXPORT_SYMBOL_GPL(vmap_pfn);
2944 #endif /* CONFIG_VMAP_PFN */
2946 static inline unsigned int
2947 vm_area_alloc_pages(gfp_t gfp, int nid,
2948 unsigned int order, unsigned int nr_pages, struct page **pages)
2950 unsigned int nr_allocated = 0;
2955 * For order-0 pages we make use of bulk allocator, if
2956 * the page array is partly or not at all populated due
2957 * to fails, fallback to a single page allocator that is
2961 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2963 while (nr_allocated < nr_pages) {
2964 unsigned int nr, nr_pages_request;
2967 * A maximum allowed request is hard-coded and is 100
2968 * pages per call. That is done in order to prevent a
2969 * long preemption off scenario in the bulk-allocator
2970 * so the range is [1:100].
2972 nr_pages_request = min(100U, nr_pages - nr_allocated);
2974 /* memory allocation should consider mempolicy, we can't
2975 * wrongly use nearest node when nid == NUMA_NO_NODE,
2976 * otherwise memory may be allocated in only one node,
2977 * but mempolicy wants to alloc memory by interleaving.
2979 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2980 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2982 pages + nr_allocated);
2985 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2987 pages + nr_allocated);
2993 * If zero or pages were obtained partly,
2994 * fallback to a single page allocator.
2996 if (nr != nr_pages_request)
3001 /* High-order pages or fallback path if "bulk" fails. */
3003 while (nr_allocated < nr_pages) {
3004 if (fatal_signal_pending(current))
3007 if (nid == NUMA_NO_NODE)
3008 page = alloc_pages(gfp, order);
3010 page = alloc_pages_node(nid, gfp, order);
3011 if (unlikely(!page))
3014 * Higher order allocations must be able to be treated as
3015 * indepdenent small pages by callers (as they can with
3016 * small-page vmallocs). Some drivers do their own refcounting
3017 * on vmalloc_to_page() pages, some use page->mapping,
3021 split_page(page, order);
3024 * Careful, we allocate and map page-order pages, but
3025 * tracking is done per PAGE_SIZE page so as to keep the
3026 * vm_struct APIs independent of the physical/mapped size.
3028 for (i = 0; i < (1U << order); i++)
3029 pages[nr_allocated + i] = page + i;
3032 nr_allocated += 1U << order;
3035 return nr_allocated;
3038 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3039 pgprot_t prot, unsigned int page_shift,
3042 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3043 bool nofail = gfp_mask & __GFP_NOFAIL;
3044 unsigned long addr = (unsigned long)area->addr;
3045 unsigned long size = get_vm_area_size(area);
3046 unsigned long array_size;
3047 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3048 unsigned int page_order;
3052 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3054 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3055 gfp_mask |= __GFP_HIGHMEM;
3057 /* Please note that the recursion is strictly bounded. */
3058 if (array_size > PAGE_SIZE) {
3059 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3062 area->pages = kmalloc_node(array_size, nested_gfp, node);
3066 warn_alloc(gfp_mask, NULL,
3067 "vmalloc error: size %lu, failed to allocated page array size %lu",
3068 nr_small_pages * PAGE_SIZE, array_size);
3073 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3074 page_order = vm_area_page_order(area);
3076 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3077 node, page_order, nr_small_pages, area->pages);
3079 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3080 if (gfp_mask & __GFP_ACCOUNT) {
3083 for (i = 0; i < area->nr_pages; i++)
3084 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3088 * If not enough pages were obtained to accomplish an
3089 * allocation request, free them via __vfree() if any.
3091 if (area->nr_pages != nr_small_pages) {
3092 warn_alloc(gfp_mask, NULL,
3093 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3094 area->nr_pages * PAGE_SIZE, page_order);
3099 * page tables allocations ignore external gfp mask, enforce it
3102 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3103 flags = memalloc_nofs_save();
3104 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3105 flags = memalloc_noio_save();
3108 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3110 if (nofail && (ret < 0))
3111 schedule_timeout_uninterruptible(1);
3112 } while (nofail && (ret < 0));
3114 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3115 memalloc_nofs_restore(flags);
3116 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3117 memalloc_noio_restore(flags);
3120 warn_alloc(gfp_mask, NULL,
3121 "vmalloc error: size %lu, failed to map pages",
3122 area->nr_pages * PAGE_SIZE);
3129 __vfree(area->addr);
3134 * __vmalloc_node_range - allocate virtually contiguous memory
3135 * @size: allocation size
3136 * @align: desired alignment
3137 * @start: vm area range start
3138 * @end: vm area range end
3139 * @gfp_mask: flags for the page level allocator
3140 * @prot: protection mask for the allocated pages
3141 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3142 * @node: node to use for allocation or NUMA_NO_NODE
3143 * @caller: caller's return address
3145 * Allocate enough pages to cover @size from the page level
3146 * allocator with @gfp_mask flags. Please note that the full set of gfp
3147 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3149 * Zone modifiers are not supported. From the reclaim modifiers
3150 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3151 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3152 * __GFP_RETRY_MAYFAIL are not supported).
3154 * __GFP_NOWARN can be used to suppress failures messages.
3156 * Map them into contiguous kernel virtual space, using a pagetable
3157 * protection of @prot.
3159 * Return: the address of the area or %NULL on failure
3161 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3162 unsigned long start, unsigned long end, gfp_t gfp_mask,
3163 pgprot_t prot, unsigned long vm_flags, int node,
3166 struct vm_struct *area;
3168 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3169 unsigned long real_size = size;
3170 unsigned long real_align = align;
3171 unsigned int shift = PAGE_SHIFT;
3173 if (WARN_ON_ONCE(!size))
3176 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3177 warn_alloc(gfp_mask, NULL,
3178 "vmalloc error: size %lu, exceeds total pages",
3183 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3184 unsigned long size_per_node;
3187 * Try huge pages. Only try for PAGE_KERNEL allocations,
3188 * others like modules don't yet expect huge pages in
3189 * their allocations due to apply_to_page_range not
3193 size_per_node = size;
3194 if (node == NUMA_NO_NODE)
3195 size_per_node /= num_online_nodes();
3196 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3199 shift = arch_vmap_pte_supported_shift(size_per_node);
3201 align = max(real_align, 1UL << shift);
3202 size = ALIGN(real_size, 1UL << shift);
3206 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3207 VM_UNINITIALIZED | vm_flags, start, end, node,
3210 bool nofail = gfp_mask & __GFP_NOFAIL;
3211 warn_alloc(gfp_mask, NULL,
3212 "vmalloc error: size %lu, vm_struct allocation failed%s",
3213 real_size, (nofail) ? ". Retrying." : "");
3215 schedule_timeout_uninterruptible(1);
3222 * Prepare arguments for __vmalloc_area_node() and
3223 * kasan_unpoison_vmalloc().
3225 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3226 if (kasan_hw_tags_enabled()) {
3228 * Modify protection bits to allow tagging.
3229 * This must be done before mapping.
3231 prot = arch_vmap_pgprot_tagged(prot);
3234 * Skip page_alloc poisoning and zeroing for physical
3235 * pages backing VM_ALLOC mapping. Memory is instead
3236 * poisoned and zeroed by kasan_unpoison_vmalloc().
3238 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3241 /* Take note that the mapping is PAGE_KERNEL. */
3242 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3245 /* Allocate physical pages and map them into vmalloc space. */
3246 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3251 * Mark the pages as accessible, now that they are mapped.
3252 * The condition for setting KASAN_VMALLOC_INIT should complement the
3253 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3254 * to make sure that memory is initialized under the same conditions.
3255 * Tag-based KASAN modes only assign tags to normal non-executable
3256 * allocations, see __kasan_unpoison_vmalloc().
3258 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3259 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3260 (gfp_mask & __GFP_SKIP_ZERO))
3261 kasan_flags |= KASAN_VMALLOC_INIT;
3262 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3263 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3266 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3267 * flag. It means that vm_struct is not fully initialized.
3268 * Now, it is fully initialized, so remove this flag here.
3270 clear_vm_uninitialized_flag(area);
3272 size = PAGE_ALIGN(size);
3273 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3274 kmemleak_vmalloc(area, size, gfp_mask);
3279 if (shift > PAGE_SHIFT) {
3290 * __vmalloc_node - allocate virtually contiguous memory
3291 * @size: allocation size
3292 * @align: desired alignment
3293 * @gfp_mask: flags for the page level allocator
3294 * @node: node to use for allocation or NUMA_NO_NODE
3295 * @caller: caller's return address
3297 * Allocate enough pages to cover @size from the page level allocator with
3298 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3300 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3301 * and __GFP_NOFAIL are not supported
3303 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3306 * Return: pointer to the allocated memory or %NULL on error
3308 void *__vmalloc_node(unsigned long size, unsigned long align,
3309 gfp_t gfp_mask, int node, const void *caller)
3311 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3312 gfp_mask, PAGE_KERNEL, 0, node, caller);
3315 * This is only for performance analysis of vmalloc and stress purpose.
3316 * It is required by vmalloc test module, therefore do not use it other
3319 #ifdef CONFIG_TEST_VMALLOC_MODULE
3320 EXPORT_SYMBOL_GPL(__vmalloc_node);
3323 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3325 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3326 __builtin_return_address(0));
3328 EXPORT_SYMBOL(__vmalloc);
3331 * vmalloc - allocate virtually contiguous memory
3332 * @size: allocation size
3334 * Allocate enough pages to cover @size from the page level
3335 * allocator and map them into contiguous kernel virtual space.
3337 * For tight control over page level allocator and protection flags
3338 * use __vmalloc() instead.
3340 * Return: pointer to the allocated memory or %NULL on error
3342 void *vmalloc(unsigned long size)
3344 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3345 __builtin_return_address(0));
3347 EXPORT_SYMBOL(vmalloc);
3350 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3351 * @size: allocation size
3352 * @gfp_mask: flags for the page level allocator
3354 * Allocate enough pages to cover @size from the page level
3355 * allocator and map them into contiguous kernel virtual space.
3356 * If @size is greater than or equal to PMD_SIZE, allow using
3357 * huge pages for the memory
3359 * Return: pointer to the allocated memory or %NULL on error
3361 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3363 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3364 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3365 NUMA_NO_NODE, __builtin_return_address(0));
3367 EXPORT_SYMBOL_GPL(vmalloc_huge);
3370 * vzalloc - allocate virtually contiguous memory with zero fill
3371 * @size: allocation size
3373 * Allocate enough pages to cover @size from the page level
3374 * allocator and map them into contiguous kernel virtual space.
3375 * The memory allocated is set to zero.
3377 * For tight control over page level allocator and protection flags
3378 * use __vmalloc() instead.
3380 * Return: pointer to the allocated memory or %NULL on error
3382 void *vzalloc(unsigned long size)
3384 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3385 __builtin_return_address(0));
3387 EXPORT_SYMBOL(vzalloc);
3390 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3391 * @size: allocation size
3393 * The resulting memory area is zeroed so it can be mapped to userspace
3394 * without leaking data.
3396 * Return: pointer to the allocated memory or %NULL on error
3398 void *vmalloc_user(unsigned long size)
3400 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3401 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3402 VM_USERMAP, NUMA_NO_NODE,
3403 __builtin_return_address(0));
3405 EXPORT_SYMBOL(vmalloc_user);
3408 * vmalloc_node - allocate memory on a specific node
3409 * @size: allocation size
3412 * Allocate enough pages to cover @size from the page level
3413 * allocator and map them into contiguous kernel virtual space.
3415 * For tight control over page level allocator and protection flags
3416 * use __vmalloc() instead.
3418 * Return: pointer to the allocated memory or %NULL on error
3420 void *vmalloc_node(unsigned long size, int node)
3422 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3423 __builtin_return_address(0));
3425 EXPORT_SYMBOL(vmalloc_node);
3428 * vzalloc_node - allocate memory on a specific node with zero fill
3429 * @size: allocation size
3432 * Allocate enough pages to cover @size from the page level
3433 * allocator and map them into contiguous kernel virtual space.
3434 * The memory allocated is set to zero.
3436 * Return: pointer to the allocated memory or %NULL on error
3438 void *vzalloc_node(unsigned long size, int node)
3440 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3441 __builtin_return_address(0));
3443 EXPORT_SYMBOL(vzalloc_node);
3445 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3446 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3447 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3448 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3451 * 64b systems should always have either DMA or DMA32 zones. For others
3452 * GFP_DMA32 should do the right thing and use the normal zone.
3454 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3458 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3459 * @size: allocation size
3461 * Allocate enough 32bit PA addressable pages to cover @size from the
3462 * page level allocator and map them into contiguous kernel virtual space.
3464 * Return: pointer to the allocated memory or %NULL on error
3466 void *vmalloc_32(unsigned long size)
3468 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3469 __builtin_return_address(0));
3471 EXPORT_SYMBOL(vmalloc_32);
3474 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3475 * @size: allocation size
3477 * The resulting memory area is 32bit addressable and zeroed so it can be
3478 * mapped to userspace without leaking data.
3480 * Return: pointer to the allocated memory or %NULL on error
3482 void *vmalloc_32_user(unsigned long size)
3484 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3485 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3486 VM_USERMAP, NUMA_NO_NODE,
3487 __builtin_return_address(0));
3489 EXPORT_SYMBOL(vmalloc_32_user);
3492 * small helper routine , copy contents to buf from addr.
3493 * If the page is not present, fill zero.
3496 static int aligned_vread(char *buf, char *addr, unsigned long count)
3502 unsigned long offset, length;
3504 offset = offset_in_page(addr);
3505 length = PAGE_SIZE - offset;
3508 p = vmalloc_to_page(addr);
3510 * To do safe access to this _mapped_ area, we need
3511 * lock. But adding lock here means that we need to add
3512 * overhead of vmalloc()/vfree() calls for this _debug_
3513 * interface, rarely used. Instead of that, we'll use
3514 * kmap() and get small overhead in this access function.
3517 /* We can expect USER0 is not used -- see vread() */
3518 void *map = kmap_atomic(p);
3519 memcpy(buf, map + offset, length);
3522 memset(buf, 0, length);
3533 * vread() - read vmalloc area in a safe way.
3534 * @buf: buffer for reading data
3535 * @addr: vm address.
3536 * @count: number of bytes to be read.
3538 * This function checks that addr is a valid vmalloc'ed area, and
3539 * copy data from that area to a given buffer. If the given memory range
3540 * of [addr...addr+count) includes some valid address, data is copied to
3541 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3542 * IOREMAP area is treated as memory hole and no copy is done.
3544 * If [addr...addr+count) doesn't includes any intersects with alive
3545 * vm_struct area, returns 0. @buf should be kernel's buffer.
3547 * Note: In usual ops, vread() is never necessary because the caller
3548 * should know vmalloc() area is valid and can use memcpy().
3549 * This is for routines which have to access vmalloc area without
3550 * any information, as /proc/kcore.
3552 * Return: number of bytes for which addr and buf should be increased
3553 * (same number as @count) or %0 if [addr...addr+count) doesn't
3554 * include any intersection with valid vmalloc area
3556 long vread(char *buf, char *addr, unsigned long count)
3558 struct vmap_area *va;
3559 struct vm_struct *vm;
3560 char *vaddr, *buf_start = buf;
3561 unsigned long buflen = count;
3564 addr = kasan_reset_tag(addr);
3566 /* Don't allow overflow */
3567 if ((unsigned long) addr + count < count)
3568 count = -(unsigned long) addr;
3570 spin_lock(&vmap_area_lock);
3571 va = find_vmap_area_exceed_addr((unsigned long)addr);
3575 /* no intersects with alive vmap_area */
3576 if ((unsigned long)addr + count <= va->va_start)
3579 list_for_each_entry_from(va, &vmap_area_list, list) {
3587 vaddr = (char *) vm->addr;
3588 if (addr >= vaddr + get_vm_area_size(vm))
3590 while (addr < vaddr) {
3598 n = vaddr + get_vm_area_size(vm) - addr;
3601 if (!(vm->flags & VM_IOREMAP))
3602 aligned_vread(buf, addr, n);
3603 else /* IOREMAP area is treated as memory hole */
3610 spin_unlock(&vmap_area_lock);
3612 if (buf == buf_start)
3614 /* zero-fill memory holes */
3615 if (buf != buf_start + buflen)
3616 memset(buf, 0, buflen - (buf - buf_start));
3622 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3623 * @vma: vma to cover
3624 * @uaddr: target user address to start at
3625 * @kaddr: virtual address of vmalloc kernel memory
3626 * @pgoff: offset from @kaddr to start at
3627 * @size: size of map area
3629 * Returns: 0 for success, -Exxx on failure
3631 * This function checks that @kaddr is a valid vmalloc'ed area,
3632 * and that it is big enough to cover the range starting at
3633 * @uaddr in @vma. Will return failure if that criteria isn't
3636 * Similar to remap_pfn_range() (see mm/memory.c)
3638 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3639 void *kaddr, unsigned long pgoff,
3642 struct vm_struct *area;
3644 unsigned long end_index;
3646 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3649 size = PAGE_ALIGN(size);
3651 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3654 area = find_vm_area(kaddr);
3658 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3661 if (check_add_overflow(size, off, &end_index) ||
3662 end_index > get_vm_area_size(area))
3667 struct page *page = vmalloc_to_page(kaddr);
3670 ret = vm_insert_page(vma, uaddr, page);
3679 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3685 * remap_vmalloc_range - map vmalloc pages to userspace
3686 * @vma: vma to cover (map full range of vma)
3687 * @addr: vmalloc memory
3688 * @pgoff: number of pages into addr before first page to map
3690 * Returns: 0 for success, -Exxx on failure
3692 * This function checks that addr is a valid vmalloc'ed area, and
3693 * that it is big enough to cover the vma. Will return failure if
3694 * that criteria isn't met.
3696 * Similar to remap_pfn_range() (see mm/memory.c)
3698 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3699 unsigned long pgoff)
3701 return remap_vmalloc_range_partial(vma, vma->vm_start,
3703 vma->vm_end - vma->vm_start);
3705 EXPORT_SYMBOL(remap_vmalloc_range);
3707 void free_vm_area(struct vm_struct *area)
3709 struct vm_struct *ret;
3710 ret = remove_vm_area(area->addr);
3711 BUG_ON(ret != area);
3714 EXPORT_SYMBOL_GPL(free_vm_area);
3717 static struct vmap_area *node_to_va(struct rb_node *n)
3719 return rb_entry_safe(n, struct vmap_area, rb_node);
3723 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3724 * @addr: target address
3726 * Returns: vmap_area if it is found. If there is no such area
3727 * the first highest(reverse order) vmap_area is returned
3728 * i.e. va->va_start < addr && va->va_end < addr or NULL
3729 * if there are no any areas before @addr.
3731 static struct vmap_area *
3732 pvm_find_va_enclose_addr(unsigned long addr)
3734 struct vmap_area *va, *tmp;
3737 n = free_vmap_area_root.rb_node;
3741 tmp = rb_entry(n, struct vmap_area, rb_node);
3742 if (tmp->va_start <= addr) {
3744 if (tmp->va_end >= addr)
3757 * pvm_determine_end_from_reverse - find the highest aligned address
3758 * of free block below VMALLOC_END
3760 * in - the VA we start the search(reverse order);
3761 * out - the VA with the highest aligned end address.
3762 * @align: alignment for required highest address
3764 * Returns: determined end address within vmap_area
3766 static unsigned long
3767 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3769 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3773 list_for_each_entry_from_reverse((*va),
3774 &free_vmap_area_list, list) {
3775 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3776 if ((*va)->va_start < addr)
3785 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3786 * @offsets: array containing offset of each area
3787 * @sizes: array containing size of each area
3788 * @nr_vms: the number of areas to allocate
3789 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3791 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3792 * vm_structs on success, %NULL on failure
3794 * Percpu allocator wants to use congruent vm areas so that it can
3795 * maintain the offsets among percpu areas. This function allocates
3796 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3797 * be scattered pretty far, distance between two areas easily going up
3798 * to gigabytes. To avoid interacting with regular vmallocs, these
3799 * areas are allocated from top.
3801 * Despite its complicated look, this allocator is rather simple. It
3802 * does everything top-down and scans free blocks from the end looking
3803 * for matching base. While scanning, if any of the areas do not fit the
3804 * base address is pulled down to fit the area. Scanning is repeated till
3805 * all the areas fit and then all necessary data structures are inserted
3806 * and the result is returned.
3808 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3809 const size_t *sizes, int nr_vms,
3812 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3813 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3814 struct vmap_area **vas, *va;
3815 struct vm_struct **vms;
3816 int area, area2, last_area, term_area;
3817 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3818 bool purged = false;
3820 /* verify parameters and allocate data structures */
3821 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3822 for (last_area = 0, area = 0; area < nr_vms; area++) {
3823 start = offsets[area];
3824 end = start + sizes[area];
3826 /* is everything aligned properly? */
3827 BUG_ON(!IS_ALIGNED(offsets[area], align));
3828 BUG_ON(!IS_ALIGNED(sizes[area], align));
3830 /* detect the area with the highest address */
3831 if (start > offsets[last_area])
3834 for (area2 = area + 1; area2 < nr_vms; area2++) {
3835 unsigned long start2 = offsets[area2];
3836 unsigned long end2 = start2 + sizes[area2];
3838 BUG_ON(start2 < end && start < end2);
3841 last_end = offsets[last_area] + sizes[last_area];
3843 if (vmalloc_end - vmalloc_start < last_end) {
3848 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3849 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3853 for (area = 0; area < nr_vms; area++) {
3854 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3855 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3856 if (!vas[area] || !vms[area])
3860 spin_lock(&free_vmap_area_lock);
3862 /* start scanning - we scan from the top, begin with the last area */
3863 area = term_area = last_area;
3864 start = offsets[area];
3865 end = start + sizes[area];
3867 va = pvm_find_va_enclose_addr(vmalloc_end);
3868 base = pvm_determine_end_from_reverse(&va, align) - end;
3872 * base might have underflowed, add last_end before
3875 if (base + last_end < vmalloc_start + last_end)
3879 * Fitting base has not been found.
3885 * If required width exceeds current VA block, move
3886 * base downwards and then recheck.
3888 if (base + end > va->va_end) {
3889 base = pvm_determine_end_from_reverse(&va, align) - end;
3895 * If this VA does not fit, move base downwards and recheck.
3897 if (base + start < va->va_start) {
3898 va = node_to_va(rb_prev(&va->rb_node));
3899 base = pvm_determine_end_from_reverse(&va, align) - end;
3905 * This area fits, move on to the previous one. If
3906 * the previous one is the terminal one, we're done.
3908 area = (area + nr_vms - 1) % nr_vms;
3909 if (area == term_area)
3912 start = offsets[area];
3913 end = start + sizes[area];
3914 va = pvm_find_va_enclose_addr(base + end);
3917 /* we've found a fitting base, insert all va's */
3918 for (area = 0; area < nr_vms; area++) {
3921 start = base + offsets[area];
3924 va = pvm_find_va_enclose_addr(start);
3925 if (WARN_ON_ONCE(va == NULL))
3926 /* It is a BUG(), but trigger recovery instead. */
3929 ret = adjust_va_to_fit_type(&free_vmap_area_root,
3930 &free_vmap_area_list,
3932 if (WARN_ON_ONCE(unlikely(ret)))
3933 /* It is a BUG(), but trigger recovery instead. */
3936 /* Allocated area. */
3938 va->va_start = start;
3939 va->va_end = start + size;
3942 spin_unlock(&free_vmap_area_lock);
3944 /* populate the kasan shadow space */
3945 for (area = 0; area < nr_vms; area++) {
3946 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3947 goto err_free_shadow;
3950 /* insert all vm's */
3951 spin_lock(&vmap_area_lock);
3952 for (area = 0; area < nr_vms; area++) {
3953 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3955 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3958 spin_unlock(&vmap_area_lock);
3961 * Mark allocated areas as accessible. Do it now as a best-effort
3962 * approach, as they can be mapped outside of vmalloc code.
3963 * With hardware tag-based KASAN, marking is skipped for
3964 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3966 for (area = 0; area < nr_vms; area++)
3967 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3968 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3975 * Remove previously allocated areas. There is no
3976 * need in removing these areas from the busy tree,
3977 * because they are inserted only on the final step
3978 * and when pcpu_get_vm_areas() is success.
3981 orig_start = vas[area]->va_start;
3982 orig_end = vas[area]->va_end;
3983 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3984 &free_vmap_area_list);
3986 kasan_release_vmalloc(orig_start, orig_end,
3987 va->va_start, va->va_end);
3992 spin_unlock(&free_vmap_area_lock);
3994 purge_vmap_area_lazy();
3997 /* Before "retry", check if we recover. */
3998 for (area = 0; area < nr_vms; area++) {
4002 vas[area] = kmem_cache_zalloc(
4003 vmap_area_cachep, GFP_KERNEL);
4012 for (area = 0; area < nr_vms; area++) {
4014 kmem_cache_free(vmap_area_cachep, vas[area]);
4024 spin_lock(&free_vmap_area_lock);
4026 * We release all the vmalloc shadows, even the ones for regions that
4027 * hadn't been successfully added. This relies on kasan_release_vmalloc
4028 * being able to tolerate this case.
4030 for (area = 0; area < nr_vms; area++) {
4031 orig_start = vas[area]->va_start;
4032 orig_end = vas[area]->va_end;
4033 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4034 &free_vmap_area_list);
4036 kasan_release_vmalloc(orig_start, orig_end,
4037 va->va_start, va->va_end);
4041 spin_unlock(&free_vmap_area_lock);
4048 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4049 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4050 * @nr_vms: the number of allocated areas
4052 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4054 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4058 for (i = 0; i < nr_vms; i++)
4059 free_vm_area(vms[i]);
4062 #endif /* CONFIG_SMP */
4064 #ifdef CONFIG_PRINTK
4065 bool vmalloc_dump_obj(void *object)
4067 struct vm_struct *vm;
4068 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4070 vm = find_vm_area(objp);
4073 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4074 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4079 #ifdef CONFIG_PROC_FS
4080 static void *s_start(struct seq_file *m, loff_t *pos)
4081 __acquires(&vmap_purge_lock)
4082 __acquires(&vmap_area_lock)
4084 mutex_lock(&vmap_purge_lock);
4085 spin_lock(&vmap_area_lock);
4087 return seq_list_start(&vmap_area_list, *pos);
4090 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4092 return seq_list_next(p, &vmap_area_list, pos);
4095 static void s_stop(struct seq_file *m, void *p)
4096 __releases(&vmap_area_lock)
4097 __releases(&vmap_purge_lock)
4099 spin_unlock(&vmap_area_lock);
4100 mutex_unlock(&vmap_purge_lock);
4103 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4105 if (IS_ENABLED(CONFIG_NUMA)) {
4106 unsigned int nr, *counters = m->private;
4107 unsigned int step = 1U << vm_area_page_order(v);
4112 if (v->flags & VM_UNINITIALIZED)
4114 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4117 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4119 for (nr = 0; nr < v->nr_pages; nr += step)
4120 counters[page_to_nid(v->pages[nr])] += step;
4121 for_each_node_state(nr, N_HIGH_MEMORY)
4123 seq_printf(m, " N%u=%u", nr, counters[nr]);
4127 static void show_purge_info(struct seq_file *m)
4129 struct vmap_area *va;
4131 spin_lock(&purge_vmap_area_lock);
4132 list_for_each_entry(va, &purge_vmap_area_list, list) {
4133 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4134 (void *)va->va_start, (void *)va->va_end,
4135 va->va_end - va->va_start);
4137 spin_unlock(&purge_vmap_area_lock);
4140 static int s_show(struct seq_file *m, void *p)
4142 struct vmap_area *va;
4143 struct vm_struct *v;
4145 va = list_entry(p, struct vmap_area, list);
4148 * s_show can encounter race with remove_vm_area, !vm on behalf
4149 * of vmap area is being tear down or vm_map_ram allocation.
4152 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4153 (void *)va->va_start, (void *)va->va_end,
4154 va->va_end - va->va_start);
4161 seq_printf(m, "0x%pK-0x%pK %7ld",
4162 v->addr, v->addr + v->size, v->size);
4165 seq_printf(m, " %pS", v->caller);
4168 seq_printf(m, " pages=%d", v->nr_pages);
4171 seq_printf(m, " phys=%pa", &v->phys_addr);
4173 if (v->flags & VM_IOREMAP)
4174 seq_puts(m, " ioremap");
4176 if (v->flags & VM_ALLOC)
4177 seq_puts(m, " vmalloc");
4179 if (v->flags & VM_MAP)
4180 seq_puts(m, " vmap");
4182 if (v->flags & VM_USERMAP)
4183 seq_puts(m, " user");
4185 if (v->flags & VM_DMA_COHERENT)
4186 seq_puts(m, " dma-coherent");
4188 if (is_vmalloc_addr(v->pages))
4189 seq_puts(m, " vpages");
4191 show_numa_info(m, v);
4195 * As a final step, dump "unpurged" areas.
4198 if (list_is_last(&va->list, &vmap_area_list))
4204 static const struct seq_operations vmalloc_op = {
4211 static int __init proc_vmalloc_init(void)
4213 if (IS_ENABLED(CONFIG_NUMA))
4214 proc_create_seq_private("vmallocinfo", 0400, NULL,
4216 nr_node_ids * sizeof(unsigned int), NULL);
4218 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4221 module_init(proc_vmalloc_init);