1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
164 #define pcpu_spin_lock(type, member, ptr) \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
173 #define pcpu_spin_trylock(type, member, ptr) \
177 _ret = this_cpu_ptr(ptr); \
178 if (!spin_trylock(&_ret->member)) { \
185 #define pcpu_spin_unlock(member, ptr) \
187 spin_unlock(&ptr->member); \
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
195 #define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
198 #define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
219 static DEFINE_MUTEX(pcpu_drain_mutex);
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
227 * Array of node states.
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
237 [N_MEMORY] = { { [0] = 1UL } },
238 [N_CPU] = { { [0] = 1UL } },
241 EXPORT_SYMBOL(node_states);
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
256 static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
263 early_param("init_on_alloc", early_init_on_alloc);
265 static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
269 return kstrtobool(buf, &_init_on_free_enabled_early);
271 early_param("init_on_free", early_init_on_free);
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
281 static inline int get_pcppage_migratetype(struct page *page)
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
288 page->index = migratetype;
291 #ifdef CONFIG_PM_SLEEP
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
302 static gfp_t saved_gfp_mask;
304 void pm_restore_gfp_mask(void)
306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
313 void pm_restrict_gfp_mask(void)
315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
321 bool pm_suspended_storage(void)
323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
327 #endif /* CONFIG_PM_SLEEP */
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
333 static void __free_pages_ok(struct page *page, unsigned int order,
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
351 #ifdef CONFIG_ZONE_DMA32
355 #ifdef CONFIG_HIGHMEM
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
365 #ifdef CONFIG_ZONE_DMA32
369 #ifdef CONFIG_HIGHMEM
373 #ifdef CONFIG_ZONE_DEVICE
378 const char * const migratetype_names[MIGRATE_TYPES] = {
386 #ifdef CONFIG_MEMORY_ISOLATION
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 [HUGETLB_PAGE_DTOR] = free_huge_page,
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
422 EXPORT_SYMBOL(movable_zone);
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
431 int page_group_by_mobility_disabled __read_mostly;
433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
435 * During boot we initialize deferred pages on-demand, as needed, but once
436 * page_alloc_init_late() has finished, the deferred pages are all initialized,
437 * and we can permanently disable that path.
439 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
441 static inline bool deferred_pages_enabled(void)
443 return static_branch_unlikely(&deferred_pages);
446 /* Returns true if the struct page for the pfn is initialised */
447 static inline bool __meminit early_page_initialised(unsigned long pfn)
449 int nid = early_pfn_to_nid(pfn);
451 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
458 * Returns true when the remaining initialisation should be deferred until
459 * later in the boot cycle when it can be parallelised.
461 static bool __meminit
462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
464 static unsigned long prev_end_pfn, nr_initialised;
466 if (early_page_ext_enabled())
469 * prev_end_pfn static that contains the end of previous zone
470 * No need to protect because called very early in boot before smp_init.
472 if (prev_end_pfn != end_pfn) {
473 prev_end_pfn = end_pfn;
477 /* Always populate low zones for address-constrained allocations */
478 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
481 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
484 * We start only with one section of pages, more pages are added as
485 * needed until the rest of deferred pages are initialized.
488 if ((nr_initialised > PAGES_PER_SECTION) &&
489 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 NODE_DATA(nid)->first_deferred_pfn = pfn;
496 static inline bool deferred_pages_enabled(void)
501 static inline bool early_page_initialised(unsigned long pfn)
506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
513 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
516 #ifdef CONFIG_SPARSEMEM
517 return section_to_usemap(__pfn_to_section(pfn));
519 return page_zone(page)->pageblock_flags;
520 #endif /* CONFIG_SPARSEMEM */
523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
525 #ifdef CONFIG_SPARSEMEM
526 pfn &= (PAGES_PER_SECTION-1);
528 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
529 #endif /* CONFIG_SPARSEMEM */
530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
533 static __always_inline
534 unsigned long __get_pfnblock_flags_mask(const struct page *page,
538 unsigned long *bitmap;
539 unsigned long bitidx, word_bitidx;
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
547 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 * a consistent read of the memory array, so that results, even though
549 * racy, are not corrupted.
551 word = READ_ONCE(bitmap[word_bitidx]);
552 return (word >> bitidx) & mask;
556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557 * @page: The page within the block of interest
558 * @pfn: The target page frame number
559 * @mask: mask of bits that the caller is interested in
561 * Return: pageblock_bits flags
563 unsigned long get_pfnblock_flags_mask(const struct page *page,
564 unsigned long pfn, unsigned long mask)
566 return __get_pfnblock_flags_mask(page, pfn, mask);
569 static __always_inline int get_pfnblock_migratetype(const struct page *page,
572 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577 * @page: The page within the block of interest
578 * @flags: The flags to set
579 * @pfn: The target page frame number
580 * @mask: mask of bits that the caller is interested in
582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
586 unsigned long *bitmap;
587 unsigned long bitidx, word_bitidx;
590 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
591 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
593 bitmap = get_pageblock_bitmap(page, pfn);
594 bitidx = pfn_to_bitidx(page, pfn);
595 word_bitidx = bitidx / BITS_PER_LONG;
596 bitidx &= (BITS_PER_LONG-1);
598 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
603 word = READ_ONCE(bitmap[word_bitidx]);
605 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
608 void set_pageblock_migratetype(struct page *page, int migratetype)
610 if (unlikely(page_group_by_mobility_disabled &&
611 migratetype < MIGRATE_PCPTYPES))
612 migratetype = MIGRATE_UNMOVABLE;
614 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
615 page_to_pfn(page), MIGRATETYPE_MASK);
618 #ifdef CONFIG_DEBUG_VM
619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
623 unsigned long pfn = page_to_pfn(page);
624 unsigned long sp, start_pfn;
627 seq = zone_span_seqbegin(zone);
628 start_pfn = zone->zone_start_pfn;
629 sp = zone->spanned_pages;
630 if (!zone_spans_pfn(zone, pfn))
632 } while (zone_span_seqretry(zone, seq));
635 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 pfn, zone_to_nid(zone), zone->name,
637 start_pfn, start_pfn + sp);
642 static int page_is_consistent(struct zone *zone, struct page *page)
644 if (zone != page_zone(page))
650 * Temporary debugging check for pages not lying within a given zone.
652 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
654 if (page_outside_zone_boundaries(zone, page))
656 if (!page_is_consistent(zone, page))
662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
668 static void bad_page(struct page *page, const char *reason)
670 static unsigned long resume;
671 static unsigned long nr_shown;
672 static unsigned long nr_unshown;
675 * Allow a burst of 60 reports, then keep quiet for that minute;
676 * or allow a steady drip of one report per second.
678 if (nr_shown == 60) {
679 if (time_before(jiffies, resume)) {
685 "BUG: Bad page state: %lu messages suppressed\n",
692 resume = jiffies + 60 * HZ;
694 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
695 current->comm, page_to_pfn(page));
696 dump_page(page, reason);
701 /* Leave bad fields for debug, except PageBuddy could make trouble */
702 page_mapcount_reset(page); /* remove PageBuddy */
703 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 static inline unsigned int order_to_pindex(int migratetype, int order)
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 VM_BUG_ON(order != pageblock_order);
713 return NR_LOWORDER_PCP_LISTS;
716 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
719 return (MIGRATE_PCPTYPES * base) + migratetype;
722 static inline int pindex_to_order(unsigned int pindex)
724 int order = pindex / MIGRATE_PCPTYPES;
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 if (pindex == NR_LOWORDER_PCP_LISTS)
728 order = pageblock_order;
730 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
736 static inline bool pcp_allowed_order(unsigned int order)
738 if (order <= PAGE_ALLOC_COSTLY_ORDER)
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 if (order == pageblock_order)
747 static inline void free_the_page(struct page *page, unsigned int order)
749 if (pcp_allowed_order(order)) /* Via pcp? */
750 free_unref_page(page, order);
752 __free_pages_ok(page, order, FPI_NONE);
756 * Higher-order pages are called "compound pages". They are structured thusly:
758 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
763 * The first tail page's ->compound_dtor holds the offset in array of compound
764 * page destructors. See compound_page_dtors.
766 * The first tail page's ->compound_order holds the order of allocation.
767 * This usage means that zero-order pages may not be compound.
770 void free_compound_page(struct page *page)
772 mem_cgroup_uncharge(page_folio(page));
773 free_the_page(page, compound_order(page));
776 static void prep_compound_head(struct page *page, unsigned int order)
778 struct folio *folio = (struct folio *)page;
780 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
781 set_compound_order(page, order);
782 atomic_set(&folio->_entire_mapcount, -1);
783 atomic_set(&folio->_nr_pages_mapped, 0);
784 atomic_set(&folio->_pincount, 0);
787 static void prep_compound_tail(struct page *head, int tail_idx)
789 struct page *p = head + tail_idx;
791 p->mapping = TAIL_MAPPING;
792 set_compound_head(p, head);
793 set_page_private(p, 0);
796 void prep_compound_page(struct page *page, unsigned int order)
799 int nr_pages = 1 << order;
802 for (i = 1; i < nr_pages; i++)
803 prep_compound_tail(page, i);
805 prep_compound_head(page, order);
808 void destroy_large_folio(struct folio *folio)
810 enum compound_dtor_id dtor = folio->_folio_dtor;
812 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
813 compound_page_dtors[dtor](&folio->page);
816 #ifdef CONFIG_DEBUG_PAGEALLOC
817 unsigned int _debug_guardpage_minorder;
819 bool _debug_pagealloc_enabled_early __read_mostly
820 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
821 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
822 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled);
825 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
827 static int __init early_debug_pagealloc(char *buf)
829 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
831 early_param("debug_pagealloc", early_debug_pagealloc);
833 static int __init debug_guardpage_minorder_setup(char *buf)
837 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
838 pr_err("Bad debug_guardpage_minorder value\n");
841 _debug_guardpage_minorder = res;
842 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
845 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
847 static inline bool set_page_guard(struct zone *zone, struct page *page,
848 unsigned int order, int migratetype)
850 if (!debug_guardpage_enabled())
853 if (order >= debug_guardpage_minorder())
856 __SetPageGuard(page);
857 INIT_LIST_HEAD(&page->buddy_list);
858 set_page_private(page, order);
859 /* Guard pages are not available for any usage */
860 if (!is_migrate_isolate(migratetype))
861 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
866 static inline void clear_page_guard(struct zone *zone, struct page *page,
867 unsigned int order, int migratetype)
869 if (!debug_guardpage_enabled())
872 __ClearPageGuard(page);
874 set_page_private(page, 0);
875 if (!is_migrate_isolate(migratetype))
876 __mod_zone_freepage_state(zone, (1 << order), migratetype);
879 static inline bool set_page_guard(struct zone *zone, struct page *page,
880 unsigned int order, int migratetype) { return false; }
881 static inline void clear_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) {}
886 * Enable static keys related to various memory debugging and hardening options.
887 * Some override others, and depend on early params that are evaluated in the
888 * order of appearance. So we need to first gather the full picture of what was
889 * enabled, and then make decisions.
891 void __init init_mem_debugging_and_hardening(void)
893 bool page_poisoning_requested = false;
895 #ifdef CONFIG_PAGE_POISONING
897 * Page poisoning is debug page alloc for some arches. If
898 * either of those options are enabled, enable poisoning.
900 if (page_poisoning_enabled() ||
901 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
902 debug_pagealloc_enabled())) {
903 static_branch_enable(&_page_poisoning_enabled);
904 page_poisoning_requested = true;
908 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
909 page_poisoning_requested) {
910 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
911 "will take precedence over init_on_alloc and init_on_free\n");
912 _init_on_alloc_enabled_early = false;
913 _init_on_free_enabled_early = false;
916 if (_init_on_alloc_enabled_early)
917 static_branch_enable(&init_on_alloc);
919 static_branch_disable(&init_on_alloc);
921 if (_init_on_free_enabled_early)
922 static_branch_enable(&init_on_free);
924 static_branch_disable(&init_on_free);
926 if (IS_ENABLED(CONFIG_KMSAN) &&
927 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
928 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
930 #ifdef CONFIG_DEBUG_PAGEALLOC
931 if (!debug_pagealloc_enabled())
934 static_branch_enable(&_debug_pagealloc_enabled);
936 if (!debug_guardpage_minorder())
939 static_branch_enable(&_debug_guardpage_enabled);
943 static inline void set_buddy_order(struct page *page, unsigned int order)
945 set_page_private(page, order);
946 __SetPageBuddy(page);
949 #ifdef CONFIG_COMPACTION
950 static inline struct capture_control *task_capc(struct zone *zone)
952 struct capture_control *capc = current->capture_control;
954 return unlikely(capc) &&
955 !(current->flags & PF_KTHREAD) &&
957 capc->cc->zone == zone ? capc : NULL;
961 compaction_capture(struct capture_control *capc, struct page *page,
962 int order, int migratetype)
964 if (!capc || order != capc->cc->order)
967 /* Do not accidentally pollute CMA or isolated regions*/
968 if (is_migrate_cma(migratetype) ||
969 is_migrate_isolate(migratetype))
973 * Do not let lower order allocations pollute a movable pageblock.
974 * This might let an unmovable request use a reclaimable pageblock
975 * and vice-versa but no more than normal fallback logic which can
976 * have trouble finding a high-order free page.
978 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
986 static inline struct capture_control *task_capc(struct zone *zone)
992 compaction_capture(struct capture_control *capc, struct page *page,
993 int order, int migratetype)
997 #endif /* CONFIG_COMPACTION */
999 /* Used for pages not on another list */
1000 static inline void add_to_free_list(struct page *page, struct zone *zone,
1001 unsigned int order, int migratetype)
1003 struct free_area *area = &zone->free_area[order];
1005 list_add(&page->buddy_list, &area->free_list[migratetype]);
1009 /* Used for pages not on another list */
1010 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1011 unsigned int order, int migratetype)
1013 struct free_area *area = &zone->free_area[order];
1015 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1020 * Used for pages which are on another list. Move the pages to the tail
1021 * of the list - so the moved pages won't immediately be considered for
1022 * allocation again (e.g., optimization for memory onlining).
1024 static inline void move_to_free_list(struct page *page, struct zone *zone,
1025 unsigned int order, int migratetype)
1027 struct free_area *area = &zone->free_area[order];
1029 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1035 /* clear reported state and update reported page count */
1036 if (page_reported(page))
1037 __ClearPageReported(page);
1039 list_del(&page->buddy_list);
1040 __ClearPageBuddy(page);
1041 set_page_private(page, 0);
1042 zone->free_area[order].nr_free--;
1046 * If this is not the largest possible page, check if the buddy
1047 * of the next-highest order is free. If it is, it's possible
1048 * that pages are being freed that will coalesce soon. In case,
1049 * that is happening, add the free page to the tail of the list
1050 * so it's less likely to be used soon and more likely to be merged
1051 * as a higher order page
1054 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1055 struct page *page, unsigned int order)
1057 unsigned long higher_page_pfn;
1058 struct page *higher_page;
1060 if (order >= MAX_ORDER - 2)
1063 higher_page_pfn = buddy_pfn & pfn;
1064 higher_page = page + (higher_page_pfn - pfn);
1066 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1071 * Freeing function for a buddy system allocator.
1073 * The concept of a buddy system is to maintain direct-mapped table
1074 * (containing bit values) for memory blocks of various "orders".
1075 * The bottom level table contains the map for the smallest allocatable
1076 * units of memory (here, pages), and each level above it describes
1077 * pairs of units from the levels below, hence, "buddies".
1078 * At a high level, all that happens here is marking the table entry
1079 * at the bottom level available, and propagating the changes upward
1080 * as necessary, plus some accounting needed to play nicely with other
1081 * parts of the VM system.
1082 * At each level, we keep a list of pages, which are heads of continuous
1083 * free pages of length of (1 << order) and marked with PageBuddy.
1084 * Page's order is recorded in page_private(page) field.
1085 * So when we are allocating or freeing one, we can derive the state of the
1086 * other. That is, if we allocate a small block, and both were
1087 * free, the remainder of the region must be split into blocks.
1088 * If a block is freed, and its buddy is also free, then this
1089 * triggers coalescing into a block of larger size.
1094 static inline void __free_one_page(struct page *page,
1096 struct zone *zone, unsigned int order,
1097 int migratetype, fpi_t fpi_flags)
1099 struct capture_control *capc = task_capc(zone);
1100 unsigned long buddy_pfn = 0;
1101 unsigned long combined_pfn;
1105 VM_BUG_ON(!zone_is_initialized(zone));
1106 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1108 VM_BUG_ON(migratetype == -1);
1109 if (likely(!is_migrate_isolate(migratetype)))
1110 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1112 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1113 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1115 while (order < MAX_ORDER - 1) {
1116 if (compaction_capture(capc, page, order, migratetype)) {
1117 __mod_zone_freepage_state(zone, -(1 << order),
1122 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1126 if (unlikely(order >= pageblock_order)) {
1128 * We want to prevent merge between freepages on pageblock
1129 * without fallbacks and normal pageblock. Without this,
1130 * pageblock isolation could cause incorrect freepage or CMA
1131 * accounting or HIGHATOMIC accounting.
1133 int buddy_mt = get_pageblock_migratetype(buddy);
1135 if (migratetype != buddy_mt
1136 && (!migratetype_is_mergeable(migratetype) ||
1137 !migratetype_is_mergeable(buddy_mt)))
1142 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1143 * merge with it and move up one order.
1145 if (page_is_guard(buddy))
1146 clear_page_guard(zone, buddy, order, migratetype);
1148 del_page_from_free_list(buddy, zone, order);
1149 combined_pfn = buddy_pfn & pfn;
1150 page = page + (combined_pfn - pfn);
1156 set_buddy_order(page, order);
1158 if (fpi_flags & FPI_TO_TAIL)
1160 else if (is_shuffle_order(order))
1161 to_tail = shuffle_pick_tail();
1163 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1166 add_to_free_list_tail(page, zone, order, migratetype);
1168 add_to_free_list(page, zone, order, migratetype);
1170 /* Notify page reporting subsystem of freed page */
1171 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1172 page_reporting_notify_free(order);
1176 * split_free_page() -- split a free page at split_pfn_offset
1177 * @free_page: the original free page
1178 * @order: the order of the page
1179 * @split_pfn_offset: split offset within the page
1181 * Return -ENOENT if the free page is changed, otherwise 0
1183 * It is used when the free page crosses two pageblocks with different migratetypes
1184 * at split_pfn_offset within the page. The split free page will be put into
1185 * separate migratetype lists afterwards. Otherwise, the function achieves
1188 int split_free_page(struct page *free_page,
1189 unsigned int order, unsigned long split_pfn_offset)
1191 struct zone *zone = page_zone(free_page);
1192 unsigned long free_page_pfn = page_to_pfn(free_page);
1194 unsigned long flags;
1195 int free_page_order;
1199 if (split_pfn_offset == 0)
1202 spin_lock_irqsave(&zone->lock, flags);
1204 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1209 mt = get_pageblock_migratetype(free_page);
1210 if (likely(!is_migrate_isolate(mt)))
1211 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1213 del_page_from_free_list(free_page, zone, order);
1214 for (pfn = free_page_pfn;
1215 pfn < free_page_pfn + (1UL << order);) {
1216 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1218 free_page_order = min_t(unsigned int,
1219 pfn ? __ffs(pfn) : order,
1220 __fls(split_pfn_offset));
1221 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1223 pfn += 1UL << free_page_order;
1224 split_pfn_offset -= (1UL << free_page_order);
1225 /* we have done the first part, now switch to second part */
1226 if (split_pfn_offset == 0)
1227 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1230 spin_unlock_irqrestore(&zone->lock, flags);
1234 * A bad page could be due to a number of fields. Instead of multiple branches,
1235 * try and check multiple fields with one check. The caller must do a detailed
1236 * check if necessary.
1238 static inline bool page_expected_state(struct page *page,
1239 unsigned long check_flags)
1241 if (unlikely(atomic_read(&page->_mapcount) != -1))
1244 if (unlikely((unsigned long)page->mapping |
1245 page_ref_count(page) |
1249 (page->flags & check_flags)))
1255 static const char *page_bad_reason(struct page *page, unsigned long flags)
1257 const char *bad_reason = NULL;
1259 if (unlikely(atomic_read(&page->_mapcount) != -1))
1260 bad_reason = "nonzero mapcount";
1261 if (unlikely(page->mapping != NULL))
1262 bad_reason = "non-NULL mapping";
1263 if (unlikely(page_ref_count(page) != 0))
1264 bad_reason = "nonzero _refcount";
1265 if (unlikely(page->flags & flags)) {
1266 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1267 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1272 if (unlikely(page->memcg_data))
1273 bad_reason = "page still charged to cgroup";
1278 static void free_page_is_bad_report(struct page *page)
1281 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1284 static inline bool free_page_is_bad(struct page *page)
1286 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1289 /* Something has gone sideways, find it */
1290 free_page_is_bad_report(page);
1294 static int free_tail_pages_check(struct page *head_page, struct page *page)
1296 struct folio *folio = (struct folio *)head_page;
1300 * We rely page->lru.next never has bit 0 set, unless the page
1301 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1303 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1305 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1309 switch (page - head_page) {
1311 /* the first tail page: these may be in place of ->mapping */
1312 if (unlikely(folio_entire_mapcount(folio))) {
1313 bad_page(page, "nonzero entire_mapcount");
1316 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1317 bad_page(page, "nonzero nr_pages_mapped");
1320 if (unlikely(atomic_read(&folio->_pincount))) {
1321 bad_page(page, "nonzero pincount");
1327 * the second tail page: ->mapping is
1328 * deferred_list.next -- ignore value.
1332 if (page->mapping != TAIL_MAPPING) {
1333 bad_page(page, "corrupted mapping in tail page");
1338 if (unlikely(!PageTail(page))) {
1339 bad_page(page, "PageTail not set");
1342 if (unlikely(compound_head(page) != head_page)) {
1343 bad_page(page, "compound_head not consistent");
1348 page->mapping = NULL;
1349 clear_compound_head(page);
1354 * Skip KASAN memory poisoning when either:
1356 * 1. Deferred memory initialization has not yet completed,
1357 * see the explanation below.
1358 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1359 * see the comment next to it.
1360 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 4. The allocation is excluded from being checked due to sampling,
1363 * see the call to kasan_unpoison_pages.
1365 * Poisoning pages during deferred memory init will greatly lengthen the
1366 * process and cause problem in large memory systems as the deferred pages
1367 * initialization is done with interrupt disabled.
1369 * Assuming that there will be no reference to those newly initialized
1370 * pages before they are ever allocated, this should have no effect on
1371 * KASAN memory tracking as the poison will be properly inserted at page
1372 * allocation time. The only corner case is when pages are allocated by
1373 * on-demand allocation and then freed again before the deferred pages
1374 * initialization is done, but this is not likely to happen.
1376 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1378 return deferred_pages_enabled() ||
1379 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1380 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1381 PageSkipKASanPoison(page);
1384 static void kernel_init_pages(struct page *page, int numpages)
1388 /* s390's use of memset() could override KASAN redzones. */
1389 kasan_disable_current();
1390 for (i = 0; i < numpages; i++)
1391 clear_highpage_kasan_tagged(page + i);
1392 kasan_enable_current();
1395 static __always_inline bool free_pages_prepare(struct page *page,
1396 unsigned int order, bool check_free, fpi_t fpi_flags)
1399 bool init = want_init_on_free();
1401 VM_BUG_ON_PAGE(PageTail(page), page);
1403 trace_mm_page_free(page, order);
1404 kmsan_free_page(page, order);
1406 if (unlikely(PageHWPoison(page)) && !order) {
1408 * Do not let hwpoison pages hit pcplists/buddy
1409 * Untie memcg state and reset page's owner
1411 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1412 __memcg_kmem_uncharge_page(page, order);
1413 reset_page_owner(page, order);
1414 page_table_check_free(page, order);
1419 * Check tail pages before head page information is cleared to
1420 * avoid checking PageCompound for order-0 pages.
1422 if (unlikely(order)) {
1423 bool compound = PageCompound(page);
1426 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1429 ClearPageHasHWPoisoned(page);
1430 for (i = 1; i < (1 << order); i++) {
1432 bad += free_tail_pages_check(page, page + i);
1433 if (unlikely(free_page_is_bad(page + i))) {
1437 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 if (PageMappingFlags(page))
1441 page->mapping = NULL;
1442 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1443 __memcg_kmem_uncharge_page(page, order);
1444 if (check_free && free_page_is_bad(page))
1449 page_cpupid_reset_last(page);
1450 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1451 reset_page_owner(page, order);
1452 page_table_check_free(page, order);
1454 if (!PageHighMem(page)) {
1455 debug_check_no_locks_freed(page_address(page),
1456 PAGE_SIZE << order);
1457 debug_check_no_obj_freed(page_address(page),
1458 PAGE_SIZE << order);
1461 kernel_poison_pages(page, 1 << order);
1464 * As memory initialization might be integrated into KASAN,
1465 * KASAN poisoning and memory initialization code must be
1466 * kept together to avoid discrepancies in behavior.
1468 * With hardware tag-based KASAN, memory tags must be set before the
1469 * page becomes unavailable via debug_pagealloc or arch_free_page.
1471 if (!should_skip_kasan_poison(page, fpi_flags)) {
1472 kasan_poison_pages(page, order, init);
1474 /* Memory is already initialized if KASAN did it internally. */
1475 if (kasan_has_integrated_init())
1479 kernel_init_pages(page, 1 << order);
1482 * arch_free_page() can make the page's contents inaccessible. s390
1483 * does this. So nothing which can access the page's contents should
1484 * happen after this.
1486 arch_free_page(page, order);
1488 debug_pagealloc_unmap_pages(page, 1 << order);
1493 #ifdef CONFIG_DEBUG_VM
1495 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1496 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1497 * moved from pcp lists to free lists.
1499 static bool free_pcp_prepare(struct page *page, unsigned int order)
1501 return free_pages_prepare(page, order, true, FPI_NONE);
1504 /* return true if this page has an inappropriate state */
1505 static bool bulkfree_pcp_prepare(struct page *page)
1507 if (debug_pagealloc_enabled_static())
1508 return free_page_is_bad(page);
1514 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1515 * moving from pcp lists to free list in order to reduce overhead. With
1516 * debug_pagealloc enabled, they are checked also immediately when being freed
1519 static bool free_pcp_prepare(struct page *page, unsigned int order)
1521 if (debug_pagealloc_enabled_static())
1522 return free_pages_prepare(page, order, true, FPI_NONE);
1524 return free_pages_prepare(page, order, false, FPI_NONE);
1527 static bool bulkfree_pcp_prepare(struct page *page)
1529 return free_page_is_bad(page);
1531 #endif /* CONFIG_DEBUG_VM */
1534 * Frees a number of pages from the PCP lists
1535 * Assumes all pages on list are in same zone.
1536 * count is the number of pages to free.
1538 static void free_pcppages_bulk(struct zone *zone, int count,
1539 struct per_cpu_pages *pcp,
1542 unsigned long flags;
1544 int max_pindex = NR_PCP_LISTS - 1;
1546 bool isolated_pageblocks;
1550 * Ensure proper count is passed which otherwise would stuck in the
1551 * below while (list_empty(list)) loop.
1553 count = min(pcp->count, count);
1555 /* Ensure requested pindex is drained first. */
1556 pindex = pindex - 1;
1558 spin_lock_irqsave(&zone->lock, flags);
1559 isolated_pageblocks = has_isolate_pageblock(zone);
1562 struct list_head *list;
1565 /* Remove pages from lists in a round-robin fashion. */
1567 if (++pindex > max_pindex)
1568 pindex = min_pindex;
1569 list = &pcp->lists[pindex];
1570 if (!list_empty(list))
1573 if (pindex == max_pindex)
1575 if (pindex == min_pindex)
1579 order = pindex_to_order(pindex);
1580 nr_pages = 1 << order;
1584 page = list_last_entry(list, struct page, pcp_list);
1585 mt = get_pcppage_migratetype(page);
1587 /* must delete to avoid corrupting pcp list */
1588 list_del(&page->pcp_list);
1590 pcp->count -= nr_pages;
1592 if (bulkfree_pcp_prepare(page))
1595 /* MIGRATE_ISOLATE page should not go to pcplists */
1596 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1597 /* Pageblock could have been isolated meanwhile */
1598 if (unlikely(isolated_pageblocks))
1599 mt = get_pageblock_migratetype(page);
1601 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1602 trace_mm_page_pcpu_drain(page, order, mt);
1603 } while (count > 0 && !list_empty(list));
1606 spin_unlock_irqrestore(&zone->lock, flags);
1609 static void free_one_page(struct zone *zone,
1610 struct page *page, unsigned long pfn,
1612 int migratetype, fpi_t fpi_flags)
1614 unsigned long flags;
1616 spin_lock_irqsave(&zone->lock, flags);
1617 if (unlikely(has_isolate_pageblock(zone) ||
1618 is_migrate_isolate(migratetype))) {
1619 migratetype = get_pfnblock_migratetype(page, pfn);
1621 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1622 spin_unlock_irqrestore(&zone->lock, flags);
1625 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1626 unsigned long zone, int nid)
1628 mm_zero_struct_page(page);
1629 set_page_links(page, zone, nid, pfn);
1630 init_page_count(page);
1631 page_mapcount_reset(page);
1632 page_cpupid_reset_last(page);
1633 page_kasan_tag_reset(page);
1635 INIT_LIST_HEAD(&page->lru);
1636 #ifdef WANT_PAGE_VIRTUAL
1637 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1638 if (!is_highmem_idx(zone))
1639 set_page_address(page, __va(pfn << PAGE_SHIFT));
1643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1644 static void __meminit init_reserved_page(unsigned long pfn)
1649 if (early_page_initialised(pfn))
1652 nid = early_pfn_to_nid(pfn);
1653 pgdat = NODE_DATA(nid);
1655 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1656 struct zone *zone = &pgdat->node_zones[zid];
1658 if (zone_spans_pfn(zone, pfn))
1661 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1664 static inline void init_reserved_page(unsigned long pfn)
1667 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670 * Initialised pages do not have PageReserved set. This function is
1671 * called for each range allocated by the bootmem allocator and
1672 * marks the pages PageReserved. The remaining valid pages are later
1673 * sent to the buddy page allocator.
1675 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1677 unsigned long start_pfn = PFN_DOWN(start);
1678 unsigned long end_pfn = PFN_UP(end);
1680 for (; start_pfn < end_pfn; start_pfn++) {
1681 if (pfn_valid(start_pfn)) {
1682 struct page *page = pfn_to_page(start_pfn);
1684 init_reserved_page(start_pfn);
1686 /* Avoid false-positive PageTail() */
1687 INIT_LIST_HEAD(&page->lru);
1690 * no need for atomic set_bit because the struct
1691 * page is not visible yet so nobody should
1694 __SetPageReserved(page);
1699 static void __free_pages_ok(struct page *page, unsigned int order,
1702 unsigned long flags;
1704 unsigned long pfn = page_to_pfn(page);
1705 struct zone *zone = page_zone(page);
1707 if (!free_pages_prepare(page, order, true, fpi_flags))
1711 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1712 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1713 * This will reduce the lock holding time.
1715 migratetype = get_pfnblock_migratetype(page, pfn);
1717 spin_lock_irqsave(&zone->lock, flags);
1718 if (unlikely(has_isolate_pageblock(zone) ||
1719 is_migrate_isolate(migratetype))) {
1720 migratetype = get_pfnblock_migratetype(page, pfn);
1722 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1723 spin_unlock_irqrestore(&zone->lock, flags);
1725 __count_vm_events(PGFREE, 1 << order);
1728 void __free_pages_core(struct page *page, unsigned int order)
1730 unsigned int nr_pages = 1 << order;
1731 struct page *p = page;
1735 * When initializing the memmap, __init_single_page() sets the refcount
1736 * of all pages to 1 ("allocated"/"not free"). We have to set the
1737 * refcount of all involved pages to 0.
1740 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1742 __ClearPageReserved(p);
1743 set_page_count(p, 0);
1745 __ClearPageReserved(p);
1746 set_page_count(p, 0);
1748 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751 * Bypass PCP and place fresh pages right to the tail, primarily
1752 * relevant for memory onlining.
1754 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1760 * During memory init memblocks map pfns to nids. The search is expensive and
1761 * this caches recent lookups. The implementation of __early_pfn_to_nid
1762 * treats start/end as pfns.
1764 struct mminit_pfnnid_cache {
1765 unsigned long last_start;
1766 unsigned long last_end;
1770 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1775 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1776 struct mminit_pfnnid_cache *state)
1778 unsigned long start_pfn, end_pfn;
1781 if (state->last_start <= pfn && pfn < state->last_end)
1782 return state->last_nid;
1784 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1785 if (nid != NUMA_NO_NODE) {
1786 state->last_start = start_pfn;
1787 state->last_end = end_pfn;
1788 state->last_nid = nid;
1794 int __meminit early_pfn_to_nid(unsigned long pfn)
1796 static DEFINE_SPINLOCK(early_pfn_lock);
1799 spin_lock(&early_pfn_lock);
1800 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1802 nid = first_online_node;
1803 spin_unlock(&early_pfn_lock);
1807 #endif /* CONFIG_NUMA */
1809 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 if (!early_page_initialised(pfn))
1814 if (!kmsan_memblock_free_pages(page, order)) {
1815 /* KMSAN will take care of these pages. */
1818 __free_pages_core(page, order);
1822 * Check that the whole (or subset of) a pageblock given by the interval of
1823 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1824 * with the migration of free compaction scanner.
1826 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1828 * It's possible on some configurations to have a setup like node0 node1 node0
1829 * i.e. it's possible that all pages within a zones range of pages do not
1830 * belong to a single zone. We assume that a border between node0 and node1
1831 * can occur within a single pageblock, but not a node0 node1 node0
1832 * interleaving within a single pageblock. It is therefore sufficient to check
1833 * the first and last page of a pageblock and avoid checking each individual
1834 * page in a pageblock.
1836 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1837 unsigned long end_pfn, struct zone *zone)
1839 struct page *start_page;
1840 struct page *end_page;
1842 /* end_pfn is one past the range we are checking */
1845 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 start_page = pfn_to_online_page(start_pfn);
1852 if (page_zone(start_page) != zone)
1855 end_page = pfn_to_page(end_pfn);
1857 /* This gives a shorter code than deriving page_zone(end_page) */
1858 if (page_zone_id(start_page) != page_zone_id(end_page))
1864 void set_zone_contiguous(struct zone *zone)
1866 unsigned long block_start_pfn = zone->zone_start_pfn;
1867 unsigned long block_end_pfn;
1869 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1870 for (; block_start_pfn < zone_end_pfn(zone);
1871 block_start_pfn = block_end_pfn,
1872 block_end_pfn += pageblock_nr_pages) {
1874 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1876 if (!__pageblock_pfn_to_page(block_start_pfn,
1877 block_end_pfn, zone))
1882 /* We confirm that there is no hole */
1883 zone->contiguous = true;
1886 void clear_zone_contiguous(struct zone *zone)
1888 zone->contiguous = false;
1891 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1892 static void __init deferred_free_range(unsigned long pfn,
1893 unsigned long nr_pages)
1901 page = pfn_to_page(pfn);
1903 /* Free a large naturally-aligned chunk if possible */
1904 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1905 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1906 __free_pages_core(page, pageblock_order);
1910 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1911 if (pageblock_aligned(pfn))
1912 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1913 __free_pages_core(page, 0);
1917 /* Completion tracking for deferred_init_memmap() threads */
1918 static atomic_t pgdat_init_n_undone __initdata;
1919 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1921 static inline void __init pgdat_init_report_one_done(void)
1923 if (atomic_dec_and_test(&pgdat_init_n_undone))
1924 complete(&pgdat_init_all_done_comp);
1928 * Returns true if page needs to be initialized or freed to buddy allocator.
1930 * We check if a current large page is valid by only checking the validity
1933 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1935 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1941 * Free pages to buddy allocator. Try to free aligned pages in
1942 * pageblock_nr_pages sizes.
1944 static void __init deferred_free_pages(unsigned long pfn,
1945 unsigned long end_pfn)
1947 unsigned long nr_free = 0;
1949 for (; pfn < end_pfn; pfn++) {
1950 if (!deferred_pfn_valid(pfn)) {
1951 deferred_free_range(pfn - nr_free, nr_free);
1953 } else if (pageblock_aligned(pfn)) {
1954 deferred_free_range(pfn - nr_free, nr_free);
1960 /* Free the last block of pages to allocator */
1961 deferred_free_range(pfn - nr_free, nr_free);
1965 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1966 * by performing it only once every pageblock_nr_pages.
1967 * Return number of pages initialized.
1969 static unsigned long __init deferred_init_pages(struct zone *zone,
1971 unsigned long end_pfn)
1973 int nid = zone_to_nid(zone);
1974 unsigned long nr_pages = 0;
1975 int zid = zone_idx(zone);
1976 struct page *page = NULL;
1978 for (; pfn < end_pfn; pfn++) {
1979 if (!deferred_pfn_valid(pfn)) {
1982 } else if (!page || pageblock_aligned(pfn)) {
1983 page = pfn_to_page(pfn);
1987 __init_single_page(page, pfn, zid, nid);
1994 * This function is meant to pre-load the iterator for the zone init.
1995 * Specifically it walks through the ranges until we are caught up to the
1996 * first_init_pfn value and exits there. If we never encounter the value we
1997 * return false indicating there are no valid ranges left.
2000 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2001 unsigned long *spfn, unsigned long *epfn,
2002 unsigned long first_init_pfn)
2007 * Start out by walking through the ranges in this zone that have
2008 * already been initialized. We don't need to do anything with them
2009 * so we just need to flush them out of the system.
2011 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2012 if (*epfn <= first_init_pfn)
2014 if (*spfn < first_init_pfn)
2015 *spfn = first_init_pfn;
2024 * Initialize and free pages. We do it in two loops: first we initialize
2025 * struct page, then free to buddy allocator, because while we are
2026 * freeing pages we can access pages that are ahead (computing buddy
2027 * page in __free_one_page()).
2029 * In order to try and keep some memory in the cache we have the loop
2030 * broken along max page order boundaries. This way we will not cause
2031 * any issues with the buddy page computation.
2033 static unsigned long __init
2034 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2035 unsigned long *end_pfn)
2037 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2038 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2039 unsigned long nr_pages = 0;
2042 /* First we loop through and initialize the page values */
2043 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 if (mo_pfn <= *start_pfn)
2049 t = min(mo_pfn, *end_pfn);
2050 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2052 if (mo_pfn < *end_pfn) {
2053 *start_pfn = mo_pfn;
2058 /* Reset values and now loop through freeing pages as needed */
2061 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2067 t = min(mo_pfn, epfn);
2068 deferred_free_pages(spfn, t);
2078 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 unsigned long spfn, epfn;
2082 struct zone *zone = arg;
2085 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 * Initialize and free pages in MAX_ORDER sized increments so that we
2089 * can avoid introducing any issues with the buddy allocator.
2091 while (spfn < end_pfn) {
2092 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2097 /* An arch may override for more concurrency. */
2099 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2104 /* Initialise remaining memory on a node */
2105 static int __init deferred_init_memmap(void *data)
2107 pg_data_t *pgdat = data;
2108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2109 unsigned long spfn = 0, epfn = 0;
2110 unsigned long first_init_pfn, flags;
2111 unsigned long start = jiffies;
2113 int zid, max_threads;
2116 /* Bind memory initialisation thread to a local node if possible */
2117 if (!cpumask_empty(cpumask))
2118 set_cpus_allowed_ptr(current, cpumask);
2120 pgdat_resize_lock(pgdat, &flags);
2121 first_init_pfn = pgdat->first_deferred_pfn;
2122 if (first_init_pfn == ULONG_MAX) {
2123 pgdat_resize_unlock(pgdat, &flags);
2124 pgdat_init_report_one_done();
2128 /* Sanity check boundaries */
2129 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2130 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2131 pgdat->first_deferred_pfn = ULONG_MAX;
2134 * Once we unlock here, the zone cannot be grown anymore, thus if an
2135 * interrupt thread must allocate this early in boot, zone must be
2136 * pre-grown prior to start of deferred page initialization.
2138 pgdat_resize_unlock(pgdat, &flags);
2140 /* Only the highest zone is deferred so find it */
2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 zone = pgdat->node_zones + zid;
2143 if (first_init_pfn < zone_end_pfn(zone))
2147 /* If the zone is empty somebody else may have cleared out the zone */
2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2152 max_threads = deferred_page_init_max_threads(cpumask);
2154 while (spfn < epfn) {
2155 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2156 struct padata_mt_job job = {
2157 .thread_fn = deferred_init_memmap_chunk,
2160 .size = epfn_align - spfn,
2161 .align = PAGES_PER_SECTION,
2162 .min_chunk = PAGES_PER_SECTION,
2163 .max_threads = max_threads,
2166 padata_do_multithreaded(&job);
2167 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2171 /* Sanity check that the next zone really is unpopulated */
2172 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2174 pr_info("node %d deferred pages initialised in %ums\n",
2175 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2177 pgdat_init_report_one_done();
2182 * If this zone has deferred pages, try to grow it by initializing enough
2183 * deferred pages to satisfy the allocation specified by order, rounded up to
2184 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2185 * of SECTION_SIZE bytes by initializing struct pages in increments of
2186 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2188 * Return true when zone was grown, otherwise return false. We return true even
2189 * when we grow less than requested, to let the caller decide if there are
2190 * enough pages to satisfy the allocation.
2192 * Note: We use noinline because this function is needed only during boot, and
2193 * it is called from a __ref function _deferred_grow_zone. This way we are
2194 * making sure that it is not inlined into permanent text section.
2196 static noinline bool __init
2197 deferred_grow_zone(struct zone *zone, unsigned int order)
2199 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2200 pg_data_t *pgdat = zone->zone_pgdat;
2201 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2202 unsigned long spfn, epfn, flags;
2203 unsigned long nr_pages = 0;
2206 /* Only the last zone may have deferred pages */
2207 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 pgdat_resize_lock(pgdat, &flags);
2213 * If someone grew this zone while we were waiting for spinlock, return
2214 * true, as there might be enough pages already.
2216 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2217 pgdat_resize_unlock(pgdat, &flags);
2221 /* If the zone is empty somebody else may have cleared out the zone */
2222 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2223 first_deferred_pfn)) {
2224 pgdat->first_deferred_pfn = ULONG_MAX;
2225 pgdat_resize_unlock(pgdat, &flags);
2226 /* Retry only once. */
2227 return first_deferred_pfn != ULONG_MAX;
2231 * Initialize and free pages in MAX_ORDER sized increments so
2232 * that we can avoid introducing any issues with the buddy
2235 while (spfn < epfn) {
2236 /* update our first deferred PFN for this section */
2237 first_deferred_pfn = spfn;
2239 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2240 touch_nmi_watchdog();
2242 /* We should only stop along section boundaries */
2243 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 /* If our quota has been met we can stop here */
2247 if (nr_pages >= nr_pages_needed)
2251 pgdat->first_deferred_pfn = spfn;
2252 pgdat_resize_unlock(pgdat, &flags);
2254 return nr_pages > 0;
2258 * deferred_grow_zone() is __init, but it is called from
2259 * get_page_from_freelist() during early boot until deferred_pages permanently
2260 * disables this call. This is why we have refdata wrapper to avoid warning,
2261 * and to ensure that the function body gets unloaded.
2264 _deferred_grow_zone(struct zone *zone, unsigned int order)
2266 return deferred_grow_zone(zone, order);
2269 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2271 void __init page_alloc_init_late(void)
2276 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2278 /* There will be num_node_state(N_MEMORY) threads */
2279 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2280 for_each_node_state(nid, N_MEMORY) {
2281 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 /* Block until all are initialised */
2285 wait_for_completion(&pgdat_init_all_done_comp);
2288 * We initialized the rest of the deferred pages. Permanently disable
2289 * on-demand struct page initialization.
2291 static_branch_disable(&deferred_pages);
2293 /* Reinit limits that are based on free pages after the kernel is up */
2294 files_maxfiles_init();
2299 /* Discard memblock private memory */
2302 for_each_node_state(nid, N_MEMORY)
2303 shuffle_free_memory(NODE_DATA(nid));
2305 for_each_populated_zone(zone)
2306 set_zone_contiguous(zone);
2310 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2311 void __init init_cma_reserved_pageblock(struct page *page)
2313 unsigned i = pageblock_nr_pages;
2314 struct page *p = page;
2317 __ClearPageReserved(p);
2318 set_page_count(p, 0);
2321 set_pageblock_migratetype(page, MIGRATE_CMA);
2322 set_page_refcounted(page);
2323 __free_pages(page, pageblock_order);
2325 adjust_managed_page_count(page, pageblock_nr_pages);
2326 page_zone(page)->cma_pages += pageblock_nr_pages;
2331 * The order of subdivision here is critical for the IO subsystem.
2332 * Please do not alter this order without good reasons and regression
2333 * testing. Specifically, as large blocks of memory are subdivided,
2334 * the order in which smaller blocks are delivered depends on the order
2335 * they're subdivided in this function. This is the primary factor
2336 * influencing the order in which pages are delivered to the IO
2337 * subsystem according to empirical testing, and this is also justified
2338 * by considering the behavior of a buddy system containing a single
2339 * large block of memory acted on by a series of small allocations.
2340 * This behavior is a critical factor in sglist merging's success.
2344 static inline void expand(struct zone *zone, struct page *page,
2345 int low, int high, int migratetype)
2347 unsigned long size = 1 << high;
2349 while (high > low) {
2352 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 * Mark as guard pages (or page), that will allow to
2356 * merge back to allocator when buddy will be freed.
2357 * Corresponding page table entries will not be touched,
2358 * pages will stay not present in virtual address space
2360 if (set_page_guard(zone, &page[size], high, migratetype))
2363 add_to_free_list(&page[size], zone, high, migratetype);
2364 set_buddy_order(&page[size], high);
2368 static void check_new_page_bad(struct page *page)
2370 if (unlikely(page->flags & __PG_HWPOISON)) {
2371 /* Don't complain about hwpoisoned pages */
2372 page_mapcount_reset(page); /* remove PageBuddy */
2377 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2381 * This page is about to be returned from the page allocator
2383 static inline int check_new_page(struct page *page)
2385 if (likely(page_expected_state(page,
2386 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 check_new_page_bad(page);
2393 static bool check_new_pages(struct page *page, unsigned int order)
2396 for (i = 0; i < (1 << order); i++) {
2397 struct page *p = page + i;
2399 if (unlikely(check_new_page(p)))
2406 #ifdef CONFIG_DEBUG_VM
2408 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2409 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2410 * also checked when pcp lists are refilled from the free lists.
2412 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2414 if (debug_pagealloc_enabled_static())
2415 return check_new_pages(page, order);
2420 static inline bool check_new_pcp(struct page *page, unsigned int order)
2422 return check_new_pages(page, order);
2426 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2427 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2428 * enabled, they are also checked when being allocated from the pcp lists.
2430 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2432 return check_new_pages(page, order);
2434 static inline bool check_new_pcp(struct page *page, unsigned int order)
2436 if (debug_pagealloc_enabled_static())
2437 return check_new_pages(page, order);
2441 #endif /* CONFIG_DEBUG_VM */
2443 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2445 /* Don't skip if a software KASAN mode is enabled. */
2446 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2447 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 /* Skip, if hardware tag-based KASAN is not enabled. */
2451 if (!kasan_hw_tags_enabled())
2455 * With hardware tag-based KASAN enabled, skip if this has been
2456 * requested via __GFP_SKIP_KASAN_UNPOISON.
2458 return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 static inline bool should_skip_init(gfp_t flags)
2463 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2464 if (!kasan_hw_tags_enabled())
2467 /* For hardware tag-based KASAN, skip if requested. */
2468 return (flags & __GFP_SKIP_ZERO);
2471 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2475 !should_skip_init(gfp_flags);
2476 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2477 bool reset_tags = !zero_tags;
2480 set_page_private(page, 0);
2481 set_page_refcounted(page);
2483 arch_alloc_page(page, order);
2484 debug_pagealloc_map_pages(page, 1 << order);
2487 * Page unpoisoning must happen before memory initialization.
2488 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2489 * allocations and the page unpoisoning code will complain.
2491 kernel_unpoison_pages(page, 1 << order);
2494 * As memory initialization might be integrated into KASAN,
2495 * KASAN unpoisoning and memory initializion code must be
2496 * kept together to avoid discrepancies in behavior.
2500 * If memory tags should be zeroed
2501 * (which happens only when memory should be initialized as well).
2504 /* Initialize both memory and tags. */
2505 for (i = 0; i != 1 << order; ++i)
2506 tag_clear_highpage(page + i);
2508 /* Take note that memory was initialized by the loop above. */
2511 if (!should_skip_kasan_unpoison(gfp_flags)) {
2512 /* Try unpoisoning (or setting tags) and initializing memory. */
2513 if (kasan_unpoison_pages(page, order, init)) {
2514 /* Take note that memory was initialized by KASAN. */
2515 if (kasan_has_integrated_init())
2517 /* Take note that memory tags were set by KASAN. */
2521 * KASAN decided to exclude this allocation from being
2522 * poisoned due to sampling. Skip poisoning as well.
2524 SetPageSkipKASanPoison(page);
2528 * If memory tags have not been set, reset the page tags to ensure
2529 * page_address() dereferencing does not fault.
2532 for (i = 0; i != 1 << order; ++i)
2533 page_kasan_tag_reset(page + i);
2535 /* If memory is still not initialized, initialize it now. */
2537 kernel_init_pages(page, 1 << order);
2538 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2539 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2540 SetPageSkipKASanPoison(page);
2542 set_page_owner(page, order, gfp_flags);
2543 page_table_check_alloc(page, order);
2546 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2547 unsigned int alloc_flags)
2549 post_alloc_hook(page, order, gfp_flags);
2551 if (order && (gfp_flags & __GFP_COMP))
2552 prep_compound_page(page, order);
2555 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2556 * allocate the page. The expectation is that the caller is taking
2557 * steps that will free more memory. The caller should avoid the page
2558 * being used for !PFMEMALLOC purposes.
2560 if (alloc_flags & ALLOC_NO_WATERMARKS)
2561 set_page_pfmemalloc(page);
2563 clear_page_pfmemalloc(page);
2567 * Go through the free lists for the given migratetype and remove
2568 * the smallest available page from the freelists
2570 static __always_inline
2571 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2574 unsigned int current_order;
2575 struct free_area *area;
2578 /* Find a page of the appropriate size in the preferred list */
2579 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2580 area = &(zone->free_area[current_order]);
2581 page = get_page_from_free_area(area, migratetype);
2584 del_page_from_free_list(page, zone, current_order);
2585 expand(zone, page, order, current_order, migratetype);
2586 set_pcppage_migratetype(page, migratetype);
2587 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2588 pcp_allowed_order(order) &&
2589 migratetype < MIGRATE_PCPTYPES);
2598 * This array describes the order lists are fallen back to when
2599 * the free lists for the desirable migrate type are depleted
2601 * The other migratetypes do not have fallbacks.
2603 static int fallbacks[MIGRATE_TYPES][3] = {
2604 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2605 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2606 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2610 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2613 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2616 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2617 unsigned int order) { return NULL; }
2621 * Move the free pages in a range to the freelist tail of the requested type.
2622 * Note that start_page and end_pages are not aligned on a pageblock
2623 * boundary. If alignment is required, use move_freepages_block()
2625 static int move_freepages(struct zone *zone,
2626 unsigned long start_pfn, unsigned long end_pfn,
2627 int migratetype, int *num_movable)
2632 int pages_moved = 0;
2634 for (pfn = start_pfn; pfn <= end_pfn;) {
2635 page = pfn_to_page(pfn);
2636 if (!PageBuddy(page)) {
2638 * We assume that pages that could be isolated for
2639 * migration are movable. But we don't actually try
2640 * isolating, as that would be expensive.
2643 (PageLRU(page) || __PageMovable(page)))
2649 /* Make sure we are not inadvertently changing nodes */
2650 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2651 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2653 order = buddy_order(page);
2654 move_to_free_list(page, zone, order, migratetype);
2656 pages_moved += 1 << order;
2662 int move_freepages_block(struct zone *zone, struct page *page,
2663 int migratetype, int *num_movable)
2665 unsigned long start_pfn, end_pfn, pfn;
2670 pfn = page_to_pfn(page);
2671 start_pfn = pageblock_start_pfn(pfn);
2672 end_pfn = pageblock_end_pfn(pfn) - 1;
2674 /* Do not cross zone boundaries */
2675 if (!zone_spans_pfn(zone, start_pfn))
2677 if (!zone_spans_pfn(zone, end_pfn))
2680 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2684 static void change_pageblock_range(struct page *pageblock_page,
2685 int start_order, int migratetype)
2687 int nr_pageblocks = 1 << (start_order - pageblock_order);
2689 while (nr_pageblocks--) {
2690 set_pageblock_migratetype(pageblock_page, migratetype);
2691 pageblock_page += pageblock_nr_pages;
2696 * When we are falling back to another migratetype during allocation, try to
2697 * steal extra free pages from the same pageblocks to satisfy further
2698 * allocations, instead of polluting multiple pageblocks.
2700 * If we are stealing a relatively large buddy page, it is likely there will
2701 * be more free pages in the pageblock, so try to steal them all. For
2702 * reclaimable and unmovable allocations, we steal regardless of page size,
2703 * as fragmentation caused by those allocations polluting movable pageblocks
2704 * is worse than movable allocations stealing from unmovable and reclaimable
2707 static bool can_steal_fallback(unsigned int order, int start_mt)
2710 * Leaving this order check is intended, although there is
2711 * relaxed order check in next check. The reason is that
2712 * we can actually steal whole pageblock if this condition met,
2713 * but, below check doesn't guarantee it and that is just heuristic
2714 * so could be changed anytime.
2716 if (order >= pageblock_order)
2719 if (order >= pageblock_order / 2 ||
2720 start_mt == MIGRATE_RECLAIMABLE ||
2721 start_mt == MIGRATE_UNMOVABLE ||
2722 page_group_by_mobility_disabled)
2728 static inline bool boost_watermark(struct zone *zone)
2730 unsigned long max_boost;
2732 if (!watermark_boost_factor)
2735 * Don't bother in zones that are unlikely to produce results.
2736 * On small machines, including kdump capture kernels running
2737 * in a small area, boosting the watermark can cause an out of
2738 * memory situation immediately.
2740 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2743 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2744 watermark_boost_factor, 10000);
2747 * high watermark may be uninitialised if fragmentation occurs
2748 * very early in boot so do not boost. We do not fall
2749 * through and boost by pageblock_nr_pages as failing
2750 * allocations that early means that reclaim is not going
2751 * to help and it may even be impossible to reclaim the
2752 * boosted watermark resulting in a hang.
2757 max_boost = max(pageblock_nr_pages, max_boost);
2759 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2766 * This function implements actual steal behaviour. If order is large enough,
2767 * we can steal whole pageblock. If not, we first move freepages in this
2768 * pageblock to our migratetype and determine how many already-allocated pages
2769 * are there in the pageblock with a compatible migratetype. If at least half
2770 * of pages are free or compatible, we can change migratetype of the pageblock
2771 * itself, so pages freed in the future will be put on the correct free list.
2773 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2774 unsigned int alloc_flags, int start_type, bool whole_block)
2776 unsigned int current_order = buddy_order(page);
2777 int free_pages, movable_pages, alike_pages;
2780 old_block_type = get_pageblock_migratetype(page);
2783 * This can happen due to races and we want to prevent broken
2784 * highatomic accounting.
2786 if (is_migrate_highatomic(old_block_type))
2789 /* Take ownership for orders >= pageblock_order */
2790 if (current_order >= pageblock_order) {
2791 change_pageblock_range(page, current_order, start_type);
2796 * Boost watermarks to increase reclaim pressure to reduce the
2797 * likelihood of future fallbacks. Wake kswapd now as the node
2798 * may be balanced overall and kswapd will not wake naturally.
2800 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2801 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2803 /* We are not allowed to try stealing from the whole block */
2807 free_pages = move_freepages_block(zone, page, start_type,
2810 * Determine how many pages are compatible with our allocation.
2811 * For movable allocation, it's the number of movable pages which
2812 * we just obtained. For other types it's a bit more tricky.
2814 if (start_type == MIGRATE_MOVABLE) {
2815 alike_pages = movable_pages;
2818 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2819 * to MOVABLE pageblock, consider all non-movable pages as
2820 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2821 * vice versa, be conservative since we can't distinguish the
2822 * exact migratetype of non-movable pages.
2824 if (old_block_type == MIGRATE_MOVABLE)
2825 alike_pages = pageblock_nr_pages
2826 - (free_pages + movable_pages);
2831 /* moving whole block can fail due to zone boundary conditions */
2836 * If a sufficient number of pages in the block are either free or of
2837 * comparable migratability as our allocation, claim the whole block.
2839 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2840 page_group_by_mobility_disabled)
2841 set_pageblock_migratetype(page, start_type);
2846 move_to_free_list(page, zone, current_order, start_type);
2850 * Check whether there is a suitable fallback freepage with requested order.
2851 * If only_stealable is true, this function returns fallback_mt only if
2852 * we can steal other freepages all together. This would help to reduce
2853 * fragmentation due to mixed migratetype pages in one pageblock.
2855 int find_suitable_fallback(struct free_area *area, unsigned int order,
2856 int migratetype, bool only_stealable, bool *can_steal)
2861 if (area->nr_free == 0)
2866 fallback_mt = fallbacks[migratetype][i];
2867 if (fallback_mt == MIGRATE_TYPES)
2870 if (free_area_empty(area, fallback_mt))
2873 if (can_steal_fallback(order, migratetype))
2876 if (!only_stealable)
2887 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888 * there are no empty page blocks that contain a page with a suitable order
2890 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 unsigned int alloc_order)
2894 unsigned long max_managed, flags;
2897 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 * Check is race-prone but harmless.
2900 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2901 if (zone->nr_reserved_highatomic >= max_managed)
2904 spin_lock_irqsave(&zone->lock, flags);
2906 /* Recheck the nr_reserved_highatomic limit under the lock */
2907 if (zone->nr_reserved_highatomic >= max_managed)
2911 mt = get_pageblock_migratetype(page);
2912 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 if (migratetype_is_mergeable(mt)) {
2914 zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2916 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2920 spin_unlock_irqrestore(&zone->lock, flags);
2924 * Used when an allocation is about to fail under memory pressure. This
2925 * potentially hurts the reliability of high-order allocations when under
2926 * intense memory pressure but failed atomic allocations should be easier
2927 * to recover from than an OOM.
2929 * If @force is true, try to unreserve a pageblock even though highatomic
2930 * pageblock is exhausted.
2932 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2935 struct zonelist *zonelist = ac->zonelist;
2936 unsigned long flags;
2943 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2946 * Preserve at least one pageblock unless memory pressure
2949 if (!force && zone->nr_reserved_highatomic <=
2953 spin_lock_irqsave(&zone->lock, flags);
2954 for (order = 0; order < MAX_ORDER; order++) {
2955 struct free_area *area = &(zone->free_area[order]);
2957 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2962 * In page freeing path, migratetype change is racy so
2963 * we can counter several free pages in a pageblock
2964 * in this loop although we changed the pageblock type
2965 * from highatomic to ac->migratetype. So we should
2966 * adjust the count once.
2968 if (is_migrate_highatomic_page(page)) {
2970 * It should never happen but changes to
2971 * locking could inadvertently allow a per-cpu
2972 * drain to add pages to MIGRATE_HIGHATOMIC
2973 * while unreserving so be safe and watch for
2976 zone->nr_reserved_highatomic -= min(
2978 zone->nr_reserved_highatomic);
2982 * Convert to ac->migratetype and avoid the normal
2983 * pageblock stealing heuristics. Minimally, the caller
2984 * is doing the work and needs the pages. More
2985 * importantly, if the block was always converted to
2986 * MIGRATE_UNMOVABLE or another type then the number
2987 * of pageblocks that cannot be completely freed
2990 set_pageblock_migratetype(page, ac->migratetype);
2991 ret = move_freepages_block(zone, page, ac->migratetype,
2994 spin_unlock_irqrestore(&zone->lock, flags);
2998 spin_unlock_irqrestore(&zone->lock, flags);
3005 * Try finding a free buddy page on the fallback list and put it on the free
3006 * list of requested migratetype, possibly along with other pages from the same
3007 * block, depending on fragmentation avoidance heuristics. Returns true if
3008 * fallback was found so that __rmqueue_smallest() can grab it.
3010 * The use of signed ints for order and current_order is a deliberate
3011 * deviation from the rest of this file, to make the for loop
3012 * condition simpler.
3014 static __always_inline bool
3015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 unsigned int alloc_flags)
3018 struct free_area *area;
3020 int min_order = order;
3026 * Do not steal pages from freelists belonging to other pageblocks
3027 * i.e. orders < pageblock_order. If there are no local zones free,
3028 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3030 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3031 min_order = pageblock_order;
3034 * Find the largest available free page in the other list. This roughly
3035 * approximates finding the pageblock with the most free pages, which
3036 * would be too costly to do exactly.
3038 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3040 area = &(zone->free_area[current_order]);
3041 fallback_mt = find_suitable_fallback(area, current_order,
3042 start_migratetype, false, &can_steal);
3043 if (fallback_mt == -1)
3047 * We cannot steal all free pages from the pageblock and the
3048 * requested migratetype is movable. In that case it's better to
3049 * steal and split the smallest available page instead of the
3050 * largest available page, because even if the next movable
3051 * allocation falls back into a different pageblock than this
3052 * one, it won't cause permanent fragmentation.
3054 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 && current_order > order)
3064 for (current_order = order; current_order < MAX_ORDER;
3066 area = &(zone->free_area[current_order]);
3067 fallback_mt = find_suitable_fallback(area, current_order,
3068 start_migratetype, false, &can_steal);
3069 if (fallback_mt != -1)
3074 * This should not happen - we already found a suitable fallback
3075 * when looking for the largest page.
3077 VM_BUG_ON(current_order == MAX_ORDER);
3080 page = get_page_from_free_area(area, fallback_mt);
3082 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3085 trace_mm_page_alloc_extfrag(page, order, current_order,
3086 start_migratetype, fallback_mt);
3093 * Do the hard work of removing an element from the buddy allocator.
3094 * Call me with the zone->lock already held.
3096 static __always_inline struct page *
3097 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 unsigned int alloc_flags)
3102 if (IS_ENABLED(CONFIG_CMA)) {
3104 * Balance movable allocations between regular and CMA areas by
3105 * allocating from CMA when over half of the zone's free memory
3106 * is in the CMA area.
3108 if (alloc_flags & ALLOC_CMA &&
3109 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 page = __rmqueue_cma_fallback(zone, order);
3117 page = __rmqueue_smallest(zone, order, migratetype);
3118 if (unlikely(!page)) {
3119 if (alloc_flags & ALLOC_CMA)
3120 page = __rmqueue_cma_fallback(zone, order);
3122 if (!page && __rmqueue_fallback(zone, order, migratetype,
3130 * Obtain a specified number of elements from the buddy allocator, all under
3131 * a single hold of the lock, for efficiency. Add them to the supplied list.
3132 * Returns the number of new pages which were placed at *list.
3134 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3135 unsigned long count, struct list_head *list,
3136 int migratetype, unsigned int alloc_flags)
3138 unsigned long flags;
3139 int i, allocated = 0;
3141 spin_lock_irqsave(&zone->lock, flags);
3142 for (i = 0; i < count; ++i) {
3143 struct page *page = __rmqueue(zone, order, migratetype,
3145 if (unlikely(page == NULL))
3148 if (unlikely(check_pcp_refill(page, order)))
3152 * Split buddy pages returned by expand() are received here in
3153 * physical page order. The page is added to the tail of
3154 * caller's list. From the callers perspective, the linked list
3155 * is ordered by page number under some conditions. This is
3156 * useful for IO devices that can forward direction from the
3157 * head, thus also in the physical page order. This is useful
3158 * for IO devices that can merge IO requests if the physical
3159 * pages are ordered properly.
3161 list_add_tail(&page->pcp_list, list);
3163 if (is_migrate_cma(get_pcppage_migratetype(page)))
3164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3169 * i pages were removed from the buddy list even if some leak due
3170 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3171 * on i. Do not confuse with 'allocated' which is the number of
3172 * pages added to the pcp list.
3174 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3175 spin_unlock_irqrestore(&zone->lock, flags);
3181 * Called from the vmstat counter updater to drain pagesets of this
3182 * currently executing processor on remote nodes after they have
3185 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3187 int to_drain, batch;
3189 batch = READ_ONCE(pcp->batch);
3190 to_drain = min(pcp->count, batch);
3192 spin_lock(&pcp->lock);
3193 free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 spin_unlock(&pcp->lock);
3200 * Drain pcplists of the indicated processor and zone.
3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3204 struct per_cpu_pages *pcp;
3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3208 spin_lock(&pcp->lock);
3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 spin_unlock(&pcp->lock);
3215 * Drain pcplists of all zones on the indicated processor.
3217 static void drain_pages(unsigned int cpu)
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3229 void drain_local_pages(struct zone *zone)
3231 int cpu = smp_processor_id();
3234 drain_pages_zone(cpu, zone);
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3254 * Allocate in the BSS so we won't require allocation in
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3257 static cpumask_t cpus_with_pcps;
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3267 mutex_lock(&pcpu_drain_mutex);
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3276 for_each_online_cpu(cpu) {
3277 struct per_cpu_pages *pcp;
3279 bool has_pcps = false;
3281 if (force_all_cpus) {
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3292 for_each_populated_zone(z) {
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3307 for_each_cpu(cpu, &cpus_with_pcps) {
3309 drain_pages_zone(cpu, zone);
3314 mutex_unlock(&pcpu_drain_mutex);
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
3322 void drain_all_pages(struct zone *zone)
3324 __drain_all_pages(zone, false);
3327 #ifdef CONFIG_HIBERNATION
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3332 #define WD_PAGE_COUNT (128*1024)
3334 void mark_free_pages(struct zone *zone)
3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 unsigned long flags;
3338 unsigned int order, t;
3341 if (zone_is_empty(zone))
3344 spin_lock_irqsave(&zone->lock, flags);
3346 max_zone_pfn = zone_end_pfn(zone);
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
3349 page = pfn_to_page(pfn);
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3356 if (page_zone(page) != zone)
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
3363 for_each_migratetype_order(order, t) {
3364 list_for_each_entry(page,
3365 &zone->free_area[order].free_list[t], buddy_list) {
3368 pfn = page_to_pfn(page);
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3374 swsusp_set_page_free(pfn_to_page(pfn + i));
3378 spin_unlock_irqrestore(&zone->lock, flags);
3380 #endif /* CONFIG_PM */
3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3387 if (!free_pcp_prepare(page, order))
3390 migratetype = get_pfnblock_migratetype(page, pfn);
3391 set_pcppage_migratetype(page, migratetype);
3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3398 int min_nr_free, max_nr_free;
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3427 int high = READ_ONCE(pcp->high);
3429 if (unlikely(!high || free_high))
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
3450 __count_vm_events(PGFREE, 1 << order);
3451 pindex = order_to_pindex(migratetype, order);
3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 pcp->count += 1 << order;
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3463 high = nr_pcp_high(pcp, zone, free_high);
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3474 void free_unref_page(struct page *page, unsigned int order)
3476 unsigned long __maybe_unused UP_flags;
3477 struct per_cpu_pages *pcp;
3479 unsigned long pfn = page_to_pfn(page);
3482 if (!free_unref_page_prepare(page, pfn, order))
3486 * We only track unmovable, reclaimable and movable on pcp lists.
3487 * Place ISOLATE pages on the isolated list because they are being
3488 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 * areas back if necessary. Otherwise, we may have to free
3490 * excessively into the page allocator
3492 migratetype = get_pcppage_migratetype(page);
3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 if (unlikely(is_migrate_isolate(migratetype))) {
3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3498 migratetype = MIGRATE_MOVABLE;
3501 zone = page_zone(page);
3502 pcp_trylock_prepare(UP_flags);
3503 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3505 free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 pcp_spin_unlock(pcp);
3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3510 pcp_trylock_finish(UP_flags);
3514 * Free a list of 0-order pages
3516 void free_unref_page_list(struct list_head *list)
3518 unsigned long __maybe_unused UP_flags;
3519 struct page *page, *next;
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
3522 int batch_count = 0;
3525 /* Prepare pages for freeing */
3526 list_for_each_entry_safe(page, next, list, lru) {
3527 unsigned long pfn = page_to_pfn(page);
3528 if (!free_unref_page_prepare(page, pfn, 0)) {
3529 list_del(&page->lru);
3534 * Free isolated pages directly to the allocator, see
3535 * comment in free_unref_page.
3537 migratetype = get_pcppage_migratetype(page);
3538 if (unlikely(is_migrate_isolate(migratetype))) {
3539 list_del(&page->lru);
3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3545 list_for_each_entry_safe(page, next, list, lru) {
3546 struct zone *zone = page_zone(page);
3548 list_del(&page->lru);
3549 migratetype = get_pcppage_migratetype(page);
3552 * Either different zone requiring a different pcp lock or
3553 * excessive lock hold times when freeing a large list of
3556 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3558 pcp_spin_unlock(pcp);
3559 pcp_trylock_finish(UP_flags);
3565 * trylock is necessary as pages may be getting freed
3566 * from IRQ or SoftIRQ context after an IO completion.
3568 pcp_trylock_prepare(UP_flags);
3569 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 if (unlikely(!pcp)) {
3571 pcp_trylock_finish(UP_flags);
3572 free_one_page(zone, page, page_to_pfn(page),
3573 0, migratetype, FPI_NONE);
3581 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 * to the MIGRATE_MOVABLE pcp list.
3584 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 migratetype = MIGRATE_MOVABLE;
3587 trace_mm_page_free_batched(page);
3588 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3593 pcp_spin_unlock(pcp);
3594 pcp_trylock_finish(UP_flags);
3599 * split_page takes a non-compound higher-order page, and splits it into
3600 * n (1<<order) sub-pages: page[0..n]
3601 * Each sub-page must be freed individually.
3603 * Note: this is probably too low level an operation for use in drivers.
3604 * Please consult with lkml before using this in your driver.
3606 void split_page(struct page *page, unsigned int order)
3610 VM_BUG_ON_PAGE(PageCompound(page), page);
3611 VM_BUG_ON_PAGE(!page_count(page), page);
3613 for (i = 1; i < (1 << order); i++)
3614 set_page_refcounted(page + i);
3615 split_page_owner(page, 1 << order);
3616 split_page_memcg(page, 1 << order);
3618 EXPORT_SYMBOL_GPL(split_page);
3620 int __isolate_free_page(struct page *page, unsigned int order)
3622 struct zone *zone = page_zone(page);
3623 int mt = get_pageblock_migratetype(page);
3625 if (!is_migrate_isolate(mt)) {
3626 unsigned long watermark;
3628 * Obey watermarks as if the page was being allocated. We can
3629 * emulate a high-order watermark check with a raised order-0
3630 * watermark, because we already know our high-order page
3633 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3640 del_page_from_free_list(page, zone, order);
3643 * Set the pageblock if the isolated page is at least half of a
3646 if (order >= pageblock_order - 1) {
3647 struct page *endpage = page + (1 << order) - 1;
3648 for (; page < endpage; page += pageblock_nr_pages) {
3649 int mt = get_pageblock_migratetype(page);
3651 * Only change normal pageblocks (i.e., they can merge
3654 if (migratetype_is_mergeable(mt))
3655 set_pageblock_migratetype(page,
3660 return 1UL << order;
3664 * __putback_isolated_page - Return a now-isolated page back where we got it
3665 * @page: Page that was isolated
3666 * @order: Order of the isolated page
3667 * @mt: The page's pageblock's migratetype
3669 * This function is meant to return a page pulled from the free lists via
3670 * __isolate_free_page back to the free lists they were pulled from.
3672 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3674 struct zone *zone = page_zone(page);
3676 /* zone lock should be held when this function is called */
3677 lockdep_assert_held(&zone->lock);
3679 /* Return isolated page to tail of freelist. */
3680 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3681 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3685 * Update NUMA hit/miss statistics
3687 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3691 enum numa_stat_item local_stat = NUMA_LOCAL;
3693 /* skip numa counters update if numa stats is disabled */
3694 if (!static_branch_likely(&vm_numa_stat_key))
3697 if (zone_to_nid(z) != numa_node_id())
3698 local_stat = NUMA_OTHER;
3700 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3701 __count_numa_events(z, NUMA_HIT, nr_account);
3703 __count_numa_events(z, NUMA_MISS, nr_account);
3704 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3706 __count_numa_events(z, local_stat, nr_account);
3710 static __always_inline
3711 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 unsigned int order, unsigned int alloc_flags,
3716 unsigned long flags;
3720 spin_lock_irqsave(&zone->lock, flags);
3722 * order-0 request can reach here when the pcplist is skipped
3723 * due to non-CMA allocation context. HIGHATOMIC area is
3724 * reserved for high-order atomic allocation, so order-0
3725 * request should skip it.
3727 if (alloc_flags & ALLOC_HIGHATOMIC)
3728 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3730 page = __rmqueue(zone, order, migratetype, alloc_flags);
3733 * If the allocation fails, allow OOM handling access
3734 * to HIGHATOMIC reserves as failing now is worse than
3735 * failing a high-order atomic allocation in the
3738 if (!page && (alloc_flags & ALLOC_OOM))
3739 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3742 spin_unlock_irqrestore(&zone->lock, flags);
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 zone_statistics(preferred_zone, zone, 1);
3757 /* Remove page from the per-cpu list, caller must protect the list */
3759 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3761 unsigned int alloc_flags,
3762 struct per_cpu_pages *pcp,
3763 struct list_head *list)
3768 if (list_empty(list)) {
3769 int batch = READ_ONCE(pcp->batch);
3773 * Scale batch relative to order if batch implies
3774 * free pages can be stored on the PCP. Batch can
3775 * be 1 for small zones or for boot pagesets which
3776 * should never store free pages as the pages may
3777 * belong to arbitrary zones.
3780 batch = max(batch >> order, 2);
3781 alloced = rmqueue_bulk(zone, order,
3783 migratetype, alloc_flags);
3785 pcp->count += alloced << order;
3786 if (unlikely(list_empty(list)))
3790 page = list_first_entry(list, struct page, pcp_list);
3791 list_del(&page->pcp_list);
3792 pcp->count -= 1 << order;
3793 } while (check_new_pcp(page, order));
3798 /* Lock and remove page from the per-cpu list */
3799 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3800 struct zone *zone, unsigned int order,
3801 int migratetype, unsigned int alloc_flags)
3803 struct per_cpu_pages *pcp;
3804 struct list_head *list;
3806 unsigned long __maybe_unused UP_flags;
3808 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3809 pcp_trylock_prepare(UP_flags);
3810 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3812 pcp_trylock_finish(UP_flags);
3817 * On allocation, reduce the number of pages that are batch freed.
3818 * See nr_pcp_free() where free_factor is increased for subsequent
3821 pcp->free_factor >>= 1;
3822 list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3824 pcp_spin_unlock(pcp);
3825 pcp_trylock_finish(UP_flags);
3827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3828 zone_statistics(preferred_zone, zone, 1);
3834 * Allocate a page from the given zone.
3835 * Use pcplists for THP or "cheap" high-order allocations.
3839 * Do not instrument rmqueue() with KMSAN. This function may call
3840 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842 * may call rmqueue() again, which will result in a deadlock.
3844 __no_sanitize_memory
3846 struct page *rmqueue(struct zone *preferred_zone,
3847 struct zone *zone, unsigned int order,
3848 gfp_t gfp_flags, unsigned int alloc_flags,
3854 * We most definitely don't want callers attempting to
3855 * allocate greater than order-1 page units with __GFP_NOFAIL.
3857 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3859 if (likely(pcp_allowed_order(order))) {
3861 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 * we need to skip it when CMA area isn't allowed.
3864 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 migratetype != MIGRATE_MOVABLE) {
3866 page = rmqueue_pcplist(preferred_zone, zone, order,
3867 migratetype, alloc_flags);
3873 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3877 /* Separate test+clear to avoid unnecessary atomics */
3878 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3879 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3883 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3887 #ifdef CONFIG_FAIL_PAGE_ALLOC
3890 struct fault_attr attr;
3892 bool ignore_gfp_highmem;
3893 bool ignore_gfp_reclaim;
3895 } fail_page_alloc = {
3896 .attr = FAULT_ATTR_INITIALIZER,
3897 .ignore_gfp_reclaim = true,
3898 .ignore_gfp_highmem = true,
3902 static int __init setup_fail_page_alloc(char *str)
3904 return setup_fault_attr(&fail_page_alloc.attr, str);
3906 __setup("fail_page_alloc=", setup_fail_page_alloc);
3908 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3912 if (order < fail_page_alloc.min_order)
3914 if (gfp_mask & __GFP_NOFAIL)
3916 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3918 if (fail_page_alloc.ignore_gfp_reclaim &&
3919 (gfp_mask & __GFP_DIRECT_RECLAIM))
3922 /* See comment in __should_failslab() */
3923 if (gfp_mask & __GFP_NOWARN)
3924 flags |= FAULT_NOWARN;
3926 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3929 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3931 static int __init fail_page_alloc_debugfs(void)
3933 umode_t mode = S_IFREG | 0600;
3936 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 &fail_page_alloc.attr);
3939 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 &fail_page_alloc.ignore_gfp_reclaim);
3941 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 &fail_page_alloc.ignore_gfp_highmem);
3943 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3948 late_initcall(fail_page_alloc_debugfs);
3950 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3952 #else /* CONFIG_FAIL_PAGE_ALLOC */
3954 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3959 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3961 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3963 return __should_fail_alloc_page(gfp_mask, order);
3965 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3967 static inline long __zone_watermark_unusable_free(struct zone *z,
3968 unsigned int order, unsigned int alloc_flags)
3970 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3971 long unusable_free = (1 << order) - 1;
3974 * If the caller does not have rights to ALLOC_HARDER then subtract
3975 * the high-atomic reserves. This will over-estimate the size of the
3976 * atomic reserve but it avoids a search.
3978 if (likely(!alloc_harder))
3979 unusable_free += z->nr_reserved_highatomic;
3982 /* If allocation can't use CMA areas don't use free CMA pages */
3983 if (!(alloc_flags & ALLOC_CMA))
3984 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3987 return unusable_free;
3991 * Return true if free base pages are above 'mark'. For high-order checks it
3992 * will return true of the order-0 watermark is reached and there is at least
3993 * one free page of a suitable size. Checking now avoids taking the zone lock
3994 * to check in the allocation paths if no pages are free.
3996 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3997 int highest_zoneidx, unsigned int alloc_flags,
4002 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
4004 /* free_pages may go negative - that's OK */
4005 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4007 if (alloc_flags & ALLOC_MIN_RESERVE)
4010 if (unlikely(alloc_harder)) {
4012 * OOM victims can try even harder than normal ALLOC_HARDER
4013 * users on the grounds that it's definitely going to be in
4014 * the exit path shortly and free memory. Any allocation it
4015 * makes during the free path will be small and short-lived.
4017 if (alloc_flags & ALLOC_OOM)
4024 * Check watermarks for an order-0 allocation request. If these
4025 * are not met, then a high-order request also cannot go ahead
4026 * even if a suitable page happened to be free.
4028 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4031 /* If this is an order-0 request then the watermark is fine */
4035 /* For a high-order request, check at least one suitable page is free */
4036 for (o = order; o < MAX_ORDER; o++) {
4037 struct free_area *area = &z->free_area[o];
4043 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4044 if (!free_area_empty(area, mt))
4049 if ((alloc_flags & ALLOC_CMA) &&
4050 !free_area_empty(area, MIGRATE_CMA)) {
4054 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4055 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4062 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4063 int highest_zoneidx, unsigned int alloc_flags)
4065 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4066 zone_page_state(z, NR_FREE_PAGES));
4069 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4070 unsigned long mark, int highest_zoneidx,
4071 unsigned int alloc_flags, gfp_t gfp_mask)
4075 free_pages = zone_page_state(z, NR_FREE_PAGES);
4078 * Fast check for order-0 only. If this fails then the reserves
4079 * need to be calculated.
4085 usable_free = free_pages;
4086 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4088 /* reserved may over estimate high-atomic reserves. */
4089 usable_free -= min(usable_free, reserved);
4090 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4094 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4098 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4099 * when checking the min watermark. The min watermark is the
4100 * point where boosting is ignored so that kswapd is woken up
4101 * when below the low watermark.
4103 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4104 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4105 mark = z->_watermark[WMARK_MIN];
4106 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4107 alloc_flags, free_pages);
4113 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4114 unsigned long mark, int highest_zoneidx)
4116 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4118 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4119 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4121 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4126 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4128 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4130 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4131 node_reclaim_distance;
4133 #else /* CONFIG_NUMA */
4134 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4138 #endif /* CONFIG_NUMA */
4141 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4142 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4143 * premature use of a lower zone may cause lowmem pressure problems that
4144 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4145 * probably too small. It only makes sense to spread allocations to avoid
4146 * fragmentation between the Normal and DMA32 zones.
4148 static inline unsigned int
4149 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4151 unsigned int alloc_flags;
4154 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4157 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4159 #ifdef CONFIG_ZONE_DMA32
4163 if (zone_idx(zone) != ZONE_NORMAL)
4167 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4168 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4169 * on UMA that if Normal is populated then so is DMA32.
4171 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4172 if (nr_online_nodes > 1 && !populated_zone(--zone))
4175 alloc_flags |= ALLOC_NOFRAGMENT;
4176 #endif /* CONFIG_ZONE_DMA32 */
4180 /* Must be called after current_gfp_context() which can change gfp_mask */
4181 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4182 unsigned int alloc_flags)
4185 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4186 alloc_flags |= ALLOC_CMA;
4192 * get_page_from_freelist goes through the zonelist trying to allocate
4195 static struct page *
4196 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4197 const struct alloc_context *ac)
4201 struct pglist_data *last_pgdat = NULL;
4202 bool last_pgdat_dirty_ok = false;
4207 * Scan zonelist, looking for a zone with enough free.
4208 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4210 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4211 z = ac->preferred_zoneref;
4212 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4217 if (cpusets_enabled() &&
4218 (alloc_flags & ALLOC_CPUSET) &&
4219 !__cpuset_zone_allowed(zone, gfp_mask))
4222 * When allocating a page cache page for writing, we
4223 * want to get it from a node that is within its dirty
4224 * limit, such that no single node holds more than its
4225 * proportional share of globally allowed dirty pages.
4226 * The dirty limits take into account the node's
4227 * lowmem reserves and high watermark so that kswapd
4228 * should be able to balance it without having to
4229 * write pages from its LRU list.
4231 * XXX: For now, allow allocations to potentially
4232 * exceed the per-node dirty limit in the slowpath
4233 * (spread_dirty_pages unset) before going into reclaim,
4234 * which is important when on a NUMA setup the allowed
4235 * nodes are together not big enough to reach the
4236 * global limit. The proper fix for these situations
4237 * will require awareness of nodes in the
4238 * dirty-throttling and the flusher threads.
4240 if (ac->spread_dirty_pages) {
4241 if (last_pgdat != zone->zone_pgdat) {
4242 last_pgdat = zone->zone_pgdat;
4243 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4246 if (!last_pgdat_dirty_ok)
4250 if (no_fallback && nr_online_nodes > 1 &&
4251 zone != ac->preferred_zoneref->zone) {
4255 * If moving to a remote node, retry but allow
4256 * fragmenting fallbacks. Locality is more important
4257 * than fragmentation avoidance.
4259 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4260 if (zone_to_nid(zone) != local_nid) {
4261 alloc_flags &= ~ALLOC_NOFRAGMENT;
4266 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4267 if (!zone_watermark_fast(zone, order, mark,
4268 ac->highest_zoneidx, alloc_flags,
4272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4274 * Watermark failed for this zone, but see if we can
4275 * grow this zone if it contains deferred pages.
4277 if (static_branch_unlikely(&deferred_pages)) {
4278 if (_deferred_grow_zone(zone, order))
4282 /* Checked here to keep the fast path fast */
4283 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4284 if (alloc_flags & ALLOC_NO_WATERMARKS)
4287 if (!node_reclaim_enabled() ||
4288 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4291 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4293 case NODE_RECLAIM_NOSCAN:
4296 case NODE_RECLAIM_FULL:
4297 /* scanned but unreclaimable */
4300 /* did we reclaim enough */
4301 if (zone_watermark_ok(zone, order, mark,
4302 ac->highest_zoneidx, alloc_flags))
4310 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4311 gfp_mask, alloc_flags, ac->migratetype);
4313 prep_new_page(page, order, gfp_mask, alloc_flags);
4316 * If this is a high-order atomic allocation then check
4317 * if the pageblock should be reserved for the future
4319 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4320 reserve_highatomic_pageblock(page, zone, order);
4324 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4325 /* Try again if zone has deferred pages */
4326 if (static_branch_unlikely(&deferred_pages)) {
4327 if (_deferred_grow_zone(zone, order))
4335 * It's possible on a UMA machine to get through all zones that are
4336 * fragmented. If avoiding fragmentation, reset and try again.
4339 alloc_flags &= ~ALLOC_NOFRAGMENT;
4346 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4348 unsigned int filter = SHOW_MEM_FILTER_NODES;
4351 * This documents exceptions given to allocations in certain
4352 * contexts that are allowed to allocate outside current's set
4355 if (!(gfp_mask & __GFP_NOMEMALLOC))
4356 if (tsk_is_oom_victim(current) ||
4357 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4358 filter &= ~SHOW_MEM_FILTER_NODES;
4359 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4360 filter &= ~SHOW_MEM_FILTER_NODES;
4362 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4365 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4367 struct va_format vaf;
4369 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4371 if ((gfp_mask & __GFP_NOWARN) ||
4372 !__ratelimit(&nopage_rs) ||
4373 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4376 va_start(args, fmt);
4379 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4380 current->comm, &vaf, gfp_mask, &gfp_mask,
4381 nodemask_pr_args(nodemask));
4384 cpuset_print_current_mems_allowed();
4387 warn_alloc_show_mem(gfp_mask, nodemask);
4390 static inline struct page *
4391 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4392 unsigned int alloc_flags,
4393 const struct alloc_context *ac)
4397 page = get_page_from_freelist(gfp_mask, order,
4398 alloc_flags|ALLOC_CPUSET, ac);
4400 * fallback to ignore cpuset restriction if our nodes
4404 page = get_page_from_freelist(gfp_mask, order,
4410 static inline struct page *
4411 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4412 const struct alloc_context *ac, unsigned long *did_some_progress)
4414 struct oom_control oc = {
4415 .zonelist = ac->zonelist,
4416 .nodemask = ac->nodemask,
4418 .gfp_mask = gfp_mask,
4423 *did_some_progress = 0;
4426 * Acquire the oom lock. If that fails, somebody else is
4427 * making progress for us.
4429 if (!mutex_trylock(&oom_lock)) {
4430 *did_some_progress = 1;
4431 schedule_timeout_uninterruptible(1);
4436 * Go through the zonelist yet one more time, keep very high watermark
4437 * here, this is only to catch a parallel oom killing, we must fail if
4438 * we're still under heavy pressure. But make sure that this reclaim
4439 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4440 * allocation which will never fail due to oom_lock already held.
4442 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4443 ~__GFP_DIRECT_RECLAIM, order,
4444 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4448 /* Coredumps can quickly deplete all memory reserves */
4449 if (current->flags & PF_DUMPCORE)
4451 /* The OOM killer will not help higher order allocs */
4452 if (order > PAGE_ALLOC_COSTLY_ORDER)
4455 * We have already exhausted all our reclaim opportunities without any
4456 * success so it is time to admit defeat. We will skip the OOM killer
4457 * because it is very likely that the caller has a more reasonable
4458 * fallback than shooting a random task.
4460 * The OOM killer may not free memory on a specific node.
4462 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4464 /* The OOM killer does not needlessly kill tasks for lowmem */
4465 if (ac->highest_zoneidx < ZONE_NORMAL)
4467 if (pm_suspended_storage())
4470 * XXX: GFP_NOFS allocations should rather fail than rely on
4471 * other request to make a forward progress.
4472 * We are in an unfortunate situation where out_of_memory cannot
4473 * do much for this context but let's try it to at least get
4474 * access to memory reserved if the current task is killed (see
4475 * out_of_memory). Once filesystems are ready to handle allocation
4476 * failures more gracefully we should just bail out here.
4479 /* Exhausted what can be done so it's blame time */
4480 if (out_of_memory(&oc) ||
4481 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4482 *did_some_progress = 1;
4485 * Help non-failing allocations by giving them access to memory
4488 if (gfp_mask & __GFP_NOFAIL)
4489 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4490 ALLOC_NO_WATERMARKS, ac);
4493 mutex_unlock(&oom_lock);
4498 * Maximum number of compaction retries with a progress before OOM
4499 * killer is consider as the only way to move forward.
4501 #define MAX_COMPACT_RETRIES 16
4503 #ifdef CONFIG_COMPACTION
4504 /* Try memory compaction for high-order allocations before reclaim */
4505 static struct page *
4506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4507 unsigned int alloc_flags, const struct alloc_context *ac,
4508 enum compact_priority prio, enum compact_result *compact_result)
4510 struct page *page = NULL;
4511 unsigned long pflags;
4512 unsigned int noreclaim_flag;
4517 psi_memstall_enter(&pflags);
4518 delayacct_compact_start();
4519 noreclaim_flag = memalloc_noreclaim_save();
4521 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4524 memalloc_noreclaim_restore(noreclaim_flag);
4525 psi_memstall_leave(&pflags);
4526 delayacct_compact_end();
4528 if (*compact_result == COMPACT_SKIPPED)
4531 * At least in one zone compaction wasn't deferred or skipped, so let's
4532 * count a compaction stall
4534 count_vm_event(COMPACTSTALL);
4536 /* Prep a captured page if available */
4538 prep_new_page(page, order, gfp_mask, alloc_flags);
4540 /* Try get a page from the freelist if available */
4542 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4545 struct zone *zone = page_zone(page);
4547 zone->compact_blockskip_flush = false;
4548 compaction_defer_reset(zone, order, true);
4549 count_vm_event(COMPACTSUCCESS);
4554 * It's bad if compaction run occurs and fails. The most likely reason
4555 * is that pages exist, but not enough to satisfy watermarks.
4557 count_vm_event(COMPACTFAIL);
4565 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4566 enum compact_result compact_result,
4567 enum compact_priority *compact_priority,
4568 int *compaction_retries)
4570 int max_retries = MAX_COMPACT_RETRIES;
4573 int retries = *compaction_retries;
4574 enum compact_priority priority = *compact_priority;
4579 if (fatal_signal_pending(current))
4582 if (compaction_made_progress(compact_result))
4583 (*compaction_retries)++;
4586 * compaction considers all the zone as desperately out of memory
4587 * so it doesn't really make much sense to retry except when the
4588 * failure could be caused by insufficient priority
4590 if (compaction_failed(compact_result))
4591 goto check_priority;
4594 * compaction was skipped because there are not enough order-0 pages
4595 * to work with, so we retry only if it looks like reclaim can help.
4597 if (compaction_needs_reclaim(compact_result)) {
4598 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4603 * make sure the compaction wasn't deferred or didn't bail out early
4604 * due to locks contention before we declare that we should give up.
4605 * But the next retry should use a higher priority if allowed, so
4606 * we don't just keep bailing out endlessly.
4608 if (compaction_withdrawn(compact_result)) {
4609 goto check_priority;
4613 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4614 * costly ones because they are de facto nofail and invoke OOM
4615 * killer to move on while costly can fail and users are ready
4616 * to cope with that. 1/4 retries is rather arbitrary but we
4617 * would need much more detailed feedback from compaction to
4618 * make a better decision.
4620 if (order > PAGE_ALLOC_COSTLY_ORDER)
4622 if (*compaction_retries <= max_retries) {
4628 * Make sure there are attempts at the highest priority if we exhausted
4629 * all retries or failed at the lower priorities.
4632 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4633 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4635 if (*compact_priority > min_priority) {
4636 (*compact_priority)--;
4637 *compaction_retries = 0;
4641 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4645 static inline struct page *
4646 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4647 unsigned int alloc_flags, const struct alloc_context *ac,
4648 enum compact_priority prio, enum compact_result *compact_result)
4650 *compact_result = COMPACT_SKIPPED;
4655 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4656 enum compact_result compact_result,
4657 enum compact_priority *compact_priority,
4658 int *compaction_retries)
4663 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4667 * There are setups with compaction disabled which would prefer to loop
4668 * inside the allocator rather than hit the oom killer prematurely.
4669 * Let's give them a good hope and keep retrying while the order-0
4670 * watermarks are OK.
4672 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4673 ac->highest_zoneidx, ac->nodemask) {
4674 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4675 ac->highest_zoneidx, alloc_flags))
4680 #endif /* CONFIG_COMPACTION */
4682 #ifdef CONFIG_LOCKDEP
4683 static struct lockdep_map __fs_reclaim_map =
4684 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4686 static bool __need_reclaim(gfp_t gfp_mask)
4688 /* no reclaim without waiting on it */
4689 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4692 /* this guy won't enter reclaim */
4693 if (current->flags & PF_MEMALLOC)
4696 if (gfp_mask & __GFP_NOLOCKDEP)
4702 void __fs_reclaim_acquire(unsigned long ip)
4704 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4707 void __fs_reclaim_release(unsigned long ip)
4709 lock_release(&__fs_reclaim_map, ip);
4712 void fs_reclaim_acquire(gfp_t gfp_mask)
4714 gfp_mask = current_gfp_context(gfp_mask);
4716 if (__need_reclaim(gfp_mask)) {
4717 if (gfp_mask & __GFP_FS)
4718 __fs_reclaim_acquire(_RET_IP_);
4720 #ifdef CONFIG_MMU_NOTIFIER
4721 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4722 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4727 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4729 void fs_reclaim_release(gfp_t gfp_mask)
4731 gfp_mask = current_gfp_context(gfp_mask);
4733 if (__need_reclaim(gfp_mask)) {
4734 if (gfp_mask & __GFP_FS)
4735 __fs_reclaim_release(_RET_IP_);
4738 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4742 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4743 * have been rebuilt so allocation retries. Reader side does not lock and
4744 * retries the allocation if zonelist changes. Writer side is protected by the
4745 * embedded spin_lock.
4747 static DEFINE_SEQLOCK(zonelist_update_seq);
4749 static unsigned int zonelist_iter_begin(void)
4751 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4752 return read_seqbegin(&zonelist_update_seq);
4757 static unsigned int check_retry_zonelist(unsigned int seq)
4759 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4760 return read_seqretry(&zonelist_update_seq, seq);
4765 /* Perform direct synchronous page reclaim */
4766 static unsigned long
4767 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4768 const struct alloc_context *ac)
4770 unsigned int noreclaim_flag;
4771 unsigned long progress;
4775 /* We now go into synchronous reclaim */
4776 cpuset_memory_pressure_bump();
4777 fs_reclaim_acquire(gfp_mask);
4778 noreclaim_flag = memalloc_noreclaim_save();
4780 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4783 memalloc_noreclaim_restore(noreclaim_flag);
4784 fs_reclaim_release(gfp_mask);
4791 /* The really slow allocator path where we enter direct reclaim */
4792 static inline struct page *
4793 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4794 unsigned int alloc_flags, const struct alloc_context *ac,
4795 unsigned long *did_some_progress)
4797 struct page *page = NULL;
4798 unsigned long pflags;
4799 bool drained = false;
4801 psi_memstall_enter(&pflags);
4802 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4803 if (unlikely(!(*did_some_progress)))
4807 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4810 * If an allocation failed after direct reclaim, it could be because
4811 * pages are pinned on the per-cpu lists or in high alloc reserves.
4812 * Shrink them and try again
4814 if (!page && !drained) {
4815 unreserve_highatomic_pageblock(ac, false);
4816 drain_all_pages(NULL);
4821 psi_memstall_leave(&pflags);
4826 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4827 const struct alloc_context *ac)
4831 pg_data_t *last_pgdat = NULL;
4832 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4834 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4836 if (!managed_zone(zone))
4838 if (last_pgdat != zone->zone_pgdat) {
4839 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4840 last_pgdat = zone->zone_pgdat;
4845 static inline unsigned int
4846 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4848 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4851 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4852 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4853 * to save two branches.
4855 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4856 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4859 * The caller may dip into page reserves a bit more if the caller
4860 * cannot run direct reclaim, or if the caller has realtime scheduling
4861 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4862 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_MIN_RESERVE(__GFP_HIGH).
4864 alloc_flags |= (__force int)
4865 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4867 if (gfp_mask & __GFP_ATOMIC) {
4869 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4870 * if it can't schedule.
4872 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4873 alloc_flags |= ALLOC_HARDER;
4876 alloc_flags |= ALLOC_HIGHATOMIC;
4880 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4881 * comment for __cpuset_node_allowed().
4883 alloc_flags &= ~ALLOC_CPUSET;
4884 } else if (unlikely(rt_task(current)) && in_task())
4885 alloc_flags |= ALLOC_MIN_RESERVE;
4887 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4892 static bool oom_reserves_allowed(struct task_struct *tsk)
4894 if (!tsk_is_oom_victim(tsk))
4898 * !MMU doesn't have oom reaper so give access to memory reserves
4899 * only to the thread with TIF_MEMDIE set
4901 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4908 * Distinguish requests which really need access to full memory
4909 * reserves from oom victims which can live with a portion of it
4911 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4913 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4915 if (gfp_mask & __GFP_MEMALLOC)
4916 return ALLOC_NO_WATERMARKS;
4917 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4918 return ALLOC_NO_WATERMARKS;
4919 if (!in_interrupt()) {
4920 if (current->flags & PF_MEMALLOC)
4921 return ALLOC_NO_WATERMARKS;
4922 else if (oom_reserves_allowed(current))
4929 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4931 return !!__gfp_pfmemalloc_flags(gfp_mask);
4935 * Checks whether it makes sense to retry the reclaim to make a forward progress
4936 * for the given allocation request.
4938 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4939 * without success, or when we couldn't even meet the watermark if we
4940 * reclaimed all remaining pages on the LRU lists.
4942 * Returns true if a retry is viable or false to enter the oom path.
4945 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4946 struct alloc_context *ac, int alloc_flags,
4947 bool did_some_progress, int *no_progress_loops)
4954 * Costly allocations might have made a progress but this doesn't mean
4955 * their order will become available due to high fragmentation so
4956 * always increment the no progress counter for them
4958 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4959 *no_progress_loops = 0;
4961 (*no_progress_loops)++;
4964 * Make sure we converge to OOM if we cannot make any progress
4965 * several times in the row.
4967 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4968 /* Before OOM, exhaust highatomic_reserve */
4969 return unreserve_highatomic_pageblock(ac, true);
4973 * Keep reclaiming pages while there is a chance this will lead
4974 * somewhere. If none of the target zones can satisfy our allocation
4975 * request even if all reclaimable pages are considered then we are
4976 * screwed and have to go OOM.
4978 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4979 ac->highest_zoneidx, ac->nodemask) {
4980 unsigned long available;
4981 unsigned long reclaimable;
4982 unsigned long min_wmark = min_wmark_pages(zone);
4985 available = reclaimable = zone_reclaimable_pages(zone);
4986 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4989 * Would the allocation succeed if we reclaimed all
4990 * reclaimable pages?
4992 wmark = __zone_watermark_ok(zone, order, min_wmark,
4993 ac->highest_zoneidx, alloc_flags, available);
4994 trace_reclaim_retry_zone(z, order, reclaimable,
4995 available, min_wmark, *no_progress_loops, wmark);
5003 * Memory allocation/reclaim might be called from a WQ context and the
5004 * current implementation of the WQ concurrency control doesn't
5005 * recognize that a particular WQ is congested if the worker thread is
5006 * looping without ever sleeping. Therefore we have to do a short sleep
5007 * here rather than calling cond_resched().
5009 if (current->flags & PF_WQ_WORKER)
5010 schedule_timeout_uninterruptible(1);
5017 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5020 * It's possible that cpuset's mems_allowed and the nodemask from
5021 * mempolicy don't intersect. This should be normally dealt with by
5022 * policy_nodemask(), but it's possible to race with cpuset update in
5023 * such a way the check therein was true, and then it became false
5024 * before we got our cpuset_mems_cookie here.
5025 * This assumes that for all allocations, ac->nodemask can come only
5026 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5027 * when it does not intersect with the cpuset restrictions) or the
5028 * caller can deal with a violated nodemask.
5030 if (cpusets_enabled() && ac->nodemask &&
5031 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5032 ac->nodemask = NULL;
5037 * When updating a task's mems_allowed or mempolicy nodemask, it is
5038 * possible to race with parallel threads in such a way that our
5039 * allocation can fail while the mask is being updated. If we are about
5040 * to fail, check if the cpuset changed during allocation and if so,
5043 if (read_mems_allowed_retry(cpuset_mems_cookie))
5049 static inline struct page *
5050 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5051 struct alloc_context *ac)
5053 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5054 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5055 struct page *page = NULL;
5056 unsigned int alloc_flags;
5057 unsigned long did_some_progress;
5058 enum compact_priority compact_priority;
5059 enum compact_result compact_result;
5060 int compaction_retries;
5061 int no_progress_loops;
5062 unsigned int cpuset_mems_cookie;
5063 unsigned int zonelist_iter_cookie;
5067 * We also sanity check to catch abuse of atomic reserves being used by
5068 * callers that are not in atomic context.
5070 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5071 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5072 gfp_mask &= ~__GFP_ATOMIC;
5075 compaction_retries = 0;
5076 no_progress_loops = 0;
5077 compact_priority = DEF_COMPACT_PRIORITY;
5078 cpuset_mems_cookie = read_mems_allowed_begin();
5079 zonelist_iter_cookie = zonelist_iter_begin();
5082 * The fast path uses conservative alloc_flags to succeed only until
5083 * kswapd needs to be woken up, and to avoid the cost of setting up
5084 * alloc_flags precisely. So we do that now.
5086 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5089 * We need to recalculate the starting point for the zonelist iterator
5090 * because we might have used different nodemask in the fast path, or
5091 * there was a cpuset modification and we are retrying - otherwise we
5092 * could end up iterating over non-eligible zones endlessly.
5094 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5095 ac->highest_zoneidx, ac->nodemask);
5096 if (!ac->preferred_zoneref->zone)
5100 * Check for insane configurations where the cpuset doesn't contain
5101 * any suitable zone to satisfy the request - e.g. non-movable
5102 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5104 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5105 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5106 ac->highest_zoneidx,
5107 &cpuset_current_mems_allowed);
5112 if (alloc_flags & ALLOC_KSWAPD)
5113 wake_all_kswapds(order, gfp_mask, ac);
5116 * The adjusted alloc_flags might result in immediate success, so try
5119 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5124 * For costly allocations, try direct compaction first, as it's likely
5125 * that we have enough base pages and don't need to reclaim. For non-
5126 * movable high-order allocations, do that as well, as compaction will
5127 * try prevent permanent fragmentation by migrating from blocks of the
5129 * Don't try this for allocations that are allowed to ignore
5130 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5132 if (can_direct_reclaim &&
5134 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5135 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5136 page = __alloc_pages_direct_compact(gfp_mask, order,
5138 INIT_COMPACT_PRIORITY,
5144 * Checks for costly allocations with __GFP_NORETRY, which
5145 * includes some THP page fault allocations
5147 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5149 * If allocating entire pageblock(s) and compaction
5150 * failed because all zones are below low watermarks
5151 * or is prohibited because it recently failed at this
5152 * order, fail immediately unless the allocator has
5153 * requested compaction and reclaim retry.
5156 * - potentially very expensive because zones are far
5157 * below their low watermarks or this is part of very
5158 * bursty high order allocations,
5159 * - not guaranteed to help because isolate_freepages()
5160 * may not iterate over freed pages as part of its
5162 * - unlikely to make entire pageblocks free on its
5165 if (compact_result == COMPACT_SKIPPED ||
5166 compact_result == COMPACT_DEFERRED)
5170 * Looks like reclaim/compaction is worth trying, but
5171 * sync compaction could be very expensive, so keep
5172 * using async compaction.
5174 compact_priority = INIT_COMPACT_PRIORITY;
5179 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5180 if (alloc_flags & ALLOC_KSWAPD)
5181 wake_all_kswapds(order, gfp_mask, ac);
5183 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5185 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5186 (alloc_flags & ALLOC_KSWAPD);
5189 * Reset the nodemask and zonelist iterators if memory policies can be
5190 * ignored. These allocations are high priority and system rather than
5193 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5194 ac->nodemask = NULL;
5195 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5196 ac->highest_zoneidx, ac->nodemask);
5199 /* Attempt with potentially adjusted zonelist and alloc_flags */
5200 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5204 /* Caller is not willing to reclaim, we can't balance anything */
5205 if (!can_direct_reclaim)
5208 /* Avoid recursion of direct reclaim */
5209 if (current->flags & PF_MEMALLOC)
5212 /* Try direct reclaim and then allocating */
5213 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5214 &did_some_progress);
5218 /* Try direct compaction and then allocating */
5219 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5220 compact_priority, &compact_result);
5224 /* Do not loop if specifically requested */
5225 if (gfp_mask & __GFP_NORETRY)
5229 * Do not retry costly high order allocations unless they are
5230 * __GFP_RETRY_MAYFAIL
5232 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5235 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5236 did_some_progress > 0, &no_progress_loops))
5240 * It doesn't make any sense to retry for the compaction if the order-0
5241 * reclaim is not able to make any progress because the current
5242 * implementation of the compaction depends on the sufficient amount
5243 * of free memory (see __compaction_suitable)
5245 if (did_some_progress > 0 &&
5246 should_compact_retry(ac, order, alloc_flags,
5247 compact_result, &compact_priority,
5248 &compaction_retries))
5253 * Deal with possible cpuset update races or zonelist updates to avoid
5254 * a unnecessary OOM kill.
5256 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5257 check_retry_zonelist(zonelist_iter_cookie))
5260 /* Reclaim has failed us, start killing things */
5261 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5265 /* Avoid allocations with no watermarks from looping endlessly */
5266 if (tsk_is_oom_victim(current) &&
5267 (alloc_flags & ALLOC_OOM ||
5268 (gfp_mask & __GFP_NOMEMALLOC)))
5271 /* Retry as long as the OOM killer is making progress */
5272 if (did_some_progress) {
5273 no_progress_loops = 0;
5279 * Deal with possible cpuset update races or zonelist updates to avoid
5280 * a unnecessary OOM kill.
5282 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5283 check_retry_zonelist(zonelist_iter_cookie))
5287 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5290 if (gfp_mask & __GFP_NOFAIL) {
5292 * All existing users of the __GFP_NOFAIL are blockable, so warn
5293 * of any new users that actually require GFP_NOWAIT
5295 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5299 * PF_MEMALLOC request from this context is rather bizarre
5300 * because we cannot reclaim anything and only can loop waiting
5301 * for somebody to do a work for us
5303 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5306 * non failing costly orders are a hard requirement which we
5307 * are not prepared for much so let's warn about these users
5308 * so that we can identify them and convert them to something
5311 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5314 * Help non-failing allocations by giving them access to memory
5315 * reserves but do not use ALLOC_NO_WATERMARKS because this
5316 * could deplete whole memory reserves which would just make
5317 * the situation worse
5319 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5327 warn_alloc(gfp_mask, ac->nodemask,
5328 "page allocation failure: order:%u", order);
5333 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5334 int preferred_nid, nodemask_t *nodemask,
5335 struct alloc_context *ac, gfp_t *alloc_gfp,
5336 unsigned int *alloc_flags)
5338 ac->highest_zoneidx = gfp_zone(gfp_mask);
5339 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5340 ac->nodemask = nodemask;
5341 ac->migratetype = gfp_migratetype(gfp_mask);
5343 if (cpusets_enabled()) {
5344 *alloc_gfp |= __GFP_HARDWALL;
5346 * When we are in the interrupt context, it is irrelevant
5347 * to the current task context. It means that any node ok.
5349 if (in_task() && !ac->nodemask)
5350 ac->nodemask = &cpuset_current_mems_allowed;
5352 *alloc_flags |= ALLOC_CPUSET;
5355 might_alloc(gfp_mask);
5357 if (should_fail_alloc_page(gfp_mask, order))
5360 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5362 /* Dirty zone balancing only done in the fast path */
5363 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5366 * The preferred zone is used for statistics but crucially it is
5367 * also used as the starting point for the zonelist iterator. It
5368 * may get reset for allocations that ignore memory policies.
5370 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5371 ac->highest_zoneidx, ac->nodemask);
5377 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5378 * @gfp: GFP flags for the allocation
5379 * @preferred_nid: The preferred NUMA node ID to allocate from
5380 * @nodemask: Set of nodes to allocate from, may be NULL
5381 * @nr_pages: The number of pages desired on the list or array
5382 * @page_list: Optional list to store the allocated pages
5383 * @page_array: Optional array to store the pages
5385 * This is a batched version of the page allocator that attempts to
5386 * allocate nr_pages quickly. Pages are added to page_list if page_list
5387 * is not NULL, otherwise it is assumed that the page_array is valid.
5389 * For lists, nr_pages is the number of pages that should be allocated.
5391 * For arrays, only NULL elements are populated with pages and nr_pages
5392 * is the maximum number of pages that will be stored in the array.
5394 * Returns the number of pages on the list or array.
5396 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5397 nodemask_t *nodemask, int nr_pages,
5398 struct list_head *page_list,
5399 struct page **page_array)
5402 unsigned long __maybe_unused UP_flags;
5405 struct per_cpu_pages *pcp;
5406 struct list_head *pcp_list;
5407 struct alloc_context ac;
5409 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5410 int nr_populated = 0, nr_account = 0;
5413 * Skip populated array elements to determine if any pages need
5414 * to be allocated before disabling IRQs.
5416 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5419 /* No pages requested? */
5420 if (unlikely(nr_pages <= 0))
5423 /* Already populated array? */
5424 if (unlikely(page_array && nr_pages - nr_populated == 0))
5427 /* Bulk allocator does not support memcg accounting. */
5428 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5431 /* Use the single page allocator for one page. */
5432 if (nr_pages - nr_populated == 1)
5435 #ifdef CONFIG_PAGE_OWNER
5437 * PAGE_OWNER may recurse into the allocator to allocate space to
5438 * save the stack with pagesets.lock held. Releasing/reacquiring
5439 * removes much of the performance benefit of bulk allocation so
5440 * force the caller to allocate one page at a time as it'll have
5441 * similar performance to added complexity to the bulk allocator.
5443 if (static_branch_unlikely(&page_owner_inited))
5447 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5448 gfp &= gfp_allowed_mask;
5450 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5454 /* Find an allowed local zone that meets the low watermark. */
5455 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5458 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5459 !__cpuset_zone_allowed(zone, gfp)) {
5463 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5464 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5468 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5469 if (zone_watermark_fast(zone, 0, mark,
5470 zonelist_zone_idx(ac.preferred_zoneref),
5471 alloc_flags, gfp)) {
5477 * If there are no allowed local zones that meets the watermarks then
5478 * try to allocate a single page and reclaim if necessary.
5480 if (unlikely(!zone))
5483 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5484 pcp_trylock_prepare(UP_flags);
5485 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5489 /* Attempt the batch allocation */
5490 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5491 while (nr_populated < nr_pages) {
5493 /* Skip existing pages */
5494 if (page_array && page_array[nr_populated]) {
5499 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5501 if (unlikely(!page)) {
5502 /* Try and allocate at least one page */
5504 pcp_spin_unlock(pcp);
5511 prep_new_page(page, 0, gfp, 0);
5513 list_add(&page->lru, page_list);
5515 page_array[nr_populated] = page;
5519 pcp_spin_unlock(pcp);
5520 pcp_trylock_finish(UP_flags);
5522 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5523 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5526 return nr_populated;
5529 pcp_trylock_finish(UP_flags);
5532 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5535 list_add(&page->lru, page_list);
5537 page_array[nr_populated] = page;
5543 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5546 * This is the 'heart' of the zoned buddy allocator.
5548 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5549 nodemask_t *nodemask)
5552 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5553 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5554 struct alloc_context ac = { };
5557 * There are several places where we assume that the order value is sane
5558 * so bail out early if the request is out of bound.
5560 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5563 gfp &= gfp_allowed_mask;
5565 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5566 * resp. GFP_NOIO which has to be inherited for all allocation requests
5567 * from a particular context which has been marked by
5568 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5569 * movable zones are not used during allocation.
5571 gfp = current_gfp_context(gfp);
5573 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5574 &alloc_gfp, &alloc_flags))
5578 * Forbid the first pass from falling back to types that fragment
5579 * memory until all local zones are considered.
5581 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5583 /* First allocation attempt */
5584 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5589 ac.spread_dirty_pages = false;
5592 * Restore the original nodemask if it was potentially replaced with
5593 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5595 ac.nodemask = nodemask;
5597 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5600 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5601 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5602 __free_pages(page, order);
5606 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5607 kmsan_alloc_page(page, order, alloc_gfp);
5611 EXPORT_SYMBOL(__alloc_pages);
5613 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5614 nodemask_t *nodemask)
5616 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5617 preferred_nid, nodemask);
5619 if (page && order > 1)
5620 prep_transhuge_page(page);
5621 return (struct folio *)page;
5623 EXPORT_SYMBOL(__folio_alloc);
5626 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5627 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5628 * you need to access high mem.
5630 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5634 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5637 return (unsigned long) page_address(page);
5639 EXPORT_SYMBOL(__get_free_pages);
5641 unsigned long get_zeroed_page(gfp_t gfp_mask)
5643 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5645 EXPORT_SYMBOL(get_zeroed_page);
5648 * __free_pages - Free pages allocated with alloc_pages().
5649 * @page: The page pointer returned from alloc_pages().
5650 * @order: The order of the allocation.
5652 * This function can free multi-page allocations that are not compound
5653 * pages. It does not check that the @order passed in matches that of
5654 * the allocation, so it is easy to leak memory. Freeing more memory
5655 * than was allocated will probably emit a warning.
5657 * If the last reference to this page is speculative, it will be released
5658 * by put_page() which only frees the first page of a non-compound
5659 * allocation. To prevent the remaining pages from being leaked, we free
5660 * the subsequent pages here. If you want to use the page's reference
5661 * count to decide when to free the allocation, you should allocate a
5662 * compound page, and use put_page() instead of __free_pages().
5664 * Context: May be called in interrupt context or while holding a normal
5665 * spinlock, but not in NMI context or while holding a raw spinlock.
5667 void __free_pages(struct page *page, unsigned int order)
5669 if (put_page_testzero(page))
5670 free_the_page(page, order);
5671 else if (!PageHead(page))
5673 free_the_page(page + (1 << order), order);
5675 EXPORT_SYMBOL(__free_pages);
5677 void free_pages(unsigned long addr, unsigned int order)
5680 VM_BUG_ON(!virt_addr_valid((void *)addr));
5681 __free_pages(virt_to_page((void *)addr), order);
5685 EXPORT_SYMBOL(free_pages);
5689 * An arbitrary-length arbitrary-offset area of memory which resides
5690 * within a 0 or higher order page. Multiple fragments within that page
5691 * are individually refcounted, in the page's reference counter.
5693 * The page_frag functions below provide a simple allocation framework for
5694 * page fragments. This is used by the network stack and network device
5695 * drivers to provide a backing region of memory for use as either an
5696 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5698 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5701 struct page *page = NULL;
5702 gfp_t gfp = gfp_mask;
5704 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5705 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5707 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5708 PAGE_FRAG_CACHE_MAX_ORDER);
5709 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5711 if (unlikely(!page))
5712 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5714 nc->va = page ? page_address(page) : NULL;
5719 void __page_frag_cache_drain(struct page *page, unsigned int count)
5721 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5723 if (page_ref_sub_and_test(page, count))
5724 free_the_page(page, compound_order(page));
5726 EXPORT_SYMBOL(__page_frag_cache_drain);
5728 void *page_frag_alloc_align(struct page_frag_cache *nc,
5729 unsigned int fragsz, gfp_t gfp_mask,
5730 unsigned int align_mask)
5732 unsigned int size = PAGE_SIZE;
5736 if (unlikely(!nc->va)) {
5738 page = __page_frag_cache_refill(nc, gfp_mask);
5742 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5743 /* if size can vary use size else just use PAGE_SIZE */
5746 /* Even if we own the page, we do not use atomic_set().
5747 * This would break get_page_unless_zero() users.
5749 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5751 /* reset page count bias and offset to start of new frag */
5752 nc->pfmemalloc = page_is_pfmemalloc(page);
5753 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5757 offset = nc->offset - fragsz;
5758 if (unlikely(offset < 0)) {
5759 page = virt_to_page(nc->va);
5761 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5764 if (unlikely(nc->pfmemalloc)) {
5765 free_the_page(page, compound_order(page));
5769 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5770 /* if size can vary use size else just use PAGE_SIZE */
5773 /* OK, page count is 0, we can safely set it */
5774 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5776 /* reset page count bias and offset to start of new frag */
5777 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5778 offset = size - fragsz;
5779 if (unlikely(offset < 0)) {
5781 * The caller is trying to allocate a fragment
5782 * with fragsz > PAGE_SIZE but the cache isn't big
5783 * enough to satisfy the request, this may
5784 * happen in low memory conditions.
5785 * We don't release the cache page because
5786 * it could make memory pressure worse
5787 * so we simply return NULL here.
5794 offset &= align_mask;
5795 nc->offset = offset;
5797 return nc->va + offset;
5799 EXPORT_SYMBOL(page_frag_alloc_align);
5802 * Frees a page fragment allocated out of either a compound or order 0 page.
5804 void page_frag_free(void *addr)
5806 struct page *page = virt_to_head_page(addr);
5808 if (unlikely(put_page_testzero(page)))
5809 free_the_page(page, compound_order(page));
5811 EXPORT_SYMBOL(page_frag_free);
5813 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5817 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5818 struct page *page = virt_to_page((void *)addr);
5819 struct page *last = page + nr;
5821 split_page_owner(page, 1 << order);
5822 split_page_memcg(page, 1 << order);
5823 while (page < --last)
5824 set_page_refcounted(last);
5826 last = page + (1UL << order);
5827 for (page += nr; page < last; page++)
5828 __free_pages_ok(page, 0, FPI_TO_TAIL);
5830 return (void *)addr;
5834 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5835 * @size: the number of bytes to allocate
5836 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5838 * This function is similar to alloc_pages(), except that it allocates the
5839 * minimum number of pages to satisfy the request. alloc_pages() can only
5840 * allocate memory in power-of-two pages.
5842 * This function is also limited by MAX_ORDER.
5844 * Memory allocated by this function must be released by free_pages_exact().
5846 * Return: pointer to the allocated area or %NULL in case of error.
5848 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5850 unsigned int order = get_order(size);
5853 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5854 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5856 addr = __get_free_pages(gfp_mask, order);
5857 return make_alloc_exact(addr, order, size);
5859 EXPORT_SYMBOL(alloc_pages_exact);
5862 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5864 * @nid: the preferred node ID where memory should be allocated
5865 * @size: the number of bytes to allocate
5866 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5868 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5871 * Return: pointer to the allocated area or %NULL in case of error.
5873 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5875 unsigned int order = get_order(size);
5878 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5879 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5881 p = alloc_pages_node(nid, gfp_mask, order);
5884 return make_alloc_exact((unsigned long)page_address(p), order, size);
5888 * free_pages_exact - release memory allocated via alloc_pages_exact()
5889 * @virt: the value returned by alloc_pages_exact.
5890 * @size: size of allocation, same value as passed to alloc_pages_exact().
5892 * Release the memory allocated by a previous call to alloc_pages_exact.
5894 void free_pages_exact(void *virt, size_t size)
5896 unsigned long addr = (unsigned long)virt;
5897 unsigned long end = addr + PAGE_ALIGN(size);
5899 while (addr < end) {
5904 EXPORT_SYMBOL(free_pages_exact);
5907 * nr_free_zone_pages - count number of pages beyond high watermark
5908 * @offset: The zone index of the highest zone
5910 * nr_free_zone_pages() counts the number of pages which are beyond the
5911 * high watermark within all zones at or below a given zone index. For each
5912 * zone, the number of pages is calculated as:
5914 * nr_free_zone_pages = managed_pages - high_pages
5916 * Return: number of pages beyond high watermark.
5918 static unsigned long nr_free_zone_pages(int offset)
5923 /* Just pick one node, since fallback list is circular */
5924 unsigned long sum = 0;
5926 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5928 for_each_zone_zonelist(zone, z, zonelist, offset) {
5929 unsigned long size = zone_managed_pages(zone);
5930 unsigned long high = high_wmark_pages(zone);
5939 * nr_free_buffer_pages - count number of pages beyond high watermark
5941 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5942 * watermark within ZONE_DMA and ZONE_NORMAL.
5944 * Return: number of pages beyond high watermark within ZONE_DMA and
5947 unsigned long nr_free_buffer_pages(void)
5949 return nr_free_zone_pages(gfp_zone(GFP_USER));
5951 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5953 static inline void show_node(struct zone *zone)
5955 if (IS_ENABLED(CONFIG_NUMA))
5956 printk("Node %d ", zone_to_nid(zone));
5959 long si_mem_available(void)
5962 unsigned long pagecache;
5963 unsigned long wmark_low = 0;
5964 unsigned long pages[NR_LRU_LISTS];
5965 unsigned long reclaimable;
5969 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5970 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5973 wmark_low += low_wmark_pages(zone);
5976 * Estimate the amount of memory available for userspace allocations,
5977 * without causing swapping or OOM.
5979 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5982 * Not all the page cache can be freed, otherwise the system will
5983 * start swapping or thrashing. Assume at least half of the page
5984 * cache, or the low watermark worth of cache, needs to stay.
5986 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5987 pagecache -= min(pagecache / 2, wmark_low);
5988 available += pagecache;
5991 * Part of the reclaimable slab and other kernel memory consists of
5992 * items that are in use, and cannot be freed. Cap this estimate at the
5995 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5996 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5997 available += reclaimable - min(reclaimable / 2, wmark_low);
6003 EXPORT_SYMBOL_GPL(si_mem_available);
6005 void si_meminfo(struct sysinfo *val)
6007 val->totalram = totalram_pages();
6008 val->sharedram = global_node_page_state(NR_SHMEM);
6009 val->freeram = global_zone_page_state(NR_FREE_PAGES);
6010 val->bufferram = nr_blockdev_pages();
6011 val->totalhigh = totalhigh_pages();
6012 val->freehigh = nr_free_highpages();
6013 val->mem_unit = PAGE_SIZE;
6016 EXPORT_SYMBOL(si_meminfo);
6019 void si_meminfo_node(struct sysinfo *val, int nid)
6021 int zone_type; /* needs to be signed */
6022 unsigned long managed_pages = 0;
6023 unsigned long managed_highpages = 0;
6024 unsigned long free_highpages = 0;
6025 pg_data_t *pgdat = NODE_DATA(nid);
6027 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6028 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6029 val->totalram = managed_pages;
6030 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6031 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6032 #ifdef CONFIG_HIGHMEM
6033 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6034 struct zone *zone = &pgdat->node_zones[zone_type];
6036 if (is_highmem(zone)) {
6037 managed_highpages += zone_managed_pages(zone);
6038 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6041 val->totalhigh = managed_highpages;
6042 val->freehigh = free_highpages;
6044 val->totalhigh = managed_highpages;
6045 val->freehigh = free_highpages;
6047 val->mem_unit = PAGE_SIZE;
6052 * Determine whether the node should be displayed or not, depending on whether
6053 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6055 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6057 if (!(flags & SHOW_MEM_FILTER_NODES))
6061 * no node mask - aka implicit memory numa policy. Do not bother with
6062 * the synchronization - read_mems_allowed_begin - because we do not
6063 * have to be precise here.
6066 nodemask = &cpuset_current_mems_allowed;
6068 return !node_isset(nid, *nodemask);
6071 #define K(x) ((x) << (PAGE_SHIFT-10))
6073 static void show_migration_types(unsigned char type)
6075 static const char types[MIGRATE_TYPES] = {
6076 [MIGRATE_UNMOVABLE] = 'U',
6077 [MIGRATE_MOVABLE] = 'M',
6078 [MIGRATE_RECLAIMABLE] = 'E',
6079 [MIGRATE_HIGHATOMIC] = 'H',
6081 [MIGRATE_CMA] = 'C',
6083 #ifdef CONFIG_MEMORY_ISOLATION
6084 [MIGRATE_ISOLATE] = 'I',
6087 char tmp[MIGRATE_TYPES + 1];
6091 for (i = 0; i < MIGRATE_TYPES; i++) {
6092 if (type & (1 << i))
6097 printk(KERN_CONT "(%s) ", tmp);
6100 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6103 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6104 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6110 * Show free area list (used inside shift_scroll-lock stuff)
6111 * We also calculate the percentage fragmentation. We do this by counting the
6112 * memory on each free list with the exception of the first item on the list.
6115 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6118 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6120 unsigned long free_pcp = 0;
6125 for_each_populated_zone(zone) {
6126 if (zone_idx(zone) > max_zone_idx)
6128 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6131 for_each_online_cpu(cpu)
6132 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6135 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6136 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6137 " unevictable:%lu dirty:%lu writeback:%lu\n"
6138 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6139 " mapped:%lu shmem:%lu pagetables:%lu\n"
6140 " sec_pagetables:%lu bounce:%lu\n"
6141 " kernel_misc_reclaimable:%lu\n"
6142 " free:%lu free_pcp:%lu free_cma:%lu\n",
6143 global_node_page_state(NR_ACTIVE_ANON),
6144 global_node_page_state(NR_INACTIVE_ANON),
6145 global_node_page_state(NR_ISOLATED_ANON),
6146 global_node_page_state(NR_ACTIVE_FILE),
6147 global_node_page_state(NR_INACTIVE_FILE),
6148 global_node_page_state(NR_ISOLATED_FILE),
6149 global_node_page_state(NR_UNEVICTABLE),
6150 global_node_page_state(NR_FILE_DIRTY),
6151 global_node_page_state(NR_WRITEBACK),
6152 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6153 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6154 global_node_page_state(NR_FILE_MAPPED),
6155 global_node_page_state(NR_SHMEM),
6156 global_node_page_state(NR_PAGETABLE),
6157 global_node_page_state(NR_SECONDARY_PAGETABLE),
6158 global_zone_page_state(NR_BOUNCE),
6159 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6160 global_zone_page_state(NR_FREE_PAGES),
6162 global_zone_page_state(NR_FREE_CMA_PAGES));
6164 for_each_online_pgdat(pgdat) {
6165 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6167 if (!node_has_managed_zones(pgdat, max_zone_idx))
6171 " active_anon:%lukB"
6172 " inactive_anon:%lukB"
6173 " active_file:%lukB"
6174 " inactive_file:%lukB"
6175 " unevictable:%lukB"
6176 " isolated(anon):%lukB"
6177 " isolated(file):%lukB"
6182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6184 " shmem_pmdmapped: %lukB"
6187 " writeback_tmp:%lukB"
6188 " kernel_stack:%lukB"
6189 #ifdef CONFIG_SHADOW_CALL_STACK
6190 " shadow_call_stack:%lukB"
6193 " sec_pagetables:%lukB"
6194 " all_unreclaimable? %s"
6197 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6198 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6199 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6200 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6201 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6202 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6203 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6204 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6205 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6206 K(node_page_state(pgdat, NR_WRITEBACK)),
6207 K(node_page_state(pgdat, NR_SHMEM)),
6208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6209 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6210 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6211 K(node_page_state(pgdat, NR_ANON_THPS)),
6213 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6214 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6215 #ifdef CONFIG_SHADOW_CALL_STACK
6216 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6218 K(node_page_state(pgdat, NR_PAGETABLE)),
6219 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6220 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6224 for_each_populated_zone(zone) {
6227 if (zone_idx(zone) > max_zone_idx)
6229 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6233 for_each_online_cpu(cpu)
6234 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6244 " reserved_highatomic:%luKB"
6245 " active_anon:%lukB"
6246 " inactive_anon:%lukB"
6247 " active_file:%lukB"
6248 " inactive_file:%lukB"
6249 " unevictable:%lukB"
6250 " writepending:%lukB"
6260 K(zone_page_state(zone, NR_FREE_PAGES)),
6261 K(zone->watermark_boost),
6262 K(min_wmark_pages(zone)),
6263 K(low_wmark_pages(zone)),
6264 K(high_wmark_pages(zone)),
6265 K(zone->nr_reserved_highatomic),
6266 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6267 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6268 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6269 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6270 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6271 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6272 K(zone->present_pages),
6273 K(zone_managed_pages(zone)),
6274 K(zone_page_state(zone, NR_MLOCK)),
6275 K(zone_page_state(zone, NR_BOUNCE)),
6277 K(this_cpu_read(zone->per_cpu_pageset->count)),
6278 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6279 printk("lowmem_reserve[]:");
6280 for (i = 0; i < MAX_NR_ZONES; i++)
6281 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6282 printk(KERN_CONT "\n");
6285 for_each_populated_zone(zone) {
6287 unsigned long nr[MAX_ORDER], flags, total = 0;
6288 unsigned char types[MAX_ORDER];
6290 if (zone_idx(zone) > max_zone_idx)
6292 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6295 printk(KERN_CONT "%s: ", zone->name);
6297 spin_lock_irqsave(&zone->lock, flags);
6298 for (order = 0; order < MAX_ORDER; order++) {
6299 struct free_area *area = &zone->free_area[order];
6302 nr[order] = area->nr_free;
6303 total += nr[order] << order;
6306 for (type = 0; type < MIGRATE_TYPES; type++) {
6307 if (!free_area_empty(area, type))
6308 types[order] |= 1 << type;
6311 spin_unlock_irqrestore(&zone->lock, flags);
6312 for (order = 0; order < MAX_ORDER; order++) {
6313 printk(KERN_CONT "%lu*%lukB ",
6314 nr[order], K(1UL) << order);
6316 show_migration_types(types[order]);
6318 printk(KERN_CONT "= %lukB\n", K(total));
6321 for_each_online_node(nid) {
6322 if (show_mem_node_skip(filter, nid, nodemask))
6324 hugetlb_show_meminfo_node(nid);
6327 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6329 show_swap_cache_info();
6332 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6334 zoneref->zone = zone;
6335 zoneref->zone_idx = zone_idx(zone);
6339 * Builds allocation fallback zone lists.
6341 * Add all populated zones of a node to the zonelist.
6343 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6346 enum zone_type zone_type = MAX_NR_ZONES;
6351 zone = pgdat->node_zones + zone_type;
6352 if (populated_zone(zone)) {
6353 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6354 check_highest_zone(zone_type);
6356 } while (zone_type);
6363 static int __parse_numa_zonelist_order(char *s)
6366 * We used to support different zonelists modes but they turned
6367 * out to be just not useful. Let's keep the warning in place
6368 * if somebody still use the cmd line parameter so that we do
6369 * not fail it silently
6371 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6372 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6378 char numa_zonelist_order[] = "Node";
6381 * sysctl handler for numa_zonelist_order
6383 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6384 void *buffer, size_t *length, loff_t *ppos)
6387 return __parse_numa_zonelist_order(buffer);
6388 return proc_dostring(table, write, buffer, length, ppos);
6392 static int node_load[MAX_NUMNODES];
6395 * find_next_best_node - find the next node that should appear in a given node's fallback list
6396 * @node: node whose fallback list we're appending
6397 * @used_node_mask: nodemask_t of already used nodes
6399 * We use a number of factors to determine which is the next node that should
6400 * appear on a given node's fallback list. The node should not have appeared
6401 * already in @node's fallback list, and it should be the next closest node
6402 * according to the distance array (which contains arbitrary distance values
6403 * from each node to each node in the system), and should also prefer nodes
6404 * with no CPUs, since presumably they'll have very little allocation pressure
6405 * on them otherwise.
6407 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6409 int find_next_best_node(int node, nodemask_t *used_node_mask)
6412 int min_val = INT_MAX;
6413 int best_node = NUMA_NO_NODE;
6415 /* Use the local node if we haven't already */
6416 if (!node_isset(node, *used_node_mask)) {
6417 node_set(node, *used_node_mask);
6421 for_each_node_state(n, N_MEMORY) {
6423 /* Don't want a node to appear more than once */
6424 if (node_isset(n, *used_node_mask))
6427 /* Use the distance array to find the distance */
6428 val = node_distance(node, n);
6430 /* Penalize nodes under us ("prefer the next node") */
6433 /* Give preference to headless and unused nodes */
6434 if (!cpumask_empty(cpumask_of_node(n)))
6435 val += PENALTY_FOR_NODE_WITH_CPUS;
6437 /* Slight preference for less loaded node */
6438 val *= MAX_NUMNODES;
6439 val += node_load[n];
6441 if (val < min_val) {
6448 node_set(best_node, *used_node_mask);
6455 * Build zonelists ordered by node and zones within node.
6456 * This results in maximum locality--normal zone overflows into local
6457 * DMA zone, if any--but risks exhausting DMA zone.
6459 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6462 struct zoneref *zonerefs;
6465 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6467 for (i = 0; i < nr_nodes; i++) {
6470 pg_data_t *node = NODE_DATA(node_order[i]);
6472 nr_zones = build_zonerefs_node(node, zonerefs);
6473 zonerefs += nr_zones;
6475 zonerefs->zone = NULL;
6476 zonerefs->zone_idx = 0;
6480 * Build gfp_thisnode zonelists
6482 static void build_thisnode_zonelists(pg_data_t *pgdat)
6484 struct zoneref *zonerefs;
6487 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6488 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6489 zonerefs += nr_zones;
6490 zonerefs->zone = NULL;
6491 zonerefs->zone_idx = 0;
6495 * Build zonelists ordered by zone and nodes within zones.
6496 * This results in conserving DMA zone[s] until all Normal memory is
6497 * exhausted, but results in overflowing to remote node while memory
6498 * may still exist in local DMA zone.
6501 static void build_zonelists(pg_data_t *pgdat)
6503 static int node_order[MAX_NUMNODES];
6504 int node, nr_nodes = 0;
6505 nodemask_t used_mask = NODE_MASK_NONE;
6506 int local_node, prev_node;
6508 /* NUMA-aware ordering of nodes */
6509 local_node = pgdat->node_id;
6510 prev_node = local_node;
6512 memset(node_order, 0, sizeof(node_order));
6513 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6515 * We don't want to pressure a particular node.
6516 * So adding penalty to the first node in same
6517 * distance group to make it round-robin.
6519 if (node_distance(local_node, node) !=
6520 node_distance(local_node, prev_node))
6521 node_load[node] += 1;
6523 node_order[nr_nodes++] = node;
6527 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6528 build_thisnode_zonelists(pgdat);
6529 pr_info("Fallback order for Node %d: ", local_node);
6530 for (node = 0; node < nr_nodes; node++)
6531 pr_cont("%d ", node_order[node]);
6535 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6537 * Return node id of node used for "local" allocations.
6538 * I.e., first node id of first zone in arg node's generic zonelist.
6539 * Used for initializing percpu 'numa_mem', which is used primarily
6540 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6542 int local_memory_node(int node)
6546 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6547 gfp_zone(GFP_KERNEL),
6549 return zone_to_nid(z->zone);
6553 static void setup_min_unmapped_ratio(void);
6554 static void setup_min_slab_ratio(void);
6555 #else /* CONFIG_NUMA */
6557 static void build_zonelists(pg_data_t *pgdat)
6559 int node, local_node;
6560 struct zoneref *zonerefs;
6563 local_node = pgdat->node_id;
6565 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6566 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6567 zonerefs += nr_zones;
6570 * Now we build the zonelist so that it contains the zones
6571 * of all the other nodes.
6572 * We don't want to pressure a particular node, so when
6573 * building the zones for node N, we make sure that the
6574 * zones coming right after the local ones are those from
6575 * node N+1 (modulo N)
6577 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6578 if (!node_online(node))
6580 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6581 zonerefs += nr_zones;
6583 for (node = 0; node < local_node; node++) {
6584 if (!node_online(node))
6586 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6587 zonerefs += nr_zones;
6590 zonerefs->zone = NULL;
6591 zonerefs->zone_idx = 0;
6594 #endif /* CONFIG_NUMA */
6597 * Boot pageset table. One per cpu which is going to be used for all
6598 * zones and all nodes. The parameters will be set in such a way
6599 * that an item put on a list will immediately be handed over to
6600 * the buddy list. This is safe since pageset manipulation is done
6601 * with interrupts disabled.
6603 * The boot_pagesets must be kept even after bootup is complete for
6604 * unused processors and/or zones. They do play a role for bootstrapping
6605 * hotplugged processors.
6607 * zoneinfo_show() and maybe other functions do
6608 * not check if the processor is online before following the pageset pointer.
6609 * Other parts of the kernel may not check if the zone is available.
6611 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6612 /* These effectively disable the pcplists in the boot pageset completely */
6613 #define BOOT_PAGESET_HIGH 0
6614 #define BOOT_PAGESET_BATCH 1
6615 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6616 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6617 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6619 static void __build_all_zonelists(void *data)
6622 int __maybe_unused cpu;
6623 pg_data_t *self = data;
6625 write_seqlock(&zonelist_update_seq);
6628 memset(node_load, 0, sizeof(node_load));
6632 * This node is hotadded and no memory is yet present. So just
6633 * building zonelists is fine - no need to touch other nodes.
6635 if (self && !node_online(self->node_id)) {
6636 build_zonelists(self);
6639 * All possible nodes have pgdat preallocated
6642 for_each_node(nid) {
6643 pg_data_t *pgdat = NODE_DATA(nid);
6645 build_zonelists(pgdat);
6648 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6650 * We now know the "local memory node" for each node--
6651 * i.e., the node of the first zone in the generic zonelist.
6652 * Set up numa_mem percpu variable for on-line cpus. During
6653 * boot, only the boot cpu should be on-line; we'll init the
6654 * secondary cpus' numa_mem as they come on-line. During
6655 * node/memory hotplug, we'll fixup all on-line cpus.
6657 for_each_online_cpu(cpu)
6658 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6662 write_sequnlock(&zonelist_update_seq);
6665 static noinline void __init
6666 build_all_zonelists_init(void)
6670 __build_all_zonelists(NULL);
6673 * Initialize the boot_pagesets that are going to be used
6674 * for bootstrapping processors. The real pagesets for
6675 * each zone will be allocated later when the per cpu
6676 * allocator is available.
6678 * boot_pagesets are used also for bootstrapping offline
6679 * cpus if the system is already booted because the pagesets
6680 * are needed to initialize allocators on a specific cpu too.
6681 * F.e. the percpu allocator needs the page allocator which
6682 * needs the percpu allocator in order to allocate its pagesets
6683 * (a chicken-egg dilemma).
6685 for_each_possible_cpu(cpu)
6686 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6688 mminit_verify_zonelist();
6689 cpuset_init_current_mems_allowed();
6693 * unless system_state == SYSTEM_BOOTING.
6695 * __ref due to call of __init annotated helper build_all_zonelists_init
6696 * [protected by SYSTEM_BOOTING].
6698 void __ref build_all_zonelists(pg_data_t *pgdat)
6700 unsigned long vm_total_pages;
6702 if (system_state == SYSTEM_BOOTING) {
6703 build_all_zonelists_init();
6705 __build_all_zonelists(pgdat);
6706 /* cpuset refresh routine should be here */
6708 /* Get the number of free pages beyond high watermark in all zones. */
6709 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6711 * Disable grouping by mobility if the number of pages in the
6712 * system is too low to allow the mechanism to work. It would be
6713 * more accurate, but expensive to check per-zone. This check is
6714 * made on memory-hotadd so a system can start with mobility
6715 * disabled and enable it later
6717 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6718 page_group_by_mobility_disabled = 1;
6720 page_group_by_mobility_disabled = 0;
6722 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6724 page_group_by_mobility_disabled ? "off" : "on",
6727 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6731 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6732 static bool __meminit
6733 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6735 static struct memblock_region *r;
6737 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6738 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6739 for_each_mem_region(r) {
6740 if (*pfn < memblock_region_memory_end_pfn(r))
6744 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6745 memblock_is_mirror(r)) {
6746 *pfn = memblock_region_memory_end_pfn(r);
6754 * Initially all pages are reserved - free ones are freed
6755 * up by memblock_free_all() once the early boot process is
6756 * done. Non-atomic initialization, single-pass.
6758 * All aligned pageblocks are initialized to the specified migratetype
6759 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6760 * zone stats (e.g., nr_isolate_pageblock) are touched.
6762 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6763 unsigned long start_pfn, unsigned long zone_end_pfn,
6764 enum meminit_context context,
6765 struct vmem_altmap *altmap, int migratetype)
6767 unsigned long pfn, end_pfn = start_pfn + size;
6770 if (highest_memmap_pfn < end_pfn - 1)
6771 highest_memmap_pfn = end_pfn - 1;
6773 #ifdef CONFIG_ZONE_DEVICE
6775 * Honor reservation requested by the driver for this ZONE_DEVICE
6776 * memory. We limit the total number of pages to initialize to just
6777 * those that might contain the memory mapping. We will defer the
6778 * ZONE_DEVICE page initialization until after we have released
6781 if (zone == ZONE_DEVICE) {
6785 if (start_pfn == altmap->base_pfn)
6786 start_pfn += altmap->reserve;
6787 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6791 for (pfn = start_pfn; pfn < end_pfn; ) {
6793 * There can be holes in boot-time mem_map[]s handed to this
6794 * function. They do not exist on hotplugged memory.
6796 if (context == MEMINIT_EARLY) {
6797 if (overlap_memmap_init(zone, &pfn))
6799 if (defer_init(nid, pfn, zone_end_pfn))
6803 page = pfn_to_page(pfn);
6804 __init_single_page(page, pfn, zone, nid);
6805 if (context == MEMINIT_HOTPLUG)
6806 __SetPageReserved(page);
6809 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6810 * such that unmovable allocations won't be scattered all
6811 * over the place during system boot.
6813 if (pageblock_aligned(pfn)) {
6814 set_pageblock_migratetype(page, migratetype);
6821 #ifdef CONFIG_ZONE_DEVICE
6822 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6823 unsigned long zone_idx, int nid,
6824 struct dev_pagemap *pgmap)
6827 __init_single_page(page, pfn, zone_idx, nid);
6830 * Mark page reserved as it will need to wait for onlining
6831 * phase for it to be fully associated with a zone.
6833 * We can use the non-atomic __set_bit operation for setting
6834 * the flag as we are still initializing the pages.
6836 __SetPageReserved(page);
6839 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6840 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6841 * ever freed or placed on a driver-private list.
6843 page->pgmap = pgmap;
6844 page->zone_device_data = NULL;
6847 * Mark the block movable so that blocks are reserved for
6848 * movable at startup. This will force kernel allocations
6849 * to reserve their blocks rather than leaking throughout
6850 * the address space during boot when many long-lived
6851 * kernel allocations are made.
6853 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6854 * because this is done early in section_activate()
6856 if (pageblock_aligned(pfn)) {
6857 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6862 * ZONE_DEVICE pages are released directly to the driver page allocator
6863 * which will set the page count to 1 when allocating the page.
6865 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6866 pgmap->type == MEMORY_DEVICE_COHERENT)
6867 set_page_count(page, 0);
6871 * With compound page geometry and when struct pages are stored in ram most
6872 * tail pages are reused. Consequently, the amount of unique struct pages to
6873 * initialize is a lot smaller that the total amount of struct pages being
6874 * mapped. This is a paired / mild layering violation with explicit knowledge
6875 * of how the sparse_vmemmap internals handle compound pages in the lack
6876 * of an altmap. See vmemmap_populate_compound_pages().
6878 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6879 unsigned long nr_pages)
6881 return is_power_of_2(sizeof(struct page)) &&
6882 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6885 static void __ref memmap_init_compound(struct page *head,
6886 unsigned long head_pfn,
6887 unsigned long zone_idx, int nid,
6888 struct dev_pagemap *pgmap,
6889 unsigned long nr_pages)
6891 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6892 unsigned int order = pgmap->vmemmap_shift;
6894 __SetPageHead(head);
6895 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6896 struct page *page = pfn_to_page(pfn);
6898 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6899 prep_compound_tail(head, pfn - head_pfn);
6900 set_page_count(page, 0);
6903 * The first tail page stores important compound page info.
6904 * Call prep_compound_head() after the first tail page has
6905 * been initialized, to not have the data overwritten.
6907 if (pfn == head_pfn + 1)
6908 prep_compound_head(head, order);
6912 void __ref memmap_init_zone_device(struct zone *zone,
6913 unsigned long start_pfn,
6914 unsigned long nr_pages,
6915 struct dev_pagemap *pgmap)
6917 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6918 struct pglist_data *pgdat = zone->zone_pgdat;
6919 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6920 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6921 unsigned long zone_idx = zone_idx(zone);
6922 unsigned long start = jiffies;
6923 int nid = pgdat->node_id;
6925 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6929 * The call to memmap_init should have already taken care
6930 * of the pages reserved for the memmap, so we can just jump to
6931 * the end of that region and start processing the device pages.
6934 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6935 nr_pages = end_pfn - start_pfn;
6938 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6939 struct page *page = pfn_to_page(pfn);
6941 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6943 if (pfns_per_compound == 1)
6946 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6947 compound_nr_pages(altmap, pfns_per_compound));
6950 pr_info("%s initialised %lu pages in %ums\n", __func__,
6951 nr_pages, jiffies_to_msecs(jiffies - start));
6955 static void __meminit zone_init_free_lists(struct zone *zone)
6957 unsigned int order, t;
6958 for_each_migratetype_order(order, t) {
6959 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6960 zone->free_area[order].nr_free = 0;
6965 * Only struct pages that correspond to ranges defined by memblock.memory
6966 * are zeroed and initialized by going through __init_single_page() during
6967 * memmap_init_zone_range().
6969 * But, there could be struct pages that correspond to holes in
6970 * memblock.memory. This can happen because of the following reasons:
6971 * - physical memory bank size is not necessarily the exact multiple of the
6972 * arbitrary section size
6973 * - early reserved memory may not be listed in memblock.memory
6974 * - memory layouts defined with memmap= kernel parameter may not align
6975 * nicely with memmap sections
6977 * Explicitly initialize those struct pages so that:
6978 * - PG_Reserved is set
6979 * - zone and node links point to zone and node that span the page if the
6980 * hole is in the middle of a zone
6981 * - zone and node links point to adjacent zone/node if the hole falls on
6982 * the zone boundary; the pages in such holes will be prepended to the
6983 * zone/node above the hole except for the trailing pages in the last
6984 * section that will be appended to the zone/node below.
6986 static void __init init_unavailable_range(unsigned long spfn,
6993 for (pfn = spfn; pfn < epfn; pfn++) {
6994 if (!pfn_valid(pageblock_start_pfn(pfn))) {
6995 pfn = pageblock_end_pfn(pfn) - 1;
6998 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6999 __SetPageReserved(pfn_to_page(pfn));
7004 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7005 node, zone_names[zone], pgcnt);
7008 static void __init memmap_init_zone_range(struct zone *zone,
7009 unsigned long start_pfn,
7010 unsigned long end_pfn,
7011 unsigned long *hole_pfn)
7013 unsigned long zone_start_pfn = zone->zone_start_pfn;
7014 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7015 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7017 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7018 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7020 if (start_pfn >= end_pfn)
7023 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7024 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7026 if (*hole_pfn < start_pfn)
7027 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7029 *hole_pfn = end_pfn;
7032 static void __init memmap_init(void)
7034 unsigned long start_pfn, end_pfn;
7035 unsigned long hole_pfn = 0;
7036 int i, j, zone_id = 0, nid;
7038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7039 struct pglist_data *node = NODE_DATA(nid);
7041 for (j = 0; j < MAX_NR_ZONES; j++) {
7042 struct zone *zone = node->node_zones + j;
7044 if (!populated_zone(zone))
7047 memmap_init_zone_range(zone, start_pfn, end_pfn,
7053 #ifdef CONFIG_SPARSEMEM
7055 * Initialize the memory map for hole in the range [memory_end,
7057 * Append the pages in this hole to the highest zone in the last
7059 * The call to init_unavailable_range() is outside the ifdef to
7060 * silence the compiler warining about zone_id set but not used;
7061 * for FLATMEM it is a nop anyway
7063 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7064 if (hole_pfn < end_pfn)
7066 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7069 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7070 phys_addr_t min_addr, int nid, bool exact_nid)
7075 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7076 MEMBLOCK_ALLOC_ACCESSIBLE,
7079 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7080 MEMBLOCK_ALLOC_ACCESSIBLE,
7083 if (ptr && size > 0)
7084 page_init_poison(ptr, size);
7089 static int zone_batchsize(struct zone *zone)
7095 * The number of pages to batch allocate is either ~0.1%
7096 * of the zone or 1MB, whichever is smaller. The batch
7097 * size is striking a balance between allocation latency
7098 * and zone lock contention.
7100 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7101 batch /= 4; /* We effectively *= 4 below */
7106 * Clamp the batch to a 2^n - 1 value. Having a power
7107 * of 2 value was found to be more likely to have
7108 * suboptimal cache aliasing properties in some cases.
7110 * For example if 2 tasks are alternately allocating
7111 * batches of pages, one task can end up with a lot
7112 * of pages of one half of the possible page colors
7113 * and the other with pages of the other colors.
7115 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7120 /* The deferral and batching of frees should be suppressed under NOMMU
7123 * The problem is that NOMMU needs to be able to allocate large chunks
7124 * of contiguous memory as there's no hardware page translation to
7125 * assemble apparent contiguous memory from discontiguous pages.
7127 * Queueing large contiguous runs of pages for batching, however,
7128 * causes the pages to actually be freed in smaller chunks. As there
7129 * can be a significant delay between the individual batches being
7130 * recycled, this leads to the once large chunks of space being
7131 * fragmented and becoming unavailable for high-order allocations.
7137 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7142 unsigned long total_pages;
7144 if (!percpu_pagelist_high_fraction) {
7146 * By default, the high value of the pcp is based on the zone
7147 * low watermark so that if they are full then background
7148 * reclaim will not be started prematurely.
7150 total_pages = low_wmark_pages(zone);
7153 * If percpu_pagelist_high_fraction is configured, the high
7154 * value is based on a fraction of the managed pages in the
7157 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7161 * Split the high value across all online CPUs local to the zone. Note
7162 * that early in boot that CPUs may not be online yet and that during
7163 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7164 * onlined. For memory nodes that have no CPUs, split pcp->high across
7165 * all online CPUs to mitigate the risk that reclaim is triggered
7166 * prematurely due to pages stored on pcp lists.
7168 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7170 nr_split_cpus = num_online_cpus();
7171 high = total_pages / nr_split_cpus;
7174 * Ensure high is at least batch*4. The multiple is based on the
7175 * historical relationship between high and batch.
7177 high = max(high, batch << 2);
7186 * pcp->high and pcp->batch values are related and generally batch is lower
7187 * than high. They are also related to pcp->count such that count is lower
7188 * than high, and as soon as it reaches high, the pcplist is flushed.
7190 * However, guaranteeing these relations at all times would require e.g. write
7191 * barriers here but also careful usage of read barriers at the read side, and
7192 * thus be prone to error and bad for performance. Thus the update only prevents
7193 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7194 * can cope with those fields changing asynchronously, and fully trust only the
7195 * pcp->count field on the local CPU with interrupts disabled.
7197 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7198 * outside of boot time (or some other assurance that no concurrent updaters
7201 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7202 unsigned long batch)
7204 WRITE_ONCE(pcp->batch, batch);
7205 WRITE_ONCE(pcp->high, high);
7208 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7212 memset(pcp, 0, sizeof(*pcp));
7213 memset(pzstats, 0, sizeof(*pzstats));
7215 spin_lock_init(&pcp->lock);
7216 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7217 INIT_LIST_HEAD(&pcp->lists[pindex]);
7220 * Set batch and high values safe for a boot pageset. A true percpu
7221 * pageset's initialization will update them subsequently. Here we don't
7222 * need to be as careful as pageset_update() as nobody can access the
7225 pcp->high = BOOT_PAGESET_HIGH;
7226 pcp->batch = BOOT_PAGESET_BATCH;
7227 pcp->free_factor = 0;
7230 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7231 unsigned long batch)
7233 struct per_cpu_pages *pcp;
7236 for_each_possible_cpu(cpu) {
7237 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7238 pageset_update(pcp, high, batch);
7243 * Calculate and set new high and batch values for all per-cpu pagesets of a
7244 * zone based on the zone's size.
7246 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7248 int new_high, new_batch;
7250 new_batch = max(1, zone_batchsize(zone));
7251 new_high = zone_highsize(zone, new_batch, cpu_online);
7253 if (zone->pageset_high == new_high &&
7254 zone->pageset_batch == new_batch)
7257 zone->pageset_high = new_high;
7258 zone->pageset_batch = new_batch;
7260 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7263 void __meminit setup_zone_pageset(struct zone *zone)
7267 /* Size may be 0 on !SMP && !NUMA */
7268 if (sizeof(struct per_cpu_zonestat) > 0)
7269 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7271 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7272 for_each_possible_cpu(cpu) {
7273 struct per_cpu_pages *pcp;
7274 struct per_cpu_zonestat *pzstats;
7276 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7277 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7278 per_cpu_pages_init(pcp, pzstats);
7281 zone_set_pageset_high_and_batch(zone, 0);
7285 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7286 * page high values need to be recalculated.
7288 static void zone_pcp_update(struct zone *zone, int cpu_online)
7290 mutex_lock(&pcp_batch_high_lock);
7291 zone_set_pageset_high_and_batch(zone, cpu_online);
7292 mutex_unlock(&pcp_batch_high_lock);
7296 * Allocate per cpu pagesets and initialize them.
7297 * Before this call only boot pagesets were available.
7299 void __init setup_per_cpu_pageset(void)
7301 struct pglist_data *pgdat;
7303 int __maybe_unused cpu;
7305 for_each_populated_zone(zone)
7306 setup_zone_pageset(zone);
7310 * Unpopulated zones continue using the boot pagesets.
7311 * The numa stats for these pagesets need to be reset.
7312 * Otherwise, they will end up skewing the stats of
7313 * the nodes these zones are associated with.
7315 for_each_possible_cpu(cpu) {
7316 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7317 memset(pzstats->vm_numa_event, 0,
7318 sizeof(pzstats->vm_numa_event));
7322 for_each_online_pgdat(pgdat)
7323 pgdat->per_cpu_nodestats =
7324 alloc_percpu(struct per_cpu_nodestat);
7327 static __meminit void zone_pcp_init(struct zone *zone)
7330 * per cpu subsystem is not up at this point. The following code
7331 * relies on the ability of the linker to provide the
7332 * offset of a (static) per cpu variable into the per cpu area.
7334 zone->per_cpu_pageset = &boot_pageset;
7335 zone->per_cpu_zonestats = &boot_zonestats;
7336 zone->pageset_high = BOOT_PAGESET_HIGH;
7337 zone->pageset_batch = BOOT_PAGESET_BATCH;
7339 if (populated_zone(zone))
7340 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7341 zone->present_pages, zone_batchsize(zone));
7344 void __meminit init_currently_empty_zone(struct zone *zone,
7345 unsigned long zone_start_pfn,
7348 struct pglist_data *pgdat = zone->zone_pgdat;
7349 int zone_idx = zone_idx(zone) + 1;
7351 if (zone_idx > pgdat->nr_zones)
7352 pgdat->nr_zones = zone_idx;
7354 zone->zone_start_pfn = zone_start_pfn;
7356 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7357 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7359 (unsigned long)zone_idx(zone),
7360 zone_start_pfn, (zone_start_pfn + size));
7362 zone_init_free_lists(zone);
7363 zone->initialized = 1;
7367 * get_pfn_range_for_nid - Return the start and end page frames for a node
7368 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7369 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7370 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7372 * It returns the start and end page frame of a node based on information
7373 * provided by memblock_set_node(). If called for a node
7374 * with no available memory, a warning is printed and the start and end
7377 void __init get_pfn_range_for_nid(unsigned int nid,
7378 unsigned long *start_pfn, unsigned long *end_pfn)
7380 unsigned long this_start_pfn, this_end_pfn;
7386 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7387 *start_pfn = min(*start_pfn, this_start_pfn);
7388 *end_pfn = max(*end_pfn, this_end_pfn);
7391 if (*start_pfn == -1UL)
7396 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7397 * assumption is made that zones within a node are ordered in monotonic
7398 * increasing memory addresses so that the "highest" populated zone is used
7400 static void __init find_usable_zone_for_movable(void)
7403 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7404 if (zone_index == ZONE_MOVABLE)
7407 if (arch_zone_highest_possible_pfn[zone_index] >
7408 arch_zone_lowest_possible_pfn[zone_index])
7412 VM_BUG_ON(zone_index == -1);
7413 movable_zone = zone_index;
7417 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7418 * because it is sized independent of architecture. Unlike the other zones,
7419 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7420 * in each node depending on the size of each node and how evenly kernelcore
7421 * is distributed. This helper function adjusts the zone ranges
7422 * provided by the architecture for a given node by using the end of the
7423 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7424 * zones within a node are in order of monotonic increases memory addresses
7426 static void __init adjust_zone_range_for_zone_movable(int nid,
7427 unsigned long zone_type,
7428 unsigned long node_start_pfn,
7429 unsigned long node_end_pfn,
7430 unsigned long *zone_start_pfn,
7431 unsigned long *zone_end_pfn)
7433 /* Only adjust if ZONE_MOVABLE is on this node */
7434 if (zone_movable_pfn[nid]) {
7435 /* Size ZONE_MOVABLE */
7436 if (zone_type == ZONE_MOVABLE) {
7437 *zone_start_pfn = zone_movable_pfn[nid];
7438 *zone_end_pfn = min(node_end_pfn,
7439 arch_zone_highest_possible_pfn[movable_zone]);
7441 /* Adjust for ZONE_MOVABLE starting within this range */
7442 } else if (!mirrored_kernelcore &&
7443 *zone_start_pfn < zone_movable_pfn[nid] &&
7444 *zone_end_pfn > zone_movable_pfn[nid]) {
7445 *zone_end_pfn = zone_movable_pfn[nid];
7447 /* Check if this whole range is within ZONE_MOVABLE */
7448 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7449 *zone_start_pfn = *zone_end_pfn;
7454 * Return the number of pages a zone spans in a node, including holes
7455 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7457 static unsigned long __init zone_spanned_pages_in_node(int nid,
7458 unsigned long zone_type,
7459 unsigned long node_start_pfn,
7460 unsigned long node_end_pfn,
7461 unsigned long *zone_start_pfn,
7462 unsigned long *zone_end_pfn)
7464 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7465 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7466 /* When hotadd a new node from cpu_up(), the node should be empty */
7467 if (!node_start_pfn && !node_end_pfn)
7470 /* Get the start and end of the zone */
7471 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7472 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7473 adjust_zone_range_for_zone_movable(nid, zone_type,
7474 node_start_pfn, node_end_pfn,
7475 zone_start_pfn, zone_end_pfn);
7477 /* Check that this node has pages within the zone's required range */
7478 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7481 /* Move the zone boundaries inside the node if necessary */
7482 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7483 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7485 /* Return the spanned pages */
7486 return *zone_end_pfn - *zone_start_pfn;
7490 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7491 * then all holes in the requested range will be accounted for.
7493 unsigned long __init __absent_pages_in_range(int nid,
7494 unsigned long range_start_pfn,
7495 unsigned long range_end_pfn)
7497 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7498 unsigned long start_pfn, end_pfn;
7501 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7502 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7503 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7504 nr_absent -= end_pfn - start_pfn;
7510 * absent_pages_in_range - Return number of page frames in holes within a range
7511 * @start_pfn: The start PFN to start searching for holes
7512 * @end_pfn: The end PFN to stop searching for holes
7514 * Return: the number of pages frames in memory holes within a range.
7516 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7517 unsigned long end_pfn)
7519 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7522 /* Return the number of page frames in holes in a zone on a node */
7523 static unsigned long __init zone_absent_pages_in_node(int nid,
7524 unsigned long zone_type,
7525 unsigned long node_start_pfn,
7526 unsigned long node_end_pfn)
7528 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7529 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7530 unsigned long zone_start_pfn, zone_end_pfn;
7531 unsigned long nr_absent;
7533 /* When hotadd a new node from cpu_up(), the node should be empty */
7534 if (!node_start_pfn && !node_end_pfn)
7537 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7538 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7540 adjust_zone_range_for_zone_movable(nid, zone_type,
7541 node_start_pfn, node_end_pfn,
7542 &zone_start_pfn, &zone_end_pfn);
7543 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7546 * ZONE_MOVABLE handling.
7547 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7550 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7551 unsigned long start_pfn, end_pfn;
7552 struct memblock_region *r;
7554 for_each_mem_region(r) {
7555 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7556 zone_start_pfn, zone_end_pfn);
7557 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7558 zone_start_pfn, zone_end_pfn);
7560 if (zone_type == ZONE_MOVABLE &&
7561 memblock_is_mirror(r))
7562 nr_absent += end_pfn - start_pfn;
7564 if (zone_type == ZONE_NORMAL &&
7565 !memblock_is_mirror(r))
7566 nr_absent += end_pfn - start_pfn;
7573 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7574 unsigned long node_start_pfn,
7575 unsigned long node_end_pfn)
7577 unsigned long realtotalpages = 0, totalpages = 0;
7580 for (i = 0; i < MAX_NR_ZONES; i++) {
7581 struct zone *zone = pgdat->node_zones + i;
7582 unsigned long zone_start_pfn, zone_end_pfn;
7583 unsigned long spanned, absent;
7584 unsigned long size, real_size;
7586 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7591 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7596 real_size = size - absent;
7599 zone->zone_start_pfn = zone_start_pfn;
7601 zone->zone_start_pfn = 0;
7602 zone->spanned_pages = size;
7603 zone->present_pages = real_size;
7604 #if defined(CONFIG_MEMORY_HOTPLUG)
7605 zone->present_early_pages = real_size;
7609 realtotalpages += real_size;
7612 pgdat->node_spanned_pages = totalpages;
7613 pgdat->node_present_pages = realtotalpages;
7614 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7617 #ifndef CONFIG_SPARSEMEM
7619 * Calculate the size of the zone->blockflags rounded to an unsigned long
7620 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7621 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7622 * round what is now in bits to nearest long in bits, then return it in
7625 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7627 unsigned long usemapsize;
7629 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7630 usemapsize = roundup(zonesize, pageblock_nr_pages);
7631 usemapsize = usemapsize >> pageblock_order;
7632 usemapsize *= NR_PAGEBLOCK_BITS;
7633 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7635 return usemapsize / 8;
7638 static void __ref setup_usemap(struct zone *zone)
7640 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7641 zone->spanned_pages);
7642 zone->pageblock_flags = NULL;
7644 zone->pageblock_flags =
7645 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7647 if (!zone->pageblock_flags)
7648 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7649 usemapsize, zone->name, zone_to_nid(zone));
7653 static inline void setup_usemap(struct zone *zone) {}
7654 #endif /* CONFIG_SPARSEMEM */
7656 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7658 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7659 void __init set_pageblock_order(void)
7661 unsigned int order = MAX_ORDER - 1;
7663 /* Check that pageblock_nr_pages has not already been setup */
7664 if (pageblock_order)
7667 /* Don't let pageblocks exceed the maximum allocation granularity. */
7668 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7669 order = HUGETLB_PAGE_ORDER;
7672 * Assume the largest contiguous order of interest is a huge page.
7673 * This value may be variable depending on boot parameters on IA64 and
7676 pageblock_order = order;
7678 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7681 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7682 * is unused as pageblock_order is set at compile-time. See
7683 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7686 void __init set_pageblock_order(void)
7690 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7692 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7693 unsigned long present_pages)
7695 unsigned long pages = spanned_pages;
7698 * Provide a more accurate estimation if there are holes within
7699 * the zone and SPARSEMEM is in use. If there are holes within the
7700 * zone, each populated memory region may cost us one or two extra
7701 * memmap pages due to alignment because memmap pages for each
7702 * populated regions may not be naturally aligned on page boundary.
7703 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7705 if (spanned_pages > present_pages + (present_pages >> 4) &&
7706 IS_ENABLED(CONFIG_SPARSEMEM))
7707 pages = present_pages;
7709 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7713 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7715 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7717 spin_lock_init(&ds_queue->split_queue_lock);
7718 INIT_LIST_HEAD(&ds_queue->split_queue);
7719 ds_queue->split_queue_len = 0;
7722 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7725 #ifdef CONFIG_COMPACTION
7726 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7728 init_waitqueue_head(&pgdat->kcompactd_wait);
7731 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7734 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7738 pgdat_resize_init(pgdat);
7739 pgdat_kswapd_lock_init(pgdat);
7741 pgdat_init_split_queue(pgdat);
7742 pgdat_init_kcompactd(pgdat);
7744 init_waitqueue_head(&pgdat->kswapd_wait);
7745 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7747 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7748 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7750 pgdat_page_ext_init(pgdat);
7751 lruvec_init(&pgdat->__lruvec);
7754 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7755 unsigned long remaining_pages)
7757 atomic_long_set(&zone->managed_pages, remaining_pages);
7758 zone_set_nid(zone, nid);
7759 zone->name = zone_names[idx];
7760 zone->zone_pgdat = NODE_DATA(nid);
7761 spin_lock_init(&zone->lock);
7762 zone_seqlock_init(zone);
7763 zone_pcp_init(zone);
7767 * Set up the zone data structures
7768 * - init pgdat internals
7769 * - init all zones belonging to this node
7771 * NOTE: this function is only called during memory hotplug
7773 #ifdef CONFIG_MEMORY_HOTPLUG
7774 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7776 int nid = pgdat->node_id;
7780 pgdat_init_internals(pgdat);
7782 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7783 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7786 * Reset the nr_zones, order and highest_zoneidx before reuse.
7787 * Note that kswapd will init kswapd_highest_zoneidx properly
7788 * when it starts in the near future.
7790 pgdat->nr_zones = 0;
7791 pgdat->kswapd_order = 0;
7792 pgdat->kswapd_highest_zoneidx = 0;
7793 pgdat->node_start_pfn = 0;
7794 for_each_online_cpu(cpu) {
7795 struct per_cpu_nodestat *p;
7797 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7798 memset(p, 0, sizeof(*p));
7801 for (z = 0; z < MAX_NR_ZONES; z++)
7802 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7807 * Set up the zone data structures:
7808 * - mark all pages reserved
7809 * - mark all memory queues empty
7810 * - clear the memory bitmaps
7812 * NOTE: pgdat should get zeroed by caller.
7813 * NOTE: this function is only called during early init.
7815 static void __init free_area_init_core(struct pglist_data *pgdat)
7818 int nid = pgdat->node_id;
7820 pgdat_init_internals(pgdat);
7821 pgdat->per_cpu_nodestats = &boot_nodestats;
7823 for (j = 0; j < MAX_NR_ZONES; j++) {
7824 struct zone *zone = pgdat->node_zones + j;
7825 unsigned long size, freesize, memmap_pages;
7827 size = zone->spanned_pages;
7828 freesize = zone->present_pages;
7831 * Adjust freesize so that it accounts for how much memory
7832 * is used by this zone for memmap. This affects the watermark
7833 * and per-cpu initialisations
7835 memmap_pages = calc_memmap_size(size, freesize);
7836 if (!is_highmem_idx(j)) {
7837 if (freesize >= memmap_pages) {
7838 freesize -= memmap_pages;
7840 pr_debug(" %s zone: %lu pages used for memmap\n",
7841 zone_names[j], memmap_pages);
7843 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7844 zone_names[j], memmap_pages, freesize);
7847 /* Account for reserved pages */
7848 if (j == 0 && freesize > dma_reserve) {
7849 freesize -= dma_reserve;
7850 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7853 if (!is_highmem_idx(j))
7854 nr_kernel_pages += freesize;
7855 /* Charge for highmem memmap if there are enough kernel pages */
7856 else if (nr_kernel_pages > memmap_pages * 2)
7857 nr_kernel_pages -= memmap_pages;
7858 nr_all_pages += freesize;
7861 * Set an approximate value for lowmem here, it will be adjusted
7862 * when the bootmem allocator frees pages into the buddy system.
7863 * And all highmem pages will be managed by the buddy system.
7865 zone_init_internals(zone, j, nid, freesize);
7870 set_pageblock_order();
7872 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7876 #ifdef CONFIG_FLATMEM
7877 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7879 unsigned long __maybe_unused start = 0;
7880 unsigned long __maybe_unused offset = 0;
7882 /* Skip empty nodes */
7883 if (!pgdat->node_spanned_pages)
7886 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7887 offset = pgdat->node_start_pfn - start;
7888 /* ia64 gets its own node_mem_map, before this, without bootmem */
7889 if (!pgdat->node_mem_map) {
7890 unsigned long size, end;
7894 * The zone's endpoints aren't required to be MAX_ORDER
7895 * aligned but the node_mem_map endpoints must be in order
7896 * for the buddy allocator to function correctly.
7898 end = pgdat_end_pfn(pgdat);
7899 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7900 size = (end - start) * sizeof(struct page);
7901 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7902 pgdat->node_id, false);
7904 panic("Failed to allocate %ld bytes for node %d memory map\n",
7905 size, pgdat->node_id);
7906 pgdat->node_mem_map = map + offset;
7908 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7909 __func__, pgdat->node_id, (unsigned long)pgdat,
7910 (unsigned long)pgdat->node_mem_map);
7913 * With no DISCONTIG, the global mem_map is just set as node 0's
7915 if (pgdat == NODE_DATA(0)) {
7916 mem_map = NODE_DATA(0)->node_mem_map;
7917 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7923 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7924 #endif /* CONFIG_FLATMEM */
7926 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7927 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7929 pgdat->first_deferred_pfn = ULONG_MAX;
7932 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7935 static void __init free_area_init_node(int nid)
7937 pg_data_t *pgdat = NODE_DATA(nid);
7938 unsigned long start_pfn = 0;
7939 unsigned long end_pfn = 0;
7941 /* pg_data_t should be reset to zero when it's allocated */
7942 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7944 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7946 pgdat->node_id = nid;
7947 pgdat->node_start_pfn = start_pfn;
7948 pgdat->per_cpu_nodestats = NULL;
7950 if (start_pfn != end_pfn) {
7951 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7952 (u64)start_pfn << PAGE_SHIFT,
7953 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7955 pr_info("Initmem setup node %d as memoryless\n", nid);
7958 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7960 alloc_node_mem_map(pgdat);
7961 pgdat_set_deferred_range(pgdat);
7963 free_area_init_core(pgdat);
7964 lru_gen_init_pgdat(pgdat);
7967 static void __init free_area_init_memoryless_node(int nid)
7969 free_area_init_node(nid);
7972 #if MAX_NUMNODES > 1
7974 * Figure out the number of possible node ids.
7976 void __init setup_nr_node_ids(void)
7978 unsigned int highest;
7980 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7981 nr_node_ids = highest + 1;
7986 * node_map_pfn_alignment - determine the maximum internode alignment
7988 * This function should be called after node map is populated and sorted.
7989 * It calculates the maximum power of two alignment which can distinguish
7992 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7993 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7994 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7995 * shifted, 1GiB is enough and this function will indicate so.
7997 * This is used to test whether pfn -> nid mapping of the chosen memory
7998 * model has fine enough granularity to avoid incorrect mapping for the
7999 * populated node map.
8001 * Return: the determined alignment in pfn's. 0 if there is no alignment
8002 * requirement (single node).
8004 unsigned long __init node_map_pfn_alignment(void)
8006 unsigned long accl_mask = 0, last_end = 0;
8007 unsigned long start, end, mask;
8008 int last_nid = NUMA_NO_NODE;
8011 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8012 if (!start || last_nid < 0 || last_nid == nid) {
8019 * Start with a mask granular enough to pin-point to the
8020 * start pfn and tick off bits one-by-one until it becomes
8021 * too coarse to separate the current node from the last.
8023 mask = ~((1 << __ffs(start)) - 1);
8024 while (mask && last_end <= (start & (mask << 1)))
8027 /* accumulate all internode masks */
8031 /* convert mask to number of pages */
8032 return ~accl_mask + 1;
8036 * early_calculate_totalpages()
8037 * Sum pages in active regions for movable zone.
8038 * Populate N_MEMORY for calculating usable_nodes.
8040 static unsigned long __init early_calculate_totalpages(void)
8042 unsigned long totalpages = 0;
8043 unsigned long start_pfn, end_pfn;
8046 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8047 unsigned long pages = end_pfn - start_pfn;
8049 totalpages += pages;
8051 node_set_state(nid, N_MEMORY);
8057 * Find the PFN the Movable zone begins in each node. Kernel memory
8058 * is spread evenly between nodes as long as the nodes have enough
8059 * memory. When they don't, some nodes will have more kernelcore than
8062 static void __init find_zone_movable_pfns_for_nodes(void)
8065 unsigned long usable_startpfn;
8066 unsigned long kernelcore_node, kernelcore_remaining;
8067 /* save the state before borrow the nodemask */
8068 nodemask_t saved_node_state = node_states[N_MEMORY];
8069 unsigned long totalpages = early_calculate_totalpages();
8070 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8071 struct memblock_region *r;
8073 /* Need to find movable_zone earlier when movable_node is specified. */
8074 find_usable_zone_for_movable();
8077 * If movable_node is specified, ignore kernelcore and movablecore
8080 if (movable_node_is_enabled()) {
8081 for_each_mem_region(r) {
8082 if (!memblock_is_hotpluggable(r))
8085 nid = memblock_get_region_node(r);
8087 usable_startpfn = PFN_DOWN(r->base);
8088 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8089 min(usable_startpfn, zone_movable_pfn[nid]) :
8097 * If kernelcore=mirror is specified, ignore movablecore option
8099 if (mirrored_kernelcore) {
8100 bool mem_below_4gb_not_mirrored = false;
8102 for_each_mem_region(r) {
8103 if (memblock_is_mirror(r))
8106 nid = memblock_get_region_node(r);
8108 usable_startpfn = memblock_region_memory_base_pfn(r);
8110 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8111 mem_below_4gb_not_mirrored = true;
8115 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8116 min(usable_startpfn, zone_movable_pfn[nid]) :
8120 if (mem_below_4gb_not_mirrored)
8121 pr_warn("This configuration results in unmirrored kernel memory.\n");
8127 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8128 * amount of necessary memory.
8130 if (required_kernelcore_percent)
8131 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8133 if (required_movablecore_percent)
8134 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8138 * If movablecore= was specified, calculate what size of
8139 * kernelcore that corresponds so that memory usable for
8140 * any allocation type is evenly spread. If both kernelcore
8141 * and movablecore are specified, then the value of kernelcore
8142 * will be used for required_kernelcore if it's greater than
8143 * what movablecore would have allowed.
8145 if (required_movablecore) {
8146 unsigned long corepages;
8149 * Round-up so that ZONE_MOVABLE is at least as large as what
8150 * was requested by the user
8152 required_movablecore =
8153 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8154 required_movablecore = min(totalpages, required_movablecore);
8155 corepages = totalpages - required_movablecore;
8157 required_kernelcore = max(required_kernelcore, corepages);
8161 * If kernelcore was not specified or kernelcore size is larger
8162 * than totalpages, there is no ZONE_MOVABLE.
8164 if (!required_kernelcore || required_kernelcore >= totalpages)
8167 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8168 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8171 /* Spread kernelcore memory as evenly as possible throughout nodes */
8172 kernelcore_node = required_kernelcore / usable_nodes;
8173 for_each_node_state(nid, N_MEMORY) {
8174 unsigned long start_pfn, end_pfn;
8177 * Recalculate kernelcore_node if the division per node
8178 * now exceeds what is necessary to satisfy the requested
8179 * amount of memory for the kernel
8181 if (required_kernelcore < kernelcore_node)
8182 kernelcore_node = required_kernelcore / usable_nodes;
8185 * As the map is walked, we track how much memory is usable
8186 * by the kernel using kernelcore_remaining. When it is
8187 * 0, the rest of the node is usable by ZONE_MOVABLE
8189 kernelcore_remaining = kernelcore_node;
8191 /* Go through each range of PFNs within this node */
8192 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8193 unsigned long size_pages;
8195 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8196 if (start_pfn >= end_pfn)
8199 /* Account for what is only usable for kernelcore */
8200 if (start_pfn < usable_startpfn) {
8201 unsigned long kernel_pages;
8202 kernel_pages = min(end_pfn, usable_startpfn)
8205 kernelcore_remaining -= min(kernel_pages,
8206 kernelcore_remaining);
8207 required_kernelcore -= min(kernel_pages,
8208 required_kernelcore);
8210 /* Continue if range is now fully accounted */
8211 if (end_pfn <= usable_startpfn) {
8214 * Push zone_movable_pfn to the end so
8215 * that if we have to rebalance
8216 * kernelcore across nodes, we will
8217 * not double account here
8219 zone_movable_pfn[nid] = end_pfn;
8222 start_pfn = usable_startpfn;
8226 * The usable PFN range for ZONE_MOVABLE is from
8227 * start_pfn->end_pfn. Calculate size_pages as the
8228 * number of pages used as kernelcore
8230 size_pages = end_pfn - start_pfn;
8231 if (size_pages > kernelcore_remaining)
8232 size_pages = kernelcore_remaining;
8233 zone_movable_pfn[nid] = start_pfn + size_pages;
8236 * Some kernelcore has been met, update counts and
8237 * break if the kernelcore for this node has been
8240 required_kernelcore -= min(required_kernelcore,
8242 kernelcore_remaining -= size_pages;
8243 if (!kernelcore_remaining)
8249 * If there is still required_kernelcore, we do another pass with one
8250 * less node in the count. This will push zone_movable_pfn[nid] further
8251 * along on the nodes that still have memory until kernelcore is
8255 if (usable_nodes && required_kernelcore > usable_nodes)
8259 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8260 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8261 unsigned long start_pfn, end_pfn;
8263 zone_movable_pfn[nid] =
8264 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8266 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8267 if (zone_movable_pfn[nid] >= end_pfn)
8268 zone_movable_pfn[nid] = 0;
8272 /* restore the node_state */
8273 node_states[N_MEMORY] = saved_node_state;
8276 /* Any regular or high memory on that node ? */
8277 static void check_for_memory(pg_data_t *pgdat, int nid)
8279 enum zone_type zone_type;
8281 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8282 struct zone *zone = &pgdat->node_zones[zone_type];
8283 if (populated_zone(zone)) {
8284 if (IS_ENABLED(CONFIG_HIGHMEM))
8285 node_set_state(nid, N_HIGH_MEMORY);
8286 if (zone_type <= ZONE_NORMAL)
8287 node_set_state(nid, N_NORMAL_MEMORY);
8294 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8295 * such cases we allow max_zone_pfn sorted in the descending order
8297 bool __weak arch_has_descending_max_zone_pfns(void)
8303 * free_area_init - Initialise all pg_data_t and zone data
8304 * @max_zone_pfn: an array of max PFNs for each zone
8306 * This will call free_area_init_node() for each active node in the system.
8307 * Using the page ranges provided by memblock_set_node(), the size of each
8308 * zone in each node and their holes is calculated. If the maximum PFN
8309 * between two adjacent zones match, it is assumed that the zone is empty.
8310 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8311 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8312 * starts where the previous one ended. For example, ZONE_DMA32 starts
8313 * at arch_max_dma_pfn.
8315 void __init free_area_init(unsigned long *max_zone_pfn)
8317 unsigned long start_pfn, end_pfn;
8321 /* Record where the zone boundaries are */
8322 memset(arch_zone_lowest_possible_pfn, 0,
8323 sizeof(arch_zone_lowest_possible_pfn));
8324 memset(arch_zone_highest_possible_pfn, 0,
8325 sizeof(arch_zone_highest_possible_pfn));
8327 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8328 descending = arch_has_descending_max_zone_pfns();
8330 for (i = 0; i < MAX_NR_ZONES; i++) {
8332 zone = MAX_NR_ZONES - i - 1;
8336 if (zone == ZONE_MOVABLE)
8339 end_pfn = max(max_zone_pfn[zone], start_pfn);
8340 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8341 arch_zone_highest_possible_pfn[zone] = end_pfn;
8343 start_pfn = end_pfn;
8346 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8347 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8348 find_zone_movable_pfns_for_nodes();
8350 /* Print out the zone ranges */
8351 pr_info("Zone ranges:\n");
8352 for (i = 0; i < MAX_NR_ZONES; i++) {
8353 if (i == ZONE_MOVABLE)
8355 pr_info(" %-8s ", zone_names[i]);
8356 if (arch_zone_lowest_possible_pfn[i] ==
8357 arch_zone_highest_possible_pfn[i])
8360 pr_cont("[mem %#018Lx-%#018Lx]\n",
8361 (u64)arch_zone_lowest_possible_pfn[i]
8363 ((u64)arch_zone_highest_possible_pfn[i]
8364 << PAGE_SHIFT) - 1);
8367 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8368 pr_info("Movable zone start for each node\n");
8369 for (i = 0; i < MAX_NUMNODES; i++) {
8370 if (zone_movable_pfn[i])
8371 pr_info(" Node %d: %#018Lx\n", i,
8372 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8376 * Print out the early node map, and initialize the
8377 * subsection-map relative to active online memory ranges to
8378 * enable future "sub-section" extensions of the memory map.
8380 pr_info("Early memory node ranges\n");
8381 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8382 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8383 (u64)start_pfn << PAGE_SHIFT,
8384 ((u64)end_pfn << PAGE_SHIFT) - 1);
8385 subsection_map_init(start_pfn, end_pfn - start_pfn);
8388 /* Initialise every node */
8389 mminit_verify_pageflags_layout();
8390 setup_nr_node_ids();
8391 for_each_node(nid) {
8394 if (!node_online(nid)) {
8395 pr_info("Initializing node %d as memoryless\n", nid);
8397 /* Allocator not initialized yet */
8398 pgdat = arch_alloc_nodedata(nid);
8400 pr_err("Cannot allocate %zuB for node %d.\n",
8401 sizeof(*pgdat), nid);
8404 arch_refresh_nodedata(nid, pgdat);
8405 free_area_init_memoryless_node(nid);
8408 * We do not want to confuse userspace by sysfs
8409 * files/directories for node without any memory
8410 * attached to it, so this node is not marked as
8411 * N_MEMORY and not marked online so that no sysfs
8412 * hierarchy will be created via register_one_node for
8413 * it. The pgdat will get fully initialized by
8414 * hotadd_init_pgdat() when memory is hotplugged into
8420 pgdat = NODE_DATA(nid);
8421 free_area_init_node(nid);
8423 /* Any memory on that node */
8424 if (pgdat->node_present_pages)
8425 node_set_state(nid, N_MEMORY);
8426 check_for_memory(pgdat, nid);
8432 static int __init cmdline_parse_core(char *p, unsigned long *core,
8433 unsigned long *percent)
8435 unsigned long long coremem;
8441 /* Value may be a percentage of total memory, otherwise bytes */
8442 coremem = simple_strtoull(p, &endptr, 0);
8443 if (*endptr == '%') {
8444 /* Paranoid check for percent values greater than 100 */
8445 WARN_ON(coremem > 100);
8449 coremem = memparse(p, &p);
8450 /* Paranoid check that UL is enough for the coremem value */
8451 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8453 *core = coremem >> PAGE_SHIFT;
8460 * kernelcore=size sets the amount of memory for use for allocations that
8461 * cannot be reclaimed or migrated.
8463 static int __init cmdline_parse_kernelcore(char *p)
8465 /* parse kernelcore=mirror */
8466 if (parse_option_str(p, "mirror")) {
8467 mirrored_kernelcore = true;
8471 return cmdline_parse_core(p, &required_kernelcore,
8472 &required_kernelcore_percent);
8476 * movablecore=size sets the amount of memory for use for allocations that
8477 * can be reclaimed or migrated.
8479 static int __init cmdline_parse_movablecore(char *p)
8481 return cmdline_parse_core(p, &required_movablecore,
8482 &required_movablecore_percent);
8485 early_param("kernelcore", cmdline_parse_kernelcore);
8486 early_param("movablecore", cmdline_parse_movablecore);
8488 void adjust_managed_page_count(struct page *page, long count)
8490 atomic_long_add(count, &page_zone(page)->managed_pages);
8491 totalram_pages_add(count);
8492 #ifdef CONFIG_HIGHMEM
8493 if (PageHighMem(page))
8494 totalhigh_pages_add(count);
8497 EXPORT_SYMBOL(adjust_managed_page_count);
8499 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8502 unsigned long pages = 0;
8504 start = (void *)PAGE_ALIGN((unsigned long)start);
8505 end = (void *)((unsigned long)end & PAGE_MASK);
8506 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8507 struct page *page = virt_to_page(pos);
8508 void *direct_map_addr;
8511 * 'direct_map_addr' might be different from 'pos'
8512 * because some architectures' virt_to_page()
8513 * work with aliases. Getting the direct map
8514 * address ensures that we get a _writeable_
8515 * alias for the memset().
8517 direct_map_addr = page_address(page);
8519 * Perform a kasan-unchecked memset() since this memory
8520 * has not been initialized.
8522 direct_map_addr = kasan_reset_tag(direct_map_addr);
8523 if ((unsigned int)poison <= 0xFF)
8524 memset(direct_map_addr, poison, PAGE_SIZE);
8526 free_reserved_page(page);
8530 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8535 void __init mem_init_print_info(void)
8537 unsigned long physpages, codesize, datasize, rosize, bss_size;
8538 unsigned long init_code_size, init_data_size;
8540 physpages = get_num_physpages();
8541 codesize = _etext - _stext;
8542 datasize = _edata - _sdata;
8543 rosize = __end_rodata - __start_rodata;
8544 bss_size = __bss_stop - __bss_start;
8545 init_data_size = __init_end - __init_begin;
8546 init_code_size = _einittext - _sinittext;
8549 * Detect special cases and adjust section sizes accordingly:
8550 * 1) .init.* may be embedded into .data sections
8551 * 2) .init.text.* may be out of [__init_begin, __init_end],
8552 * please refer to arch/tile/kernel/vmlinux.lds.S.
8553 * 3) .rodata.* may be embedded into .text or .data sections.
8555 #define adj_init_size(start, end, size, pos, adj) \
8557 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8561 adj_init_size(__init_begin, __init_end, init_data_size,
8562 _sinittext, init_code_size);
8563 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8564 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8565 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8566 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8568 #undef adj_init_size
8570 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8571 #ifdef CONFIG_HIGHMEM
8575 K(nr_free_pages()), K(physpages),
8576 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8577 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8578 K(physpages - totalram_pages() - totalcma_pages),
8580 #ifdef CONFIG_HIGHMEM
8581 , K(totalhigh_pages())
8587 * set_dma_reserve - set the specified number of pages reserved in the first zone
8588 * @new_dma_reserve: The number of pages to mark reserved
8590 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8591 * In the DMA zone, a significant percentage may be consumed by kernel image
8592 * and other unfreeable allocations which can skew the watermarks badly. This
8593 * function may optionally be used to account for unfreeable pages in the
8594 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8595 * smaller per-cpu batchsize.
8597 void __init set_dma_reserve(unsigned long new_dma_reserve)
8599 dma_reserve = new_dma_reserve;
8602 static int page_alloc_cpu_dead(unsigned int cpu)
8606 lru_add_drain_cpu(cpu);
8607 mlock_drain_remote(cpu);
8611 * Spill the event counters of the dead processor
8612 * into the current processors event counters.
8613 * This artificially elevates the count of the current
8616 vm_events_fold_cpu(cpu);
8619 * Zero the differential counters of the dead processor
8620 * so that the vm statistics are consistent.
8622 * This is only okay since the processor is dead and cannot
8623 * race with what we are doing.
8625 cpu_vm_stats_fold(cpu);
8627 for_each_populated_zone(zone)
8628 zone_pcp_update(zone, 0);
8633 static int page_alloc_cpu_online(unsigned int cpu)
8637 for_each_populated_zone(zone)
8638 zone_pcp_update(zone, 1);
8643 int hashdist = HASHDIST_DEFAULT;
8645 static int __init set_hashdist(char *str)
8649 hashdist = simple_strtoul(str, &str, 0);
8652 __setup("hashdist=", set_hashdist);
8655 void __init page_alloc_init(void)
8660 if (num_node_state(N_MEMORY) == 1)
8664 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8665 "mm/page_alloc:pcp",
8666 page_alloc_cpu_online,
8667 page_alloc_cpu_dead);
8672 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8673 * or min_free_kbytes changes.
8675 static void calculate_totalreserve_pages(void)
8677 struct pglist_data *pgdat;
8678 unsigned long reserve_pages = 0;
8679 enum zone_type i, j;
8681 for_each_online_pgdat(pgdat) {
8683 pgdat->totalreserve_pages = 0;
8685 for (i = 0; i < MAX_NR_ZONES; i++) {
8686 struct zone *zone = pgdat->node_zones + i;
8688 unsigned long managed_pages = zone_managed_pages(zone);
8690 /* Find valid and maximum lowmem_reserve in the zone */
8691 for (j = i; j < MAX_NR_ZONES; j++) {
8692 if (zone->lowmem_reserve[j] > max)
8693 max = zone->lowmem_reserve[j];
8696 /* we treat the high watermark as reserved pages. */
8697 max += high_wmark_pages(zone);
8699 if (max > managed_pages)
8700 max = managed_pages;
8702 pgdat->totalreserve_pages += max;
8704 reserve_pages += max;
8707 totalreserve_pages = reserve_pages;
8711 * setup_per_zone_lowmem_reserve - called whenever
8712 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8713 * has a correct pages reserved value, so an adequate number of
8714 * pages are left in the zone after a successful __alloc_pages().
8716 static void setup_per_zone_lowmem_reserve(void)
8718 struct pglist_data *pgdat;
8719 enum zone_type i, j;
8721 for_each_online_pgdat(pgdat) {
8722 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8723 struct zone *zone = &pgdat->node_zones[i];
8724 int ratio = sysctl_lowmem_reserve_ratio[i];
8725 bool clear = !ratio || !zone_managed_pages(zone);
8726 unsigned long managed_pages = 0;
8728 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8729 struct zone *upper_zone = &pgdat->node_zones[j];
8731 managed_pages += zone_managed_pages(upper_zone);
8734 zone->lowmem_reserve[j] = 0;
8736 zone->lowmem_reserve[j] = managed_pages / ratio;
8741 /* update totalreserve_pages */
8742 calculate_totalreserve_pages();
8745 static void __setup_per_zone_wmarks(void)
8747 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8748 unsigned long lowmem_pages = 0;
8750 unsigned long flags;
8752 /* Calculate total number of !ZONE_HIGHMEM pages */
8753 for_each_zone(zone) {
8754 if (!is_highmem(zone))
8755 lowmem_pages += zone_managed_pages(zone);
8758 for_each_zone(zone) {
8761 spin_lock_irqsave(&zone->lock, flags);
8762 tmp = (u64)pages_min * zone_managed_pages(zone);
8763 do_div(tmp, lowmem_pages);
8764 if (is_highmem(zone)) {
8766 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8767 * need highmem pages, so cap pages_min to a small
8770 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8771 * deltas control async page reclaim, and so should
8772 * not be capped for highmem.
8774 unsigned long min_pages;
8776 min_pages = zone_managed_pages(zone) / 1024;
8777 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8778 zone->_watermark[WMARK_MIN] = min_pages;
8781 * If it's a lowmem zone, reserve a number of pages
8782 * proportionate to the zone's size.
8784 zone->_watermark[WMARK_MIN] = tmp;
8788 * Set the kswapd watermarks distance according to the
8789 * scale factor in proportion to available memory, but
8790 * ensure a minimum size on small systems.
8792 tmp = max_t(u64, tmp >> 2,
8793 mult_frac(zone_managed_pages(zone),
8794 watermark_scale_factor, 10000));
8796 zone->watermark_boost = 0;
8797 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8798 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8799 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8801 spin_unlock_irqrestore(&zone->lock, flags);
8804 /* update totalreserve_pages */
8805 calculate_totalreserve_pages();
8809 * setup_per_zone_wmarks - called when min_free_kbytes changes
8810 * or when memory is hot-{added|removed}
8812 * Ensures that the watermark[min,low,high] values for each zone are set
8813 * correctly with respect to min_free_kbytes.
8815 void setup_per_zone_wmarks(void)
8818 static DEFINE_SPINLOCK(lock);
8821 __setup_per_zone_wmarks();
8825 * The watermark size have changed so update the pcpu batch
8826 * and high limits or the limits may be inappropriate.
8829 zone_pcp_update(zone, 0);
8833 * Initialise min_free_kbytes.
8835 * For small machines we want it small (128k min). For large machines
8836 * we want it large (256MB max). But it is not linear, because network
8837 * bandwidth does not increase linearly with machine size. We use
8839 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8840 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8856 void calculate_min_free_kbytes(void)
8858 unsigned long lowmem_kbytes;
8859 int new_min_free_kbytes;
8861 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8862 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8864 if (new_min_free_kbytes > user_min_free_kbytes)
8865 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8867 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8868 new_min_free_kbytes, user_min_free_kbytes);
8872 int __meminit init_per_zone_wmark_min(void)
8874 calculate_min_free_kbytes();
8875 setup_per_zone_wmarks();
8876 refresh_zone_stat_thresholds();
8877 setup_per_zone_lowmem_reserve();
8880 setup_min_unmapped_ratio();
8881 setup_min_slab_ratio();
8884 khugepaged_min_free_kbytes_update();
8888 postcore_initcall(init_per_zone_wmark_min)
8891 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8892 * that we can call two helper functions whenever min_free_kbytes
8895 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8896 void *buffer, size_t *length, loff_t *ppos)
8900 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8905 user_min_free_kbytes = min_free_kbytes;
8906 setup_per_zone_wmarks();
8911 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8912 void *buffer, size_t *length, loff_t *ppos)
8916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8921 setup_per_zone_wmarks();
8927 static void setup_min_unmapped_ratio(void)
8932 for_each_online_pgdat(pgdat)
8933 pgdat->min_unmapped_pages = 0;
8936 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8937 sysctl_min_unmapped_ratio) / 100;
8941 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8942 void *buffer, size_t *length, loff_t *ppos)
8946 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8950 setup_min_unmapped_ratio();
8955 static void setup_min_slab_ratio(void)
8960 for_each_online_pgdat(pgdat)
8961 pgdat->min_slab_pages = 0;
8964 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8965 sysctl_min_slab_ratio) / 100;
8968 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8969 void *buffer, size_t *length, loff_t *ppos)
8973 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8977 setup_min_slab_ratio();
8984 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8985 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8986 * whenever sysctl_lowmem_reserve_ratio changes.
8988 * The reserve ratio obviously has absolutely no relation with the
8989 * minimum watermarks. The lowmem reserve ratio can only make sense
8990 * if in function of the boot time zone sizes.
8992 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8993 void *buffer, size_t *length, loff_t *ppos)
8997 proc_dointvec_minmax(table, write, buffer, length, ppos);
8999 for (i = 0; i < MAX_NR_ZONES; i++) {
9000 if (sysctl_lowmem_reserve_ratio[i] < 1)
9001 sysctl_lowmem_reserve_ratio[i] = 0;
9004 setup_per_zone_lowmem_reserve();
9009 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9010 * cpu. It is the fraction of total pages in each zone that a hot per cpu
9011 * pagelist can have before it gets flushed back to buddy allocator.
9013 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9014 int write, void *buffer, size_t *length, loff_t *ppos)
9017 int old_percpu_pagelist_high_fraction;
9020 mutex_lock(&pcp_batch_high_lock);
9021 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9023 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9024 if (!write || ret < 0)
9027 /* Sanity checking to avoid pcp imbalance */
9028 if (percpu_pagelist_high_fraction &&
9029 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9030 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9036 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9039 for_each_populated_zone(zone)
9040 zone_set_pageset_high_and_batch(zone, 0);
9042 mutex_unlock(&pcp_batch_high_lock);
9046 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9048 * Returns the number of pages that arch has reserved but
9049 * is not known to alloc_large_system_hash().
9051 static unsigned long __init arch_reserved_kernel_pages(void)
9058 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9059 * machines. As memory size is increased the scale is also increased but at
9060 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9061 * quadruples the scale is increased by one, which means the size of hash table
9062 * only doubles, instead of quadrupling as well.
9063 * Because 32-bit systems cannot have large physical memory, where this scaling
9064 * makes sense, it is disabled on such platforms.
9066 #if __BITS_PER_LONG > 32
9067 #define ADAPT_SCALE_BASE (64ul << 30)
9068 #define ADAPT_SCALE_SHIFT 2
9069 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9073 * allocate a large system hash table from bootmem
9074 * - it is assumed that the hash table must contain an exact power-of-2
9075 * quantity of entries
9076 * - limit is the number of hash buckets, not the total allocation size
9078 void *__init alloc_large_system_hash(const char *tablename,
9079 unsigned long bucketsize,
9080 unsigned long numentries,
9083 unsigned int *_hash_shift,
9084 unsigned int *_hash_mask,
9085 unsigned long low_limit,
9086 unsigned long high_limit)
9088 unsigned long long max = high_limit;
9089 unsigned long log2qty, size;
9095 /* allow the kernel cmdline to have a say */
9097 /* round applicable memory size up to nearest megabyte */
9098 numentries = nr_kernel_pages;
9099 numentries -= arch_reserved_kernel_pages();
9101 /* It isn't necessary when PAGE_SIZE >= 1MB */
9102 if (PAGE_SIZE < SZ_1M)
9103 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9105 #if __BITS_PER_LONG > 32
9107 unsigned long adapt;
9109 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9110 adapt <<= ADAPT_SCALE_SHIFT)
9115 /* limit to 1 bucket per 2^scale bytes of low memory */
9116 if (scale > PAGE_SHIFT)
9117 numentries >>= (scale - PAGE_SHIFT);
9119 numentries <<= (PAGE_SHIFT - scale);
9121 /* Make sure we've got at least a 0-order allocation.. */
9122 if (unlikely(flags & HASH_SMALL)) {
9123 /* Makes no sense without HASH_EARLY */
9124 WARN_ON(!(flags & HASH_EARLY));
9125 if (!(numentries >> *_hash_shift)) {
9126 numentries = 1UL << *_hash_shift;
9127 BUG_ON(!numentries);
9129 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9130 numentries = PAGE_SIZE / bucketsize;
9132 numentries = roundup_pow_of_two(numentries);
9134 /* limit allocation size to 1/16 total memory by default */
9136 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9137 do_div(max, bucketsize);
9139 max = min(max, 0x80000000ULL);
9141 if (numentries < low_limit)
9142 numentries = low_limit;
9143 if (numentries > max)
9146 log2qty = ilog2(numentries);
9148 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9151 size = bucketsize << log2qty;
9152 if (flags & HASH_EARLY) {
9153 if (flags & HASH_ZERO)
9154 table = memblock_alloc(size, SMP_CACHE_BYTES);
9156 table = memblock_alloc_raw(size,
9158 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9159 table = vmalloc_huge(size, gfp_flags);
9162 huge = is_vm_area_hugepages(table);
9165 * If bucketsize is not a power-of-two, we may free
9166 * some pages at the end of hash table which
9167 * alloc_pages_exact() automatically does
9169 table = alloc_pages_exact(size, gfp_flags);
9170 kmemleak_alloc(table, size, 1, gfp_flags);
9172 } while (!table && size > PAGE_SIZE && --log2qty);
9175 panic("Failed to allocate %s hash table\n", tablename);
9177 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9178 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9179 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9182 *_hash_shift = log2qty;
9184 *_hash_mask = (1 << log2qty) - 1;
9189 #ifdef CONFIG_CONTIG_ALLOC
9190 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9191 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9192 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9193 static void alloc_contig_dump_pages(struct list_head *page_list)
9195 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9197 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9201 list_for_each_entry(page, page_list, lru)
9202 dump_page(page, "migration failure");
9206 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9211 /* [start, end) must belong to a single zone. */
9212 int __alloc_contig_migrate_range(struct compact_control *cc,
9213 unsigned long start, unsigned long end)
9215 /* This function is based on compact_zone() from compaction.c. */
9216 unsigned int nr_reclaimed;
9217 unsigned long pfn = start;
9218 unsigned int tries = 0;
9220 struct migration_target_control mtc = {
9221 .nid = zone_to_nid(cc->zone),
9222 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9225 lru_cache_disable();
9227 while (pfn < end || !list_empty(&cc->migratepages)) {
9228 if (fatal_signal_pending(current)) {
9233 if (list_empty(&cc->migratepages)) {
9234 cc->nr_migratepages = 0;
9235 ret = isolate_migratepages_range(cc, pfn, end);
9236 if (ret && ret != -EAGAIN)
9238 pfn = cc->migrate_pfn;
9240 } else if (++tries == 5) {
9245 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9247 cc->nr_migratepages -= nr_reclaimed;
9249 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9250 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9253 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9254 * to retry again over this error, so do the same here.
9262 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9263 alloc_contig_dump_pages(&cc->migratepages);
9264 putback_movable_pages(&cc->migratepages);
9271 * alloc_contig_range() -- tries to allocate given range of pages
9272 * @start: start PFN to allocate
9273 * @end: one-past-the-last PFN to allocate
9274 * @migratetype: migratetype of the underlying pageblocks (either
9275 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9276 * in range must have the same migratetype and it must
9277 * be either of the two.
9278 * @gfp_mask: GFP mask to use during compaction
9280 * The PFN range does not have to be pageblock aligned. The PFN range must
9281 * belong to a single zone.
9283 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9284 * pageblocks in the range. Once isolated, the pageblocks should not
9285 * be modified by others.
9287 * Return: zero on success or negative error code. On success all
9288 * pages which PFN is in [start, end) are allocated for the caller and
9289 * need to be freed with free_contig_range().
9291 int alloc_contig_range(unsigned long start, unsigned long end,
9292 unsigned migratetype, gfp_t gfp_mask)
9294 unsigned long outer_start, outer_end;
9298 struct compact_control cc = {
9299 .nr_migratepages = 0,
9301 .zone = page_zone(pfn_to_page(start)),
9302 .mode = MIGRATE_SYNC,
9303 .ignore_skip_hint = true,
9304 .no_set_skip_hint = true,
9305 .gfp_mask = current_gfp_context(gfp_mask),
9306 .alloc_contig = true,
9308 INIT_LIST_HEAD(&cc.migratepages);
9311 * What we do here is we mark all pageblocks in range as
9312 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9313 * have different sizes, and due to the way page allocator
9314 * work, start_isolate_page_range() has special handlings for this.
9316 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9317 * migrate the pages from an unaligned range (ie. pages that
9318 * we are interested in). This will put all the pages in
9319 * range back to page allocator as MIGRATE_ISOLATE.
9321 * When this is done, we take the pages in range from page
9322 * allocator removing them from the buddy system. This way
9323 * page allocator will never consider using them.
9325 * This lets us mark the pageblocks back as
9326 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9327 * aligned range but not in the unaligned, original range are
9328 * put back to page allocator so that buddy can use them.
9331 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9335 drain_all_pages(cc.zone);
9338 * In case of -EBUSY, we'd like to know which page causes problem.
9339 * So, just fall through. test_pages_isolated() has a tracepoint
9340 * which will report the busy page.
9342 * It is possible that busy pages could become available before
9343 * the call to test_pages_isolated, and the range will actually be
9344 * allocated. So, if we fall through be sure to clear ret so that
9345 * -EBUSY is not accidentally used or returned to caller.
9347 ret = __alloc_contig_migrate_range(&cc, start, end);
9348 if (ret && ret != -EBUSY)
9353 * Pages from [start, end) are within a pageblock_nr_pages
9354 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9355 * more, all pages in [start, end) are free in page allocator.
9356 * What we are going to do is to allocate all pages from
9357 * [start, end) (that is remove them from page allocator).
9359 * The only problem is that pages at the beginning and at the
9360 * end of interesting range may be not aligned with pages that
9361 * page allocator holds, ie. they can be part of higher order
9362 * pages. Because of this, we reserve the bigger range and
9363 * once this is done free the pages we are not interested in.
9365 * We don't have to hold zone->lock here because the pages are
9366 * isolated thus they won't get removed from buddy.
9370 outer_start = start;
9371 while (!PageBuddy(pfn_to_page(outer_start))) {
9372 if (++order >= MAX_ORDER) {
9373 outer_start = start;
9376 outer_start &= ~0UL << order;
9379 if (outer_start != start) {
9380 order = buddy_order(pfn_to_page(outer_start));
9383 * outer_start page could be small order buddy page and
9384 * it doesn't include start page. Adjust outer_start
9385 * in this case to report failed page properly
9386 * on tracepoint in test_pages_isolated()
9388 if (outer_start + (1UL << order) <= start)
9389 outer_start = start;
9392 /* Make sure the range is really isolated. */
9393 if (test_pages_isolated(outer_start, end, 0)) {
9398 /* Grab isolated pages from freelists. */
9399 outer_end = isolate_freepages_range(&cc, outer_start, end);
9405 /* Free head and tail (if any) */
9406 if (start != outer_start)
9407 free_contig_range(outer_start, start - outer_start);
9408 if (end != outer_end)
9409 free_contig_range(end, outer_end - end);
9412 undo_isolate_page_range(start, end, migratetype);
9415 EXPORT_SYMBOL(alloc_contig_range);
9417 static int __alloc_contig_pages(unsigned long start_pfn,
9418 unsigned long nr_pages, gfp_t gfp_mask)
9420 unsigned long end_pfn = start_pfn + nr_pages;
9422 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9426 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9427 unsigned long nr_pages)
9429 unsigned long i, end_pfn = start_pfn + nr_pages;
9432 for (i = start_pfn; i < end_pfn; i++) {
9433 page = pfn_to_online_page(i);
9437 if (page_zone(page) != z)
9440 if (PageReserved(page))
9446 static bool zone_spans_last_pfn(const struct zone *zone,
9447 unsigned long start_pfn, unsigned long nr_pages)
9449 unsigned long last_pfn = start_pfn + nr_pages - 1;
9451 return zone_spans_pfn(zone, last_pfn);
9455 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9456 * @nr_pages: Number of contiguous pages to allocate
9457 * @gfp_mask: GFP mask to limit search and used during compaction
9459 * @nodemask: Mask for other possible nodes
9461 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9462 * on an applicable zonelist to find a contiguous pfn range which can then be
9463 * tried for allocation with alloc_contig_range(). This routine is intended
9464 * for allocation requests which can not be fulfilled with the buddy allocator.
9466 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9467 * power of two, then allocated range is also guaranteed to be aligned to same
9468 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9470 * Allocated pages can be freed with free_contig_range() or by manually calling
9471 * __free_page() on each allocated page.
9473 * Return: pointer to contiguous pages on success, or NULL if not successful.
9475 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9476 int nid, nodemask_t *nodemask)
9478 unsigned long ret, pfn, flags;
9479 struct zonelist *zonelist;
9483 zonelist = node_zonelist(nid, gfp_mask);
9484 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9485 gfp_zone(gfp_mask), nodemask) {
9486 spin_lock_irqsave(&zone->lock, flags);
9488 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9489 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9490 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9492 * We release the zone lock here because
9493 * alloc_contig_range() will also lock the zone
9494 * at some point. If there's an allocation
9495 * spinning on this lock, it may win the race
9496 * and cause alloc_contig_range() to fail...
9498 spin_unlock_irqrestore(&zone->lock, flags);
9499 ret = __alloc_contig_pages(pfn, nr_pages,
9502 return pfn_to_page(pfn);
9503 spin_lock_irqsave(&zone->lock, flags);
9507 spin_unlock_irqrestore(&zone->lock, flags);
9511 #endif /* CONFIG_CONTIG_ALLOC */
9513 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9515 unsigned long count = 0;
9517 for (; nr_pages--; pfn++) {
9518 struct page *page = pfn_to_page(pfn);
9520 count += page_count(page) != 1;
9523 WARN(count != 0, "%lu pages are still in use!\n", count);
9525 EXPORT_SYMBOL(free_contig_range);
9528 * Effectively disable pcplists for the zone by setting the high limit to 0
9529 * and draining all cpus. A concurrent page freeing on another CPU that's about
9530 * to put the page on pcplist will either finish before the drain and the page
9531 * will be drained, or observe the new high limit and skip the pcplist.
9533 * Must be paired with a call to zone_pcp_enable().
9535 void zone_pcp_disable(struct zone *zone)
9537 mutex_lock(&pcp_batch_high_lock);
9538 __zone_set_pageset_high_and_batch(zone, 0, 1);
9539 __drain_all_pages(zone, true);
9542 void zone_pcp_enable(struct zone *zone)
9544 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9545 mutex_unlock(&pcp_batch_high_lock);
9548 void zone_pcp_reset(struct zone *zone)
9551 struct per_cpu_zonestat *pzstats;
9553 if (zone->per_cpu_pageset != &boot_pageset) {
9554 for_each_online_cpu(cpu) {
9555 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9556 drain_zonestat(zone, pzstats);
9558 free_percpu(zone->per_cpu_pageset);
9559 zone->per_cpu_pageset = &boot_pageset;
9560 if (zone->per_cpu_zonestats != &boot_zonestats) {
9561 free_percpu(zone->per_cpu_zonestats);
9562 zone->per_cpu_zonestats = &boot_zonestats;
9567 #ifdef CONFIG_MEMORY_HOTREMOVE
9569 * All pages in the range must be in a single zone, must not contain holes,
9570 * must span full sections, and must be isolated before calling this function.
9572 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9574 unsigned long pfn = start_pfn;
9578 unsigned long flags;
9580 offline_mem_sections(pfn, end_pfn);
9581 zone = page_zone(pfn_to_page(pfn));
9582 spin_lock_irqsave(&zone->lock, flags);
9583 while (pfn < end_pfn) {
9584 page = pfn_to_page(pfn);
9586 * The HWPoisoned page may be not in buddy system, and
9587 * page_count() is not 0.
9589 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9594 * At this point all remaining PageOffline() pages have a
9595 * reference count of 0 and can simply be skipped.
9597 if (PageOffline(page)) {
9598 BUG_ON(page_count(page));
9599 BUG_ON(PageBuddy(page));
9604 BUG_ON(page_count(page));
9605 BUG_ON(!PageBuddy(page));
9606 order = buddy_order(page);
9607 del_page_from_free_list(page, zone, order);
9608 pfn += (1 << order);
9610 spin_unlock_irqrestore(&zone->lock, flags);
9615 * This function returns a stable result only if called under zone lock.
9617 bool is_free_buddy_page(struct page *page)
9619 unsigned long pfn = page_to_pfn(page);
9622 for (order = 0; order < MAX_ORDER; order++) {
9623 struct page *page_head = page - (pfn & ((1 << order) - 1));
9625 if (PageBuddy(page_head) &&
9626 buddy_order_unsafe(page_head) >= order)
9630 return order < MAX_ORDER;
9632 EXPORT_SYMBOL(is_free_buddy_page);
9634 #ifdef CONFIG_MEMORY_FAILURE
9636 * Break down a higher-order page in sub-pages, and keep our target out of
9639 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9640 struct page *target, int low, int high,
9643 unsigned long size = 1 << high;
9644 struct page *current_buddy, *next_page;
9646 while (high > low) {
9650 if (target >= &page[size]) {
9651 next_page = page + size;
9652 current_buddy = page;
9655 current_buddy = page + size;
9658 if (set_page_guard(zone, current_buddy, high, migratetype))
9661 if (current_buddy != target) {
9662 add_to_free_list(current_buddy, zone, high, migratetype);
9663 set_buddy_order(current_buddy, high);
9670 * Take a page that will be marked as poisoned off the buddy allocator.
9672 bool take_page_off_buddy(struct page *page)
9674 struct zone *zone = page_zone(page);
9675 unsigned long pfn = page_to_pfn(page);
9676 unsigned long flags;
9680 spin_lock_irqsave(&zone->lock, flags);
9681 for (order = 0; order < MAX_ORDER; order++) {
9682 struct page *page_head = page - (pfn & ((1 << order) - 1));
9683 int page_order = buddy_order(page_head);
9685 if (PageBuddy(page_head) && page_order >= order) {
9686 unsigned long pfn_head = page_to_pfn(page_head);
9687 int migratetype = get_pfnblock_migratetype(page_head,
9690 del_page_from_free_list(page_head, zone, page_order);
9691 break_down_buddy_pages(zone, page_head, page, 0,
9692 page_order, migratetype);
9693 SetPageHWPoisonTakenOff(page);
9694 if (!is_migrate_isolate(migratetype))
9695 __mod_zone_freepage_state(zone, -1, migratetype);
9699 if (page_count(page_head) > 0)
9702 spin_unlock_irqrestore(&zone->lock, flags);
9707 * Cancel takeoff done by take_page_off_buddy().
9709 bool put_page_back_buddy(struct page *page)
9711 struct zone *zone = page_zone(page);
9712 unsigned long pfn = page_to_pfn(page);
9713 unsigned long flags;
9714 int migratetype = get_pfnblock_migratetype(page, pfn);
9717 spin_lock_irqsave(&zone->lock, flags);
9718 if (put_page_testzero(page)) {
9719 ClearPageHWPoisonTakenOff(page);
9720 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9721 if (TestClearPageHWPoison(page)) {
9725 spin_unlock_irqrestore(&zone->lock, flags);
9731 #ifdef CONFIG_ZONE_DMA
9732 bool has_managed_dma(void)
9734 struct pglist_data *pgdat;
9736 for_each_online_pgdat(pgdat) {
9737 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9739 if (managed_zone(zone))
9744 #endif /* CONFIG_ZONE_DMA */