1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
10 * DOC: Interesting implementation details of the Maple Tree
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
23 * The following illustrates the layout of a range64 nodes slots and pivots.
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
65 #define MA_ROOT_PARENT 1
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 static const unsigned char mt_pivots[] = {
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 enum maple_type type;
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
152 return kmem_cache_alloc(maple_node_cache, gfp);
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
160 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
165 static void mt_free_rcu(struct rcu_head *head)
167 struct maple_node *node = container_of(head, struct maple_node, rcu);
169 kmem_cache_free(maple_node_cache, node);
173 * ma_free_rcu() - Use rcu callback to free a maple node
174 * @node: The node to free
176 * The maple tree uses the parent pointer to indicate this node is no longer in
177 * use and will be freed.
179 static void ma_free_rcu(struct maple_node *node)
181 node->parent = ma_parent_ptr(node);
182 call_rcu(&node->rcu, mt_free_rcu);
185 static void mas_set_height(struct ma_state *mas)
187 unsigned int new_flags = mas->tree->ma_flags;
189 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
190 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
191 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
192 mas->tree->ma_flags = new_flags;
195 static unsigned int mas_mt_height(struct ma_state *mas)
197 return mt_height(mas->tree);
200 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
202 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
203 MAPLE_NODE_TYPE_MASK;
206 static inline bool ma_is_dense(const enum maple_type type)
208 return type < maple_leaf_64;
211 static inline bool ma_is_leaf(const enum maple_type type)
213 return type < maple_range_64;
216 static inline bool mte_is_leaf(const struct maple_enode *entry)
218 return ma_is_leaf(mte_node_type(entry));
222 * We also reserve values with the bottom two bits set to '10' which are
225 static inline bool mt_is_reserved(const void *entry)
227 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
228 xa_is_internal(entry);
231 static inline void mas_set_err(struct ma_state *mas, long err)
233 mas->node = MA_ERROR(err);
236 static inline bool mas_is_ptr(struct ma_state *mas)
238 return mas->node == MAS_ROOT;
241 static inline bool mas_is_start(struct ma_state *mas)
243 return mas->node == MAS_START;
246 bool mas_is_err(struct ma_state *mas)
248 return xa_is_err(mas->node);
251 static inline bool mas_searchable(struct ma_state *mas)
253 if (mas_is_none(mas))
262 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
264 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
268 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
269 * @entry: The maple encoded node
271 * Return: a maple topiary pointer
273 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
275 return (struct maple_topiary *)
276 ((unsigned long)entry & ~MAPLE_NODE_MASK);
280 * mas_mn() - Get the maple state node.
281 * @mas: The maple state
283 * Return: the maple node (not encoded - bare pointer).
285 static inline struct maple_node *mas_mn(const struct ma_state *mas)
287 return mte_to_node(mas->node);
291 * mte_set_node_dead() - Set a maple encoded node as dead.
292 * @mn: The maple encoded node.
294 static inline void mte_set_node_dead(struct maple_enode *mn)
296 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
297 smp_wmb(); /* Needed for RCU */
300 /* Bit 1 indicates the root is a node */
301 #define MAPLE_ROOT_NODE 0x02
302 /* maple_type stored bit 3-6 */
303 #define MAPLE_ENODE_TYPE_SHIFT 0x03
304 /* Bit 2 means a NULL somewhere below */
305 #define MAPLE_ENODE_NULL 0x04
307 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
308 enum maple_type type)
310 return (void *)((unsigned long)node |
311 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
314 static inline void *mte_mk_root(const struct maple_enode *node)
316 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
319 static inline void *mte_safe_root(const struct maple_enode *node)
321 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
324 static inline void *mte_set_full(const struct maple_enode *node)
326 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
329 static inline void *mte_clear_full(const struct maple_enode *node)
331 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
334 static inline bool mte_has_null(const struct maple_enode *node)
336 return (unsigned long)node & MAPLE_ENODE_NULL;
339 static inline bool ma_is_root(struct maple_node *node)
341 return ((unsigned long)node->parent & MA_ROOT_PARENT);
344 static inline bool mte_is_root(const struct maple_enode *node)
346 return ma_is_root(mte_to_node(node));
349 static inline bool mas_is_root_limits(const struct ma_state *mas)
351 return !mas->min && mas->max == ULONG_MAX;
354 static inline bool mt_is_alloc(struct maple_tree *mt)
356 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
361 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
362 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
363 * bit values need an extra bit to store the offset. This extra bit comes from
364 * a reuse of the last bit in the node type. This is possible by using bit 1 to
365 * indicate if bit 2 is part of the type or the slot.
369 * 0x?00 = 16 bit nodes
370 * 0x010 = 32 bit nodes
371 * 0x110 = 64 bit nodes
373 * Slot size and alignment
375 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
376 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
377 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
380 #define MAPLE_PARENT_ROOT 0x01
382 #define MAPLE_PARENT_SLOT_SHIFT 0x03
383 #define MAPLE_PARENT_SLOT_MASK 0xF8
385 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
386 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
388 #define MAPLE_PARENT_RANGE64 0x06
389 #define MAPLE_PARENT_RANGE32 0x04
390 #define MAPLE_PARENT_NOT_RANGE16 0x02
393 * mte_parent_shift() - Get the parent shift for the slot storage.
394 * @parent: The parent pointer cast as an unsigned long
395 * Return: The shift into that pointer to the star to of the slot
397 static inline unsigned long mte_parent_shift(unsigned long parent)
399 /* Note bit 1 == 0 means 16B */
400 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
401 return MAPLE_PARENT_SLOT_SHIFT;
403 return MAPLE_PARENT_16B_SLOT_SHIFT;
407 * mte_parent_slot_mask() - Get the slot mask for the parent.
408 * @parent: The parent pointer cast as an unsigned long.
409 * Return: The slot mask for that parent.
411 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
413 /* Note bit 1 == 0 means 16B */
414 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
415 return MAPLE_PARENT_SLOT_MASK;
417 return MAPLE_PARENT_16B_SLOT_MASK;
421 * mas_parent_enum() - Return the maple_type of the parent from the stored
423 * @mas: The maple state
424 * @node: The maple_enode to extract the parent's enum
425 * Return: The node->parent maple_type
428 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
429 struct maple_tree *mt)
431 unsigned long p_type;
433 p_type = (unsigned long)p_enode;
434 if (p_type & MAPLE_PARENT_ROOT)
435 return 0; /* Validated in the caller. */
437 p_type &= MAPLE_NODE_MASK;
438 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
441 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
443 return maple_arange_64;
444 return maple_range_64;
451 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
453 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
457 * mte_set_parent() - Set the parent node and encode the slot
458 * @enode: The encoded maple node.
459 * @parent: The encoded maple node that is the parent of @enode.
460 * @slot: The slot that @enode resides in @parent.
462 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
466 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
469 unsigned long val = (unsigned long)parent;
472 enum maple_type p_type = mte_node_type(parent);
474 BUG_ON(p_type == maple_dense);
475 BUG_ON(p_type == maple_leaf_64);
479 case maple_arange_64:
480 shift = MAPLE_PARENT_SLOT_SHIFT;
481 type = MAPLE_PARENT_RANGE64;
490 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
491 val |= (slot << shift) | type;
492 mte_to_node(enode)->parent = ma_parent_ptr(val);
496 * mte_parent_slot() - get the parent slot of @enode.
497 * @enode: The encoded maple node.
499 * Return: The slot in the parent node where @enode resides.
501 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
503 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
505 if (val & MA_ROOT_PARENT)
509 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
510 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
512 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
516 * mte_parent() - Get the parent of @node.
517 * @node: The encoded maple node.
519 * Return: The parent maple node.
521 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
523 return (void *)((unsigned long)
524 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
528 * ma_dead_node() - check if the @enode is dead.
529 * @enode: The encoded maple node
531 * Return: true if dead, false otherwise.
533 static inline bool ma_dead_node(const struct maple_node *node)
535 struct maple_node *parent = (void *)((unsigned long)
536 node->parent & ~MAPLE_NODE_MASK);
538 return (parent == node);
541 * mte_dead_node() - check if the @enode is dead.
542 * @enode: The encoded maple node
544 * Return: true if dead, false otherwise.
546 static inline bool mte_dead_node(const struct maple_enode *enode)
548 struct maple_node *parent, *node;
550 node = mte_to_node(enode);
551 parent = mte_parent(enode);
552 return (parent == node);
556 * mas_allocated() - Get the number of nodes allocated in a maple state.
557 * @mas: The maple state
559 * The ma_state alloc member is overloaded to hold a pointer to the first
560 * allocated node or to the number of requested nodes to allocate. If bit 0 is
561 * set, then the alloc contains the number of requested nodes. If there is an
562 * allocated node, then the total allocated nodes is in that node.
564 * Return: The total number of nodes allocated
566 static inline unsigned long mas_allocated(const struct ma_state *mas)
568 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
571 return mas->alloc->total;
575 * mas_set_alloc_req() - Set the requested number of allocations.
576 * @mas: the maple state
577 * @count: the number of allocations.
579 * The requested number of allocations is either in the first allocated node,
580 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
581 * no allocated node. Set the request either in the node or do the necessary
582 * encoding to store in @mas->alloc directly.
584 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
586 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
590 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
594 mas->alloc->request_count = count;
598 * mas_alloc_req() - get the requested number of allocations.
599 * @mas: The maple state
601 * The alloc count is either stored directly in @mas, or in
602 * @mas->alloc->request_count if there is at least one node allocated. Decode
603 * the request count if it's stored directly in @mas->alloc.
605 * Return: The allocation request count.
607 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
609 if ((unsigned long)mas->alloc & 0x1)
610 return (unsigned long)(mas->alloc) >> 1;
612 return mas->alloc->request_count;
617 * ma_pivots() - Get a pointer to the maple node pivots.
618 * @node - the maple node
619 * @type - the node type
621 * Return: A pointer to the maple node pivots
623 static inline unsigned long *ma_pivots(struct maple_node *node,
624 enum maple_type type)
627 case maple_arange_64:
628 return node->ma64.pivot;
631 return node->mr64.pivot;
639 * ma_gaps() - Get a pointer to the maple node gaps.
640 * @node - the maple node
641 * @type - the node type
643 * Return: A pointer to the maple node gaps
645 static inline unsigned long *ma_gaps(struct maple_node *node,
646 enum maple_type type)
649 case maple_arange_64:
650 return node->ma64.gap;
660 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
661 * @mn: The maple encoded node.
664 * Return: the pivot at @piv of @mn.
666 static inline unsigned long mte_pivot(const struct maple_enode *mn,
669 struct maple_node *node = mte_to_node(mn);
670 enum maple_type type = mte_node_type(mn);
672 if (piv >= mt_pivots[type]) {
677 case maple_arange_64:
678 return node->ma64.pivot[piv];
681 return node->mr64.pivot[piv];
689 * mas_safe_pivot() - get the pivot at @piv or mas->max.
690 * @mas: The maple state
691 * @pivots: The pointer to the maple node pivots
692 * @piv: The pivot to fetch
693 * @type: The maple node type
695 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
698 static inline unsigned long
699 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
700 unsigned char piv, enum maple_type type)
702 if (piv >= mt_pivots[type])
709 * mas_safe_min() - Return the minimum for a given offset.
710 * @mas: The maple state
711 * @pivots: The pointer to the maple node pivots
712 * @offset: The offset into the pivot array
714 * Return: The minimum range value that is contained in @offset.
716 static inline unsigned long
717 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
720 return pivots[offset - 1] + 1;
726 * mas_logical_pivot() - Get the logical pivot of a given offset.
727 * @mas: The maple state
728 * @pivots: The pointer to the maple node pivots
729 * @offset: The offset into the pivot array
730 * @type: The maple node type
732 * When there is no value at a pivot (beyond the end of the data), then the
733 * pivot is actually @mas->max.
735 * Return: the logical pivot of a given @offset.
737 static inline unsigned long
738 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
739 unsigned char offset, enum maple_type type)
741 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
753 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
754 * @mn: The encoded maple node
755 * @piv: The pivot offset
756 * @val: The value of the pivot
758 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
761 struct maple_node *node = mte_to_node(mn);
762 enum maple_type type = mte_node_type(mn);
764 BUG_ON(piv >= mt_pivots[type]);
769 node->mr64.pivot[piv] = val;
771 case maple_arange_64:
772 node->ma64.pivot[piv] = val;
781 * ma_slots() - Get a pointer to the maple node slots.
782 * @mn: The maple node
783 * @mt: The maple node type
785 * Return: A pointer to the maple node slots
787 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
791 case maple_arange_64:
792 return mn->ma64.slot;
795 return mn->mr64.slot;
801 static inline bool mt_locked(const struct maple_tree *mt)
803 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
804 lockdep_is_held(&mt->ma_lock);
807 static inline void *mt_slot(const struct maple_tree *mt,
808 void __rcu **slots, unsigned char offset)
810 return rcu_dereference_check(slots[offset], mt_locked(mt));
814 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
815 * @mas: The maple state
816 * @slots: The pointer to the slots
817 * @offset: The offset into the slots array to fetch
819 * Return: The entry stored in @slots at the @offset.
821 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
822 unsigned char offset)
824 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
828 * mas_slot() - Get the slot value when not holding the maple tree lock.
829 * @mas: The maple state
830 * @slots: The pointer to the slots
831 * @offset: The offset into the slots array to fetch
833 * Return: The entry stored in @slots at the @offset
835 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
836 unsigned char offset)
838 return mt_slot(mas->tree, slots, offset);
842 * mas_root() - Get the maple tree root.
843 * @mas: The maple state.
845 * Return: The pointer to the root of the tree
847 static inline void *mas_root(struct ma_state *mas)
849 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
852 static inline void *mt_root_locked(struct maple_tree *mt)
854 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
858 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
859 * @mas: The maple state.
861 * Return: The pointer to the root of the tree
863 static inline void *mas_root_locked(struct ma_state *mas)
865 return mt_root_locked(mas->tree);
868 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
872 case maple_arange_64:
873 return &mn->ma64.meta;
875 return &mn->mr64.meta;
880 * ma_set_meta() - Set the metadata information of a node.
881 * @mn: The maple node
882 * @mt: The maple node type
883 * @offset: The offset of the highest sub-gap in this node.
884 * @end: The end of the data in this node.
886 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
887 unsigned char offset, unsigned char end)
889 struct maple_metadata *meta = ma_meta(mn, mt);
896 * ma_meta_end() - Get the data end of a node from the metadata
897 * @mn: The maple node
898 * @mt: The maple node type
900 static inline unsigned char ma_meta_end(struct maple_node *mn,
903 struct maple_metadata *meta = ma_meta(mn, mt);
909 * ma_meta_gap() - Get the largest gap location of a node from the metadata
910 * @mn: The maple node
911 * @mt: The maple node type
913 static inline unsigned char ma_meta_gap(struct maple_node *mn,
916 BUG_ON(mt != maple_arange_64);
918 return mn->ma64.meta.gap;
922 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
923 * @mn: The maple node
924 * @mn: The maple node type
925 * @offset: The location of the largest gap.
927 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
928 unsigned char offset)
931 struct maple_metadata *meta = ma_meta(mn, mt);
937 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
938 * @mat - the ma_topiary, a linked list of dead nodes.
939 * @dead_enode - the node to be marked as dead and added to the tail of the list
941 * Add the @dead_enode to the linked list in @mat.
943 static inline void mat_add(struct ma_topiary *mat,
944 struct maple_enode *dead_enode)
946 mte_set_node_dead(dead_enode);
947 mte_to_mat(dead_enode)->next = NULL;
949 mat->tail = mat->head = dead_enode;
953 mte_to_mat(mat->tail)->next = dead_enode;
954 mat->tail = dead_enode;
957 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
958 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
961 * mas_mat_free() - Free all nodes in a dead list.
962 * @mas - the maple state
963 * @mat - the ma_topiary linked list of dead nodes to free.
965 * Free walk a dead list.
967 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
969 struct maple_enode *next;
972 next = mte_to_mat(mat->head)->next;
973 mas_free(mas, mat->head);
979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
980 * @mas - the maple state
981 * @mat - the ma_topiary linked list of dead nodes to free.
983 * Destroy walk a dead list.
985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
987 struct maple_enode *next;
990 next = mte_to_mat(mat->head)->next;
991 mte_destroy_walk(mat->head, mat->mtree);
996 * mas_descend() - Descend into the slot stored in the ma_state.
997 * @mas - the maple state.
999 * Note: Not RCU safe, only use in write side or debug code.
1001 static inline void mas_descend(struct ma_state *mas)
1003 enum maple_type type;
1004 unsigned long *pivots;
1005 struct maple_node *node;
1009 type = mte_node_type(mas->node);
1010 pivots = ma_pivots(node, type);
1011 slots = ma_slots(node, type);
1014 mas->min = pivots[mas->offset - 1] + 1;
1015 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1016 mas->node = mas_slot(mas, slots, mas->offset);
1020 * mte_set_gap() - Set a maple node gap.
1021 * @mn: The encoded maple node
1022 * @gap: The offset of the gap to set
1023 * @val: The gap value
1025 static inline void mte_set_gap(const struct maple_enode *mn,
1026 unsigned char gap, unsigned long val)
1028 switch (mte_node_type(mn)) {
1031 case maple_arange_64:
1032 mte_to_node(mn)->ma64.gap[gap] = val;
1038 * mas_ascend() - Walk up a level of the tree.
1039 * @mas: The maple state
1041 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1042 * may cause several levels of walking up to find the correct min and max.
1043 * May find a dead node which will cause a premature return.
1044 * Return: 1 on dead node, 0 otherwise
1046 static int mas_ascend(struct ma_state *mas)
1048 struct maple_enode *p_enode; /* parent enode. */
1049 struct maple_enode *a_enode; /* ancestor enode. */
1050 struct maple_node *a_node; /* ancestor node. */
1051 struct maple_node *p_node; /* parent node. */
1052 unsigned char a_slot;
1053 enum maple_type a_type;
1054 unsigned long min, max;
1055 unsigned long *pivots;
1056 unsigned char offset;
1057 bool set_max = false, set_min = false;
1059 a_node = mas_mn(mas);
1060 if (ma_is_root(a_node)) {
1065 p_node = mte_parent(mas->node);
1066 if (unlikely(a_node == p_node))
1068 a_type = mas_parent_enum(mas, mas->node);
1069 offset = mte_parent_slot(mas->node);
1070 a_enode = mt_mk_node(p_node, a_type);
1072 /* Check to make sure all parent information is still accurate */
1073 if (p_node != mte_parent(mas->node))
1076 mas->node = a_enode;
1077 mas->offset = offset;
1079 if (mte_is_root(a_enode)) {
1080 mas->max = ULONG_MAX;
1089 a_type = mas_parent_enum(mas, p_enode);
1090 a_node = mte_parent(p_enode);
1091 a_slot = mte_parent_slot(p_enode);
1092 pivots = ma_pivots(a_node, a_type);
1093 a_enode = mt_mk_node(a_node, a_type);
1095 if (!set_min && a_slot) {
1097 min = pivots[a_slot - 1] + 1;
1100 if (!set_max && a_slot < mt_pivots[a_type]) {
1102 max = pivots[a_slot];
1105 if (unlikely(ma_dead_node(a_node)))
1108 if (unlikely(ma_is_root(a_node)))
1111 } while (!set_min || !set_max);
1119 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1120 * @mas: The maple state
1122 * Return: A pointer to a maple node.
1124 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1126 struct maple_alloc *ret, *node = mas->alloc;
1127 unsigned long total = mas_allocated(mas);
1128 unsigned int req = mas_alloc_req(mas);
1130 /* nothing or a request pending. */
1131 if (WARN_ON(!total))
1135 /* single allocation in this ma_state */
1141 if (node->node_count == 1) {
1142 /* Single allocation in this node. */
1143 mas->alloc = node->slot[0];
1144 mas->alloc->total = node->total - 1;
1149 ret = node->slot[--node->node_count];
1150 node->slot[node->node_count] = NULL;
1156 mas_set_alloc_req(mas, req);
1159 memset(ret, 0, sizeof(*ret));
1160 return (struct maple_node *)ret;
1164 * mas_push_node() - Push a node back on the maple state allocation.
1165 * @mas: The maple state
1166 * @used: The used maple node
1168 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1169 * requested node count as necessary.
1171 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1173 struct maple_alloc *reuse = (struct maple_alloc *)used;
1174 struct maple_alloc *head = mas->alloc;
1175 unsigned long count;
1176 unsigned int requested = mas_alloc_req(mas);
1178 count = mas_allocated(mas);
1180 reuse->request_count = 0;
1181 reuse->node_count = 0;
1182 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1183 head->slot[head->node_count++] = reuse;
1189 if ((head) && !((unsigned long)head & 0x1)) {
1190 reuse->slot[0] = head;
1191 reuse->node_count = 1;
1192 reuse->total += head->total;
1198 mas_set_alloc_req(mas, requested - 1);
1202 * mas_alloc_nodes() - Allocate nodes into a maple state
1203 * @mas: The maple state
1204 * @gfp: The GFP Flags
1206 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1208 struct maple_alloc *node;
1209 unsigned long allocated = mas_allocated(mas);
1210 unsigned int requested = mas_alloc_req(mas);
1212 void **slots = NULL;
1213 unsigned int max_req = 0;
1218 mas_set_alloc_req(mas, 0);
1219 if (mas->mas_flags & MA_STATE_PREALLOC) {
1222 WARN_ON(!allocated);
1225 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1226 node = (struct maple_alloc *)mt_alloc_one(gfp);
1231 node->slot[0] = mas->alloc;
1232 node->node_count = 1;
1234 node->node_count = 0;
1238 node->total = ++allocated;
1243 node->request_count = 0;
1245 max_req = MAPLE_ALLOC_SLOTS;
1246 if (node->node_count) {
1247 unsigned int offset = node->node_count;
1249 slots = (void **)&node->slot[offset];
1252 slots = (void **)&node->slot;
1255 max_req = min(requested, max_req);
1256 count = mt_alloc_bulk(gfp, max_req, slots);
1260 node->node_count += count;
1262 node = node->slot[0];
1263 node->node_count = 0;
1264 node->request_count = 0;
1267 mas->alloc->total = allocated;
1271 /* Clean up potential freed allocations on bulk failure */
1272 memset(slots, 0, max_req * sizeof(unsigned long));
1274 mas_set_alloc_req(mas, requested);
1275 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1276 mas->alloc->total = allocated;
1277 mas_set_err(mas, -ENOMEM);
1281 * mas_free() - Free an encoded maple node
1282 * @mas: The maple state
1283 * @used: The encoded maple node to free.
1285 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1288 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1290 struct maple_node *tmp = mte_to_node(used);
1292 if (mt_in_rcu(mas->tree))
1295 mas_push_node(mas, tmp);
1299 * mas_node_count() - Check if enough nodes are allocated and request more if
1300 * there is not enough nodes.
1301 * @mas: The maple state
1302 * @count: The number of nodes needed
1303 * @gfp: the gfp flags
1305 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1307 unsigned long allocated = mas_allocated(mas);
1309 if (allocated < count) {
1310 mas_set_alloc_req(mas, count - allocated);
1311 mas_alloc_nodes(mas, gfp);
1316 * mas_node_count() - Check if enough nodes are allocated and request more if
1317 * there is not enough nodes.
1318 * @mas: The maple state
1319 * @count: The number of nodes needed
1321 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1323 static void mas_node_count(struct ma_state *mas, int count)
1325 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1329 * mas_start() - Sets up maple state for operations.
1330 * @mas: The maple state.
1332 * If mas->node == MAS_START, then set the min, max and depth to
1336 * - If mas->node is an error or not MAS_START, return NULL.
1337 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1338 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1339 * - If it's a tree: NULL & mas->node == safe root node.
1341 static inline struct maple_enode *mas_start(struct ma_state *mas)
1343 if (likely(mas_is_start(mas))) {
1344 struct maple_enode *root;
1347 mas->max = ULONG_MAX;
1350 root = mas_root(mas);
1351 /* Tree with nodes */
1352 if (likely(xa_is_node(root))) {
1354 mas->node = mte_safe_root(root);
1360 if (unlikely(!root)) {
1361 mas->node = MAS_NONE;
1362 mas->offset = MAPLE_NODE_SLOTS;
1366 /* Single entry tree */
1367 mas->node = MAS_ROOT;
1368 mas->offset = MAPLE_NODE_SLOTS;
1370 /* Single entry tree. */
1381 * ma_data_end() - Find the end of the data in a node.
1382 * @node: The maple node
1383 * @type: The maple node type
1384 * @pivots: The array of pivots in the node
1385 * @max: The maximum value in the node
1387 * Uses metadata to find the end of the data when possible.
1388 * Return: The zero indexed last slot with data (may be null).
1390 static inline unsigned char ma_data_end(struct maple_node *node,
1391 enum maple_type type,
1392 unsigned long *pivots,
1395 unsigned char offset;
1397 if (type == maple_arange_64)
1398 return ma_meta_end(node, type);
1400 offset = mt_pivots[type] - 1;
1401 if (likely(!pivots[offset]))
1402 return ma_meta_end(node, type);
1404 if (likely(pivots[offset] == max))
1407 return mt_pivots[type];
1411 * mas_data_end() - Find the end of the data (slot).
1412 * @mas: the maple state
1414 * This method is optimized to check the metadata of a node if the node type
1415 * supports data end metadata.
1417 * Return: The zero indexed last slot with data (may be null).
1419 static inline unsigned char mas_data_end(struct ma_state *mas)
1421 enum maple_type type;
1422 struct maple_node *node;
1423 unsigned char offset;
1424 unsigned long *pivots;
1426 type = mte_node_type(mas->node);
1428 if (type == maple_arange_64)
1429 return ma_meta_end(node, type);
1431 pivots = ma_pivots(node, type);
1432 offset = mt_pivots[type] - 1;
1433 if (likely(!pivots[offset]))
1434 return ma_meta_end(node, type);
1436 if (likely(pivots[offset] == mas->max))
1439 return mt_pivots[type];
1443 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1444 * @mas - the maple state
1446 * Return: The maximum gap in the leaf.
1448 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1451 unsigned long pstart, gap, max_gap;
1452 struct maple_node *mn;
1453 unsigned long *pivots;
1456 unsigned char max_piv;
1458 mt = mte_node_type(mas->node);
1460 slots = ma_slots(mn, mt);
1462 if (unlikely(ma_is_dense(mt))) {
1464 for (i = 0; i < mt_slots[mt]; i++) {
1479 * Check the first implied pivot optimizes the loop below and slot 1 may
1480 * be skipped if there is a gap in slot 0.
1482 pivots = ma_pivots(mn, mt);
1483 if (likely(!slots[0])) {
1484 max_gap = pivots[0] - mas->min + 1;
1490 /* reduce max_piv as the special case is checked before the loop */
1491 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1493 * Check end implied pivot which can only be a gap on the right most
1496 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1497 gap = ULONG_MAX - pivots[max_piv];
1502 for (; i <= max_piv; i++) {
1503 /* data == no gap. */
1504 if (likely(slots[i]))
1507 pstart = pivots[i - 1];
1508 gap = pivots[i] - pstart;
1512 /* There cannot be two gaps in a row. */
1519 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1520 * @node: The maple node
1521 * @gaps: The pointer to the gaps
1522 * @mt: The maple node type
1523 * @*off: Pointer to store the offset location of the gap.
1525 * Uses the metadata data end to scan backwards across set gaps.
1527 * Return: The maximum gap value
1529 static inline unsigned long
1530 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1533 unsigned char offset, i;
1534 unsigned long max_gap = 0;
1536 i = offset = ma_meta_end(node, mt);
1538 if (gaps[i] > max_gap) {
1549 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1550 * @mas: The maple state.
1552 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1554 * Return: The gap value.
1556 static inline unsigned long mas_max_gap(struct ma_state *mas)
1558 unsigned long *gaps;
1559 unsigned char offset;
1561 struct maple_node *node;
1563 mt = mte_node_type(mas->node);
1565 return mas_leaf_max_gap(mas);
1568 offset = ma_meta_gap(node, mt);
1569 if (offset == MAPLE_ARANGE64_META_MAX)
1572 gaps = ma_gaps(node, mt);
1573 return gaps[offset];
1577 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1578 * @mas: The maple state
1579 * @offset: The gap offset in the parent to set
1580 * @new: The new gap value.
1582 * Set the parent gap then continue to set the gap upwards, using the metadata
1583 * of the parent to see if it is necessary to check the node above.
1585 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1588 unsigned long meta_gap = 0;
1589 struct maple_node *pnode;
1590 struct maple_enode *penode;
1591 unsigned long *pgaps;
1592 unsigned char meta_offset;
1593 enum maple_type pmt;
1595 pnode = mte_parent(mas->node);
1596 pmt = mas_parent_enum(mas, mas->node);
1597 penode = mt_mk_node(pnode, pmt);
1598 pgaps = ma_gaps(pnode, pmt);
1601 meta_offset = ma_meta_gap(pnode, pmt);
1602 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1605 meta_gap = pgaps[meta_offset];
1607 pgaps[offset] = new;
1609 if (meta_gap == new)
1612 if (offset != meta_offset) {
1616 ma_set_meta_gap(pnode, pmt, offset);
1617 } else if (new < meta_gap) {
1619 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1620 ma_set_meta_gap(pnode, pmt, meta_offset);
1623 if (ma_is_root(pnode))
1626 /* Go to the parent node. */
1627 pnode = mte_parent(penode);
1628 pmt = mas_parent_enum(mas, penode);
1629 pgaps = ma_gaps(pnode, pmt);
1630 offset = mte_parent_slot(penode);
1631 penode = mt_mk_node(pnode, pmt);
1636 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1637 * @mas - the maple state.
1639 static inline void mas_update_gap(struct ma_state *mas)
1641 unsigned char pslot;
1642 unsigned long p_gap;
1643 unsigned long max_gap;
1645 if (!mt_is_alloc(mas->tree))
1648 if (mte_is_root(mas->node))
1651 max_gap = mas_max_gap(mas);
1653 pslot = mte_parent_slot(mas->node);
1654 p_gap = ma_gaps(mte_parent(mas->node),
1655 mas_parent_enum(mas, mas->node))[pslot];
1657 if (p_gap != max_gap)
1658 mas_parent_gap(mas, pslot, max_gap);
1662 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1663 * @parent with the slot encoded.
1664 * @mas - the maple state (for the tree)
1665 * @parent - the maple encoded node containing the children.
1667 static inline void mas_adopt_children(struct ma_state *mas,
1668 struct maple_enode *parent)
1670 enum maple_type type = mte_node_type(parent);
1671 struct maple_node *node = mas_mn(mas);
1672 void __rcu **slots = ma_slots(node, type);
1673 unsigned long *pivots = ma_pivots(node, type);
1674 struct maple_enode *child;
1675 unsigned char offset;
1677 offset = ma_data_end(node, type, pivots, mas->max);
1679 child = mas_slot_locked(mas, slots, offset);
1680 mte_set_parent(child, parent, offset);
1685 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1686 * parent encoding to locate the maple node in the tree.
1687 * @mas - the ma_state to use for operations.
1688 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1689 * leave the node (true) and handle the adoption and free elsewhere.
1691 static inline void mas_replace(struct ma_state *mas, bool advanced)
1692 __must_hold(mas->tree->lock)
1694 struct maple_node *mn = mas_mn(mas);
1695 struct maple_enode *old_enode;
1696 unsigned char offset = 0;
1697 void __rcu **slots = NULL;
1699 if (ma_is_root(mn)) {
1700 old_enode = mas_root_locked(mas);
1702 offset = mte_parent_slot(mas->node);
1703 slots = ma_slots(mte_parent(mas->node),
1704 mas_parent_enum(mas, mas->node));
1705 old_enode = mas_slot_locked(mas, slots, offset);
1708 if (!advanced && !mte_is_leaf(mas->node))
1709 mas_adopt_children(mas, mas->node);
1711 if (mte_is_root(mas->node)) {
1712 mn->parent = ma_parent_ptr(
1713 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1714 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1715 mas_set_height(mas);
1717 rcu_assign_pointer(slots[offset], mas->node);
1721 mas_free(mas, old_enode);
1725 * mas_new_child() - Find the new child of a node.
1726 * @mas: the maple state
1727 * @child: the maple state to store the child.
1729 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1730 __must_hold(mas->tree->lock)
1733 unsigned char offset;
1735 unsigned long *pivots;
1736 struct maple_enode *entry;
1737 struct maple_node *node;
1740 mt = mte_node_type(mas->node);
1742 slots = ma_slots(node, mt);
1743 pivots = ma_pivots(node, mt);
1744 end = ma_data_end(node, mt, pivots, mas->max);
1745 for (offset = mas->offset; offset <= end; offset++) {
1746 entry = mas_slot_locked(mas, slots, offset);
1747 if (mte_parent(entry) == node) {
1749 mas->offset = offset + 1;
1750 child->offset = offset;
1760 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1761 * old data or set b_node->b_end.
1762 * @b_node: the maple_big_node
1763 * @shift: the shift count
1765 static inline void mab_shift_right(struct maple_big_node *b_node,
1766 unsigned char shift)
1768 unsigned long size = b_node->b_end * sizeof(unsigned long);
1770 memmove(b_node->pivot + shift, b_node->pivot, size);
1771 memmove(b_node->slot + shift, b_node->slot, size);
1772 if (b_node->type == maple_arange_64)
1773 memmove(b_node->gap + shift, b_node->gap, size);
1777 * mab_middle_node() - Check if a middle node is needed (unlikely)
1778 * @b_node: the maple_big_node that contains the data.
1779 * @size: the amount of data in the b_node
1780 * @split: the potential split location
1781 * @slot_count: the size that can be stored in a single node being considered.
1783 * Return: true if a middle node is required.
1785 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1786 unsigned char slot_count)
1788 unsigned char size = b_node->b_end;
1790 if (size >= 2 * slot_count)
1793 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1800 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1801 * @b_node: the maple_big_node with the data
1802 * @split: the suggested split location
1803 * @slot_count: the number of slots in the node being considered.
1805 * Return: the split location.
1807 static inline int mab_no_null_split(struct maple_big_node *b_node,
1808 unsigned char split, unsigned char slot_count)
1810 if (!b_node->slot[split]) {
1812 * If the split is less than the max slot && the right side will
1813 * still be sufficient, then increment the split on NULL.
1815 if ((split < slot_count - 1) &&
1816 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1825 * mab_calc_split() - Calculate the split location and if there needs to be two
1827 * @bn: The maple_big_node with the data
1828 * @mid_split: The second split, if required. 0 otherwise.
1830 * Return: The first split location. The middle split is set in @mid_split.
1832 static inline int mab_calc_split(struct ma_state *mas,
1833 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1835 unsigned char b_end = bn->b_end;
1836 int split = b_end / 2; /* Assume equal split. */
1837 unsigned char slot_min, slot_count = mt_slots[bn->type];
1840 * To support gap tracking, all NULL entries are kept together and a node cannot
1841 * end on a NULL entry, with the exception of the left-most leaf. The
1842 * limitation means that the split of a node must be checked for this condition
1843 * and be able to put more data in one direction or the other.
1845 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1847 split = b_end - mt_min_slots[bn->type];
1849 if (!ma_is_leaf(bn->type))
1852 mas->mas_flags |= MA_STATE_REBALANCE;
1853 if (!bn->slot[split])
1859 * Although extremely rare, it is possible to enter what is known as the 3-way
1860 * split scenario. The 3-way split comes about by means of a store of a range
1861 * that overwrites the end and beginning of two full nodes. The result is a set
1862 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1863 * also be located in different parent nodes which are also full. This can
1864 * carry upwards all the way to the root in the worst case.
1866 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1868 *mid_split = split * 2;
1870 slot_min = mt_min_slots[bn->type];
1874 * Avoid having a range less than the slot count unless it
1875 * causes one node to be deficient.
1876 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1878 while (((bn->pivot[split] - min) < slot_count - 1) &&
1879 (split < slot_count - 1) && (b_end - split > slot_min))
1883 /* Avoid ending a node on a NULL entry */
1884 split = mab_no_null_split(bn, split, slot_count);
1886 if (unlikely(*mid_split))
1887 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1893 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1894 * and set @b_node->b_end to the next free slot.
1895 * @mas: The maple state
1896 * @mas_start: The starting slot to copy
1897 * @mas_end: The end slot to copy (inclusively)
1898 * @b_node: The maple_big_node to place the data
1899 * @mab_start: The starting location in maple_big_node to store the data.
1901 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1902 unsigned char mas_end, struct maple_big_node *b_node,
1903 unsigned char mab_start)
1906 struct maple_node *node;
1908 unsigned long *pivots, *gaps;
1909 int i = mas_start, j = mab_start;
1910 unsigned char piv_end;
1913 mt = mte_node_type(mas->node);
1914 pivots = ma_pivots(node, mt);
1916 b_node->pivot[j] = pivots[i++];
1917 if (unlikely(i > mas_end))
1922 piv_end = min(mas_end, mt_pivots[mt]);
1923 for (; i < piv_end; i++, j++) {
1924 b_node->pivot[j] = pivots[i];
1925 if (unlikely(!b_node->pivot[j]))
1928 if (unlikely(mas->max == b_node->pivot[j]))
1932 if (likely(i <= mas_end))
1933 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1936 b_node->b_end = ++j;
1938 slots = ma_slots(node, mt);
1939 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1940 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1941 gaps = ma_gaps(node, mt);
1942 memcpy(b_node->gap + mab_start, gaps + mas_start,
1943 sizeof(unsigned long) * j);
1948 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1949 * @mas: The maple state
1950 * @node: The maple node
1951 * @pivots: pointer to the maple node pivots
1952 * @mt: The maple type
1953 * @end: The assumed end
1955 * Note, end may be incremented within this function but not modified at the
1956 * source. This is fine since the metadata is the last thing to be stored in a
1957 * node during a write.
1959 static inline void mas_leaf_set_meta(struct ma_state *mas,
1960 struct maple_node *node, unsigned long *pivots,
1961 enum maple_type mt, unsigned char end)
1963 /* There is no room for metadata already */
1964 if (mt_pivots[mt] <= end)
1967 if (pivots[end] && pivots[end] < mas->max)
1970 if (end < mt_slots[mt] - 1)
1971 ma_set_meta(node, mt, 0, end);
1975 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1976 * @b_node: the maple_big_node that has the data
1977 * @mab_start: the start location in @b_node.
1978 * @mab_end: The end location in @b_node (inclusively)
1979 * @mas: The maple state with the maple encoded node.
1981 static inline void mab_mas_cp(struct maple_big_node *b_node,
1982 unsigned char mab_start, unsigned char mab_end,
1983 struct ma_state *mas, bool new_max)
1986 enum maple_type mt = mte_node_type(mas->node);
1987 struct maple_node *node = mte_to_node(mas->node);
1988 void __rcu **slots = ma_slots(node, mt);
1989 unsigned long *pivots = ma_pivots(node, mt);
1990 unsigned long *gaps = NULL;
1993 if (mab_end - mab_start > mt_pivots[mt])
1996 if (!pivots[mt_pivots[mt] - 1])
1997 slots[mt_pivots[mt]] = NULL;
2001 pivots[j++] = b_node->pivot[i++];
2002 } while (i <= mab_end && likely(b_node->pivot[i]));
2004 memcpy(slots, b_node->slot + mab_start,
2005 sizeof(void *) * (i - mab_start));
2008 mas->max = b_node->pivot[i - 1];
2011 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2012 unsigned long max_gap = 0;
2013 unsigned char offset = 15;
2015 gaps = ma_gaps(node, mt);
2017 gaps[--j] = b_node->gap[--i];
2018 if (gaps[j] > max_gap) {
2024 ma_set_meta(node, mt, offset, end);
2026 mas_leaf_set_meta(mas, node, pivots, mt, end);
2031 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2032 * @mas: the maple state with the maple encoded node of the sub-tree.
2034 * Descend through a sub-tree and adopt children who do not have the correct
2035 * parents set. Follow the parents which have the correct parents as they are
2036 * the new entries which need to be followed to find other incorrectly set
2039 static inline void mas_descend_adopt(struct ma_state *mas)
2041 struct ma_state list[3], next[3];
2045 * At each level there may be up to 3 correct parent pointers which indicates
2046 * the new nodes which need to be walked to find any new nodes at a lower level.
2049 for (i = 0; i < 3; i++) {
2056 while (!mte_is_leaf(list[0].node)) {
2058 for (i = 0; i < 3; i++) {
2059 if (mas_is_none(&list[i]))
2062 if (i && list[i-1].node == list[i].node)
2065 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2068 mas_adopt_children(&list[i], list[i].node);
2072 next[n++].node = MAS_NONE;
2074 /* descend by setting the list to the children */
2075 for (i = 0; i < 3; i++)
2081 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2082 * @mas: The maple state
2083 * @end: The maple node end
2084 * @mt: The maple node type
2086 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2089 if (!(mas->mas_flags & MA_STATE_BULK))
2092 if (mte_is_root(mas->node))
2095 if (end > mt_min_slots[mt]) {
2096 mas->mas_flags &= ~MA_STATE_REBALANCE;
2102 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2103 * data from a maple encoded node.
2104 * @wr_mas: the maple write state
2105 * @b_node: the maple_big_node to fill with data
2106 * @offset_end: the offset to end copying
2108 * Return: The actual end of the data stored in @b_node
2110 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2111 struct maple_big_node *b_node, unsigned char offset_end)
2114 unsigned char b_end;
2115 /* Possible underflow of piv will wrap back to 0 before use. */
2117 struct ma_state *mas = wr_mas->mas;
2119 b_node->type = wr_mas->type;
2123 /* Copy start data up to insert. */
2124 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2125 b_end = b_node->b_end;
2126 piv = b_node->pivot[b_end - 1];
2130 if (piv + 1 < mas->index) {
2131 /* Handle range starting after old range */
2132 b_node->slot[b_end] = wr_mas->content;
2133 if (!wr_mas->content)
2134 b_node->gap[b_end] = mas->index - 1 - piv;
2135 b_node->pivot[b_end++] = mas->index - 1;
2138 /* Store the new entry. */
2139 mas->offset = b_end;
2140 b_node->slot[b_end] = wr_mas->entry;
2141 b_node->pivot[b_end] = mas->last;
2144 if (mas->last >= mas->max)
2147 /* Handle new range ending before old range ends */
2148 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2149 if (piv > mas->last) {
2150 if (piv == ULONG_MAX)
2151 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2153 if (offset_end != slot)
2154 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2157 b_node->slot[++b_end] = wr_mas->content;
2158 if (!wr_mas->content)
2159 b_node->gap[b_end] = piv - mas->last + 1;
2160 b_node->pivot[b_end] = piv;
2163 slot = offset_end + 1;
2164 if (slot > wr_mas->node_end)
2167 /* Copy end data to the end of the node. */
2168 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2173 b_node->b_end = b_end;
2177 * mas_prev_sibling() - Find the previous node with the same parent.
2178 * @mas: the maple state
2180 * Return: True if there is a previous sibling, false otherwise.
2182 static inline bool mas_prev_sibling(struct ma_state *mas)
2184 unsigned int p_slot = mte_parent_slot(mas->node);
2186 if (mte_is_root(mas->node))
2193 mas->offset = p_slot - 1;
2199 * mas_next_sibling() - Find the next node with the same parent.
2200 * @mas: the maple state
2202 * Return: true if there is a next sibling, false otherwise.
2204 static inline bool mas_next_sibling(struct ma_state *mas)
2206 MA_STATE(parent, mas->tree, mas->index, mas->last);
2208 if (mte_is_root(mas->node))
2212 mas_ascend(&parent);
2213 parent.offset = mte_parent_slot(mas->node) + 1;
2214 if (parent.offset > mas_data_end(&parent))
2223 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2224 * @enode: The encoded maple node.
2226 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2228 * Return: @enode or MAS_NONE
2230 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2235 return ma_enode_ptr(MAS_NONE);
2239 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2240 * @wr_mas: The maple write state
2242 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2244 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2246 struct ma_state *mas = wr_mas->mas;
2247 unsigned char count;
2248 unsigned char offset;
2249 unsigned long index, min, max;
2251 if (unlikely(ma_is_dense(wr_mas->type))) {
2252 wr_mas->r_max = wr_mas->r_min = mas->index;
2253 mas->offset = mas->index = mas->min;
2257 wr_mas->node = mas_mn(wr_mas->mas);
2258 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2259 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2260 wr_mas->pivots, mas->max);
2261 offset = mas->offset;
2262 min = mas_safe_min(mas, wr_mas->pivots, offset);
2263 if (unlikely(offset == count))
2266 max = wr_mas->pivots[offset];
2268 if (unlikely(index <= max))
2271 if (unlikely(!max && offset))
2275 while (++offset < count) {
2276 max = wr_mas->pivots[offset];
2279 else if (unlikely(!max))
2288 wr_mas->r_max = max;
2289 wr_mas->r_min = min;
2290 wr_mas->offset_end = mas->offset = offset;
2294 * mas_topiary_range() - Add a range of slots to the topiary.
2295 * @mas: The maple state
2296 * @destroy: The topiary to add the slots (usually destroy)
2297 * @start: The starting slot inclusively
2298 * @end: The end slot inclusively
2300 static inline void mas_topiary_range(struct ma_state *mas,
2301 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2304 unsigned char offset;
2306 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2307 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2308 for (offset = start; offset <= end; offset++) {
2309 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2311 if (mte_dead_node(enode))
2314 mat_add(destroy, enode);
2319 * mast_topiary() - Add the portions of the tree to the removal list; either to
2320 * be freed or discarded (destroy walk).
2321 * @mast: The maple_subtree_state.
2323 static inline void mast_topiary(struct maple_subtree_state *mast)
2325 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2326 unsigned char r_start, r_end;
2327 unsigned char l_start, l_end;
2328 void __rcu **l_slots, **r_slots;
2330 wr_mas.type = mte_node_type(mast->orig_l->node);
2331 mast->orig_l->index = mast->orig_l->last;
2332 mas_wr_node_walk(&wr_mas);
2333 l_start = mast->orig_l->offset + 1;
2334 l_end = mas_data_end(mast->orig_l);
2336 r_end = mast->orig_r->offset;
2341 l_slots = ma_slots(mas_mn(mast->orig_l),
2342 mte_node_type(mast->orig_l->node));
2344 r_slots = ma_slots(mas_mn(mast->orig_r),
2345 mte_node_type(mast->orig_r->node));
2347 if ((l_start < l_end) &&
2348 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2352 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2357 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2360 /* At the node where left and right sides meet, add the parts between */
2361 if (mast->orig_l->node == mast->orig_r->node) {
2362 return mas_topiary_range(mast->orig_l, mast->destroy,
2366 /* mast->orig_r is different and consumed. */
2367 if (mte_is_leaf(mast->orig_r->node))
2370 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2374 if (l_start <= l_end)
2375 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2377 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2380 if (r_start <= r_end)
2381 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2385 * mast_rebalance_next() - Rebalance against the next node
2386 * @mast: The maple subtree state
2387 * @old_r: The encoded maple node to the right (next node).
2389 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2391 unsigned char b_end = mast->bn->b_end;
2393 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2395 mast->orig_r->last = mast->orig_r->max;
2399 * mast_rebalance_prev() - Rebalance against the previous node
2400 * @mast: The maple subtree state
2401 * @old_l: The encoded maple node to the left (previous node)
2403 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2405 unsigned char end = mas_data_end(mast->orig_l) + 1;
2406 unsigned char b_end = mast->bn->b_end;
2408 mab_shift_right(mast->bn, end);
2409 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2410 mast->l->min = mast->orig_l->min;
2411 mast->orig_l->index = mast->orig_l->min;
2412 mast->bn->b_end = end + b_end;
2413 mast->l->offset += end;
2417 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2418 * the node to the right. Checking the nodes to the right then the left at each
2419 * level upwards until root is reached. Free and destroy as needed.
2420 * Data is copied into the @mast->bn.
2421 * @mast: The maple_subtree_state.
2424 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2426 struct ma_state r_tmp = *mast->orig_r;
2427 struct ma_state l_tmp = *mast->orig_l;
2428 struct maple_enode *ancestor = NULL;
2429 unsigned char start, end;
2430 unsigned char depth = 0;
2432 r_tmp = *mast->orig_r;
2433 l_tmp = *mast->orig_l;
2435 mas_ascend(mast->orig_r);
2436 mas_ascend(mast->orig_l);
2439 (mast->orig_r->node == mast->orig_l->node)) {
2440 ancestor = mast->orig_r->node;
2441 end = mast->orig_r->offset - 1;
2442 start = mast->orig_l->offset + 1;
2445 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2447 ancestor = mast->orig_r->node;
2451 mast->orig_r->offset++;
2453 mas_descend(mast->orig_r);
2454 mast->orig_r->offset = 0;
2458 mast_rebalance_next(mast);
2460 unsigned char l_off = 0;
2461 struct maple_enode *child = r_tmp.node;
2464 if (ancestor == r_tmp.node)
2470 if (l_off < r_tmp.offset)
2471 mas_topiary_range(&r_tmp, mast->destroy,
2472 l_off, r_tmp.offset);
2474 if (l_tmp.node != child)
2475 mat_add(mast->free, child);
2477 } while (r_tmp.node != ancestor);
2479 *mast->orig_l = l_tmp;
2482 } else if (mast->orig_l->offset != 0) {
2484 ancestor = mast->orig_l->node;
2485 end = mas_data_end(mast->orig_l);
2488 mast->orig_l->offset--;
2490 mas_descend(mast->orig_l);
2491 mast->orig_l->offset =
2492 mas_data_end(mast->orig_l);
2496 mast_rebalance_prev(mast);
2498 unsigned char r_off;
2499 struct maple_enode *child = l_tmp.node;
2502 if (ancestor == l_tmp.node)
2505 r_off = mas_data_end(&l_tmp);
2507 if (l_tmp.offset < r_off)
2510 if (l_tmp.offset < r_off)
2511 mas_topiary_range(&l_tmp, mast->destroy,
2512 l_tmp.offset, r_off);
2514 if (r_tmp.node != child)
2515 mat_add(mast->free, child);
2517 } while (l_tmp.node != ancestor);
2519 *mast->orig_r = r_tmp;
2522 } while (!mte_is_root(mast->orig_r->node));
2524 *mast->orig_r = r_tmp;
2525 *mast->orig_l = l_tmp;
2530 * mast_ascend_free() - Add current original maple state nodes to the free list
2532 * @mast: the maple subtree state.
2534 * Ascend the original left and right sides and add the previous nodes to the
2535 * free list. Set the slots to point to the correct location in the new nodes.
2538 mast_ascend_free(struct maple_subtree_state *mast)
2540 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2541 struct maple_enode *left = mast->orig_l->node;
2542 struct maple_enode *right = mast->orig_r->node;
2544 mas_ascend(mast->orig_l);
2545 mas_ascend(mast->orig_r);
2546 mat_add(mast->free, left);
2549 mat_add(mast->free, right);
2551 mast->orig_r->offset = 0;
2552 mast->orig_r->index = mast->r->max;
2553 /* last should be larger than or equal to index */
2554 if (mast->orig_r->last < mast->orig_r->index)
2555 mast->orig_r->last = mast->orig_r->index;
2557 * The node may not contain the value so set slot to ensure all
2558 * of the nodes contents are freed or destroyed.
2560 wr_mas.type = mte_node_type(mast->orig_r->node);
2561 mas_wr_node_walk(&wr_mas);
2562 /* Set up the left side of things */
2563 mast->orig_l->offset = 0;
2564 mast->orig_l->index = mast->l->min;
2565 wr_mas.mas = mast->orig_l;
2566 wr_mas.type = mte_node_type(mast->orig_l->node);
2567 mas_wr_node_walk(&wr_mas);
2569 mast->bn->type = wr_mas.type;
2573 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2574 * @mas: the maple state with the allocations.
2575 * @b_node: the maple_big_node with the type encoding.
2577 * Use the node type from the maple_big_node to allocate a new node from the
2578 * ma_state. This function exists mainly for code readability.
2580 * Return: A new maple encoded node
2582 static inline struct maple_enode
2583 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2585 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2589 * mas_mab_to_node() - Set up right and middle nodes
2591 * @mas: the maple state that contains the allocations.
2592 * @b_node: the node which contains the data.
2593 * @left: The pointer which will have the left node
2594 * @right: The pointer which may have the right node
2595 * @middle: the pointer which may have the middle node (rare)
2596 * @mid_split: the split location for the middle node
2598 * Return: the split of left.
2600 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2601 struct maple_big_node *b_node, struct maple_enode **left,
2602 struct maple_enode **right, struct maple_enode **middle,
2603 unsigned char *mid_split, unsigned long min)
2605 unsigned char split = 0;
2606 unsigned char slot_count = mt_slots[b_node->type];
2608 *left = mas_new_ma_node(mas, b_node);
2613 if (b_node->b_end < slot_count) {
2614 split = b_node->b_end;
2616 split = mab_calc_split(mas, b_node, mid_split, min);
2617 *right = mas_new_ma_node(mas, b_node);
2621 *middle = mas_new_ma_node(mas, b_node);
2628 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2630 * @b_node - the big node to add the entry
2631 * @mas - the maple state to get the pivot (mas->max)
2632 * @entry - the entry to add, if NULL nothing happens.
2634 static inline void mab_set_b_end(struct maple_big_node *b_node,
2635 struct ma_state *mas,
2641 b_node->slot[b_node->b_end] = entry;
2642 if (mt_is_alloc(mas->tree))
2643 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2644 b_node->pivot[b_node->b_end++] = mas->max;
2648 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2649 * of @mas->node to either @left or @right, depending on @slot and @split
2651 * @mas - the maple state with the node that needs a parent
2652 * @left - possible parent 1
2653 * @right - possible parent 2
2654 * @slot - the slot the mas->node was placed
2655 * @split - the split location between @left and @right
2657 static inline void mas_set_split_parent(struct ma_state *mas,
2658 struct maple_enode *left,
2659 struct maple_enode *right,
2660 unsigned char *slot, unsigned char split)
2662 if (mas_is_none(mas))
2665 if ((*slot) <= split)
2666 mte_set_parent(mas->node, left, *slot);
2668 mte_set_parent(mas->node, right, (*slot) - split - 1);
2674 * mte_mid_split_check() - Check if the next node passes the mid-split
2675 * @**l: Pointer to left encoded maple node.
2676 * @**m: Pointer to middle encoded maple node.
2677 * @**r: Pointer to right encoded maple node.
2679 * @*split: The split location.
2680 * @mid_split: The middle split.
2682 static inline void mte_mid_split_check(struct maple_enode **l,
2683 struct maple_enode **r,
2684 struct maple_enode *right,
2686 unsigned char *split,
2687 unsigned char mid_split)
2692 if (slot < mid_split)
2701 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2702 * is taken from @mast->l.
2703 * @mast - the maple subtree state
2704 * @left - the left node
2705 * @right - the right node
2706 * @split - the split location.
2708 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2709 struct maple_enode *left,
2710 struct maple_enode *middle,
2711 struct maple_enode *right,
2712 unsigned char split,
2713 unsigned char mid_split)
2716 struct maple_enode *l = left;
2717 struct maple_enode *r = right;
2719 if (mas_is_none(mast->l))
2725 slot = mast->l->offset;
2727 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2728 mas_set_split_parent(mast->l, l, r, &slot, split);
2730 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2731 mas_set_split_parent(mast->m, l, r, &slot, split);
2733 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2734 mas_set_split_parent(mast->r, l, r, &slot, split);
2738 * mas_wmb_replace() - Write memory barrier and replace
2739 * @mas: The maple state
2740 * @free: the maple topiary list of nodes to free
2741 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2743 * Updates gap as necessary.
2745 static inline void mas_wmb_replace(struct ma_state *mas,
2746 struct ma_topiary *free,
2747 struct ma_topiary *destroy)
2749 /* All nodes must see old data as dead prior to replacing that data */
2750 smp_wmb(); /* Needed for RCU */
2752 /* Insert the new data in the tree */
2753 mas_replace(mas, true);
2755 if (!mte_is_leaf(mas->node))
2756 mas_descend_adopt(mas);
2758 mas_mat_free(mas, free);
2761 mas_mat_destroy(mas, destroy);
2763 if (mte_is_leaf(mas->node))
2766 mas_update_gap(mas);
2770 * mast_new_root() - Set a new tree root during subtree creation
2771 * @mast: The maple subtree state
2772 * @mas: The maple state
2774 static inline void mast_new_root(struct maple_subtree_state *mast,
2775 struct ma_state *mas)
2777 mas_mn(mast->l)->parent =
2778 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2779 if (!mte_dead_node(mast->orig_l->node) &&
2780 !mte_is_root(mast->orig_l->node)) {
2782 mast_ascend_free(mast);
2784 } while (!mte_is_root(mast->orig_l->node));
2786 if ((mast->orig_l->node != mas->node) &&
2787 (mast->l->depth > mas_mt_height(mas))) {
2788 mat_add(mast->free, mas->node);
2793 * mast_cp_to_nodes() - Copy data out to nodes.
2794 * @mast: The maple subtree state
2795 * @left: The left encoded maple node
2796 * @middle: The middle encoded maple node
2797 * @right: The right encoded maple node
2798 * @split: The location to split between left and (middle ? middle : right)
2799 * @mid_split: The location to split between middle and right.
2801 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2802 struct maple_enode *left, struct maple_enode *middle,
2803 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2805 bool new_lmax = true;
2807 mast->l->node = mte_node_or_none(left);
2808 mast->m->node = mte_node_or_none(middle);
2809 mast->r->node = mte_node_or_none(right);
2811 mast->l->min = mast->orig_l->min;
2812 if (split == mast->bn->b_end) {
2813 mast->l->max = mast->orig_r->max;
2817 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2820 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2821 mast->m->min = mast->bn->pivot[split] + 1;
2825 mast->r->max = mast->orig_r->max;
2827 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2828 mast->r->min = mast->bn->pivot[split] + 1;
2833 * mast_combine_cp_left - Copy in the original left side of the tree into the
2834 * combined data set in the maple subtree state big node.
2835 * @mast: The maple subtree state
2837 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2839 unsigned char l_slot = mast->orig_l->offset;
2844 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2848 * mast_combine_cp_right: Copy in the original right side of the tree into the
2849 * combined data set in the maple subtree state big node.
2850 * @mast: The maple subtree state
2852 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2854 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2857 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2858 mt_slot_count(mast->orig_r->node), mast->bn,
2860 mast->orig_r->last = mast->orig_r->max;
2864 * mast_sufficient: Check if the maple subtree state has enough data in the big
2865 * node to create at least one sufficient node
2866 * @mast: the maple subtree state
2868 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2870 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2877 * mast_overflow: Check if there is too much data in the subtree state for a
2879 * @mast: The maple subtree state
2881 static inline bool mast_overflow(struct maple_subtree_state *mast)
2883 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2889 static inline void *mtree_range_walk(struct ma_state *mas)
2891 unsigned long *pivots;
2892 unsigned char offset;
2893 struct maple_node *node;
2894 struct maple_enode *next, *last;
2895 enum maple_type type;
2898 unsigned long max, min;
2899 unsigned long prev_max, prev_min;
2907 node = mte_to_node(next);
2908 type = mte_node_type(next);
2909 pivots = ma_pivots(node, type);
2910 end = ma_data_end(node, type, pivots, max);
2911 if (unlikely(ma_dead_node(node)))
2914 if (pivots[offset] >= mas->index) {
2917 max = pivots[offset];
2923 } while ((offset < end) && (pivots[offset] < mas->index));
2926 min = pivots[offset - 1] + 1;
2928 if (likely(offset < end && pivots[offset]))
2929 max = pivots[offset];
2932 slots = ma_slots(node, type);
2933 next = mt_slot(mas->tree, slots, offset);
2934 if (unlikely(ma_dead_node(node)))
2936 } while (!ma_is_leaf(type));
2938 mas->offset = offset;
2941 mas->min = prev_min;
2942 mas->max = prev_max;
2944 return (void *)next;
2952 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2953 * @mas: The starting maple state
2954 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2955 * @count: The estimated count of iterations needed.
2957 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2958 * is hit. First @b_node is split into two entries which are inserted into the
2959 * next iteration of the loop. @b_node is returned populated with the final
2960 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2961 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2962 * to account of what has been copied into the new sub-tree. The update of
2963 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2964 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2965 * the new sub-tree in case the sub-tree becomes the full tree.
2967 * Return: the number of elements in b_node during the last loop.
2969 static int mas_spanning_rebalance(struct ma_state *mas,
2970 struct maple_subtree_state *mast, unsigned char count)
2972 unsigned char split, mid_split;
2973 unsigned char slot = 0;
2974 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2976 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2977 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2978 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2979 MA_TOPIARY(free, mas->tree);
2980 MA_TOPIARY(destroy, mas->tree);
2983 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2984 * Rebalancing is done by use of the ``struct maple_topiary``.
2990 mast->destroy = &destroy;
2991 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2993 /* Check if this is not root and has sufficient data. */
2994 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2995 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2996 mast_spanning_rebalance(mast);
2998 mast->orig_l->depth = 0;
3001 * Each level of the tree is examined and balanced, pushing data to the left or
3002 * right, or rebalancing against left or right nodes is employed to avoid
3003 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3004 * the tree is created, there may be a mix of new and old nodes. The old nodes
3005 * will have the incorrect parent pointers and currently be in two trees: the
3006 * original tree and the partially new tree. To remedy the parent pointers in
3007 * the old tree, the new data is swapped into the active tree and a walk down
3008 * the tree is performed and the parent pointers are updated.
3009 * See mas_descend_adopt() for more information..
3013 mast->bn->type = mte_node_type(mast->orig_l->node);
3014 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3015 &mid_split, mast->orig_l->min);
3016 mast_set_split_parents(mast, left, middle, right, split,
3018 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3021 * Copy data from next level in the tree to mast->bn from next
3024 memset(mast->bn, 0, sizeof(struct maple_big_node));
3025 mast->bn->type = mte_node_type(left);
3026 mast->orig_l->depth++;
3028 /* Root already stored in l->node. */
3029 if (mas_is_root_limits(mast->l))
3032 mast_ascend_free(mast);
3033 mast_combine_cp_left(mast);
3034 l_mas.offset = mast->bn->b_end;
3035 mab_set_b_end(mast->bn, &l_mas, left);
3036 mab_set_b_end(mast->bn, &m_mas, middle);
3037 mab_set_b_end(mast->bn, &r_mas, right);
3039 /* Copy anything necessary out of the right node. */
3040 mast_combine_cp_right(mast);
3042 mast->orig_l->last = mast->orig_l->max;
3044 if (mast_sufficient(mast))
3047 if (mast_overflow(mast))
3050 /* May be a new root stored in mast->bn */
3051 if (mas_is_root_limits(mast->orig_l))
3054 mast_spanning_rebalance(mast);
3056 /* rebalancing from other nodes may require another loop. */
3061 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3062 mte_node_type(mast->orig_l->node));
3063 mast->orig_l->depth++;
3064 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3065 mte_set_parent(left, l_mas.node, slot);
3067 mte_set_parent(middle, l_mas.node, ++slot);
3070 mte_set_parent(right, l_mas.node, ++slot);
3072 if (mas_is_root_limits(mast->l)) {
3074 mast_new_root(mast, mas);
3076 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3079 if (!mte_dead_node(mast->orig_l->node))
3080 mat_add(&free, mast->orig_l->node);
3082 mas->depth = mast->orig_l->depth;
3083 *mast->orig_l = l_mas;
3084 mte_set_node_dead(mas->node);
3086 /* Set up mas for insertion. */
3087 mast->orig_l->depth = mas->depth;
3088 mast->orig_l->alloc = mas->alloc;
3089 *mas = *mast->orig_l;
3090 mas_wmb_replace(mas, &free, &destroy);
3091 mtree_range_walk(mas);
3092 return mast->bn->b_end;
3096 * mas_rebalance() - Rebalance a given node.
3097 * @mas: The maple state
3098 * @b_node: The big maple node.
3100 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3101 * Continue upwards until tree is sufficient.
3103 * Return: the number of elements in b_node during the last loop.
3105 static inline int mas_rebalance(struct ma_state *mas,
3106 struct maple_big_node *b_node)
3108 char empty_count = mas_mt_height(mas);
3109 struct maple_subtree_state mast;
3110 unsigned char shift, b_end = ++b_node->b_end;
3112 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3113 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3115 trace_ma_op(__func__, mas);
3118 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3119 * against the node to the right if it exists, otherwise the node to the
3120 * left of this node is rebalanced against this node. If rebalancing
3121 * causes just one node to be produced instead of two, then the parent
3122 * is also examined and rebalanced if it is insufficient. Every level
3123 * tries to combine the data in the same way. If one node contains the
3124 * entire range of the tree, then that node is used as a new root node.
3126 mas_node_count(mas, 1 + empty_count * 3);
3127 if (mas_is_err(mas))
3130 mast.orig_l = &l_mas;
3131 mast.orig_r = &r_mas;
3133 mast.bn->type = mte_node_type(mas->node);
3135 l_mas = r_mas = *mas;
3137 if (mas_next_sibling(&r_mas)) {
3138 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3139 r_mas.last = r_mas.index = r_mas.max;
3141 mas_prev_sibling(&l_mas);
3142 shift = mas_data_end(&l_mas) + 1;
3143 mab_shift_right(b_node, shift);
3144 mas->offset += shift;
3145 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3146 b_node->b_end = shift + b_end;
3147 l_mas.index = l_mas.last = l_mas.min;
3150 return mas_spanning_rebalance(mas, &mast, empty_count);
3154 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3156 * @mas: The maple state
3157 * @end: The end of the left-most node.
3159 * During a mass-insert event (such as forking), it may be necessary to
3160 * rebalance the left-most node when it is not sufficient.
3162 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3164 enum maple_type mt = mte_node_type(mas->node);
3165 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3166 struct maple_enode *eparent;
3167 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3168 void __rcu **l_slots, **slots;
3169 unsigned long *l_pivs, *pivs, gap;
3170 bool in_rcu = mt_in_rcu(mas->tree);
3172 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3175 mas_prev_sibling(&l_mas);
3179 /* Allocate for both left and right as well as parent. */
3180 mas_node_count(mas, 3);
3181 if (mas_is_err(mas))
3184 newnode = mas_pop_node(mas);
3190 newnode->parent = node->parent;
3191 slots = ma_slots(newnode, mt);
3192 pivs = ma_pivots(newnode, mt);
3193 left = mas_mn(&l_mas);
3194 l_slots = ma_slots(left, mt);
3195 l_pivs = ma_pivots(left, mt);
3196 if (!l_slots[split])
3198 tmp = mas_data_end(&l_mas) - split;
3200 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3201 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3202 pivs[tmp] = l_mas.max;
3203 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3204 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3206 l_mas.max = l_pivs[split];
3207 mas->min = l_mas.max + 1;
3208 eparent = mt_mk_node(mte_parent(l_mas.node),
3209 mas_parent_enum(&l_mas, l_mas.node));
3212 unsigned char max_p = mt_pivots[mt];
3213 unsigned char max_s = mt_slots[mt];
3216 memset(pivs + tmp, 0,
3217 sizeof(unsigned long *) * (max_p - tmp));
3219 if (tmp < mt_slots[mt])
3220 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3222 memcpy(node, newnode, sizeof(struct maple_node));
3223 ma_set_meta(node, mt, 0, tmp - 1);
3224 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3227 /* Remove data from l_pivs. */
3229 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3230 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3231 ma_set_meta(left, mt, 0, split);
3236 /* RCU requires replacing both l_mas, mas, and parent. */
3237 mas->node = mt_mk_node(newnode, mt);
3238 ma_set_meta(newnode, mt, 0, tmp);
3240 new_left = mas_pop_node(mas);
3241 new_left->parent = left->parent;
3242 mt = mte_node_type(l_mas.node);
3243 slots = ma_slots(new_left, mt);
3244 pivs = ma_pivots(new_left, mt);
3245 memcpy(slots, l_slots, sizeof(void *) * split);
3246 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3247 ma_set_meta(new_left, mt, 0, split);
3248 l_mas.node = mt_mk_node(new_left, mt);
3250 /* replace parent. */
3251 offset = mte_parent_slot(mas->node);
3252 mt = mas_parent_enum(&l_mas, l_mas.node);
3253 parent = mas_pop_node(mas);
3254 slots = ma_slots(parent, mt);
3255 pivs = ma_pivots(parent, mt);
3256 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3257 rcu_assign_pointer(slots[offset], mas->node);
3258 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3259 pivs[offset - 1] = l_mas.max;
3260 eparent = mt_mk_node(parent, mt);
3262 gap = mas_leaf_max_gap(mas);
3263 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3264 gap = mas_leaf_max_gap(&l_mas);
3265 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3269 mas_replace(mas, false);
3271 mas_update_gap(mas);
3275 * mas_split_final_node() - Split the final node in a subtree operation.
3276 * @mast: the maple subtree state
3277 * @mas: The maple state
3278 * @height: The height of the tree in case it's a new root.
3280 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3281 struct ma_state *mas, int height)
3283 struct maple_enode *ancestor;
3285 if (mte_is_root(mas->node)) {
3286 if (mt_is_alloc(mas->tree))
3287 mast->bn->type = maple_arange_64;
3289 mast->bn->type = maple_range_64;
3290 mas->depth = height;
3293 * Only a single node is used here, could be root.
3294 * The Big_node data should just fit in a single node.
3296 ancestor = mas_new_ma_node(mas, mast->bn);
3297 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3298 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3299 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3301 mast->l->node = ancestor;
3302 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3303 mas->offset = mast->bn->b_end - 1;
3308 * mast_fill_bnode() - Copy data into the big node in the subtree state
3309 * @mast: The maple subtree state
3310 * @mas: the maple state
3311 * @skip: The number of entries to skip for new nodes insertion.
3313 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3314 struct ma_state *mas,
3318 struct maple_enode *old = mas->node;
3319 unsigned char split;
3321 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3322 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3323 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3324 mast->bn->b_end = 0;
3326 if (mte_is_root(mas->node)) {
3330 mat_add(mast->free, old);
3331 mas->offset = mte_parent_slot(mas->node);
3334 if (cp && mast->l->offset)
3335 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3337 split = mast->bn->b_end;
3338 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3339 mast->r->offset = mast->bn->b_end;
3340 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3341 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3345 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3346 mast->bn, mast->bn->b_end);
3349 mast->bn->type = mte_node_type(mas->node);
3353 * mast_split_data() - Split the data in the subtree state big node into regular
3355 * @mast: The maple subtree state
3356 * @mas: The maple state
3357 * @split: The location to split the big node
3359 static inline void mast_split_data(struct maple_subtree_state *mast,
3360 struct ma_state *mas, unsigned char split)
3362 unsigned char p_slot;
3364 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3365 mte_set_pivot(mast->r->node, 0, mast->r->max);
3366 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3367 mast->l->offset = mte_parent_slot(mas->node);
3368 mast->l->max = mast->bn->pivot[split];
3369 mast->r->min = mast->l->max + 1;
3370 if (mte_is_leaf(mas->node))
3373 p_slot = mast->orig_l->offset;
3374 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3376 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3381 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3382 * data to the right or left node if there is room.
3383 * @mas: The maple state
3384 * @height: The current height of the maple state
3385 * @mast: The maple subtree state
3386 * @left: Push left or not.
3388 * Keeping the height of the tree low means faster lookups.
3390 * Return: True if pushed, false otherwise.
3392 static inline bool mas_push_data(struct ma_state *mas, int height,
3393 struct maple_subtree_state *mast, bool left)
3395 unsigned char slot_total = mast->bn->b_end;
3396 unsigned char end, space, split;
3398 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3400 tmp_mas.depth = mast->l->depth;
3402 if (left && !mas_prev_sibling(&tmp_mas))
3404 else if (!left && !mas_next_sibling(&tmp_mas))
3407 end = mas_data_end(&tmp_mas);
3409 space = 2 * mt_slot_count(mas->node) - 2;
3410 /* -2 instead of -1 to ensure there isn't a triple split */
3411 if (ma_is_leaf(mast->bn->type))
3414 if (mas->max == ULONG_MAX)
3417 if (slot_total >= space)
3420 /* Get the data; Fill mast->bn */
3423 mab_shift_right(mast->bn, end + 1);
3424 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3425 mast->bn->b_end = slot_total + 1;
3427 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3430 /* Configure mast for splitting of mast->bn */
3431 split = mt_slots[mast->bn->type] - 2;
3433 /* Switch mas to prev node */
3434 mat_add(mast->free, mas->node);
3436 /* Start using mast->l for the left side. */
3437 tmp_mas.node = mast->l->node;
3440 mat_add(mast->free, tmp_mas.node);
3441 tmp_mas.node = mast->r->node;
3443 split = slot_total - split;
3445 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3446 /* Update parent slot for split calculation. */
3448 mast->orig_l->offset += end + 1;
3450 mast_split_data(mast, mas, split);
3451 mast_fill_bnode(mast, mas, 2);
3452 mas_split_final_node(mast, mas, height + 1);
3457 * mas_split() - Split data that is too big for one node into two.
3458 * @mas: The maple state
3459 * @b_node: The maple big node
3460 * Return: 1 on success, 0 on failure.
3462 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3464 struct maple_subtree_state mast;
3466 unsigned char mid_split, split = 0;
3469 * Splitting is handled differently from any other B-tree; the Maple
3470 * Tree splits upwards. Splitting up means that the split operation
3471 * occurs when the walk of the tree hits the leaves and not on the way
3472 * down. The reason for splitting up is that it is impossible to know
3473 * how much space will be needed until the leaf is (or leaves are)
3474 * reached. Since overwriting data is allowed and a range could
3475 * overwrite more than one range or result in changing one entry into 3
3476 * entries, it is impossible to know if a split is required until the
3479 * Splitting is a balancing act between keeping allocations to a minimum
3480 * and avoiding a 'jitter' event where a tree is expanded to make room
3481 * for an entry followed by a contraction when the entry is removed. To
3482 * accomplish the balance, there are empty slots remaining in both left
3483 * and right nodes after a split.
3485 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3486 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3487 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3488 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3489 MA_TOPIARY(mat, mas->tree);
3491 trace_ma_op(__func__, mas);
3492 mas->depth = mas_mt_height(mas);
3493 /* Allocation failures will happen early. */
3494 mas_node_count(mas, 1 + mas->depth * 2);
3495 if (mas_is_err(mas))
3500 mast.orig_l = &prev_l_mas;
3501 mast.orig_r = &prev_r_mas;
3505 while (height++ <= mas->depth) {
3506 if (mt_slots[b_node->type] > b_node->b_end) {
3507 mas_split_final_node(&mast, mas, height);
3511 l_mas = r_mas = *mas;
3512 l_mas.node = mas_new_ma_node(mas, b_node);
3513 r_mas.node = mas_new_ma_node(mas, b_node);
3515 * Another way that 'jitter' is avoided is to terminate a split up early if the
3516 * left or right node has space to spare. This is referred to as "pushing left"
3517 * or "pushing right" and is similar to the B* tree, except the nodes left or
3518 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3519 * is a significant savings.
3521 /* Try to push left. */
3522 if (mas_push_data(mas, height, &mast, true))
3525 /* Try to push right. */
3526 if (mas_push_data(mas, height, &mast, false))
3529 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3530 mast_split_data(&mast, mas, split);
3532 * Usually correct, mab_mas_cp in the above call overwrites
3535 mast.r->max = mas->max;
3536 mast_fill_bnode(&mast, mas, 1);
3537 prev_l_mas = *mast.l;
3538 prev_r_mas = *mast.r;
3541 /* Set the original node as dead */
3542 mat_add(mast.free, mas->node);
3543 mas->node = l_mas.node;
3544 mas_wmb_replace(mas, mast.free, NULL);
3545 mtree_range_walk(mas);
3550 * mas_reuse_node() - Reuse the node to store the data.
3551 * @wr_mas: The maple write state
3552 * @bn: The maple big node
3553 * @end: The end of the data.
3555 * Will always return false in RCU mode.
3557 * Return: True if node was reused, false otherwise.
3559 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3560 struct maple_big_node *bn, unsigned char end)
3562 /* Need to be rcu safe. */
3563 if (mt_in_rcu(wr_mas->mas->tree))
3566 if (end > bn->b_end) {
3567 int clear = mt_slots[wr_mas->type] - bn->b_end;
3569 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3570 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3572 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3577 * mas_commit_b_node() - Commit the big node into the tree.
3578 * @wr_mas: The maple write state
3579 * @b_node: The maple big node
3580 * @end: The end of the data.
3582 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3583 struct maple_big_node *b_node, unsigned char end)
3585 struct maple_node *node;
3586 unsigned char b_end = b_node->b_end;
3587 enum maple_type b_type = b_node->type;
3589 if ((b_end < mt_min_slots[b_type]) &&
3590 (!mte_is_root(wr_mas->mas->node)) &&
3591 (mas_mt_height(wr_mas->mas) > 1))
3592 return mas_rebalance(wr_mas->mas, b_node);
3594 if (b_end >= mt_slots[b_type])
3595 return mas_split(wr_mas->mas, b_node);
3597 if (mas_reuse_node(wr_mas, b_node, end))
3600 mas_node_count(wr_mas->mas, 1);
3601 if (mas_is_err(wr_mas->mas))
3604 node = mas_pop_node(wr_mas->mas);
3605 node->parent = mas_mn(wr_mas->mas)->parent;
3606 wr_mas->mas->node = mt_mk_node(node, b_type);
3607 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3608 mas_replace(wr_mas->mas, false);
3610 mas_update_gap(wr_mas->mas);
3615 * mas_root_expand() - Expand a root to a node
3616 * @mas: The maple state
3617 * @entry: The entry to store into the tree
3619 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3621 void *contents = mas_root_locked(mas);
3622 enum maple_type type = maple_leaf_64;
3623 struct maple_node *node;
3625 unsigned long *pivots;
3628 mas_node_count(mas, 1);
3629 if (unlikely(mas_is_err(mas)))
3632 node = mas_pop_node(mas);
3633 pivots = ma_pivots(node, type);
3634 slots = ma_slots(node, type);
3635 node->parent = ma_parent_ptr(
3636 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3637 mas->node = mt_mk_node(node, type);
3641 rcu_assign_pointer(slots[slot], contents);
3642 if (likely(mas->index > 1))
3645 pivots[slot++] = mas->index - 1;
3648 rcu_assign_pointer(slots[slot], entry);
3650 pivots[slot] = mas->last;
3651 if (mas->last != ULONG_MAX)
3654 mas_set_height(mas);
3656 /* swap the new root into the tree */
3657 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3658 ma_set_meta(node, maple_leaf_64, 0, slot);
3662 static inline void mas_store_root(struct ma_state *mas, void *entry)
3664 if (likely((mas->last != 0) || (mas->index != 0)))
3665 mas_root_expand(mas, entry);
3666 else if (((unsigned long) (entry) & 3) == 2)
3667 mas_root_expand(mas, entry);
3669 rcu_assign_pointer(mas->tree->ma_root, entry);
3670 mas->node = MAS_START;
3675 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3677 * @mas: The maple state
3678 * @piv: The pivot value being written
3679 * @type: The maple node type
3680 * @entry: The data to write
3682 * Spanning writes are writes that start in one node and end in another OR if
3683 * the write of a %NULL will cause the node to end with a %NULL.
3685 * Return: True if this is a spanning write, false otherwise.
3687 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3690 unsigned long last = wr_mas->mas->last;
3691 unsigned long piv = wr_mas->r_max;
3692 enum maple_type type = wr_mas->type;
3693 void *entry = wr_mas->entry;
3695 /* Contained in this pivot */
3699 max = wr_mas->mas->max;
3700 if (unlikely(ma_is_leaf(type))) {
3701 /* Fits in the node, but may span slots. */
3705 /* Writes to the end of the node but not null. */
3706 if ((last == max) && entry)
3710 * Writing ULONG_MAX is not a spanning write regardless of the
3711 * value being written as long as the range fits in the node.
3713 if ((last == ULONG_MAX) && (last == max))
3715 } else if (piv == last) {
3719 /* Detect spanning store wr walk */
3720 if (last == ULONG_MAX)
3724 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3729 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3731 wr_mas->type = mte_node_type(wr_mas->mas->node);
3732 mas_wr_node_walk(wr_mas);
3733 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3736 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3738 wr_mas->mas->max = wr_mas->r_max;
3739 wr_mas->mas->min = wr_mas->r_min;
3740 wr_mas->mas->node = wr_mas->content;
3741 wr_mas->mas->offset = 0;
3742 wr_mas->mas->depth++;
3745 * mas_wr_walk() - Walk the tree for a write.
3746 * @wr_mas: The maple write state
3748 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3750 * Return: True if it's contained in a node, false on spanning write.
3752 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3754 struct ma_state *mas = wr_mas->mas;
3757 mas_wr_walk_descend(wr_mas);
3758 if (unlikely(mas_is_span_wr(wr_mas)))
3761 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3763 if (ma_is_leaf(wr_mas->type))
3766 mas_wr_walk_traverse(wr_mas);
3772 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3774 struct ma_state *mas = wr_mas->mas;
3777 mas_wr_walk_descend(wr_mas);
3778 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3780 if (ma_is_leaf(wr_mas->type))
3782 mas_wr_walk_traverse(wr_mas);
3788 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3789 * @l_wr_mas: The left maple write state
3790 * @r_wr_mas: The right maple write state
3792 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3793 struct ma_wr_state *r_wr_mas)
3795 struct ma_state *r_mas = r_wr_mas->mas;
3796 struct ma_state *l_mas = l_wr_mas->mas;
3797 unsigned char l_slot;
3799 l_slot = l_mas->offset;
3800 if (!l_wr_mas->content)
3801 l_mas->index = l_wr_mas->r_min;
3803 if ((l_mas->index == l_wr_mas->r_min) &&
3805 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3807 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3809 l_mas->index = l_mas->min;
3811 l_mas->offset = l_slot - 1;
3814 if (!r_wr_mas->content) {
3815 if (r_mas->last < r_wr_mas->r_max)
3816 r_mas->last = r_wr_mas->r_max;
3818 } else if ((r_mas->last == r_wr_mas->r_max) &&
3819 (r_mas->last < r_mas->max) &&
3820 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3821 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3822 r_wr_mas->type, r_mas->offset + 1);
3827 static inline void *mas_state_walk(struct ma_state *mas)
3831 entry = mas_start(mas);
3832 if (mas_is_none(mas))
3835 if (mas_is_ptr(mas))
3838 return mtree_range_walk(mas);
3842 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3845 * @mas: The maple state.
3847 * Note: Leaves mas in undesirable state.
3848 * Return: The entry for @mas->index or %NULL on dead node.
3850 static inline void *mtree_lookup_walk(struct ma_state *mas)
3852 unsigned long *pivots;
3853 unsigned char offset;
3854 struct maple_node *node;
3855 struct maple_enode *next;
3856 enum maple_type type;
3865 node = mte_to_node(next);
3866 type = mte_node_type(next);
3867 pivots = ma_pivots(node, type);
3868 end = ma_data_end(node, type, pivots, max);
3869 if (unlikely(ma_dead_node(node)))
3872 if (pivots[offset] >= mas->index)
3877 } while ((offset < end) && (pivots[offset] < mas->index));
3879 if (likely(offset > end))
3880 max = pivots[offset];
3883 slots = ma_slots(node, type);
3884 next = mt_slot(mas->tree, slots, offset);
3885 if (unlikely(ma_dead_node(node)))
3887 } while (!ma_is_leaf(type));
3889 return (void *)next;
3897 * mas_new_root() - Create a new root node that only contains the entry passed
3899 * @mas: The maple state
3900 * @entry: The entry to store.
3902 * Only valid when the index == 0 and the last == ULONG_MAX
3904 * Return 0 on error, 1 on success.
3906 static inline int mas_new_root(struct ma_state *mas, void *entry)
3908 struct maple_enode *root = mas_root_locked(mas);
3909 enum maple_type type = maple_leaf_64;
3910 struct maple_node *node;
3912 unsigned long *pivots;
3914 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3916 mas_set_height(mas);
3917 rcu_assign_pointer(mas->tree->ma_root, entry);
3918 mas->node = MAS_START;
3922 mas_node_count(mas, 1);
3923 if (mas_is_err(mas))
3926 node = mas_pop_node(mas);
3927 pivots = ma_pivots(node, type);
3928 slots = ma_slots(node, type);
3929 node->parent = ma_parent_ptr(
3930 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3931 mas->node = mt_mk_node(node, type);
3932 rcu_assign_pointer(slots[0], entry);
3933 pivots[0] = mas->last;
3935 mas_set_height(mas);
3936 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3939 if (xa_is_node(root))
3940 mte_destroy_walk(root, mas->tree);
3945 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3946 * and new nodes where necessary, then place the sub-tree in the actual tree.
3947 * Note that mas is expected to point to the node which caused the store to
3949 * @wr_mas: The maple write state
3951 * Return: 0 on error, positive on success.
3953 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3955 struct maple_subtree_state mast;
3956 struct maple_big_node b_node;
3957 struct ma_state *mas;
3958 unsigned char height;
3960 /* Left and Right side of spanning store */
3961 MA_STATE(l_mas, NULL, 0, 0);
3962 MA_STATE(r_mas, NULL, 0, 0);
3964 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3965 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3968 * A store operation that spans multiple nodes is called a spanning
3969 * store and is handled early in the store call stack by the function
3970 * mas_is_span_wr(). When a spanning store is identified, the maple
3971 * state is duplicated. The first maple state walks the left tree path
3972 * to ``index``, the duplicate walks the right tree path to ``last``.
3973 * The data in the two nodes are combined into a single node, two nodes,
3974 * or possibly three nodes (see the 3-way split above). A ``NULL``
3975 * written to the last entry of a node is considered a spanning store as
3976 * a rebalance is required for the operation to complete and an overflow
3977 * of data may happen.
3980 trace_ma_op(__func__, mas);
3982 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3983 return mas_new_root(mas, wr_mas->entry);
3985 * Node rebalancing may occur due to this store, so there may be three new
3986 * entries per level plus a new root.
3988 height = mas_mt_height(mas);
3989 mas_node_count(mas, 1 + height * 3);
3990 if (mas_is_err(mas))
3994 * Set up right side. Need to get to the next offset after the spanning
3995 * store to ensure it's not NULL and to combine both the next node and
3996 * the node with the start together.
3999 /* Avoid overflow, walk to next slot in the tree. */
4003 r_mas.index = r_mas.last;
4004 mas_wr_walk_index(&r_wr_mas);
4005 r_mas.last = r_mas.index = mas->last;
4007 /* Set up left side. */
4009 mas_wr_walk_index(&l_wr_mas);
4011 if (!wr_mas->entry) {
4012 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4013 mas->offset = l_mas.offset;
4014 mas->index = l_mas.index;
4015 mas->last = l_mas.last = r_mas.last;
4018 /* expanding NULLs may make this cover the entire range */
4019 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4020 mas_set_range(mas, 0, ULONG_MAX);
4021 return mas_new_root(mas, wr_mas->entry);
4024 memset(&b_node, 0, sizeof(struct maple_big_node));
4025 /* Copy l_mas and store the value in b_node. */
4026 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4027 /* Copy r_mas into b_node. */
4028 if (r_mas.offset <= r_wr_mas.node_end)
4029 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4030 &b_node, b_node.b_end + 1);
4034 /* Stop spanning searches by searching for just index. */
4035 l_mas.index = l_mas.last = mas->index;
4038 mast.orig_l = &l_mas;
4039 mast.orig_r = &r_mas;
4040 /* Combine l_mas and r_mas and split them up evenly again. */
4041 return mas_spanning_rebalance(mas, &mast, height + 1);
4045 * mas_wr_node_store() - Attempt to store the value in a node
4046 * @wr_mas: The maple write state
4048 * Attempts to reuse the node, but may allocate.
4050 * Return: True if stored, false otherwise
4052 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4054 struct ma_state *mas = wr_mas->mas;
4055 void __rcu **dst_slots;
4056 unsigned long *dst_pivots;
4057 unsigned char dst_offset;
4058 unsigned char new_end = wr_mas->node_end;
4059 unsigned char offset;
4060 unsigned char node_slots = mt_slots[wr_mas->type];
4061 struct maple_node reuse, *newnode;
4062 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4063 bool in_rcu = mt_in_rcu(mas->tree);
4065 offset = mas->offset;
4066 if (mas->last == wr_mas->r_max) {
4067 /* runs right to the end of the node */
4068 if (mas->last == mas->max)
4070 /* don't copy this offset */
4071 wr_mas->offset_end++;
4072 } else if (mas->last < wr_mas->r_max) {
4073 /* new range ends in this range */
4074 if (unlikely(wr_mas->r_max == ULONG_MAX))
4075 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4079 if (wr_mas->end_piv == mas->last)
4080 wr_mas->offset_end++;
4082 new_end -= wr_mas->offset_end - offset - 1;
4085 /* new range starts within a range */
4086 if (wr_mas->r_min < mas->index)
4089 /* Not enough room */
4090 if (new_end >= node_slots)
4093 /* Not enough data. */
4094 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4095 !(mas->mas_flags & MA_STATE_BULK))
4100 mas_node_count(mas, 1);
4101 if (mas_is_err(mas))
4104 newnode = mas_pop_node(mas);
4106 memset(&reuse, 0, sizeof(struct maple_node));
4110 newnode->parent = mas_mn(mas)->parent;
4111 dst_pivots = ma_pivots(newnode, wr_mas->type);
4112 dst_slots = ma_slots(newnode, wr_mas->type);
4113 /* Copy from start to insert point */
4114 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4115 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4116 dst_offset = offset;
4118 /* Handle insert of new range starting after old range */
4119 if (wr_mas->r_min < mas->index) {
4121 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4122 dst_pivots[dst_offset++] = mas->index - 1;
4125 /* Store the new entry and range end. */
4126 if (dst_offset < max_piv)
4127 dst_pivots[dst_offset] = mas->last;
4128 mas->offset = dst_offset;
4129 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4132 * this range wrote to the end of the node or it overwrote the rest of
4135 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4136 new_end = dst_offset;
4141 /* Copy to the end of node if necessary. */
4142 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4143 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4144 sizeof(void *) * copy_size);
4145 if (dst_offset < max_piv) {
4146 if (copy_size > max_piv - dst_offset)
4147 copy_size = max_piv - dst_offset;
4149 memcpy(dst_pivots + dst_offset,
4150 wr_mas->pivots + wr_mas->offset_end,
4151 sizeof(unsigned long) * copy_size);
4154 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4155 dst_pivots[new_end] = mas->max;
4158 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4160 mas->node = mt_mk_node(newnode, wr_mas->type);
4161 mas_replace(mas, false);
4163 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4165 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4166 mas_update_gap(mas);
4171 * mas_wr_slot_store: Attempt to store a value in a slot.
4172 * @wr_mas: the maple write state
4174 * Return: True if stored, false otherwise
4176 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4178 struct ma_state *mas = wr_mas->mas;
4179 unsigned long lmax; /* Logical max. */
4180 unsigned char offset = mas->offset;
4182 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4183 (offset != wr_mas->node_end)))
4186 if (offset == wr_mas->node_end - 1)
4189 lmax = wr_mas->pivots[offset + 1];
4191 /* going to overwrite too many slots. */
4192 if (lmax < mas->last)
4195 if (wr_mas->r_min == mas->index) {
4196 /* overwriting two or more ranges with one. */
4197 if (lmax == mas->last)
4200 /* Overwriting all of offset and a portion of offset + 1. */
4201 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4202 wr_mas->pivots[offset] = mas->last;
4206 /* Doesn't end on the next range end. */
4207 if (lmax != mas->last)
4210 /* Overwriting a portion of offset and all of offset + 1 */
4211 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4212 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4213 wr_mas->pivots[offset + 1] = mas->last;
4215 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4216 wr_mas->pivots[offset] = mas->index - 1;
4217 mas->offset++; /* Keep mas accurate. */
4220 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4221 mas_update_gap(mas);
4225 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4227 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4228 (wr_mas->offset_end < wr_mas->node_end))
4229 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4231 if (wr_mas->mas->last > wr_mas->end_piv)
4232 wr_mas->end_piv = wr_mas->mas->max;
4235 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4237 struct ma_state *mas = wr_mas->mas;
4239 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4240 mas->last = wr_mas->end_piv;
4242 /* Check next slot(s) if we are overwriting the end */
4243 if ((mas->last == wr_mas->end_piv) &&
4244 (wr_mas->node_end != wr_mas->offset_end) &&
4245 !wr_mas->slots[wr_mas->offset_end + 1]) {
4246 wr_mas->offset_end++;
4247 if (wr_mas->offset_end == wr_mas->node_end)
4248 mas->last = mas->max;
4250 mas->last = wr_mas->pivots[wr_mas->offset_end];
4251 wr_mas->end_piv = mas->last;
4254 if (!wr_mas->content) {
4255 /* If this one is null, the next and prev are not */
4256 mas->index = wr_mas->r_min;
4258 /* Check prev slot if we are overwriting the start */
4259 if (mas->index == wr_mas->r_min && mas->offset &&
4260 !wr_mas->slots[mas->offset - 1]) {
4262 wr_mas->r_min = mas->index =
4263 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4264 wr_mas->r_max = wr_mas->pivots[mas->offset];
4269 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4271 unsigned char end = wr_mas->node_end;
4272 unsigned char new_end = end + 1;
4273 struct ma_state *mas = wr_mas->mas;
4274 unsigned char node_pivots = mt_pivots[wr_mas->type];
4276 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4277 if (new_end < node_pivots)
4278 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4280 if (new_end < node_pivots)
4281 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4283 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4284 mas->offset = new_end;
4285 wr_mas->pivots[end] = mas->index - 1;
4290 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4291 if (new_end < node_pivots)
4292 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4294 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4295 if (new_end < node_pivots)
4296 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4298 wr_mas->pivots[end] = mas->last;
4299 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4307 * mas_wr_bnode() - Slow path for a modification.
4308 * @wr_mas: The write maple state
4310 * This is where split, rebalance end up.
4312 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4314 struct maple_big_node b_node;
4316 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4317 memset(&b_node, 0, sizeof(struct maple_big_node));
4318 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4319 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4322 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4324 unsigned char node_slots;
4325 unsigned char node_size;
4326 struct ma_state *mas = wr_mas->mas;
4328 /* Direct replacement */
4329 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4330 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4331 if (!!wr_mas->entry ^ !!wr_mas->content)
4332 mas_update_gap(mas);
4336 /* Attempt to append */
4337 node_slots = mt_slots[wr_mas->type];
4338 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4339 if (mas->max == ULONG_MAX)
4342 /* slot and node store will not fit, go to the slow path */
4343 if (unlikely(node_size >= node_slots))
4346 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4347 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4348 if (!wr_mas->content || !wr_mas->entry)
4349 mas_update_gap(mas);
4353 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4355 else if (mas_wr_node_store(wr_mas))
4358 if (mas_is_err(mas))
4362 mas_wr_bnode(wr_mas);
4366 * mas_wr_store_entry() - Internal call to store a value
4367 * @mas: The maple state
4368 * @entry: The entry to store.
4370 * Return: The contents that was stored at the index.
4372 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4374 struct ma_state *mas = wr_mas->mas;
4376 wr_mas->content = mas_start(mas);
4377 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4378 mas_store_root(mas, wr_mas->entry);
4379 return wr_mas->content;
4382 if (unlikely(!mas_wr_walk(wr_mas))) {
4383 mas_wr_spanning_store(wr_mas);
4384 return wr_mas->content;
4387 /* At this point, we are at the leaf node that needs to be altered. */
4388 wr_mas->end_piv = wr_mas->r_max;
4389 mas_wr_end_piv(wr_mas);
4392 mas_wr_extend_null(wr_mas);
4394 /* New root for a single pointer */
4395 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4396 mas_new_root(mas, wr_mas->entry);
4397 return wr_mas->content;
4400 mas_wr_modify(wr_mas);
4401 return wr_mas->content;
4405 * mas_insert() - Internal call to insert a value
4406 * @mas: The maple state
4407 * @entry: The entry to store
4409 * Return: %NULL or the contents that already exists at the requested index
4410 * otherwise. The maple state needs to be checked for error conditions.
4412 static inline void *mas_insert(struct ma_state *mas, void *entry)
4414 MA_WR_STATE(wr_mas, mas, entry);
4417 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4418 * tree. If the insert fits exactly into an existing gap with a value
4419 * of NULL, then the slot only needs to be written with the new value.
4420 * If the range being inserted is adjacent to another range, then only a
4421 * single pivot needs to be inserted (as well as writing the entry). If
4422 * the new range is within a gap but does not touch any other ranges,
4423 * then two pivots need to be inserted: the start - 1, and the end. As
4424 * usual, the entry must be written. Most operations require a new node
4425 * to be allocated and replace an existing node to ensure RCU safety,
4426 * when in RCU mode. The exception to requiring a newly allocated node
4427 * is when inserting at the end of a node (appending). When done
4428 * carefully, appending can reuse the node in place.
4430 wr_mas.content = mas_start(mas);
4434 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4435 mas_store_root(mas, entry);
4439 /* spanning writes always overwrite something */
4440 if (!mas_wr_walk(&wr_mas))
4443 /* At this point, we are at the leaf node that needs to be altered. */
4444 wr_mas.offset_end = mas->offset;
4445 wr_mas.end_piv = wr_mas.r_max;
4447 if (wr_mas.content || (mas->last > wr_mas.r_max))
4453 mas_wr_modify(&wr_mas);
4454 return wr_mas.content;
4457 mas_set_err(mas, -EEXIST);
4458 return wr_mas.content;
4463 * mas_prev_node() - Find the prev non-null entry at the same level in the
4464 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4465 * @mas: The maple state
4466 * @min: The lower limit to search
4468 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4469 * Return: 1 if the node is dead, 0 otherwise.
4471 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4476 struct maple_node *node;
4477 struct maple_enode *enode;
4478 unsigned long *pivots;
4480 if (mas_is_none(mas))
4486 if (ma_is_root(node))
4490 if (unlikely(mas_ascend(mas)))
4492 offset = mas->offset;
4497 mt = mte_node_type(mas->node);
4499 slots = ma_slots(node, mt);
4500 pivots = ma_pivots(node, mt);
4501 mas->max = pivots[offset];
4503 mas->min = pivots[offset - 1] + 1;
4504 if (unlikely(ma_dead_node(node)))
4512 enode = mas_slot(mas, slots, offset);
4513 if (unlikely(ma_dead_node(node)))
4517 mt = mte_node_type(mas->node);
4519 slots = ma_slots(node, mt);
4520 pivots = ma_pivots(node, mt);
4521 offset = ma_data_end(node, mt, pivots, mas->max);
4523 mas->min = pivots[offset - 1] + 1;
4525 if (offset < mt_pivots[mt])
4526 mas->max = pivots[offset];
4532 mas->node = mas_slot(mas, slots, offset);
4533 if (unlikely(ma_dead_node(node)))
4536 mas->offset = mas_data_end(mas);
4537 if (unlikely(mte_dead_node(mas->node)))
4543 mas->offset = offset;
4545 mas->min = pivots[offset - 1] + 1;
4547 if (unlikely(ma_dead_node(node)))
4550 mas->node = MAS_NONE;
4555 * mas_next_node() - Get the next node at the same level in the tree.
4556 * @mas: The maple state
4557 * @max: The maximum pivot value to check.
4559 * The next value will be mas->node[mas->offset] or MAS_NONE.
4560 * Return: 1 on dead node, 0 otherwise.
4562 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4565 unsigned long min, pivot;
4566 unsigned long *pivots;
4567 struct maple_enode *enode;
4569 unsigned char offset;
4573 if (mas->max >= max)
4578 if (ma_is_root(node))
4585 if (unlikely(mas_ascend(mas)))
4588 offset = mas->offset;
4591 mt = mte_node_type(mas->node);
4592 pivots = ma_pivots(node, mt);
4593 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4595 slots = ma_slots(node, mt);
4596 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4597 while (unlikely(level > 1)) {
4598 /* Descend, if necessary */
4599 enode = mas_slot(mas, slots, offset);
4600 if (unlikely(ma_dead_node(node)))
4606 mt = mte_node_type(mas->node);
4607 slots = ma_slots(node, mt);
4608 pivots = ma_pivots(node, mt);
4613 enode = mas_slot(mas, slots, offset);
4614 if (unlikely(ma_dead_node(node)))
4623 if (unlikely(ma_dead_node(node)))
4626 mas->node = MAS_NONE;
4631 * mas_next_nentry() - Get the next node entry
4632 * @mas: The maple state
4633 * @max: The maximum value to check
4634 * @*range_start: Pointer to store the start of the range.
4636 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4637 * pivot of the entry.
4639 * Return: The next entry, %NULL otherwise
4641 static inline void *mas_next_nentry(struct ma_state *mas,
4642 struct maple_node *node, unsigned long max, enum maple_type type)
4644 unsigned char count;
4645 unsigned long pivot;
4646 unsigned long *pivots;
4650 if (mas->last == mas->max) {
4651 mas->index = mas->max;
4655 pivots = ma_pivots(node, type);
4656 slots = ma_slots(node, type);
4657 mas->index = mas_safe_min(mas, pivots, mas->offset);
4658 if (ma_dead_node(node))
4661 if (mas->index > max)
4664 count = ma_data_end(node, type, pivots, mas->max);
4665 if (mas->offset > count)
4668 while (mas->offset < count) {
4669 pivot = pivots[mas->offset];
4670 entry = mas_slot(mas, slots, mas->offset);
4671 if (ma_dead_node(node))
4680 mas->index = pivot + 1;
4684 if (mas->index > mas->max) {
4685 mas->index = mas->last;
4689 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4690 entry = mas_slot(mas, slots, mas->offset);
4691 if (ma_dead_node(node))
4705 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4708 mas_set(mas, index);
4709 mas_state_walk(mas);
4710 if (mas_is_start(mas))
4715 * mas_next_entry() - Internal function to get the next entry.
4716 * @mas: The maple state
4717 * @limit: The maximum range start.
4719 * Set the @mas->node to the next entry and the range_start to
4720 * the beginning value for the entry. Does not check beyond @limit.
4721 * Sets @mas->index and @mas->last to the limit if it is hit.
4722 * Restarts on dead nodes.
4724 * Return: the next entry or %NULL.
4726 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4729 struct maple_enode *prev_node;
4730 struct maple_node *node;
4731 unsigned char offset;
4737 offset = mas->offset;
4738 prev_node = mas->node;
4740 mt = mte_node_type(mas->node);
4742 if (unlikely(mas->offset >= mt_slots[mt])) {
4743 mas->offset = mt_slots[mt] - 1;
4747 while (!mas_is_none(mas)) {
4748 entry = mas_next_nentry(mas, node, limit, mt);
4749 if (unlikely(ma_dead_node(node))) {
4750 mas_rewalk(mas, last);
4757 if (unlikely((mas->index > limit)))
4761 prev_node = mas->node;
4762 offset = mas->offset;
4763 if (unlikely(mas_next_node(mas, node, limit))) {
4764 mas_rewalk(mas, last);
4769 mt = mte_node_type(mas->node);
4772 mas->index = mas->last = limit;
4773 mas->offset = offset;
4774 mas->node = prev_node;
4779 * mas_prev_nentry() - Get the previous node entry.
4780 * @mas: The maple state.
4781 * @limit: The lower limit to check for a value.
4783 * Return: the entry, %NULL otherwise.
4785 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4786 unsigned long index)
4788 unsigned long pivot, min;
4789 unsigned char offset;
4790 struct maple_node *mn;
4792 unsigned long *pivots;
4801 mt = mte_node_type(mas->node);
4802 offset = mas->offset - 1;
4803 if (offset >= mt_slots[mt])
4804 offset = mt_slots[mt] - 1;
4806 slots = ma_slots(mn, mt);
4807 pivots = ma_pivots(mn, mt);
4808 if (offset == mt_pivots[mt])
4811 pivot = pivots[offset];
4813 if (unlikely(ma_dead_node(mn))) {
4814 mas_rewalk(mas, index);
4818 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4820 pivot = pivots[--offset];
4822 min = mas_safe_min(mas, pivots, offset);
4823 entry = mas_slot(mas, slots, offset);
4824 if (unlikely(ma_dead_node(mn))) {
4825 mas_rewalk(mas, index);
4829 if (likely(entry)) {
4830 mas->offset = offset;
4837 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4842 while (likely(!mas_is_none(mas))) {
4843 entry = mas_prev_nentry(mas, min, mas->index);
4844 if (unlikely(mas->last < min))
4850 if (unlikely(mas_prev_node(mas, min))) {
4851 mas_rewalk(mas, mas->index);
4860 mas->index = mas->last = min;
4865 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4866 * highest gap address of a given size in a given node and descend.
4867 * @mas: The maple state
4868 * @size: The needed size.
4870 * Return: True if found in a leaf, false otherwise.
4873 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4875 enum maple_type type = mte_node_type(mas->node);
4876 struct maple_node *node = mas_mn(mas);
4877 unsigned long *pivots, *gaps;
4879 unsigned long gap = 0;
4880 unsigned long max, min;
4881 unsigned char offset;
4883 if (unlikely(mas_is_err(mas)))
4886 if (ma_is_dense(type)) {
4888 mas->offset = (unsigned char)(mas->index - mas->min);
4892 pivots = ma_pivots(node, type);
4893 slots = ma_slots(node, type);
4894 gaps = ma_gaps(node, type);
4895 offset = mas->offset;
4896 min = mas_safe_min(mas, pivots, offset);
4897 /* Skip out of bounds. */
4898 while (mas->last < min)
4899 min = mas_safe_min(mas, pivots, --offset);
4901 max = mas_safe_pivot(mas, pivots, offset, type);
4902 while (mas->index <= max) {
4906 else if (!mas_slot(mas, slots, offset))
4907 gap = max - min + 1;
4910 if ((size <= gap) && (size <= mas->last - min + 1))
4914 /* Skip the next slot, it cannot be a gap. */
4919 max = pivots[offset];
4920 min = mas_safe_min(mas, pivots, offset);
4930 min = mas_safe_min(mas, pivots, offset);
4933 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4936 if (unlikely(ma_is_leaf(type))) {
4937 mas->offset = offset;
4939 mas->max = min + gap - 1;
4943 /* descend, only happens under lock. */
4944 mas->node = mas_slot(mas, slots, offset);
4947 mas->offset = mas_data_end(mas);
4951 if (!mte_is_root(mas->node))
4955 mas_set_err(mas, -EBUSY);
4959 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4961 enum maple_type type = mte_node_type(mas->node);
4962 unsigned long pivot, min, gap = 0;
4963 unsigned char offset;
4964 unsigned long *gaps;
4965 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4966 void __rcu **slots = ma_slots(mas_mn(mas), type);
4969 if (ma_is_dense(type)) {
4970 mas->offset = (unsigned char)(mas->index - mas->min);
4974 gaps = ma_gaps(mte_to_node(mas->node), type);
4975 offset = mas->offset;
4976 min = mas_safe_min(mas, pivots, offset);
4977 for (; offset < mt_slots[type]; offset++) {
4978 pivot = mas_safe_pivot(mas, pivots, offset, type);
4979 if (offset && !pivot)
4982 /* Not within lower bounds */
4983 if (mas->index > pivot)
4988 else if (!mas_slot(mas, slots, offset))
4989 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4994 if (ma_is_leaf(type)) {
4998 if (mas->index <= pivot) {
4999 mas->node = mas_slot(mas, slots, offset);
5008 if (mas->last <= pivot) {
5009 mas_set_err(mas, -EBUSY);
5014 if (mte_is_root(mas->node))
5017 mas->offset = offset;
5022 * mas_walk() - Search for @mas->index in the tree.
5023 * @mas: The maple state.
5025 * mas->index and mas->last will be set to the range if there is a value. If
5026 * mas->node is MAS_NONE, reset to MAS_START.
5028 * Return: the entry at the location or %NULL.
5030 void *mas_walk(struct ma_state *mas)
5035 entry = mas_state_walk(mas);
5036 if (mas_is_start(mas))
5039 if (mas_is_ptr(mas)) {
5044 mas->last = ULONG_MAX;
5049 if (mas_is_none(mas)) {
5051 mas->last = ULONG_MAX;
5056 EXPORT_SYMBOL_GPL(mas_walk);
5058 static inline bool mas_rewind_node(struct ma_state *mas)
5063 if (mte_is_root(mas->node)) {
5073 mas->offset = --slot;
5078 * mas_skip_node() - Internal function. Skip over a node.
5079 * @mas: The maple state.
5081 * Return: true if there is another node, false otherwise.
5083 static inline bool mas_skip_node(struct ma_state *mas)
5085 unsigned char slot, slot_count;
5086 unsigned long *pivots;
5089 mt = mte_node_type(mas->node);
5090 slot_count = mt_slots[mt] - 1;
5092 if (mte_is_root(mas->node)) {
5094 if (slot > slot_count) {
5095 mas_set_err(mas, -EBUSY);
5101 mt = mte_node_type(mas->node);
5102 slot_count = mt_slots[mt] - 1;
5104 } while (slot > slot_count);
5106 mas->offset = ++slot;
5107 pivots = ma_pivots(mas_mn(mas), mt);
5109 mas->min = pivots[slot - 1] + 1;
5111 if (slot <= slot_count)
5112 mas->max = pivots[slot];
5118 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5120 * @mas: The maple state
5121 * @size: The size of the gap required
5123 * Search between @mas->index and @mas->last for a gap of @size.
5125 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5127 struct maple_enode *last = NULL;
5130 * There are 4 options:
5131 * go to child (descend)
5132 * go back to parent (ascend)
5133 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5134 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5136 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5137 if (last == mas->node)
5145 * mas_fill_gap() - Fill a located gap with @entry.
5146 * @mas: The maple state
5147 * @entry: The value to store
5148 * @slot: The offset into the node to store the @entry
5149 * @size: The size of the entry
5150 * @index: The start location
5152 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5153 unsigned char slot, unsigned long size, unsigned long *index)
5155 MA_WR_STATE(wr_mas, mas, entry);
5156 unsigned char pslot = mte_parent_slot(mas->node);
5157 struct maple_enode *mn = mas->node;
5158 unsigned long *pivots;
5159 enum maple_type ptype;
5161 * mas->index is the start address for the search
5162 * which may no longer be needed.
5163 * mas->last is the end address for the search
5166 *index = mas->index;
5167 mas->last = mas->index + size - 1;
5170 * It is possible that using mas->max and mas->min to correctly
5171 * calculate the index and last will cause an issue in the gap
5172 * calculation, so fix the ma_state here
5175 ptype = mte_node_type(mas->node);
5176 pivots = ma_pivots(mas_mn(mas), ptype);
5177 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5178 mas->min = mas_safe_min(mas, pivots, pslot);
5181 mas_wr_store_entry(&wr_mas);
5185 * mas_sparse_area() - Internal function. Return upper or lower limit when
5186 * searching for a gap in an empty tree.
5187 * @mas: The maple state
5188 * @min: the minimum range
5189 * @max: The maximum range
5190 * @size: The size of the gap
5191 * @fwd: Searching forward or back
5193 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5194 unsigned long max, unsigned long size, bool fwd)
5196 unsigned long start = 0;
5198 if (!unlikely(mas_is_none(mas)))
5207 mas->last = start + size - 1;
5215 * mas_empty_area() - Get the lowest address within the range that is
5216 * sufficient for the size requested.
5217 * @mas: The maple state
5218 * @min: The lowest value of the range
5219 * @max: The highest value of the range
5220 * @size: The size needed
5222 int mas_empty_area(struct ma_state *mas, unsigned long min,
5223 unsigned long max, unsigned long size)
5225 unsigned char offset;
5226 unsigned long *pivots;
5229 if (mas_is_start(mas))
5231 else if (mas->offset >= 2)
5233 else if (!mas_skip_node(mas))
5237 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5238 mas_sparse_area(mas, min, max, size, true);
5242 /* The start of the window can only be within these values */
5245 mas_awalk(mas, size);
5247 if (unlikely(mas_is_err(mas)))
5248 return xa_err(mas->node);
5250 offset = mas->offset;
5251 if (unlikely(offset == MAPLE_NODE_SLOTS))
5254 mt = mte_node_type(mas->node);
5255 pivots = ma_pivots(mas_mn(mas), mt);
5257 mas->min = pivots[offset - 1] + 1;
5259 if (offset < mt_pivots[mt])
5260 mas->max = pivots[offset];
5262 if (mas->index < mas->min)
5263 mas->index = mas->min;
5265 mas->last = mas->index + size - 1;
5268 EXPORT_SYMBOL_GPL(mas_empty_area);
5271 * mas_empty_area_rev() - Get the highest address within the range that is
5272 * sufficient for the size requested.
5273 * @mas: The maple state
5274 * @min: The lowest value of the range
5275 * @max: The highest value of the range
5276 * @size: The size needed
5278 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5279 unsigned long max, unsigned long size)
5281 struct maple_enode *last = mas->node;
5283 if (mas_is_start(mas)) {
5285 mas->offset = mas_data_end(mas);
5286 } else if (mas->offset >= 2) {
5288 } else if (!mas_rewind_node(mas)) {
5293 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5294 mas_sparse_area(mas, min, max, size, false);
5298 /* The start of the window can only be within these values. */
5302 while (!mas_rev_awalk(mas, size)) {
5303 if (last == mas->node) {
5304 if (!mas_rewind_node(mas))
5311 if (mas_is_err(mas))
5312 return xa_err(mas->node);
5314 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5318 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5319 * the maximum is outside the window we are searching, then use the last
5320 * location in the search.
5321 * mas->max and mas->min is the range of the gap.
5322 * mas->index and mas->last are currently set to the search range.
5325 /* Trim the upper limit to the max. */
5326 if (mas->max <= mas->last)
5327 mas->last = mas->max;
5329 mas->index = mas->last - size + 1;
5332 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5334 static inline int mas_alloc(struct ma_state *mas, void *entry,
5335 unsigned long size, unsigned long *index)
5340 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5341 mas_root_expand(mas, entry);
5342 if (mas_is_err(mas))
5343 return xa_err(mas->node);
5346 return mte_pivot(mas->node, 0);
5347 return mte_pivot(mas->node, 1);
5350 /* Must be walking a tree. */
5351 mas_awalk(mas, size);
5352 if (mas_is_err(mas))
5353 return xa_err(mas->node);
5355 if (mas->offset == MAPLE_NODE_SLOTS)
5359 * At this point, mas->node points to the right node and we have an
5360 * offset that has a sufficient gap.
5364 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5366 if (mas->index < min)
5369 mas_fill_gap(mas, entry, mas->offset, size, index);
5376 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5377 unsigned long max, void *entry,
5378 unsigned long size, unsigned long *index)
5382 ret = mas_empty_area_rev(mas, min, max, size);
5386 if (mas_is_err(mas))
5387 return xa_err(mas->node);
5389 if (mas->offset == MAPLE_NODE_SLOTS)
5392 mas_fill_gap(mas, entry, mas->offset, size, index);
5400 * mas_dead_leaves() - Mark all leaves of a node as dead.
5401 * @mas: The maple state
5402 * @slots: Pointer to the slot array
5404 * Must hold the write lock.
5406 * Return: The number of leaves marked as dead.
5409 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5411 struct maple_node *node;
5412 enum maple_type type;
5416 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5417 entry = mas_slot_locked(mas, slots, offset);
5418 type = mte_node_type(entry);
5419 node = mte_to_node(entry);
5420 /* Use both node and type to catch LE & BE metadata */
5424 mte_set_node_dead(entry);
5425 smp_wmb(); /* Needed for RCU */
5427 rcu_assign_pointer(slots[offset], node);
5433 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5435 struct maple_node *node, *next;
5436 void __rcu **slots = NULL;
5440 mas->node = ma_enode_ptr(next);
5442 slots = ma_slots(node, node->type);
5443 next = mas_slot_locked(mas, slots, offset);
5445 } while (!ma_is_leaf(next->type));
5450 static void mt_free_walk(struct rcu_head *head)
5453 struct maple_node *node, *start;
5454 struct maple_tree mt;
5455 unsigned char offset;
5456 enum maple_type type;
5457 MA_STATE(mas, &mt, 0, 0);
5459 node = container_of(head, struct maple_node, rcu);
5461 if (ma_is_leaf(node->type))
5464 mt_init_flags(&mt, node->ma_flags);
5467 mas.node = mt_mk_node(node, node->type);
5468 slots = mas_dead_walk(&mas, 0);
5469 node = mas_mn(&mas);
5471 mt_free_bulk(node->slot_len, slots);
5472 offset = node->parent_slot + 1;
5473 mas.node = node->piv_parent;
5474 if (mas_mn(&mas) == node)
5475 goto start_slots_free;
5477 type = mte_node_type(mas.node);
5478 slots = ma_slots(mte_to_node(mas.node), type);
5479 if ((offset < mt_slots[type]) && (slots[offset]))
5480 slots = mas_dead_walk(&mas, offset);
5482 node = mas_mn(&mas);
5483 } while ((node != start) || (node->slot_len < offset));
5485 slots = ma_slots(node, node->type);
5486 mt_free_bulk(node->slot_len, slots);
5491 mt_free_rcu(&node->rcu);
5494 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5495 struct maple_enode *prev, unsigned char offset)
5497 struct maple_node *node;
5498 struct maple_enode *next = mas->node;
5499 void __rcu **slots = NULL;
5504 slots = ma_slots(node, mte_node_type(mas->node));
5505 next = mas_slot_locked(mas, slots, 0);
5506 if ((mte_dead_node(next)))
5507 next = mas_slot_locked(mas, slots, 1);
5509 mte_set_node_dead(mas->node);
5510 node->type = mte_node_type(mas->node);
5511 node->piv_parent = prev;
5512 node->parent_slot = offset;
5515 } while (!mte_is_leaf(next));
5520 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5524 struct maple_node *node = mte_to_node(enode);
5525 struct maple_enode *start;
5526 struct maple_tree mt;
5528 MA_STATE(mas, &mt, 0, 0);
5530 if (mte_is_leaf(enode))
5533 mt_init_flags(&mt, ma_flags);
5536 mas.node = start = enode;
5537 slots = mas_destroy_descend(&mas, start, 0);
5538 node = mas_mn(&mas);
5540 enum maple_type type;
5541 unsigned char offset;
5542 struct maple_enode *parent, *tmp;
5544 node->slot_len = mas_dead_leaves(&mas, slots);
5546 mt_free_bulk(node->slot_len, slots);
5547 offset = node->parent_slot + 1;
5548 mas.node = node->piv_parent;
5549 if (mas_mn(&mas) == node)
5550 goto start_slots_free;
5552 type = mte_node_type(mas.node);
5553 slots = ma_slots(mte_to_node(mas.node), type);
5554 if (offset >= mt_slots[type])
5557 tmp = mas_slot_locked(&mas, slots, offset);
5558 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5561 slots = mas_destroy_descend(&mas, parent, offset);
5564 node = mas_mn(&mas);
5565 } while (start != mas.node);
5567 node = mas_mn(&mas);
5568 node->slot_len = mas_dead_leaves(&mas, slots);
5570 mt_free_bulk(node->slot_len, slots);
5577 mt_free_rcu(&node->rcu);
5581 * mte_destroy_walk() - Free a tree or sub-tree.
5582 * @enode: the encoded maple node (maple_enode) to start
5583 * @mt: the tree to free - needed for node types.
5585 * Must hold the write lock.
5587 static inline void mte_destroy_walk(struct maple_enode *enode,
5588 struct maple_tree *mt)
5590 struct maple_node *node = mte_to_node(enode);
5592 if (mt_in_rcu(mt)) {
5593 mt_destroy_walk(enode, mt->ma_flags, false);
5594 call_rcu(&node->rcu, mt_free_walk);
5596 mt_destroy_walk(enode, mt->ma_flags, true);
5600 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5602 if (!mas_is_start(wr_mas->mas)) {
5603 if (mas_is_none(wr_mas->mas)) {
5604 mas_reset(wr_mas->mas);
5606 wr_mas->r_max = wr_mas->mas->max;
5607 wr_mas->type = mte_node_type(wr_mas->mas->node);
5608 if (mas_is_span_wr(wr_mas))
5609 mas_reset(wr_mas->mas);
5617 * mas_store() - Store an @entry.
5618 * @mas: The maple state.
5619 * @entry: The entry to store.
5621 * The @mas->index and @mas->last is used to set the range for the @entry.
5622 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5623 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5625 * Return: the first entry between mas->index and mas->last or %NULL.
5627 void *mas_store(struct ma_state *mas, void *entry)
5629 MA_WR_STATE(wr_mas, mas, entry);
5631 trace_ma_write(__func__, mas, 0, entry);
5632 #ifdef CONFIG_DEBUG_MAPLE_TREE
5633 if (mas->index > mas->last)
5634 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5635 MT_BUG_ON(mas->tree, mas->index > mas->last);
5636 if (mas->index > mas->last) {
5637 mas_set_err(mas, -EINVAL);
5644 * Storing is the same operation as insert with the added caveat that it
5645 * can overwrite entries. Although this seems simple enough, one may
5646 * want to examine what happens if a single store operation was to
5647 * overwrite multiple entries within a self-balancing B-Tree.
5649 mas_wr_store_setup(&wr_mas);
5650 mas_wr_store_entry(&wr_mas);
5651 return wr_mas.content;
5653 EXPORT_SYMBOL_GPL(mas_store);
5656 * mas_store_gfp() - Store a value into the tree.
5657 * @mas: The maple state
5658 * @entry: The entry to store
5659 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5661 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5664 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5666 MA_WR_STATE(wr_mas, mas, entry);
5668 mas_wr_store_setup(&wr_mas);
5669 trace_ma_write(__func__, mas, 0, entry);
5671 mas_wr_store_entry(&wr_mas);
5672 if (unlikely(mas_nomem(mas, gfp)))
5675 if (unlikely(mas_is_err(mas)))
5676 return xa_err(mas->node);
5680 EXPORT_SYMBOL_GPL(mas_store_gfp);
5683 * mas_store_prealloc() - Store a value into the tree using memory
5684 * preallocated in the maple state.
5685 * @mas: The maple state
5686 * @entry: The entry to store.
5688 void mas_store_prealloc(struct ma_state *mas, void *entry)
5690 MA_WR_STATE(wr_mas, mas, entry);
5692 mas_wr_store_setup(&wr_mas);
5693 trace_ma_write(__func__, mas, 0, entry);
5694 mas_wr_store_entry(&wr_mas);
5695 BUG_ON(mas_is_err(mas));
5698 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5701 * mas_preallocate() - Preallocate enough nodes for a store operation
5702 * @mas: The maple state
5703 * @gfp: The GFP_FLAGS to use for allocations.
5705 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5707 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5711 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5712 mas->mas_flags |= MA_STATE_PREALLOC;
5713 if (likely(!mas_is_err(mas)))
5716 mas_set_alloc_req(mas, 0);
5717 ret = xa_err(mas->node);
5725 * mas_destroy() - destroy a maple state.
5726 * @mas: The maple state
5728 * Upon completion, check the left-most node and rebalance against the node to
5729 * the right if necessary. Frees any allocated nodes associated with this maple
5732 void mas_destroy(struct ma_state *mas)
5734 struct maple_alloc *node;
5735 unsigned long total;
5738 * When using mas_for_each() to insert an expected number of elements,
5739 * it is possible that the number inserted is less than the expected
5740 * number. To fix an invalid final node, a check is performed here to
5741 * rebalance the previous node with the final node.
5743 if (mas->mas_flags & MA_STATE_REBALANCE) {
5746 if (mas_is_start(mas))
5749 mtree_range_walk(mas);
5750 end = mas_data_end(mas) + 1;
5751 if (end < mt_min_slot_count(mas->node) - 1)
5752 mas_destroy_rebalance(mas, end);
5754 mas->mas_flags &= ~MA_STATE_REBALANCE;
5756 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5758 total = mas_allocated(mas);
5761 mas->alloc = node->slot[0];
5762 if (node->node_count > 1) {
5763 size_t count = node->node_count - 1;
5765 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5768 kmem_cache_free(maple_node_cache, node);
5774 EXPORT_SYMBOL_GPL(mas_destroy);
5777 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5778 * @mas: The maple state
5779 * @nr_entries: The number of expected entries.
5781 * This will attempt to pre-allocate enough nodes to store the expected number
5782 * of entries. The allocations will occur using the bulk allocator interface
5783 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5784 * to ensure any unused nodes are freed.
5786 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5788 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5790 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5791 struct maple_enode *enode = mas->node;
5796 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5797 * forking a process and duplicating the VMAs from one tree to a new
5798 * tree. When such a situation arises, it is known that the new tree is
5799 * not going to be used until the entire tree is populated. For
5800 * performance reasons, it is best to use a bulk load with RCU disabled.
5801 * This allows for optimistic splitting that favours the left and reuse
5802 * of nodes during the operation.
5805 /* Optimize splitting for bulk insert in-order */
5806 mas->mas_flags |= MA_STATE_BULK;
5809 * Avoid overflow, assume a gap between each entry and a trailing null.
5810 * If this is wrong, it just means allocation can happen during
5811 * insertion of entries.
5813 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5814 if (!mt_is_alloc(mas->tree))
5815 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5817 /* Leaves; reduce slots to keep space for expansion */
5818 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5819 /* Internal nodes */
5820 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5821 /* Add working room for split (2 nodes) + new parents */
5822 mas_node_count(mas, nr_nodes + 3);
5824 /* Detect if allocations run out */
5825 mas->mas_flags |= MA_STATE_PREALLOC;
5827 if (!mas_is_err(mas))
5830 ret = xa_err(mas->node);
5836 EXPORT_SYMBOL_GPL(mas_expected_entries);
5839 * mas_next() - Get the next entry.
5840 * @mas: The maple state
5841 * @max: The maximum index to check.
5843 * Returns the next entry after @mas->index.
5844 * Must hold rcu_read_lock or the write lock.
5845 * Can return the zero entry.
5847 * Return: The next entry or %NULL
5849 void *mas_next(struct ma_state *mas, unsigned long max)
5851 if (mas_is_none(mas) || mas_is_paused(mas))
5852 mas->node = MAS_START;
5854 if (mas_is_start(mas))
5855 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5857 if (mas_is_ptr(mas)) {
5860 mas->last = ULONG_MAX;
5865 if (mas->last == ULONG_MAX)
5868 /* Retries on dead nodes handled by mas_next_entry */
5869 return mas_next_entry(mas, max);
5871 EXPORT_SYMBOL_GPL(mas_next);
5874 * mt_next() - get the next value in the maple tree
5875 * @mt: The maple tree
5876 * @index: The start index
5877 * @max: The maximum index to check
5879 * Return: The entry at @index or higher, or %NULL if nothing is found.
5881 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5884 MA_STATE(mas, mt, index, index);
5887 entry = mas_next(&mas, max);
5891 EXPORT_SYMBOL_GPL(mt_next);
5894 * mas_prev() - Get the previous entry
5895 * @mas: The maple state
5896 * @min: The minimum value to check.
5898 * Must hold rcu_read_lock or the write lock.
5899 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5902 * Return: the previous value or %NULL.
5904 void *mas_prev(struct ma_state *mas, unsigned long min)
5907 /* Nothing comes before 0 */
5912 if (unlikely(mas_is_ptr(mas)))
5915 if (mas_is_none(mas) || mas_is_paused(mas))
5916 mas->node = MAS_START;
5918 if (mas_is_start(mas)) {
5924 if (mas_is_ptr(mas)) {
5930 mas->index = mas->last = 0;
5931 return mas_root_locked(mas);
5933 return mas_prev_entry(mas, min);
5935 EXPORT_SYMBOL_GPL(mas_prev);
5938 * mt_prev() - get the previous value in the maple tree
5939 * @mt: The maple tree
5940 * @index: The start index
5941 * @min: The minimum index to check
5943 * Return: The entry at @index or lower, or %NULL if nothing is found.
5945 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5948 MA_STATE(mas, mt, index, index);
5951 entry = mas_prev(&mas, min);
5955 EXPORT_SYMBOL_GPL(mt_prev);
5958 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5959 * @mas: The maple state to pause
5961 * Some users need to pause a walk and drop the lock they're holding in
5962 * order to yield to a higher priority thread or carry out an operation
5963 * on an entry. Those users should call this function before they drop
5964 * the lock. It resets the @mas to be suitable for the next iteration
5965 * of the loop after the user has reacquired the lock. If most entries
5966 * found during a walk require you to call mas_pause(), the mt_for_each()
5967 * iterator may be more appropriate.
5970 void mas_pause(struct ma_state *mas)
5972 mas->node = MAS_PAUSE;
5974 EXPORT_SYMBOL_GPL(mas_pause);
5977 * mas_find() - On the first call, find the entry at or after mas->index up to
5978 * %max. Otherwise, find the entry after mas->index.
5979 * @mas: The maple state
5980 * @max: The maximum value to check.
5982 * Must hold rcu_read_lock or the write lock.
5983 * If an entry exists, last and index are updated accordingly.
5984 * May set @mas->node to MAS_NONE.
5986 * Return: The entry or %NULL.
5988 void *mas_find(struct ma_state *mas, unsigned long max)
5990 if (unlikely(mas_is_paused(mas))) {
5991 if (unlikely(mas->last == ULONG_MAX)) {
5992 mas->node = MAS_NONE;
5995 mas->node = MAS_START;
5996 mas->index = ++mas->last;
5999 if (unlikely(mas_is_start(mas))) {
6000 /* First run or continue */
6003 if (mas->index > max)
6006 entry = mas_walk(mas);
6011 if (unlikely(!mas_searchable(mas)))
6014 /* Retries on dead nodes handled by mas_next_entry */
6015 return mas_next_entry(mas, max);
6017 EXPORT_SYMBOL_GPL(mas_find);
6020 * mas_find_rev: On the first call, find the first non-null entry at or below
6021 * mas->index down to %min. Otherwise find the first non-null entry below
6022 * mas->index down to %min.
6023 * @mas: The maple state
6024 * @min: The minimum value to check.
6026 * Must hold rcu_read_lock or the write lock.
6027 * If an entry exists, last and index are updated accordingly.
6028 * May set @mas->node to MAS_NONE.
6030 * Return: The entry or %NULL.
6032 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6034 if (unlikely(mas_is_paused(mas))) {
6035 if (unlikely(mas->last == ULONG_MAX)) {
6036 mas->node = MAS_NONE;
6039 mas->node = MAS_START;
6040 mas->last = --mas->index;
6043 if (unlikely(mas_is_start(mas))) {
6044 /* First run or continue */
6047 if (mas->index < min)
6050 entry = mas_walk(mas);
6055 if (unlikely(!mas_searchable(mas)))
6058 if (mas->index < min)
6061 /* Retries on dead nodes handled by mas_prev_entry */
6062 return mas_prev_entry(mas, min);
6064 EXPORT_SYMBOL_GPL(mas_find_rev);
6067 * mas_erase() - Find the range in which index resides and erase the entire
6069 * @mas: The maple state
6071 * Must hold the write lock.
6072 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6073 * erases that range.
6075 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6077 void *mas_erase(struct ma_state *mas)
6080 MA_WR_STATE(wr_mas, mas, NULL);
6082 if (mas_is_none(mas) || mas_is_paused(mas))
6083 mas->node = MAS_START;
6085 /* Retry unnecessary when holding the write lock. */
6086 entry = mas_state_walk(mas);
6091 /* Must reset to ensure spanning writes of last slot are detected */
6093 mas_wr_store_setup(&wr_mas);
6094 mas_wr_store_entry(&wr_mas);
6095 if (mas_nomem(mas, GFP_KERNEL))
6100 EXPORT_SYMBOL_GPL(mas_erase);
6103 * mas_nomem() - Check if there was an error allocating and do the allocation
6104 * if necessary If there are allocations, then free them.
6105 * @mas: The maple state
6106 * @gfp: The GFP_FLAGS to use for allocations
6107 * Return: true on allocation, false otherwise.
6109 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6110 __must_hold(mas->tree->lock)
6112 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6117 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6118 mtree_unlock(mas->tree);
6119 mas_alloc_nodes(mas, gfp);
6120 mtree_lock(mas->tree);
6122 mas_alloc_nodes(mas, gfp);
6125 if (!mas_allocated(mas))
6128 mas->node = MAS_START;
6132 void __init maple_tree_init(void)
6134 maple_node_cache = kmem_cache_create("maple_node",
6135 sizeof(struct maple_node), sizeof(struct maple_node),
6140 * mtree_load() - Load a value stored in a maple tree
6141 * @mt: The maple tree
6142 * @index: The index to load
6144 * Return: the entry or %NULL
6146 void *mtree_load(struct maple_tree *mt, unsigned long index)
6148 MA_STATE(mas, mt, index, index);
6151 trace_ma_read(__func__, &mas);
6154 entry = mas_start(&mas);
6155 if (unlikely(mas_is_none(&mas)))
6158 if (unlikely(mas_is_ptr(&mas))) {
6165 entry = mtree_lookup_walk(&mas);
6166 if (!entry && unlikely(mas_is_start(&mas)))
6170 if (xa_is_zero(entry))
6175 EXPORT_SYMBOL(mtree_load);
6178 * mtree_store_range() - Store an entry at a given range.
6179 * @mt: The maple tree
6180 * @index: The start of the range
6181 * @last: The end of the range
6182 * @entry: The entry to store
6183 * @gfp: The GFP_FLAGS to use for allocations
6185 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6188 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6189 unsigned long last, void *entry, gfp_t gfp)
6191 MA_STATE(mas, mt, index, last);
6192 MA_WR_STATE(wr_mas, &mas, entry);
6194 trace_ma_write(__func__, &mas, 0, entry);
6195 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6203 mas_wr_store_entry(&wr_mas);
6204 if (mas_nomem(&mas, gfp))
6208 if (mas_is_err(&mas))
6209 return xa_err(mas.node);
6213 EXPORT_SYMBOL(mtree_store_range);
6216 * mtree_store() - Store an entry at a given index.
6217 * @mt: The maple tree
6218 * @index: The index to store the value
6219 * @entry: The entry to store
6220 * @gfp: The GFP_FLAGS to use for allocations
6222 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6225 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6228 return mtree_store_range(mt, index, index, entry, gfp);
6230 EXPORT_SYMBOL(mtree_store);
6233 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6234 * @mt: The maple tree
6235 * @first: The start of the range
6236 * @last: The end of the range
6237 * @entry: The entry to store
6238 * @gfp: The GFP_FLAGS to use for allocations.
6240 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6241 * request, -ENOMEM if memory could not be allocated.
6243 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6244 unsigned long last, void *entry, gfp_t gfp)
6246 MA_STATE(ms, mt, first, last);
6248 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6256 mas_insert(&ms, entry);
6257 if (mas_nomem(&ms, gfp))
6261 if (mas_is_err(&ms))
6262 return xa_err(ms.node);
6266 EXPORT_SYMBOL(mtree_insert_range);
6269 * mtree_insert() - Insert an entry at a give index if there is no value.
6270 * @mt: The maple tree
6271 * @index : The index to store the value
6272 * @entry: The entry to store
6273 * @gfp: The FGP_FLAGS to use for allocations.
6275 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6276 * request, -ENOMEM if memory could not be allocated.
6278 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6281 return mtree_insert_range(mt, index, index, entry, gfp);
6283 EXPORT_SYMBOL(mtree_insert);
6285 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6286 void *entry, unsigned long size, unsigned long min,
6287 unsigned long max, gfp_t gfp)
6291 MA_STATE(mas, mt, min, max - size);
6292 if (!mt_is_alloc(mt))
6295 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6311 mas.last = max - size;
6312 ret = mas_alloc(&mas, entry, size, startp);
6313 if (mas_nomem(&mas, gfp))
6319 EXPORT_SYMBOL(mtree_alloc_range);
6321 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6322 void *entry, unsigned long size, unsigned long min,
6323 unsigned long max, gfp_t gfp)
6327 MA_STATE(mas, mt, min, max - size);
6328 if (!mt_is_alloc(mt))
6331 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6345 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6346 if (mas_nomem(&mas, gfp))
6352 EXPORT_SYMBOL(mtree_alloc_rrange);
6355 * mtree_erase() - Find an index and erase the entire range.
6356 * @mt: The maple tree
6357 * @index: The index to erase
6359 * Erasing is the same as a walk to an entry then a store of a NULL to that
6360 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6362 * Return: The entry stored at the @index or %NULL
6364 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6368 MA_STATE(mas, mt, index, index);
6369 trace_ma_op(__func__, &mas);
6372 entry = mas_erase(&mas);
6377 EXPORT_SYMBOL(mtree_erase);
6380 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6381 * @mt: The maple tree
6383 * Note: Does not handle locking.
6385 void __mt_destroy(struct maple_tree *mt)
6387 void *root = mt_root_locked(mt);
6389 rcu_assign_pointer(mt->ma_root, NULL);
6390 if (xa_is_node(root))
6391 mte_destroy_walk(root, mt);
6395 EXPORT_SYMBOL_GPL(__mt_destroy);
6398 * mtree_destroy() - Destroy a maple tree
6399 * @mt: The maple tree
6401 * Frees all resources used by the tree. Handles locking.
6403 void mtree_destroy(struct maple_tree *mt)
6409 EXPORT_SYMBOL(mtree_destroy);
6412 * mt_find() - Search from the start up until an entry is found.
6413 * @mt: The maple tree
6414 * @index: Pointer which contains the start location of the search
6415 * @max: The maximum value to check
6417 * Handles locking. @index will be incremented to one beyond the range.
6419 * Return: The entry at or after the @index or %NULL
6421 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6423 MA_STATE(mas, mt, *index, *index);
6425 #ifdef CONFIG_DEBUG_MAPLE_TREE
6426 unsigned long copy = *index;
6429 trace_ma_read(__func__, &mas);
6436 entry = mas_state_walk(&mas);
6437 if (mas_is_start(&mas))
6440 if (unlikely(xa_is_zero(entry)))
6446 while (mas_searchable(&mas) && (mas.index < max)) {
6447 entry = mas_next_entry(&mas, max);
6448 if (likely(entry && !xa_is_zero(entry)))
6452 if (unlikely(xa_is_zero(entry)))
6456 if (likely(entry)) {
6457 *index = mas.last + 1;
6458 #ifdef CONFIG_DEBUG_MAPLE_TREE
6459 if ((*index) && (*index) <= copy)
6460 pr_err("index not increased! %lx <= %lx\n",
6462 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6468 EXPORT_SYMBOL(mt_find);
6471 * mt_find_after() - Search from the start up until an entry is found.
6472 * @mt: The maple tree
6473 * @index: Pointer which contains the start location of the search
6474 * @max: The maximum value to check
6476 * Handles locking, detects wrapping on index == 0
6478 * Return: The entry at or after the @index or %NULL
6480 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6486 return mt_find(mt, index, max);
6488 EXPORT_SYMBOL(mt_find_after);
6490 #ifdef CONFIG_DEBUG_MAPLE_TREE
6491 atomic_t maple_tree_tests_run;
6492 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6493 atomic_t maple_tree_tests_passed;
6494 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6497 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6498 void mt_set_non_kernel(unsigned int val)
6500 kmem_cache_set_non_kernel(maple_node_cache, val);
6503 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6504 unsigned long mt_get_alloc_size(void)
6506 return kmem_cache_get_alloc(maple_node_cache);
6509 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6510 void mt_zero_nr_tallocated(void)
6512 kmem_cache_zero_nr_tallocated(maple_node_cache);
6515 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6516 unsigned int mt_nr_tallocated(void)
6518 return kmem_cache_nr_tallocated(maple_node_cache);
6521 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6522 unsigned int mt_nr_allocated(void)
6524 return kmem_cache_nr_allocated(maple_node_cache);
6528 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6529 * @mas: The maple state
6530 * @index: The index to restore in @mas.
6532 * Used in test code.
6533 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6535 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6537 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6540 if (likely(!mte_dead_node(mas->node)))
6543 mas_rewalk(mas, index);
6547 void mt_cache_shrink(void)
6552 * mt_cache_shrink() - For testing, don't use this.
6554 * Certain testcases can trigger an OOM when combined with other memory
6555 * debugging configuration options. This function is used to reduce the
6556 * possibility of an out of memory even due to kmem_cache objects remaining
6557 * around for longer than usual.
6559 void mt_cache_shrink(void)
6561 kmem_cache_shrink(maple_node_cache);
6564 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6566 #endif /* not defined __KERNEL__ */
6568 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6569 * @mas: The maple state
6570 * @offset: The offset into the slot array to fetch.
6572 * Return: The entry stored at @offset.
6574 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6575 unsigned char offset)
6577 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6583 * mas_first_entry() - Go the first leaf and find the first entry.
6584 * @mas: the maple state.
6585 * @limit: the maximum index to check.
6586 * @*r_start: Pointer to set to the range start.
6588 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6590 * Return: The first entry or MAS_NONE.
6592 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6593 unsigned long limit, enum maple_type mt)
6597 unsigned long *pivots;
6601 mas->index = mas->min;
6602 if (mas->index > limit)
6607 while (likely(!ma_is_leaf(mt))) {
6608 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6609 slots = ma_slots(mn, mt);
6610 pivots = ma_pivots(mn, mt);
6612 entry = mas_slot(mas, slots, 0);
6613 if (unlikely(ma_dead_node(mn)))
6617 mt = mte_node_type(mas->node);
6619 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6622 slots = ma_slots(mn, mt);
6623 entry = mas_slot(mas, slots, 0);
6624 if (unlikely(ma_dead_node(mn)))
6627 /* Slot 0 or 1 must be set */
6628 if (mas->index > limit)
6634 pivots = ma_pivots(mn, mt);
6635 mas->index = pivots[0] + 1;
6637 entry = mas_slot(mas, slots, 1);
6638 if (unlikely(ma_dead_node(mn)))
6641 if (mas->index > limit)
6648 if (likely(!ma_dead_node(mn)))
6649 mas->node = MAS_NONE;
6653 /* Depth first search, post-order */
6654 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6657 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6658 unsigned long p_min, p_max;
6660 mas_next_node(mas, mas_mn(mas), max);
6661 if (!mas_is_none(mas))
6664 if (mte_is_root(mn))
6669 while (mas->node != MAS_NONE) {
6673 mas_prev_node(mas, 0);
6684 /* Tree validations */
6685 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6686 unsigned long min, unsigned long max, unsigned int depth);
6687 static void mt_dump_range(unsigned long min, unsigned long max,
6690 static const char spaces[] = " ";
6693 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6695 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6698 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6701 mt_dump_range(min, max, depth);
6703 if (xa_is_value(entry))
6704 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6705 xa_to_value(entry), entry);
6706 else if (xa_is_zero(entry))
6707 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6708 else if (mt_is_reserved(entry))
6709 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6711 pr_cont("%p\n", entry);
6714 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6715 unsigned long min, unsigned long max, unsigned int depth)
6717 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6718 bool leaf = mte_is_leaf(entry);
6719 unsigned long first = min;
6722 pr_cont(" contents: ");
6723 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6724 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6725 pr_cont("%p\n", node->slot[i]);
6726 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6727 unsigned long last = max;
6729 if (i < (MAPLE_RANGE64_SLOTS - 1))
6730 last = node->pivot[i];
6731 else if (!node->slot[i] && max != mt_node_max(entry))
6733 if (last == 0 && i > 0)
6736 mt_dump_entry(mt_slot(mt, node->slot, i),
6737 first, last, depth + 1);
6738 else if (node->slot[i])
6739 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6740 first, last, depth + 1);
6745 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6746 node, last, max, i);
6753 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6754 unsigned long min, unsigned long max, unsigned int depth)
6756 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6757 bool leaf = mte_is_leaf(entry);
6758 unsigned long first = min;
6761 pr_cont(" contents: ");
6762 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6763 pr_cont("%lu ", node->gap[i]);
6764 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6765 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6766 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6767 pr_cont("%p\n", node->slot[i]);
6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6769 unsigned long last = max;
6771 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6772 last = node->pivot[i];
6773 else if (!node->slot[i])
6775 if (last == 0 && i > 0)
6778 mt_dump_entry(mt_slot(mt, node->slot, i),
6779 first, last, depth + 1);
6780 else if (node->slot[i])
6781 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6782 first, last, depth + 1);
6787 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6788 node, last, max, i);
6795 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6796 unsigned long min, unsigned long max, unsigned int depth)
6798 struct maple_node *node = mte_to_node(entry);
6799 unsigned int type = mte_node_type(entry);
6802 mt_dump_range(min, max, depth);
6804 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6805 node ? node->parent : NULL);
6809 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6811 pr_cont("OUT OF RANGE: ");
6812 mt_dump_entry(mt_slot(mt, node->slot, i),
6813 min + i, min + i, depth);
6817 case maple_range_64:
6818 mt_dump_range64(mt, entry, min, max, depth);
6820 case maple_arange_64:
6821 mt_dump_arange64(mt, entry, min, max, depth);
6825 pr_cont(" UNKNOWN TYPE\n");
6829 void mt_dump(const struct maple_tree *mt)
6831 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6833 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6834 mt, mt->ma_flags, mt_height(mt), entry);
6835 if (!xa_is_node(entry))
6836 mt_dump_entry(entry, 0, 0, 0);
6838 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6840 EXPORT_SYMBOL_GPL(mt_dump);
6843 * Calculate the maximum gap in a node and check if that's what is reported in
6844 * the parent (unless root).
6846 static void mas_validate_gaps(struct ma_state *mas)
6848 struct maple_enode *mte = mas->node;
6849 struct maple_node *p_mn;
6850 unsigned long gap = 0, max_gap = 0;
6851 unsigned long p_end, p_start = mas->min;
6852 unsigned char p_slot;
6853 unsigned long *gaps = NULL;
6854 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6857 if (ma_is_dense(mte_node_type(mte))) {
6858 for (i = 0; i < mt_slot_count(mte); i++) {
6859 if (mas_get_slot(mas, i)) {
6870 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6871 for (i = 0; i < mt_slot_count(mte); i++) {
6872 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6875 if (mas_get_slot(mas, i)) {
6880 gap += p_end - p_start + 1;
6882 void *entry = mas_get_slot(mas, i);
6886 if (gap != p_end - p_start + 1) {
6887 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6889 mas_get_slot(mas, i), gap,
6893 MT_BUG_ON(mas->tree,
6894 gap != p_end - p_start + 1);
6897 if (gap > p_end - p_start + 1) {
6898 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6899 mas_mn(mas), i, gap, p_end, p_start,
6900 p_end - p_start + 1);
6901 MT_BUG_ON(mas->tree,
6902 gap > p_end - p_start + 1);
6910 p_start = p_end + 1;
6911 if (p_end >= mas->max)
6916 if (mte_is_root(mte))
6919 p_slot = mte_parent_slot(mas->node);
6920 p_mn = mte_parent(mte);
6921 MT_BUG_ON(mas->tree, max_gap > mas->max);
6922 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6923 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6927 MT_BUG_ON(mas->tree,
6928 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6931 static void mas_validate_parent_slot(struct ma_state *mas)
6933 struct maple_node *parent;
6934 struct maple_enode *node;
6935 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6936 unsigned char p_slot = mte_parent_slot(mas->node);
6940 if (mte_is_root(mas->node))
6943 parent = mte_parent(mas->node);
6944 slots = ma_slots(parent, p_type);
6945 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6947 /* Check prev/next parent slot for duplicate node entry */
6949 for (i = 0; i < mt_slots[p_type]; i++) {
6950 node = mas_slot(mas, slots, i);
6952 if (node != mas->node)
6953 pr_err("parent %p[%u] does not have %p\n",
6954 parent, i, mas_mn(mas));
6955 MT_BUG_ON(mas->tree, node != mas->node);
6956 } else if (node == mas->node) {
6957 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6958 mas_mn(mas), parent, i, p_slot);
6959 MT_BUG_ON(mas->tree, node == mas->node);
6964 static void mas_validate_child_slot(struct ma_state *mas)
6966 enum maple_type type = mte_node_type(mas->node);
6967 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6968 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6969 struct maple_enode *child;
6972 if (mte_is_leaf(mas->node))
6975 for (i = 0; i < mt_slots[type]; i++) {
6976 child = mas_slot(mas, slots, i);
6977 if (!pivots[i] || pivots[i] == mas->max)
6983 if (mte_parent_slot(child) != i) {
6984 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6985 mas_mn(mas), i, mte_to_node(child),
6986 mte_parent_slot(child));
6987 MT_BUG_ON(mas->tree, 1);
6990 if (mte_parent(child) != mte_to_node(mas->node)) {
6991 pr_err("child %p has parent %p not %p\n",
6992 mte_to_node(child), mte_parent(child),
6993 mte_to_node(mas->node));
6994 MT_BUG_ON(mas->tree, 1);
7000 * Validate all pivots are within mas->min and mas->max.
7002 static void mas_validate_limits(struct ma_state *mas)
7005 unsigned long prev_piv = 0;
7006 enum maple_type type = mte_node_type(mas->node);
7007 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7008 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7010 /* all limits are fine here. */
7011 if (mte_is_root(mas->node))
7014 for (i = 0; i < mt_slots[type]; i++) {
7017 piv = mas_safe_pivot(mas, pivots, i, type);
7019 if (!piv && (i != 0))
7022 if (!mte_is_leaf(mas->node)) {
7023 void *entry = mas_slot(mas, slots, i);
7026 pr_err("%p[%u] cannot be null\n",
7029 MT_BUG_ON(mas->tree, !entry);
7032 if (prev_piv > piv) {
7033 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7034 mas_mn(mas), i, piv, prev_piv);
7035 MT_BUG_ON(mas->tree, piv < prev_piv);
7038 if (piv < mas->min) {
7039 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7041 MT_BUG_ON(mas->tree, piv < mas->min);
7043 if (piv > mas->max) {
7044 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7046 MT_BUG_ON(mas->tree, piv > mas->max);
7049 if (piv == mas->max)
7052 for (i += 1; i < mt_slots[type]; i++) {
7053 void *entry = mas_slot(mas, slots, i);
7055 if (entry && (i != mt_slots[type] - 1)) {
7056 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7058 MT_BUG_ON(mas->tree, entry != NULL);
7061 if (i < mt_pivots[type]) {
7062 unsigned long piv = pivots[i];
7067 pr_err("%p[%u] should not have piv %lu\n",
7068 mas_mn(mas), i, piv);
7069 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7074 static void mt_validate_nulls(struct maple_tree *mt)
7076 void *entry, *last = (void *)1;
7077 unsigned char offset = 0;
7079 MA_STATE(mas, mt, 0, 0);
7082 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7085 while (!mte_is_leaf(mas.node))
7088 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7090 entry = mas_slot(&mas, slots, offset);
7091 if (!last && !entry) {
7092 pr_err("Sequential nulls end at %p[%u]\n",
7093 mas_mn(&mas), offset);
7095 MT_BUG_ON(mt, !last && !entry);
7097 if (offset == mas_data_end(&mas)) {
7098 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7099 if (mas_is_none(&mas))
7102 slots = ma_slots(mte_to_node(mas.node),
7103 mte_node_type(mas.node));
7108 } while (!mas_is_none(&mas));
7112 * validate a maple tree by checking:
7113 * 1. The limits (pivots are within mas->min to mas->max)
7114 * 2. The gap is correctly set in the parents
7116 void mt_validate(struct maple_tree *mt)
7120 MA_STATE(mas, mt, 0, 0);
7123 if (!mas_searchable(&mas))
7126 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7127 while (!mas_is_none(&mas)) {
7128 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7129 if (!mte_is_root(mas.node)) {
7130 end = mas_data_end(&mas);
7131 if ((end < mt_min_slot_count(mas.node)) &&
7132 (mas.max != ULONG_MAX)) {
7133 pr_err("Invalid size %u of %p\n", end,
7135 MT_BUG_ON(mas.tree, 1);
7139 mas_validate_parent_slot(&mas);
7140 mas_validate_child_slot(&mas);
7141 mas_validate_limits(&mas);
7142 if (mt_is_alloc(mt))
7143 mas_validate_gaps(&mas);
7144 mas_dfs_postorder(&mas, ULONG_MAX);
7146 mt_validate_nulls(mt);
7151 EXPORT_SYMBOL_GPL(mt_validate);
7153 #endif /* CONFIG_DEBUG_MAPLE_TREE */