]> Git Repo - linux.git/blob - mm/swapfile.c
mm, swap: fix race between swapoff and some swap operations
[linux.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49                                  unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104         if (type >= READ_ONCE(nr_swapfiles))
105                 return NULL;
106
107         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
108         return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 /*
156  * swapon tell device that all the old swap contents can be discarded,
157  * to allow the swap device to optimize its wear-levelling.
158  */
159 static int discard_swap(struct swap_info_struct *si)
160 {
161         struct swap_extent *se;
162         sector_t start_block;
163         sector_t nr_blocks;
164         int err = 0;
165
166         /* Do not discard the swap header page! */
167         se = &si->first_swap_extent;
168         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
169         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
170         if (nr_blocks) {
171                 err = blkdev_issue_discard(si->bdev, start_block,
172                                 nr_blocks, GFP_KERNEL, 0);
173                 if (err)
174                         return err;
175                 cond_resched();
176         }
177
178         list_for_each_entry(se, &si->first_swap_extent.list, list) {
179                 start_block = se->start_block << (PAGE_SHIFT - 9);
180                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
181
182                 err = blkdev_issue_discard(si->bdev, start_block,
183                                 nr_blocks, GFP_KERNEL, 0);
184                 if (err)
185                         break;
186
187                 cond_resched();
188         }
189         return err;             /* That will often be -EOPNOTSUPP */
190 }
191
192 /*
193  * swap allocation tell device that a cluster of swap can now be discarded,
194  * to allow the swap device to optimize its wear-levelling.
195  */
196 static void discard_swap_cluster(struct swap_info_struct *si,
197                                  pgoff_t start_page, pgoff_t nr_pages)
198 {
199         struct swap_extent *se = si->curr_swap_extent;
200         int found_extent = 0;
201
202         while (nr_pages) {
203                 if (se->start_page <= start_page &&
204                     start_page < se->start_page + se->nr_pages) {
205                         pgoff_t offset = start_page - se->start_page;
206                         sector_t start_block = se->start_block + offset;
207                         sector_t nr_blocks = se->nr_pages - offset;
208
209                         if (nr_blocks > nr_pages)
210                                 nr_blocks = nr_pages;
211                         start_page += nr_blocks;
212                         nr_pages -= nr_blocks;
213
214                         if (!found_extent++)
215                                 si->curr_swap_extent = se;
216
217                         start_block <<= PAGE_SHIFT - 9;
218                         nr_blocks <<= PAGE_SHIFT - 9;
219                         if (blkdev_issue_discard(si->bdev, start_block,
220                                     nr_blocks, GFP_NOIO, 0))
221                                 break;
222                 }
223
224                 se = list_next_entry(se, list);
225         }
226 }
227
228 #ifdef CONFIG_THP_SWAP
229 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
230
231 #define swap_entry_size(size)   (size)
232 #else
233 #define SWAPFILE_CLUSTER        256
234
235 /*
236  * Define swap_entry_size() as constant to let compiler to optimize
237  * out some code if !CONFIG_THP_SWAP
238  */
239 #define swap_entry_size(size)   1
240 #endif
241 #define LATENCY_LIMIT           256
242
243 static inline void cluster_set_flag(struct swap_cluster_info *info,
244         unsigned int flag)
245 {
246         info->flags = flag;
247 }
248
249 static inline unsigned int cluster_count(struct swap_cluster_info *info)
250 {
251         return info->data;
252 }
253
254 static inline void cluster_set_count(struct swap_cluster_info *info,
255                                      unsigned int c)
256 {
257         info->data = c;
258 }
259
260 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
261                                          unsigned int c, unsigned int f)
262 {
263         info->flags = f;
264         info->data = c;
265 }
266
267 static inline unsigned int cluster_next(struct swap_cluster_info *info)
268 {
269         return info->data;
270 }
271
272 static inline void cluster_set_next(struct swap_cluster_info *info,
273                                     unsigned int n)
274 {
275         info->data = n;
276 }
277
278 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
279                                          unsigned int n, unsigned int f)
280 {
281         info->flags = f;
282         info->data = n;
283 }
284
285 static inline bool cluster_is_free(struct swap_cluster_info *info)
286 {
287         return info->flags & CLUSTER_FLAG_FREE;
288 }
289
290 static inline bool cluster_is_null(struct swap_cluster_info *info)
291 {
292         return info->flags & CLUSTER_FLAG_NEXT_NULL;
293 }
294
295 static inline void cluster_set_null(struct swap_cluster_info *info)
296 {
297         info->flags = CLUSTER_FLAG_NEXT_NULL;
298         info->data = 0;
299 }
300
301 static inline bool cluster_is_huge(struct swap_cluster_info *info)
302 {
303         if (IS_ENABLED(CONFIG_THP_SWAP))
304                 return info->flags & CLUSTER_FLAG_HUGE;
305         return false;
306 }
307
308 static inline void cluster_clear_huge(struct swap_cluster_info *info)
309 {
310         info->flags &= ~CLUSTER_FLAG_HUGE;
311 }
312
313 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
314                                                      unsigned long offset)
315 {
316         struct swap_cluster_info *ci;
317
318         ci = si->cluster_info;
319         if (ci) {
320                 ci += offset / SWAPFILE_CLUSTER;
321                 spin_lock(&ci->lock);
322         }
323         return ci;
324 }
325
326 static inline void unlock_cluster(struct swap_cluster_info *ci)
327 {
328         if (ci)
329                 spin_unlock(&ci->lock);
330 }
331
332 /*
333  * Determine the locking method in use for this device.  Return
334  * swap_cluster_info if SSD-style cluster-based locking is in place.
335  */
336 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
337                 struct swap_info_struct *si, unsigned long offset)
338 {
339         struct swap_cluster_info *ci;
340
341         /* Try to use fine-grained SSD-style locking if available: */
342         ci = lock_cluster(si, offset);
343         /* Otherwise, fall back to traditional, coarse locking: */
344         if (!ci)
345                 spin_lock(&si->lock);
346
347         return ci;
348 }
349
350 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
351                                                struct swap_cluster_info *ci)
352 {
353         if (ci)
354                 unlock_cluster(ci);
355         else
356                 spin_unlock(&si->lock);
357 }
358
359 static inline bool cluster_list_empty(struct swap_cluster_list *list)
360 {
361         return cluster_is_null(&list->head);
362 }
363
364 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
365 {
366         return cluster_next(&list->head);
367 }
368
369 static void cluster_list_init(struct swap_cluster_list *list)
370 {
371         cluster_set_null(&list->head);
372         cluster_set_null(&list->tail);
373 }
374
375 static void cluster_list_add_tail(struct swap_cluster_list *list,
376                                   struct swap_cluster_info *ci,
377                                   unsigned int idx)
378 {
379         if (cluster_list_empty(list)) {
380                 cluster_set_next_flag(&list->head, idx, 0);
381                 cluster_set_next_flag(&list->tail, idx, 0);
382         } else {
383                 struct swap_cluster_info *ci_tail;
384                 unsigned int tail = cluster_next(&list->tail);
385
386                 /*
387                  * Nested cluster lock, but both cluster locks are
388                  * only acquired when we held swap_info_struct->lock
389                  */
390                 ci_tail = ci + tail;
391                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
392                 cluster_set_next(ci_tail, idx);
393                 spin_unlock(&ci_tail->lock);
394                 cluster_set_next_flag(&list->tail, idx, 0);
395         }
396 }
397
398 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
399                                            struct swap_cluster_info *ci)
400 {
401         unsigned int idx;
402
403         idx = cluster_next(&list->head);
404         if (cluster_next(&list->tail) == idx) {
405                 cluster_set_null(&list->head);
406                 cluster_set_null(&list->tail);
407         } else
408                 cluster_set_next_flag(&list->head,
409                                       cluster_next(&ci[idx]), 0);
410
411         return idx;
412 }
413
414 /* Add a cluster to discard list and schedule it to do discard */
415 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
416                 unsigned int idx)
417 {
418         /*
419          * If scan_swap_map() can't find a free cluster, it will check
420          * si->swap_map directly. To make sure the discarding cluster isn't
421          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
422          * will be cleared after discard
423          */
424         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
425                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
426
427         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
428
429         schedule_work(&si->discard_work);
430 }
431
432 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
433 {
434         struct swap_cluster_info *ci = si->cluster_info;
435
436         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
437         cluster_list_add_tail(&si->free_clusters, ci, idx);
438 }
439
440 /*
441  * Doing discard actually. After a cluster discard is finished, the cluster
442  * will be added to free cluster list. caller should hold si->lock.
443 */
444 static void swap_do_scheduled_discard(struct swap_info_struct *si)
445 {
446         struct swap_cluster_info *info, *ci;
447         unsigned int idx;
448
449         info = si->cluster_info;
450
451         while (!cluster_list_empty(&si->discard_clusters)) {
452                 idx = cluster_list_del_first(&si->discard_clusters, info);
453                 spin_unlock(&si->lock);
454
455                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
456                                 SWAPFILE_CLUSTER);
457
458                 spin_lock(&si->lock);
459                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
460                 __free_cluster(si, idx);
461                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462                                 0, SWAPFILE_CLUSTER);
463                 unlock_cluster(ci);
464         }
465 }
466
467 static void swap_discard_work(struct work_struct *work)
468 {
469         struct swap_info_struct *si;
470
471         si = container_of(work, struct swap_info_struct, discard_work);
472
473         spin_lock(&si->lock);
474         swap_do_scheduled_discard(si);
475         spin_unlock(&si->lock);
476 }
477
478 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
479 {
480         struct swap_cluster_info *ci = si->cluster_info;
481
482         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
483         cluster_list_del_first(&si->free_clusters, ci);
484         cluster_set_count_flag(ci + idx, 0, 0);
485 }
486
487 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
488 {
489         struct swap_cluster_info *ci = si->cluster_info + idx;
490
491         VM_BUG_ON(cluster_count(ci) != 0);
492         /*
493          * If the swap is discardable, prepare discard the cluster
494          * instead of free it immediately. The cluster will be freed
495          * after discard.
496          */
497         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
498             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
499                 swap_cluster_schedule_discard(si, idx);
500                 return;
501         }
502
503         __free_cluster(si, idx);
504 }
505
506 /*
507  * The cluster corresponding to page_nr will be used. The cluster will be
508  * removed from free cluster list and its usage counter will be increased.
509  */
510 static void inc_cluster_info_page(struct swap_info_struct *p,
511         struct swap_cluster_info *cluster_info, unsigned long page_nr)
512 {
513         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
514
515         if (!cluster_info)
516                 return;
517         if (cluster_is_free(&cluster_info[idx]))
518                 alloc_cluster(p, idx);
519
520         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
521         cluster_set_count(&cluster_info[idx],
522                 cluster_count(&cluster_info[idx]) + 1);
523 }
524
525 /*
526  * The cluster corresponding to page_nr decreases one usage. If the usage
527  * counter becomes 0, which means no page in the cluster is in using, we can
528  * optionally discard the cluster and add it to free cluster list.
529  */
530 static void dec_cluster_info_page(struct swap_info_struct *p,
531         struct swap_cluster_info *cluster_info, unsigned long page_nr)
532 {
533         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
534
535         if (!cluster_info)
536                 return;
537
538         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
539         cluster_set_count(&cluster_info[idx],
540                 cluster_count(&cluster_info[idx]) - 1);
541
542         if (cluster_count(&cluster_info[idx]) == 0)
543                 free_cluster(p, idx);
544 }
545
546 /*
547  * It's possible scan_swap_map() uses a free cluster in the middle of free
548  * cluster list. Avoiding such abuse to avoid list corruption.
549  */
550 static bool
551 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
552         unsigned long offset)
553 {
554         struct percpu_cluster *percpu_cluster;
555         bool conflict;
556
557         offset /= SWAPFILE_CLUSTER;
558         conflict = !cluster_list_empty(&si->free_clusters) &&
559                 offset != cluster_list_first(&si->free_clusters) &&
560                 cluster_is_free(&si->cluster_info[offset]);
561
562         if (!conflict)
563                 return false;
564
565         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
566         cluster_set_null(&percpu_cluster->index);
567         return true;
568 }
569
570 /*
571  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
572  * might involve allocating a new cluster for current CPU too.
573  */
574 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
575         unsigned long *offset, unsigned long *scan_base)
576 {
577         struct percpu_cluster *cluster;
578         struct swap_cluster_info *ci;
579         bool found_free;
580         unsigned long tmp, max;
581
582 new_cluster:
583         cluster = this_cpu_ptr(si->percpu_cluster);
584         if (cluster_is_null(&cluster->index)) {
585                 if (!cluster_list_empty(&si->free_clusters)) {
586                         cluster->index = si->free_clusters.head;
587                         cluster->next = cluster_next(&cluster->index) *
588                                         SWAPFILE_CLUSTER;
589                 } else if (!cluster_list_empty(&si->discard_clusters)) {
590                         /*
591                          * we don't have free cluster but have some clusters in
592                          * discarding, do discard now and reclaim them
593                          */
594                         swap_do_scheduled_discard(si);
595                         *scan_base = *offset = si->cluster_next;
596                         goto new_cluster;
597                 } else
598                         return false;
599         }
600
601         found_free = false;
602
603         /*
604          * Other CPUs can use our cluster if they can't find a free cluster,
605          * check if there is still free entry in the cluster
606          */
607         tmp = cluster->next;
608         max = min_t(unsigned long, si->max,
609                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
610         if (tmp >= max) {
611                 cluster_set_null(&cluster->index);
612                 goto new_cluster;
613         }
614         ci = lock_cluster(si, tmp);
615         while (tmp < max) {
616                 if (!si->swap_map[tmp]) {
617                         found_free = true;
618                         break;
619                 }
620                 tmp++;
621         }
622         unlock_cluster(ci);
623         if (!found_free) {
624                 cluster_set_null(&cluster->index);
625                 goto new_cluster;
626         }
627         cluster->next = tmp + 1;
628         *offset = tmp;
629         *scan_base = tmp;
630         return found_free;
631 }
632
633 static void __del_from_avail_list(struct swap_info_struct *p)
634 {
635         int nid;
636
637         for_each_node(nid)
638                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
639 }
640
641 static void del_from_avail_list(struct swap_info_struct *p)
642 {
643         spin_lock(&swap_avail_lock);
644         __del_from_avail_list(p);
645         spin_unlock(&swap_avail_lock);
646 }
647
648 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
649                              unsigned int nr_entries)
650 {
651         unsigned int end = offset + nr_entries - 1;
652
653         if (offset == si->lowest_bit)
654                 si->lowest_bit += nr_entries;
655         if (end == si->highest_bit)
656                 si->highest_bit -= nr_entries;
657         si->inuse_pages += nr_entries;
658         if (si->inuse_pages == si->pages) {
659                 si->lowest_bit = si->max;
660                 si->highest_bit = 0;
661                 del_from_avail_list(si);
662         }
663 }
664
665 static void add_to_avail_list(struct swap_info_struct *p)
666 {
667         int nid;
668
669         spin_lock(&swap_avail_lock);
670         for_each_node(nid) {
671                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
672                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
673         }
674         spin_unlock(&swap_avail_lock);
675 }
676
677 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
678                             unsigned int nr_entries)
679 {
680         unsigned long end = offset + nr_entries - 1;
681         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
682
683         if (offset < si->lowest_bit)
684                 si->lowest_bit = offset;
685         if (end > si->highest_bit) {
686                 bool was_full = !si->highest_bit;
687
688                 si->highest_bit = end;
689                 if (was_full && (si->flags & SWP_WRITEOK))
690                         add_to_avail_list(si);
691         }
692         atomic_long_add(nr_entries, &nr_swap_pages);
693         si->inuse_pages -= nr_entries;
694         if (si->flags & SWP_BLKDEV)
695                 swap_slot_free_notify =
696                         si->bdev->bd_disk->fops->swap_slot_free_notify;
697         else
698                 swap_slot_free_notify = NULL;
699         while (offset <= end) {
700                 frontswap_invalidate_page(si->type, offset);
701                 if (swap_slot_free_notify)
702                         swap_slot_free_notify(si->bdev, offset);
703                 offset++;
704         }
705 }
706
707 static int scan_swap_map_slots(struct swap_info_struct *si,
708                                unsigned char usage, int nr,
709                                swp_entry_t slots[])
710 {
711         struct swap_cluster_info *ci;
712         unsigned long offset;
713         unsigned long scan_base;
714         unsigned long last_in_cluster = 0;
715         int latency_ration = LATENCY_LIMIT;
716         int n_ret = 0;
717
718         if (nr > SWAP_BATCH)
719                 nr = SWAP_BATCH;
720
721         /*
722          * We try to cluster swap pages by allocating them sequentially
723          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
724          * way, however, we resort to first-free allocation, starting
725          * a new cluster.  This prevents us from scattering swap pages
726          * all over the entire swap partition, so that we reduce
727          * overall disk seek times between swap pages.  -- sct
728          * But we do now try to find an empty cluster.  -Andrea
729          * And we let swap pages go all over an SSD partition.  Hugh
730          */
731
732         si->flags += SWP_SCANNING;
733         scan_base = offset = si->cluster_next;
734
735         /* SSD algorithm */
736         if (si->cluster_info) {
737                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
738                         goto checks;
739                 else
740                         goto scan;
741         }
742
743         if (unlikely(!si->cluster_nr--)) {
744                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
745                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
746                         goto checks;
747                 }
748
749                 spin_unlock(&si->lock);
750
751                 /*
752                  * If seek is expensive, start searching for new cluster from
753                  * start of partition, to minimize the span of allocated swap.
754                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
755                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
756                  */
757                 scan_base = offset = si->lowest_bit;
758                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
759
760                 /* Locate the first empty (unaligned) cluster */
761                 for (; last_in_cluster <= si->highest_bit; offset++) {
762                         if (si->swap_map[offset])
763                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
764                         else if (offset == last_in_cluster) {
765                                 spin_lock(&si->lock);
766                                 offset -= SWAPFILE_CLUSTER - 1;
767                                 si->cluster_next = offset;
768                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
769                                 goto checks;
770                         }
771                         if (unlikely(--latency_ration < 0)) {
772                                 cond_resched();
773                                 latency_ration = LATENCY_LIMIT;
774                         }
775                 }
776
777                 offset = scan_base;
778                 spin_lock(&si->lock);
779                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
780         }
781
782 checks:
783         if (si->cluster_info) {
784                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
785                 /* take a break if we already got some slots */
786                         if (n_ret)
787                                 goto done;
788                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
789                                                         &scan_base))
790                                 goto scan;
791                 }
792         }
793         if (!(si->flags & SWP_WRITEOK))
794                 goto no_page;
795         if (!si->highest_bit)
796                 goto no_page;
797         if (offset > si->highest_bit)
798                 scan_base = offset = si->lowest_bit;
799
800         ci = lock_cluster(si, offset);
801         /* reuse swap entry of cache-only swap if not busy. */
802         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803                 int swap_was_freed;
804                 unlock_cluster(ci);
805                 spin_unlock(&si->lock);
806                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
807                 spin_lock(&si->lock);
808                 /* entry was freed successfully, try to use this again */
809                 if (swap_was_freed)
810                         goto checks;
811                 goto scan; /* check next one */
812         }
813
814         if (si->swap_map[offset]) {
815                 unlock_cluster(ci);
816                 if (!n_ret)
817                         goto scan;
818                 else
819                         goto done;
820         }
821         si->swap_map[offset] = usage;
822         inc_cluster_info_page(si, si->cluster_info, offset);
823         unlock_cluster(ci);
824
825         swap_range_alloc(si, offset, 1);
826         si->cluster_next = offset + 1;
827         slots[n_ret++] = swp_entry(si->type, offset);
828
829         /* got enough slots or reach max slots? */
830         if ((n_ret == nr) || (offset >= si->highest_bit))
831                 goto done;
832
833         /* search for next available slot */
834
835         /* time to take a break? */
836         if (unlikely(--latency_ration < 0)) {
837                 if (n_ret)
838                         goto done;
839                 spin_unlock(&si->lock);
840                 cond_resched();
841                 spin_lock(&si->lock);
842                 latency_ration = LATENCY_LIMIT;
843         }
844
845         /* try to get more slots in cluster */
846         if (si->cluster_info) {
847                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
848                         goto checks;
849                 else
850                         goto done;
851         }
852         /* non-ssd case */
853         ++offset;
854
855         /* non-ssd case, still more slots in cluster? */
856         if (si->cluster_nr && !si->swap_map[offset]) {
857                 --si->cluster_nr;
858                 goto checks;
859         }
860
861 done:
862         si->flags -= SWP_SCANNING;
863         return n_ret;
864
865 scan:
866         spin_unlock(&si->lock);
867         while (++offset <= si->highest_bit) {
868                 if (!si->swap_map[offset]) {
869                         spin_lock(&si->lock);
870                         goto checks;
871                 }
872                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
873                         spin_lock(&si->lock);
874                         goto checks;
875                 }
876                 if (unlikely(--latency_ration < 0)) {
877                         cond_resched();
878                         latency_ration = LATENCY_LIMIT;
879                 }
880         }
881         offset = si->lowest_bit;
882         while (offset < scan_base) {
883                 if (!si->swap_map[offset]) {
884                         spin_lock(&si->lock);
885                         goto checks;
886                 }
887                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
888                         spin_lock(&si->lock);
889                         goto checks;
890                 }
891                 if (unlikely(--latency_ration < 0)) {
892                         cond_resched();
893                         latency_ration = LATENCY_LIMIT;
894                 }
895                 offset++;
896         }
897         spin_lock(&si->lock);
898
899 no_page:
900         si->flags -= SWP_SCANNING;
901         return n_ret;
902 }
903
904 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
905 {
906         unsigned long idx;
907         struct swap_cluster_info *ci;
908         unsigned long offset, i;
909         unsigned char *map;
910
911         /*
912          * Should not even be attempting cluster allocations when huge
913          * page swap is disabled.  Warn and fail the allocation.
914          */
915         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
916                 VM_WARN_ON_ONCE(1);
917                 return 0;
918         }
919
920         if (cluster_list_empty(&si->free_clusters))
921                 return 0;
922
923         idx = cluster_list_first(&si->free_clusters);
924         offset = idx * SWAPFILE_CLUSTER;
925         ci = lock_cluster(si, offset);
926         alloc_cluster(si, idx);
927         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
928
929         map = si->swap_map + offset;
930         for (i = 0; i < SWAPFILE_CLUSTER; i++)
931                 map[i] = SWAP_HAS_CACHE;
932         unlock_cluster(ci);
933         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
934         *slot = swp_entry(si->type, offset);
935
936         return 1;
937 }
938
939 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
940 {
941         unsigned long offset = idx * SWAPFILE_CLUSTER;
942         struct swap_cluster_info *ci;
943
944         ci = lock_cluster(si, offset);
945         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
946         cluster_set_count_flag(ci, 0, 0);
947         free_cluster(si, idx);
948         unlock_cluster(ci);
949         swap_range_free(si, offset, SWAPFILE_CLUSTER);
950 }
951
952 static unsigned long scan_swap_map(struct swap_info_struct *si,
953                                    unsigned char usage)
954 {
955         swp_entry_t entry;
956         int n_ret;
957
958         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
959
960         if (n_ret)
961                 return swp_offset(entry);
962         else
963                 return 0;
964
965 }
966
967 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
968 {
969         unsigned long size = swap_entry_size(entry_size);
970         struct swap_info_struct *si, *next;
971         long avail_pgs;
972         int n_ret = 0;
973         int node;
974
975         /* Only single cluster request supported */
976         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
977
978         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
979         if (avail_pgs <= 0)
980                 goto noswap;
981
982         if (n_goal > SWAP_BATCH)
983                 n_goal = SWAP_BATCH;
984
985         if (n_goal > avail_pgs)
986                 n_goal = avail_pgs;
987
988         atomic_long_sub(n_goal * size, &nr_swap_pages);
989
990         spin_lock(&swap_avail_lock);
991
992 start_over:
993         node = numa_node_id();
994         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
995                 /* requeue si to after same-priority siblings */
996                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
997                 spin_unlock(&swap_avail_lock);
998                 spin_lock(&si->lock);
999                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1000                         spin_lock(&swap_avail_lock);
1001                         if (plist_node_empty(&si->avail_lists[node])) {
1002                                 spin_unlock(&si->lock);
1003                                 goto nextsi;
1004                         }
1005                         WARN(!si->highest_bit,
1006                              "swap_info %d in list but !highest_bit\n",
1007                              si->type);
1008                         WARN(!(si->flags & SWP_WRITEOK),
1009                              "swap_info %d in list but !SWP_WRITEOK\n",
1010                              si->type);
1011                         __del_from_avail_list(si);
1012                         spin_unlock(&si->lock);
1013                         goto nextsi;
1014                 }
1015                 if (size == SWAPFILE_CLUSTER) {
1016                         if (!(si->flags & SWP_FS))
1017                                 n_ret = swap_alloc_cluster(si, swp_entries);
1018                 } else
1019                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1020                                                     n_goal, swp_entries);
1021                 spin_unlock(&si->lock);
1022                 if (n_ret || size == SWAPFILE_CLUSTER)
1023                         goto check_out;
1024                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1025                         si->type);
1026
1027                 spin_lock(&swap_avail_lock);
1028 nextsi:
1029                 /*
1030                  * if we got here, it's likely that si was almost full before,
1031                  * and since scan_swap_map() can drop the si->lock, multiple
1032                  * callers probably all tried to get a page from the same si
1033                  * and it filled up before we could get one; or, the si filled
1034                  * up between us dropping swap_avail_lock and taking si->lock.
1035                  * Since we dropped the swap_avail_lock, the swap_avail_head
1036                  * list may have been modified; so if next is still in the
1037                  * swap_avail_head list then try it, otherwise start over
1038                  * if we have not gotten any slots.
1039                  */
1040                 if (plist_node_empty(&next->avail_lists[node]))
1041                         goto start_over;
1042         }
1043
1044         spin_unlock(&swap_avail_lock);
1045
1046 check_out:
1047         if (n_ret < n_goal)
1048                 atomic_long_add((long)(n_goal - n_ret) * size,
1049                                 &nr_swap_pages);
1050 noswap:
1051         return n_ret;
1052 }
1053
1054 /* The only caller of this function is now suspend routine */
1055 swp_entry_t get_swap_page_of_type(int type)
1056 {
1057         struct swap_info_struct *si = swap_type_to_swap_info(type);
1058         pgoff_t offset;
1059
1060         if (!si)
1061                 goto fail;
1062
1063         spin_lock(&si->lock);
1064         if (si->flags & SWP_WRITEOK) {
1065                 atomic_long_dec(&nr_swap_pages);
1066                 /* This is called for allocating swap entry, not cache */
1067                 offset = scan_swap_map(si, 1);
1068                 if (offset) {
1069                         spin_unlock(&si->lock);
1070                         return swp_entry(type, offset);
1071                 }
1072                 atomic_long_inc(&nr_swap_pages);
1073         }
1074         spin_unlock(&si->lock);
1075 fail:
1076         return (swp_entry_t) {0};
1077 }
1078
1079 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1080 {
1081         struct swap_info_struct *p;
1082         unsigned long offset;
1083
1084         if (!entry.val)
1085                 goto out;
1086         p = swp_swap_info(entry);
1087         if (!p)
1088                 goto bad_nofile;
1089         if (!(p->flags & SWP_USED))
1090                 goto bad_device;
1091         offset = swp_offset(entry);
1092         if (offset >= p->max)
1093                 goto bad_offset;
1094         return p;
1095
1096 bad_offset:
1097         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1098         goto out;
1099 bad_device:
1100         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1101         goto out;
1102 bad_nofile:
1103         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1104 out:
1105         return NULL;
1106 }
1107
1108 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1109 {
1110         struct swap_info_struct *p;
1111
1112         p = __swap_info_get(entry);
1113         if (!p)
1114                 goto out;
1115         if (!p->swap_map[swp_offset(entry)])
1116                 goto bad_free;
1117         return p;
1118
1119 bad_free:
1120         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1121         goto out;
1122 out:
1123         return NULL;
1124 }
1125
1126 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1127 {
1128         struct swap_info_struct *p;
1129
1130         p = _swap_info_get(entry);
1131         if (p)
1132                 spin_lock(&p->lock);
1133         return p;
1134 }
1135
1136 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1137                                         struct swap_info_struct *q)
1138 {
1139         struct swap_info_struct *p;
1140
1141         p = _swap_info_get(entry);
1142
1143         if (p != q) {
1144                 if (q != NULL)
1145                         spin_unlock(&q->lock);
1146                 if (p != NULL)
1147                         spin_lock(&p->lock);
1148         }
1149         return p;
1150 }
1151
1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1153                                               unsigned long offset,
1154                                               unsigned char usage)
1155 {
1156         unsigned char count;
1157         unsigned char has_cache;
1158
1159         count = p->swap_map[offset];
1160
1161         has_cache = count & SWAP_HAS_CACHE;
1162         count &= ~SWAP_HAS_CACHE;
1163
1164         if (usage == SWAP_HAS_CACHE) {
1165                 VM_BUG_ON(!has_cache);
1166                 has_cache = 0;
1167         } else if (count == SWAP_MAP_SHMEM) {
1168                 /*
1169                  * Or we could insist on shmem.c using a special
1170                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1171                  */
1172                 count = 0;
1173         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1174                 if (count == COUNT_CONTINUED) {
1175                         if (swap_count_continued(p, offset, count))
1176                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1177                         else
1178                                 count = SWAP_MAP_MAX;
1179                 } else
1180                         count--;
1181         }
1182
1183         usage = count | has_cache;
1184         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1185
1186         return usage;
1187 }
1188
1189 /*
1190  * Check whether swap entry is valid in the swap device.  If so,
1191  * return pointer to swap_info_struct, and keep the swap entry valid
1192  * via preventing the swap device from being swapoff, until
1193  * put_swap_device() is called.  Otherwise return NULL.
1194  *
1195  * The entirety of the RCU read critical section must come before the
1196  * return from or after the call to synchronize_rcu() in
1197  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1198  * true, the si->map, si->cluster_info, etc. must be valid in the
1199  * critical section.
1200  *
1201  * Notice that swapoff or swapoff+swapon can still happen before the
1202  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1203  * in put_swap_device() if there isn't any other way to prevent
1204  * swapoff, such as page lock, page table lock, etc.  The caller must
1205  * be prepared for that.  For example, the following situation is
1206  * possible.
1207  *
1208  *   CPU1                               CPU2
1209  *   do_swap_page()
1210  *     ...                              swapoff+swapon
1211  *     __read_swap_cache_async()
1212  *       swapcache_prepare()
1213  *         __swap_duplicate()
1214  *           // check swap_map
1215  *     // verify PTE not changed
1216  *
1217  * In __swap_duplicate(), the swap_map need to be checked before
1218  * changing partly because the specified swap entry may be for another
1219  * swap device which has been swapoff.  And in do_swap_page(), after
1220  * the page is read from the swap device, the PTE is verified not
1221  * changed with the page table locked to check whether the swap device
1222  * has been swapoff or swapoff+swapon.
1223  */
1224 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1225 {
1226         struct swap_info_struct *si;
1227         unsigned long offset;
1228
1229         if (!entry.val)
1230                 goto out;
1231         si = swp_swap_info(entry);
1232         if (!si)
1233                 goto bad_nofile;
1234
1235         rcu_read_lock();
1236         if (!(si->flags & SWP_VALID))
1237                 goto unlock_out;
1238         offset = swp_offset(entry);
1239         if (offset >= si->max)
1240                 goto unlock_out;
1241
1242         return si;
1243 bad_nofile:
1244         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1245 out:
1246         return NULL;
1247 unlock_out:
1248         rcu_read_unlock();
1249         return NULL;
1250 }
1251
1252 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1253                                        swp_entry_t entry, unsigned char usage)
1254 {
1255         struct swap_cluster_info *ci;
1256         unsigned long offset = swp_offset(entry);
1257
1258         ci = lock_cluster_or_swap_info(p, offset);
1259         usage = __swap_entry_free_locked(p, offset, usage);
1260         unlock_cluster_or_swap_info(p, ci);
1261         if (!usage)
1262                 free_swap_slot(entry);
1263
1264         return usage;
1265 }
1266
1267 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1268 {
1269         struct swap_cluster_info *ci;
1270         unsigned long offset = swp_offset(entry);
1271         unsigned char count;
1272
1273         ci = lock_cluster(p, offset);
1274         count = p->swap_map[offset];
1275         VM_BUG_ON(count != SWAP_HAS_CACHE);
1276         p->swap_map[offset] = 0;
1277         dec_cluster_info_page(p, p->cluster_info, offset);
1278         unlock_cluster(ci);
1279
1280         mem_cgroup_uncharge_swap(entry, 1);
1281         swap_range_free(p, offset, 1);
1282 }
1283
1284 /*
1285  * Caller has made sure that the swap device corresponding to entry
1286  * is still around or has not been recycled.
1287  */
1288 void swap_free(swp_entry_t entry)
1289 {
1290         struct swap_info_struct *p;
1291
1292         p = _swap_info_get(entry);
1293         if (p)
1294                 __swap_entry_free(p, entry, 1);
1295 }
1296
1297 /*
1298  * Called after dropping swapcache to decrease refcnt to swap entries.
1299  */
1300 void put_swap_page(struct page *page, swp_entry_t entry)
1301 {
1302         unsigned long offset = swp_offset(entry);
1303         unsigned long idx = offset / SWAPFILE_CLUSTER;
1304         struct swap_cluster_info *ci;
1305         struct swap_info_struct *si;
1306         unsigned char *map;
1307         unsigned int i, free_entries = 0;
1308         unsigned char val;
1309         int size = swap_entry_size(hpage_nr_pages(page));
1310
1311         si = _swap_info_get(entry);
1312         if (!si)
1313                 return;
1314
1315         ci = lock_cluster_or_swap_info(si, offset);
1316         if (size == SWAPFILE_CLUSTER) {
1317                 VM_BUG_ON(!cluster_is_huge(ci));
1318                 map = si->swap_map + offset;
1319                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1320                         val = map[i];
1321                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1322                         if (val == SWAP_HAS_CACHE)
1323                                 free_entries++;
1324                 }
1325                 cluster_clear_huge(ci);
1326                 if (free_entries == SWAPFILE_CLUSTER) {
1327                         unlock_cluster_or_swap_info(si, ci);
1328                         spin_lock(&si->lock);
1329                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1330                         swap_free_cluster(si, idx);
1331                         spin_unlock(&si->lock);
1332                         return;
1333                 }
1334         }
1335         for (i = 0; i < size; i++, entry.val++) {
1336                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1337                         unlock_cluster_or_swap_info(si, ci);
1338                         free_swap_slot(entry);
1339                         if (i == size - 1)
1340                                 return;
1341                         lock_cluster_or_swap_info(si, offset);
1342                 }
1343         }
1344         unlock_cluster_or_swap_info(si, ci);
1345 }
1346
1347 #ifdef CONFIG_THP_SWAP
1348 int split_swap_cluster(swp_entry_t entry)
1349 {
1350         struct swap_info_struct *si;
1351         struct swap_cluster_info *ci;
1352         unsigned long offset = swp_offset(entry);
1353
1354         si = _swap_info_get(entry);
1355         if (!si)
1356                 return -EBUSY;
1357         ci = lock_cluster(si, offset);
1358         cluster_clear_huge(ci);
1359         unlock_cluster(ci);
1360         return 0;
1361 }
1362 #endif
1363
1364 static int swp_entry_cmp(const void *ent1, const void *ent2)
1365 {
1366         const swp_entry_t *e1 = ent1, *e2 = ent2;
1367
1368         return (int)swp_type(*e1) - (int)swp_type(*e2);
1369 }
1370
1371 void swapcache_free_entries(swp_entry_t *entries, int n)
1372 {
1373         struct swap_info_struct *p, *prev;
1374         int i;
1375
1376         if (n <= 0)
1377                 return;
1378
1379         prev = NULL;
1380         p = NULL;
1381
1382         /*
1383          * Sort swap entries by swap device, so each lock is only taken once.
1384          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1385          * so low that it isn't necessary to optimize further.
1386          */
1387         if (nr_swapfiles > 1)
1388                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1389         for (i = 0; i < n; ++i) {
1390                 p = swap_info_get_cont(entries[i], prev);
1391                 if (p)
1392                         swap_entry_free(p, entries[i]);
1393                 prev = p;
1394         }
1395         if (p)
1396                 spin_unlock(&p->lock);
1397 }
1398
1399 /*
1400  * How many references to page are currently swapped out?
1401  * This does not give an exact answer when swap count is continued,
1402  * but does include the high COUNT_CONTINUED flag to allow for that.
1403  */
1404 int page_swapcount(struct page *page)
1405 {
1406         int count = 0;
1407         struct swap_info_struct *p;
1408         struct swap_cluster_info *ci;
1409         swp_entry_t entry;
1410         unsigned long offset;
1411
1412         entry.val = page_private(page);
1413         p = _swap_info_get(entry);
1414         if (p) {
1415                 offset = swp_offset(entry);
1416                 ci = lock_cluster_or_swap_info(p, offset);
1417                 count = swap_count(p->swap_map[offset]);
1418                 unlock_cluster_or_swap_info(p, ci);
1419         }
1420         return count;
1421 }
1422
1423 int __swap_count(swp_entry_t entry)
1424 {
1425         struct swap_info_struct *si;
1426         pgoff_t offset = swp_offset(entry);
1427         int count = 0;
1428
1429         si = get_swap_device(entry);
1430         if (si) {
1431                 count = swap_count(si->swap_map[offset]);
1432                 put_swap_device(si);
1433         }
1434         return count;
1435 }
1436
1437 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1438 {
1439         int count = 0;
1440         pgoff_t offset = swp_offset(entry);
1441         struct swap_cluster_info *ci;
1442
1443         ci = lock_cluster_or_swap_info(si, offset);
1444         count = swap_count(si->swap_map[offset]);
1445         unlock_cluster_or_swap_info(si, ci);
1446         return count;
1447 }
1448
1449 /*
1450  * How many references to @entry are currently swapped out?
1451  * This does not give an exact answer when swap count is continued,
1452  * but does include the high COUNT_CONTINUED flag to allow for that.
1453  */
1454 int __swp_swapcount(swp_entry_t entry)
1455 {
1456         int count = 0;
1457         struct swap_info_struct *si;
1458
1459         si = get_swap_device(entry);
1460         if (si) {
1461                 count = swap_swapcount(si, entry);
1462                 put_swap_device(si);
1463         }
1464         return count;
1465 }
1466
1467 /*
1468  * How many references to @entry are currently swapped out?
1469  * This considers COUNT_CONTINUED so it returns exact answer.
1470  */
1471 int swp_swapcount(swp_entry_t entry)
1472 {
1473         int count, tmp_count, n;
1474         struct swap_info_struct *p;
1475         struct swap_cluster_info *ci;
1476         struct page *page;
1477         pgoff_t offset;
1478         unsigned char *map;
1479
1480         p = _swap_info_get(entry);
1481         if (!p)
1482                 return 0;
1483
1484         offset = swp_offset(entry);
1485
1486         ci = lock_cluster_or_swap_info(p, offset);
1487
1488         count = swap_count(p->swap_map[offset]);
1489         if (!(count & COUNT_CONTINUED))
1490                 goto out;
1491
1492         count &= ~COUNT_CONTINUED;
1493         n = SWAP_MAP_MAX + 1;
1494
1495         page = vmalloc_to_page(p->swap_map + offset);
1496         offset &= ~PAGE_MASK;
1497         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1498
1499         do {
1500                 page = list_next_entry(page, lru);
1501                 map = kmap_atomic(page);
1502                 tmp_count = map[offset];
1503                 kunmap_atomic(map);
1504
1505                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1506                 n *= (SWAP_CONT_MAX + 1);
1507         } while (tmp_count & COUNT_CONTINUED);
1508 out:
1509         unlock_cluster_or_swap_info(p, ci);
1510         return count;
1511 }
1512
1513 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1514                                          swp_entry_t entry)
1515 {
1516         struct swap_cluster_info *ci;
1517         unsigned char *map = si->swap_map;
1518         unsigned long roffset = swp_offset(entry);
1519         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1520         int i;
1521         bool ret = false;
1522
1523         ci = lock_cluster_or_swap_info(si, offset);
1524         if (!ci || !cluster_is_huge(ci)) {
1525                 if (swap_count(map[roffset]))
1526                         ret = true;
1527                 goto unlock_out;
1528         }
1529         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1530                 if (swap_count(map[offset + i])) {
1531                         ret = true;
1532                         break;
1533                 }
1534         }
1535 unlock_out:
1536         unlock_cluster_or_swap_info(si, ci);
1537         return ret;
1538 }
1539
1540 static bool page_swapped(struct page *page)
1541 {
1542         swp_entry_t entry;
1543         struct swap_info_struct *si;
1544
1545         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1546                 return page_swapcount(page) != 0;
1547
1548         page = compound_head(page);
1549         entry.val = page_private(page);
1550         si = _swap_info_get(entry);
1551         if (si)
1552                 return swap_page_trans_huge_swapped(si, entry);
1553         return false;
1554 }
1555
1556 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1557                                          int *total_swapcount)
1558 {
1559         int i, map_swapcount, _total_mapcount, _total_swapcount;
1560         unsigned long offset = 0;
1561         struct swap_info_struct *si;
1562         struct swap_cluster_info *ci = NULL;
1563         unsigned char *map = NULL;
1564         int mapcount, swapcount = 0;
1565
1566         /* hugetlbfs shouldn't call it */
1567         VM_BUG_ON_PAGE(PageHuge(page), page);
1568
1569         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1570                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1571                 if (PageSwapCache(page))
1572                         swapcount = page_swapcount(page);
1573                 if (total_swapcount)
1574                         *total_swapcount = swapcount;
1575                 return mapcount + swapcount;
1576         }
1577
1578         page = compound_head(page);
1579
1580         _total_mapcount = _total_swapcount = map_swapcount = 0;
1581         if (PageSwapCache(page)) {
1582                 swp_entry_t entry;
1583
1584                 entry.val = page_private(page);
1585                 si = _swap_info_get(entry);
1586                 if (si) {
1587                         map = si->swap_map;
1588                         offset = swp_offset(entry);
1589                 }
1590         }
1591         if (map)
1592                 ci = lock_cluster(si, offset);
1593         for (i = 0; i < HPAGE_PMD_NR; i++) {
1594                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1595                 _total_mapcount += mapcount;
1596                 if (map) {
1597                         swapcount = swap_count(map[offset + i]);
1598                         _total_swapcount += swapcount;
1599                 }
1600                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1601         }
1602         unlock_cluster(ci);
1603         if (PageDoubleMap(page)) {
1604                 map_swapcount -= 1;
1605                 _total_mapcount -= HPAGE_PMD_NR;
1606         }
1607         mapcount = compound_mapcount(page);
1608         map_swapcount += mapcount;
1609         _total_mapcount += mapcount;
1610         if (total_mapcount)
1611                 *total_mapcount = _total_mapcount;
1612         if (total_swapcount)
1613                 *total_swapcount = _total_swapcount;
1614
1615         return map_swapcount;
1616 }
1617
1618 /*
1619  * We can write to an anon page without COW if there are no other references
1620  * to it.  And as a side-effect, free up its swap: because the old content
1621  * on disk will never be read, and seeking back there to write new content
1622  * later would only waste time away from clustering.
1623  *
1624  * NOTE: total_map_swapcount should not be relied upon by the caller if
1625  * reuse_swap_page() returns false, but it may be always overwritten
1626  * (see the other implementation for CONFIG_SWAP=n).
1627  */
1628 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1629 {
1630         int count, total_mapcount, total_swapcount;
1631
1632         VM_BUG_ON_PAGE(!PageLocked(page), page);
1633         if (unlikely(PageKsm(page)))
1634                 return false;
1635         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1636                                               &total_swapcount);
1637         if (total_map_swapcount)
1638                 *total_map_swapcount = total_mapcount + total_swapcount;
1639         if (count == 1 && PageSwapCache(page) &&
1640             (likely(!PageTransCompound(page)) ||
1641              /* The remaining swap count will be freed soon */
1642              total_swapcount == page_swapcount(page))) {
1643                 if (!PageWriteback(page)) {
1644                         page = compound_head(page);
1645                         delete_from_swap_cache(page);
1646                         SetPageDirty(page);
1647                 } else {
1648                         swp_entry_t entry;
1649                         struct swap_info_struct *p;
1650
1651                         entry.val = page_private(page);
1652                         p = swap_info_get(entry);
1653                         if (p->flags & SWP_STABLE_WRITES) {
1654                                 spin_unlock(&p->lock);
1655                                 return false;
1656                         }
1657                         spin_unlock(&p->lock);
1658                 }
1659         }
1660
1661         return count <= 1;
1662 }
1663
1664 /*
1665  * If swap is getting full, or if there are no more mappings of this page,
1666  * then try_to_free_swap is called to free its swap space.
1667  */
1668 int try_to_free_swap(struct page *page)
1669 {
1670         VM_BUG_ON_PAGE(!PageLocked(page), page);
1671
1672         if (!PageSwapCache(page))
1673                 return 0;
1674         if (PageWriteback(page))
1675                 return 0;
1676         if (page_swapped(page))
1677                 return 0;
1678
1679         /*
1680          * Once hibernation has begun to create its image of memory,
1681          * there's a danger that one of the calls to try_to_free_swap()
1682          * - most probably a call from __try_to_reclaim_swap() while
1683          * hibernation is allocating its own swap pages for the image,
1684          * but conceivably even a call from memory reclaim - will free
1685          * the swap from a page which has already been recorded in the
1686          * image as a clean swapcache page, and then reuse its swap for
1687          * another page of the image.  On waking from hibernation, the
1688          * original page might be freed under memory pressure, then
1689          * later read back in from swap, now with the wrong data.
1690          *
1691          * Hibernation suspends storage while it is writing the image
1692          * to disk so check that here.
1693          */
1694         if (pm_suspended_storage())
1695                 return 0;
1696
1697         page = compound_head(page);
1698         delete_from_swap_cache(page);
1699         SetPageDirty(page);
1700         return 1;
1701 }
1702
1703 /*
1704  * Free the swap entry like above, but also try to
1705  * free the page cache entry if it is the last user.
1706  */
1707 int free_swap_and_cache(swp_entry_t entry)
1708 {
1709         struct swap_info_struct *p;
1710         unsigned char count;
1711
1712         if (non_swap_entry(entry))
1713                 return 1;
1714
1715         p = _swap_info_get(entry);
1716         if (p) {
1717                 count = __swap_entry_free(p, entry, 1);
1718                 if (count == SWAP_HAS_CACHE &&
1719                     !swap_page_trans_huge_swapped(p, entry))
1720                         __try_to_reclaim_swap(p, swp_offset(entry),
1721                                               TTRS_UNMAPPED | TTRS_FULL);
1722         }
1723         return p != NULL;
1724 }
1725
1726 #ifdef CONFIG_HIBERNATION
1727 /*
1728  * Find the swap type that corresponds to given device (if any).
1729  *
1730  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1731  * from 0, in which the swap header is expected to be located.
1732  *
1733  * This is needed for the suspend to disk (aka swsusp).
1734  */
1735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1736 {
1737         struct block_device *bdev = NULL;
1738         int type;
1739
1740         if (device)
1741                 bdev = bdget(device);
1742
1743         spin_lock(&swap_lock);
1744         for (type = 0; type < nr_swapfiles; type++) {
1745                 struct swap_info_struct *sis = swap_info[type];
1746
1747                 if (!(sis->flags & SWP_WRITEOK))
1748                         continue;
1749
1750                 if (!bdev) {
1751                         if (bdev_p)
1752                                 *bdev_p = bdgrab(sis->bdev);
1753
1754                         spin_unlock(&swap_lock);
1755                         return type;
1756                 }
1757                 if (bdev == sis->bdev) {
1758                         struct swap_extent *se = &sis->first_swap_extent;
1759
1760                         if (se->start_block == offset) {
1761                                 if (bdev_p)
1762                                         *bdev_p = bdgrab(sis->bdev);
1763
1764                                 spin_unlock(&swap_lock);
1765                                 bdput(bdev);
1766                                 return type;
1767                         }
1768                 }
1769         }
1770         spin_unlock(&swap_lock);
1771         if (bdev)
1772                 bdput(bdev);
1773
1774         return -ENODEV;
1775 }
1776
1777 /*
1778  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1779  * corresponding to given index in swap_info (swap type).
1780  */
1781 sector_t swapdev_block(int type, pgoff_t offset)
1782 {
1783         struct block_device *bdev;
1784         struct swap_info_struct *si = swap_type_to_swap_info(type);
1785
1786         if (!si || !(si->flags & SWP_WRITEOK))
1787                 return 0;
1788         return map_swap_entry(swp_entry(type, offset), &bdev);
1789 }
1790
1791 /*
1792  * Return either the total number of swap pages of given type, or the number
1793  * of free pages of that type (depending on @free)
1794  *
1795  * This is needed for software suspend
1796  */
1797 unsigned int count_swap_pages(int type, int free)
1798 {
1799         unsigned int n = 0;
1800
1801         spin_lock(&swap_lock);
1802         if ((unsigned int)type < nr_swapfiles) {
1803                 struct swap_info_struct *sis = swap_info[type];
1804
1805                 spin_lock(&sis->lock);
1806                 if (sis->flags & SWP_WRITEOK) {
1807                         n = sis->pages;
1808                         if (free)
1809                                 n -= sis->inuse_pages;
1810                 }
1811                 spin_unlock(&sis->lock);
1812         }
1813         spin_unlock(&swap_lock);
1814         return n;
1815 }
1816 #endif /* CONFIG_HIBERNATION */
1817
1818 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1819 {
1820         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1821 }
1822
1823 /*
1824  * No need to decide whether this PTE shares the swap entry with others,
1825  * just let do_wp_page work it out if a write is requested later - to
1826  * force COW, vm_page_prot omits write permission from any private vma.
1827  */
1828 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1829                 unsigned long addr, swp_entry_t entry, struct page *page)
1830 {
1831         struct page *swapcache;
1832         struct mem_cgroup *memcg;
1833         spinlock_t *ptl;
1834         pte_t *pte;
1835         int ret = 1;
1836
1837         swapcache = page;
1838         page = ksm_might_need_to_copy(page, vma, addr);
1839         if (unlikely(!page))
1840                 return -ENOMEM;
1841
1842         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1843                                 &memcg, false)) {
1844                 ret = -ENOMEM;
1845                 goto out_nolock;
1846         }
1847
1848         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1849         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1850                 mem_cgroup_cancel_charge(page, memcg, false);
1851                 ret = 0;
1852                 goto out;
1853         }
1854
1855         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1856         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1857         get_page(page);
1858         set_pte_at(vma->vm_mm, addr, pte,
1859                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1860         if (page == swapcache) {
1861                 page_add_anon_rmap(page, vma, addr, false);
1862                 mem_cgroup_commit_charge(page, memcg, true, false);
1863         } else { /* ksm created a completely new copy */
1864                 page_add_new_anon_rmap(page, vma, addr, false);
1865                 mem_cgroup_commit_charge(page, memcg, false, false);
1866                 lru_cache_add_active_or_unevictable(page, vma);
1867         }
1868         swap_free(entry);
1869         /*
1870          * Move the page to the active list so it is not
1871          * immediately swapped out again after swapon.
1872          */
1873         activate_page(page);
1874 out:
1875         pte_unmap_unlock(pte, ptl);
1876 out_nolock:
1877         if (page != swapcache) {
1878                 unlock_page(page);
1879                 put_page(page);
1880         }
1881         return ret;
1882 }
1883
1884 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1885                         unsigned long addr, unsigned long end,
1886                         unsigned int type, bool frontswap,
1887                         unsigned long *fs_pages_to_unuse)
1888 {
1889         struct page *page;
1890         swp_entry_t entry;
1891         pte_t *pte;
1892         struct swap_info_struct *si;
1893         unsigned long offset;
1894         int ret = 0;
1895         volatile unsigned char *swap_map;
1896
1897         si = swap_info[type];
1898         pte = pte_offset_map(pmd, addr);
1899         do {
1900                 struct vm_fault vmf;
1901
1902                 if (!is_swap_pte(*pte))
1903                         continue;
1904
1905                 entry = pte_to_swp_entry(*pte);
1906                 if (swp_type(entry) != type)
1907                         continue;
1908
1909                 offset = swp_offset(entry);
1910                 if (frontswap && !frontswap_test(si, offset))
1911                         continue;
1912
1913                 pte_unmap(pte);
1914                 swap_map = &si->swap_map[offset];
1915                 vmf.vma = vma;
1916                 vmf.address = addr;
1917                 vmf.pmd = pmd;
1918                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1919                 if (!page) {
1920                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1921                                 goto try_next;
1922                         return -ENOMEM;
1923                 }
1924
1925                 lock_page(page);
1926                 wait_on_page_writeback(page);
1927                 ret = unuse_pte(vma, pmd, addr, entry, page);
1928                 if (ret < 0) {
1929                         unlock_page(page);
1930                         put_page(page);
1931                         goto out;
1932                 }
1933
1934                 try_to_free_swap(page);
1935                 unlock_page(page);
1936                 put_page(page);
1937
1938                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1939                         ret = FRONTSWAP_PAGES_UNUSED;
1940                         goto out;
1941                 }
1942 try_next:
1943                 pte = pte_offset_map(pmd, addr);
1944         } while (pte++, addr += PAGE_SIZE, addr != end);
1945         pte_unmap(pte - 1);
1946
1947         ret = 0;
1948 out:
1949         return ret;
1950 }
1951
1952 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1953                                 unsigned long addr, unsigned long end,
1954                                 unsigned int type, bool frontswap,
1955                                 unsigned long *fs_pages_to_unuse)
1956 {
1957         pmd_t *pmd;
1958         unsigned long next;
1959         int ret;
1960
1961         pmd = pmd_offset(pud, addr);
1962         do {
1963                 cond_resched();
1964                 next = pmd_addr_end(addr, end);
1965                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1966                         continue;
1967                 ret = unuse_pte_range(vma, pmd, addr, next, type,
1968                                       frontswap, fs_pages_to_unuse);
1969                 if (ret)
1970                         return ret;
1971         } while (pmd++, addr = next, addr != end);
1972         return 0;
1973 }
1974
1975 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1976                                 unsigned long addr, unsigned long end,
1977                                 unsigned int type, bool frontswap,
1978                                 unsigned long *fs_pages_to_unuse)
1979 {
1980         pud_t *pud;
1981         unsigned long next;
1982         int ret;
1983
1984         pud = pud_offset(p4d, addr);
1985         do {
1986                 next = pud_addr_end(addr, end);
1987                 if (pud_none_or_clear_bad(pud))
1988                         continue;
1989                 ret = unuse_pmd_range(vma, pud, addr, next, type,
1990                                       frontswap, fs_pages_to_unuse);
1991                 if (ret)
1992                         return ret;
1993         } while (pud++, addr = next, addr != end);
1994         return 0;
1995 }
1996
1997 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1998                                 unsigned long addr, unsigned long end,
1999                                 unsigned int type, bool frontswap,
2000                                 unsigned long *fs_pages_to_unuse)
2001 {
2002         p4d_t *p4d;
2003         unsigned long next;
2004         int ret;
2005
2006         p4d = p4d_offset(pgd, addr);
2007         do {
2008                 next = p4d_addr_end(addr, end);
2009                 if (p4d_none_or_clear_bad(p4d))
2010                         continue;
2011                 ret = unuse_pud_range(vma, p4d, addr, next, type,
2012                                       frontswap, fs_pages_to_unuse);
2013                 if (ret)
2014                         return ret;
2015         } while (p4d++, addr = next, addr != end);
2016         return 0;
2017 }
2018
2019 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2020                      bool frontswap, unsigned long *fs_pages_to_unuse)
2021 {
2022         pgd_t *pgd;
2023         unsigned long addr, end, next;
2024         int ret;
2025
2026         addr = vma->vm_start;
2027         end = vma->vm_end;
2028
2029         pgd = pgd_offset(vma->vm_mm, addr);
2030         do {
2031                 next = pgd_addr_end(addr, end);
2032                 if (pgd_none_or_clear_bad(pgd))
2033                         continue;
2034                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2035                                       frontswap, fs_pages_to_unuse);
2036                 if (ret)
2037                         return ret;
2038         } while (pgd++, addr = next, addr != end);
2039         return 0;
2040 }
2041
2042 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2043                     bool frontswap, unsigned long *fs_pages_to_unuse)
2044 {
2045         struct vm_area_struct *vma;
2046         int ret = 0;
2047
2048         down_read(&mm->mmap_sem);
2049         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2050                 if (vma->anon_vma) {
2051                         ret = unuse_vma(vma, type, frontswap,
2052                                         fs_pages_to_unuse);
2053                         if (ret)
2054                                 break;
2055                 }
2056                 cond_resched();
2057         }
2058         up_read(&mm->mmap_sem);
2059         return ret;
2060 }
2061
2062 /*
2063  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2064  * from current position to next entry still in use. Return 0
2065  * if there are no inuse entries after prev till end of the map.
2066  */
2067 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2068                                         unsigned int prev, bool frontswap)
2069 {
2070         unsigned int i;
2071         unsigned char count;
2072
2073         /*
2074          * No need for swap_lock here: we're just looking
2075          * for whether an entry is in use, not modifying it; false
2076          * hits are okay, and sys_swapoff() has already prevented new
2077          * allocations from this area (while holding swap_lock).
2078          */
2079         for (i = prev + 1; i < si->max; i++) {
2080                 count = READ_ONCE(si->swap_map[i]);
2081                 if (count && swap_count(count) != SWAP_MAP_BAD)
2082                         if (!frontswap || frontswap_test(si, i))
2083                                 break;
2084                 if ((i % LATENCY_LIMIT) == 0)
2085                         cond_resched();
2086         }
2087
2088         if (i == si->max)
2089                 i = 0;
2090
2091         return i;
2092 }
2093
2094 /*
2095  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2096  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2097  */
2098 int try_to_unuse(unsigned int type, bool frontswap,
2099                  unsigned long pages_to_unuse)
2100 {
2101         struct mm_struct *prev_mm;
2102         struct mm_struct *mm;
2103         struct list_head *p;
2104         int retval = 0;
2105         struct swap_info_struct *si = swap_info[type];
2106         struct page *page;
2107         swp_entry_t entry;
2108         unsigned int i;
2109
2110         if (!si->inuse_pages)
2111                 return 0;
2112
2113         if (!frontswap)
2114                 pages_to_unuse = 0;
2115
2116 retry:
2117         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2118         if (retval)
2119                 goto out;
2120
2121         prev_mm = &init_mm;
2122         mmget(prev_mm);
2123
2124         spin_lock(&mmlist_lock);
2125         p = &init_mm.mmlist;
2126         while (si->inuse_pages &&
2127                !signal_pending(current) &&
2128                (p = p->next) != &init_mm.mmlist) {
2129
2130                 mm = list_entry(p, struct mm_struct, mmlist);
2131                 if (!mmget_not_zero(mm))
2132                         continue;
2133                 spin_unlock(&mmlist_lock);
2134                 mmput(prev_mm);
2135                 prev_mm = mm;
2136                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2137
2138                 if (retval) {
2139                         mmput(prev_mm);
2140                         goto out;
2141                 }
2142
2143                 /*
2144                  * Make sure that we aren't completely killing
2145                  * interactive performance.
2146                  */
2147                 cond_resched();
2148                 spin_lock(&mmlist_lock);
2149         }
2150         spin_unlock(&mmlist_lock);
2151
2152         mmput(prev_mm);
2153
2154         i = 0;
2155         while (si->inuse_pages &&
2156                !signal_pending(current) &&
2157                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2158
2159                 entry = swp_entry(type, i);
2160                 page = find_get_page(swap_address_space(entry), i);
2161                 if (!page)
2162                         continue;
2163
2164                 /*
2165                  * It is conceivable that a racing task removed this page from
2166                  * swap cache just before we acquired the page lock. The page
2167                  * might even be back in swap cache on another swap area. But
2168                  * that is okay, try_to_free_swap() only removes stale pages.
2169                  */
2170                 lock_page(page);
2171                 wait_on_page_writeback(page);
2172                 try_to_free_swap(page);
2173                 unlock_page(page);
2174                 put_page(page);
2175
2176                 /*
2177                  * For frontswap, we just need to unuse pages_to_unuse, if
2178                  * it was specified. Need not check frontswap again here as
2179                  * we already zeroed out pages_to_unuse if not frontswap.
2180                  */
2181                 if (pages_to_unuse && --pages_to_unuse == 0)
2182                         goto out;
2183         }
2184
2185         /*
2186          * Lets check again to see if there are still swap entries in the map.
2187          * If yes, we would need to do retry the unuse logic again.
2188          * Under global memory pressure, swap entries can be reinserted back
2189          * into process space after the mmlist loop above passes over them.
2190          *
2191          * Limit the number of retries? No: when mmget_not_zero() above fails,
2192          * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2193          * at its own independent pace; and even shmem_writepage() could have
2194          * been preempted after get_swap_page(), temporarily hiding that swap.
2195          * It's easy and robust (though cpu-intensive) just to keep retrying.
2196          */
2197         if (si->inuse_pages) {
2198                 if (!signal_pending(current))
2199                         goto retry;
2200                 retval = -EINTR;
2201         }
2202 out:
2203         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2204 }
2205
2206 /*
2207  * After a successful try_to_unuse, if no swap is now in use, we know
2208  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2209  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2210  * added to the mmlist just after page_duplicate - before would be racy.
2211  */
2212 static void drain_mmlist(void)
2213 {
2214         struct list_head *p, *next;
2215         unsigned int type;
2216
2217         for (type = 0; type < nr_swapfiles; type++)
2218                 if (swap_info[type]->inuse_pages)
2219                         return;
2220         spin_lock(&mmlist_lock);
2221         list_for_each_safe(p, next, &init_mm.mmlist)
2222                 list_del_init(p);
2223         spin_unlock(&mmlist_lock);
2224 }
2225
2226 /*
2227  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2228  * corresponds to page offset for the specified swap entry.
2229  * Note that the type of this function is sector_t, but it returns page offset
2230  * into the bdev, not sector offset.
2231  */
2232 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2233 {
2234         struct swap_info_struct *sis;
2235         struct swap_extent *start_se;
2236         struct swap_extent *se;
2237         pgoff_t offset;
2238
2239         sis = swp_swap_info(entry);
2240         *bdev = sis->bdev;
2241
2242         offset = swp_offset(entry);
2243         start_se = sis->curr_swap_extent;
2244         se = start_se;
2245
2246         for ( ; ; ) {
2247                 if (se->start_page <= offset &&
2248                                 offset < (se->start_page + se->nr_pages)) {
2249                         return se->start_block + (offset - se->start_page);
2250                 }
2251                 se = list_next_entry(se, list);
2252                 sis->curr_swap_extent = se;
2253                 BUG_ON(se == start_se);         /* It *must* be present */
2254         }
2255 }
2256
2257 /*
2258  * Returns the page offset into bdev for the specified page's swap entry.
2259  */
2260 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2261 {
2262         swp_entry_t entry;
2263         entry.val = page_private(page);
2264         return map_swap_entry(entry, bdev);
2265 }
2266
2267 /*
2268  * Free all of a swapdev's extent information
2269  */
2270 static void destroy_swap_extents(struct swap_info_struct *sis)
2271 {
2272         while (!list_empty(&sis->first_swap_extent.list)) {
2273                 struct swap_extent *se;
2274
2275                 se = list_first_entry(&sis->first_swap_extent.list,
2276                                 struct swap_extent, list);
2277                 list_del(&se->list);
2278                 kfree(se);
2279         }
2280
2281         if (sis->flags & SWP_ACTIVATED) {
2282                 struct file *swap_file = sis->swap_file;
2283                 struct address_space *mapping = swap_file->f_mapping;
2284
2285                 sis->flags &= ~SWP_ACTIVATED;
2286                 if (mapping->a_ops->swap_deactivate)
2287                         mapping->a_ops->swap_deactivate(swap_file);
2288         }
2289 }
2290
2291 /*
2292  * Add a block range (and the corresponding page range) into this swapdev's
2293  * extent list.  The extent list is kept sorted in page order.
2294  *
2295  * This function rather assumes that it is called in ascending page order.
2296  */
2297 int
2298 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2299                 unsigned long nr_pages, sector_t start_block)
2300 {
2301         struct swap_extent *se;
2302         struct swap_extent *new_se;
2303         struct list_head *lh;
2304
2305         if (start_page == 0) {
2306                 se = &sis->first_swap_extent;
2307                 sis->curr_swap_extent = se;
2308                 se->start_page = 0;
2309                 se->nr_pages = nr_pages;
2310                 se->start_block = start_block;
2311                 return 1;
2312         } else {
2313                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2314                 se = list_entry(lh, struct swap_extent, list);
2315                 BUG_ON(se->start_page + se->nr_pages != start_page);
2316                 if (se->start_block + se->nr_pages == start_block) {
2317                         /* Merge it */
2318                         se->nr_pages += nr_pages;
2319                         return 0;
2320                 }
2321         }
2322
2323         /*
2324          * No merge.  Insert a new extent, preserving ordering.
2325          */
2326         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2327         if (new_se == NULL)
2328                 return -ENOMEM;
2329         new_se->start_page = start_page;
2330         new_se->nr_pages = nr_pages;
2331         new_se->start_block = start_block;
2332
2333         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2334         return 1;
2335 }
2336 EXPORT_SYMBOL_GPL(add_swap_extent);
2337
2338 /*
2339  * A `swap extent' is a simple thing which maps a contiguous range of pages
2340  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2341  * is built at swapon time and is then used at swap_writepage/swap_readpage
2342  * time for locating where on disk a page belongs.
2343  *
2344  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346  * swap files identically.
2347  *
2348  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2350  * swapfiles are handled *identically* after swapon time.
2351  *
2352  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2354  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355  * requirements, they are simply tossed out - we will never use those blocks
2356  * for swapping.
2357  *
2358  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2359  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2360  * which will scribble on the fs.
2361  *
2362  * The amount of disk space which a single swap extent represents varies.
2363  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2364  * extents in the list.  To avoid much list walking, we cache the previous
2365  * search location in `curr_swap_extent', and start new searches from there.
2366  * This is extremely effective.  The average number of iterations in
2367  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2368  */
2369 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2370 {
2371         struct file *swap_file = sis->swap_file;
2372         struct address_space *mapping = swap_file->f_mapping;
2373         struct inode *inode = mapping->host;
2374         int ret;
2375
2376         if (S_ISBLK(inode->i_mode)) {
2377                 ret = add_swap_extent(sis, 0, sis->max, 0);
2378                 *span = sis->pages;
2379                 return ret;
2380         }
2381
2382         if (mapping->a_ops->swap_activate) {
2383                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2384                 if (ret >= 0)
2385                         sis->flags |= SWP_ACTIVATED;
2386                 if (!ret) {
2387                         sis->flags |= SWP_FS;
2388                         ret = add_swap_extent(sis, 0, sis->max, 0);
2389                         *span = sis->pages;
2390                 }
2391                 return ret;
2392         }
2393
2394         return generic_swapfile_activate(sis, swap_file, span);
2395 }
2396
2397 static int swap_node(struct swap_info_struct *p)
2398 {
2399         struct block_device *bdev;
2400
2401         if (p->bdev)
2402                 bdev = p->bdev;
2403         else
2404                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2405
2406         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2407 }
2408
2409 static void setup_swap_info(struct swap_info_struct *p, int prio,
2410                             unsigned char *swap_map,
2411                             struct swap_cluster_info *cluster_info)
2412 {
2413         int i;
2414
2415         if (prio >= 0)
2416                 p->prio = prio;
2417         else
2418                 p->prio = --least_priority;
2419         /*
2420          * the plist prio is negated because plist ordering is
2421          * low-to-high, while swap ordering is high-to-low
2422          */
2423         p->list.prio = -p->prio;
2424         for_each_node(i) {
2425                 if (p->prio >= 0)
2426                         p->avail_lists[i].prio = -p->prio;
2427                 else {
2428                         if (swap_node(p) == i)
2429                                 p->avail_lists[i].prio = 1;
2430                         else
2431                                 p->avail_lists[i].prio = -p->prio;
2432                 }
2433         }
2434         p->swap_map = swap_map;
2435         p->cluster_info = cluster_info;
2436 }
2437
2438 static void _enable_swap_info(struct swap_info_struct *p)
2439 {
2440         p->flags |= SWP_WRITEOK | SWP_VALID;
2441         atomic_long_add(p->pages, &nr_swap_pages);
2442         total_swap_pages += p->pages;
2443
2444         assert_spin_locked(&swap_lock);
2445         /*
2446          * both lists are plists, and thus priority ordered.
2447          * swap_active_head needs to be priority ordered for swapoff(),
2448          * which on removal of any swap_info_struct with an auto-assigned
2449          * (i.e. negative) priority increments the auto-assigned priority
2450          * of any lower-priority swap_info_structs.
2451          * swap_avail_head needs to be priority ordered for get_swap_page(),
2452          * which allocates swap pages from the highest available priority
2453          * swap_info_struct.
2454          */
2455         plist_add(&p->list, &swap_active_head);
2456         add_to_avail_list(p);
2457 }
2458
2459 static void enable_swap_info(struct swap_info_struct *p, int prio,
2460                                 unsigned char *swap_map,
2461                                 struct swap_cluster_info *cluster_info,
2462                                 unsigned long *frontswap_map)
2463 {
2464         frontswap_init(p->type, frontswap_map);
2465         spin_lock(&swap_lock);
2466         spin_lock(&p->lock);
2467         setup_swap_info(p, prio, swap_map, cluster_info);
2468         spin_unlock(&p->lock);
2469         spin_unlock(&swap_lock);
2470         /*
2471          * Guarantee swap_map, cluster_info, etc. fields are valid
2472          * between get/put_swap_device() if SWP_VALID bit is set
2473          */
2474         synchronize_rcu();
2475         spin_lock(&swap_lock);
2476         spin_lock(&p->lock);
2477         _enable_swap_info(p);
2478         spin_unlock(&p->lock);
2479         spin_unlock(&swap_lock);
2480 }
2481
2482 static void reinsert_swap_info(struct swap_info_struct *p)
2483 {
2484         spin_lock(&swap_lock);
2485         spin_lock(&p->lock);
2486         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2487         _enable_swap_info(p);
2488         spin_unlock(&p->lock);
2489         spin_unlock(&swap_lock);
2490 }
2491
2492 bool has_usable_swap(void)
2493 {
2494         bool ret = true;
2495
2496         spin_lock(&swap_lock);
2497         if (plist_head_empty(&swap_active_head))
2498                 ret = false;
2499         spin_unlock(&swap_lock);
2500         return ret;
2501 }
2502
2503 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2504 {
2505         struct swap_info_struct *p = NULL;
2506         unsigned char *swap_map;
2507         struct swap_cluster_info *cluster_info;
2508         unsigned long *frontswap_map;
2509         struct file *swap_file, *victim;
2510         struct address_space *mapping;
2511         struct inode *inode;
2512         struct filename *pathname;
2513         int err, found = 0;
2514         unsigned int old_block_size;
2515
2516         if (!capable(CAP_SYS_ADMIN))
2517                 return -EPERM;
2518
2519         BUG_ON(!current->mm);
2520
2521         pathname = getname(specialfile);
2522         if (IS_ERR(pathname))
2523                 return PTR_ERR(pathname);
2524
2525         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2526         err = PTR_ERR(victim);
2527         if (IS_ERR(victim))
2528                 goto out;
2529
2530         mapping = victim->f_mapping;
2531         spin_lock(&swap_lock);
2532         plist_for_each_entry(p, &swap_active_head, list) {
2533                 if (p->flags & SWP_WRITEOK) {
2534                         if (p->swap_file->f_mapping == mapping) {
2535                                 found = 1;
2536                                 break;
2537                         }
2538                 }
2539         }
2540         if (!found) {
2541                 err = -EINVAL;
2542                 spin_unlock(&swap_lock);
2543                 goto out_dput;
2544         }
2545         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2546                 vm_unacct_memory(p->pages);
2547         else {
2548                 err = -ENOMEM;
2549                 spin_unlock(&swap_lock);
2550                 goto out_dput;
2551         }
2552         del_from_avail_list(p);
2553         spin_lock(&p->lock);
2554         if (p->prio < 0) {
2555                 struct swap_info_struct *si = p;
2556                 int nid;
2557
2558                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2559                         si->prio++;
2560                         si->list.prio--;
2561                         for_each_node(nid) {
2562                                 if (si->avail_lists[nid].prio != 1)
2563                                         si->avail_lists[nid].prio--;
2564                         }
2565                 }
2566                 least_priority++;
2567         }
2568         plist_del(&p->list, &swap_active_head);
2569         atomic_long_sub(p->pages, &nr_swap_pages);
2570         total_swap_pages -= p->pages;
2571         p->flags &= ~SWP_WRITEOK;
2572         spin_unlock(&p->lock);
2573         spin_unlock(&swap_lock);
2574
2575         disable_swap_slots_cache_lock();
2576
2577         set_current_oom_origin();
2578         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2579         clear_current_oom_origin();
2580
2581         if (err) {
2582                 /* re-insert swap space back into swap_list */
2583                 reinsert_swap_info(p);
2584                 reenable_swap_slots_cache_unlock();
2585                 goto out_dput;
2586         }
2587
2588         reenable_swap_slots_cache_unlock();
2589
2590         spin_lock(&swap_lock);
2591         spin_lock(&p->lock);
2592         p->flags &= ~SWP_VALID;         /* mark swap device as invalid */
2593         spin_unlock(&p->lock);
2594         spin_unlock(&swap_lock);
2595         /*
2596          * wait for swap operations protected by get/put_swap_device()
2597          * to complete
2598          */
2599         synchronize_rcu();
2600
2601         flush_work(&p->discard_work);
2602
2603         destroy_swap_extents(p);
2604         if (p->flags & SWP_CONTINUED)
2605                 free_swap_count_continuations(p);
2606
2607         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2608                 atomic_dec(&nr_rotate_swap);
2609
2610         mutex_lock(&swapon_mutex);
2611         spin_lock(&swap_lock);
2612         spin_lock(&p->lock);
2613         drain_mmlist();
2614
2615         /* wait for anyone still in scan_swap_map */
2616         p->highest_bit = 0;             /* cuts scans short */
2617         while (p->flags >= SWP_SCANNING) {
2618                 spin_unlock(&p->lock);
2619                 spin_unlock(&swap_lock);
2620                 schedule_timeout_uninterruptible(1);
2621                 spin_lock(&swap_lock);
2622                 spin_lock(&p->lock);
2623         }
2624
2625         swap_file = p->swap_file;
2626         old_block_size = p->old_block_size;
2627         p->swap_file = NULL;
2628         p->max = 0;
2629         swap_map = p->swap_map;
2630         p->swap_map = NULL;
2631         cluster_info = p->cluster_info;
2632         p->cluster_info = NULL;
2633         frontswap_map = frontswap_map_get(p);
2634         spin_unlock(&p->lock);
2635         spin_unlock(&swap_lock);
2636         frontswap_invalidate_area(p->type);
2637         frontswap_map_set(p, NULL);
2638         mutex_unlock(&swapon_mutex);
2639         free_percpu(p->percpu_cluster);
2640         p->percpu_cluster = NULL;
2641         vfree(swap_map);
2642         kvfree(cluster_info);
2643         kvfree(frontswap_map);
2644         /* Destroy swap account information */
2645         swap_cgroup_swapoff(p->type);
2646         exit_swap_address_space(p->type);
2647
2648         inode = mapping->host;
2649         if (S_ISBLK(inode->i_mode)) {
2650                 struct block_device *bdev = I_BDEV(inode);
2651                 set_blocksize(bdev, old_block_size);
2652                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2653         } else {
2654                 inode_lock(inode);
2655                 inode->i_flags &= ~S_SWAPFILE;
2656                 inode_unlock(inode);
2657         }
2658         filp_close(swap_file, NULL);
2659
2660         /*
2661          * Clear the SWP_USED flag after all resources are freed so that swapon
2662          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2663          * not hold p->lock after we cleared its SWP_WRITEOK.
2664          */
2665         spin_lock(&swap_lock);
2666         p->flags = 0;
2667         spin_unlock(&swap_lock);
2668
2669         err = 0;
2670         atomic_inc(&proc_poll_event);
2671         wake_up_interruptible(&proc_poll_wait);
2672
2673 out_dput:
2674         filp_close(victim, NULL);
2675 out:
2676         putname(pathname);
2677         return err;
2678 }
2679
2680 #ifdef CONFIG_PROC_FS
2681 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2682 {
2683         struct seq_file *seq = file->private_data;
2684
2685         poll_wait(file, &proc_poll_wait, wait);
2686
2687         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2688                 seq->poll_event = atomic_read(&proc_poll_event);
2689                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2690         }
2691
2692         return EPOLLIN | EPOLLRDNORM;
2693 }
2694
2695 /* iterator */
2696 static void *swap_start(struct seq_file *swap, loff_t *pos)
2697 {
2698         struct swap_info_struct *si;
2699         int type;
2700         loff_t l = *pos;
2701
2702         mutex_lock(&swapon_mutex);
2703
2704         if (!l)
2705                 return SEQ_START_TOKEN;
2706
2707         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2708                 if (!(si->flags & SWP_USED) || !si->swap_map)
2709                         continue;
2710                 if (!--l)
2711                         return si;
2712         }
2713
2714         return NULL;
2715 }
2716
2717 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2718 {
2719         struct swap_info_struct *si = v;
2720         int type;
2721
2722         if (v == SEQ_START_TOKEN)
2723                 type = 0;
2724         else
2725                 type = si->type + 1;
2726
2727         for (; (si = swap_type_to_swap_info(type)); type++) {
2728                 if (!(si->flags & SWP_USED) || !si->swap_map)
2729                         continue;
2730                 ++*pos;
2731                 return si;
2732         }
2733
2734         return NULL;
2735 }
2736
2737 static void swap_stop(struct seq_file *swap, void *v)
2738 {
2739         mutex_unlock(&swapon_mutex);
2740 }
2741
2742 static int swap_show(struct seq_file *swap, void *v)
2743 {
2744         struct swap_info_struct *si = v;
2745         struct file *file;
2746         int len;
2747
2748         if (si == SEQ_START_TOKEN) {
2749                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750                 return 0;
2751         }
2752
2753         file = si->swap_file;
2754         len = seq_file_path(swap, file, " \t\n\\");
2755         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2756                         len < 40 ? 40 - len : 1, " ",
2757                         S_ISBLK(file_inode(file)->i_mode) ?
2758                                 "partition" : "file\t",
2759                         si->pages << (PAGE_SHIFT - 10),
2760                         si->inuse_pages << (PAGE_SHIFT - 10),
2761                         si->prio);
2762         return 0;
2763 }
2764
2765 static const struct seq_operations swaps_op = {
2766         .start =        swap_start,
2767         .next =         swap_next,
2768         .stop =         swap_stop,
2769         .show =         swap_show
2770 };
2771
2772 static int swaps_open(struct inode *inode, struct file *file)
2773 {
2774         struct seq_file *seq;
2775         int ret;
2776
2777         ret = seq_open(file, &swaps_op);
2778         if (ret)
2779                 return ret;
2780
2781         seq = file->private_data;
2782         seq->poll_event = atomic_read(&proc_poll_event);
2783         return 0;
2784 }
2785
2786 static const struct file_operations proc_swaps_operations = {
2787         .open           = swaps_open,
2788         .read           = seq_read,
2789         .llseek         = seq_lseek,
2790         .release        = seq_release,
2791         .poll           = swaps_poll,
2792 };
2793
2794 static int __init procswaps_init(void)
2795 {
2796         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2797         return 0;
2798 }
2799 __initcall(procswaps_init);
2800 #endif /* CONFIG_PROC_FS */
2801
2802 #ifdef MAX_SWAPFILES_CHECK
2803 static int __init max_swapfiles_check(void)
2804 {
2805         MAX_SWAPFILES_CHECK();
2806         return 0;
2807 }
2808 late_initcall(max_swapfiles_check);
2809 #endif
2810
2811 static struct swap_info_struct *alloc_swap_info(void)
2812 {
2813         struct swap_info_struct *p;
2814         unsigned int type;
2815         int i;
2816
2817         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2818         if (!p)
2819                 return ERR_PTR(-ENOMEM);
2820
2821         spin_lock(&swap_lock);
2822         for (type = 0; type < nr_swapfiles; type++) {
2823                 if (!(swap_info[type]->flags & SWP_USED))
2824                         break;
2825         }
2826         if (type >= MAX_SWAPFILES) {
2827                 spin_unlock(&swap_lock);
2828                 kvfree(p);
2829                 return ERR_PTR(-EPERM);
2830         }
2831         if (type >= nr_swapfiles) {
2832                 p->type = type;
2833                 WRITE_ONCE(swap_info[type], p);
2834                 /*
2835                  * Write swap_info[type] before nr_swapfiles, in case a
2836                  * racing procfs swap_start() or swap_next() is reading them.
2837                  * (We never shrink nr_swapfiles, we never free this entry.)
2838                  */
2839                 smp_wmb();
2840                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2841         } else {
2842                 kvfree(p);
2843                 p = swap_info[type];
2844                 /*
2845                  * Do not memset this entry: a racing procfs swap_next()
2846                  * would be relying on p->type to remain valid.
2847                  */
2848         }
2849         INIT_LIST_HEAD(&p->first_swap_extent.list);
2850         plist_node_init(&p->list, 0);
2851         for_each_node(i)
2852                 plist_node_init(&p->avail_lists[i], 0);
2853         p->flags = SWP_USED;
2854         spin_unlock(&swap_lock);
2855         spin_lock_init(&p->lock);
2856         spin_lock_init(&p->cont_lock);
2857
2858         return p;
2859 }
2860
2861 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2862 {
2863         int error;
2864
2865         if (S_ISBLK(inode->i_mode)) {
2866                 p->bdev = bdgrab(I_BDEV(inode));
2867                 error = blkdev_get(p->bdev,
2868                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2869                 if (error < 0) {
2870                         p->bdev = NULL;
2871                         return error;
2872                 }
2873                 p->old_block_size = block_size(p->bdev);
2874                 error = set_blocksize(p->bdev, PAGE_SIZE);
2875                 if (error < 0)
2876                         return error;
2877                 p->flags |= SWP_BLKDEV;
2878         } else if (S_ISREG(inode->i_mode)) {
2879                 p->bdev = inode->i_sb->s_bdev;
2880                 inode_lock(inode);
2881                 if (IS_SWAPFILE(inode))
2882                         return -EBUSY;
2883         } else
2884                 return -EINVAL;
2885
2886         return 0;
2887 }
2888
2889
2890 /*
2891  * Find out how many pages are allowed for a single swap device. There
2892  * are two limiting factors:
2893  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2894  * 2) the number of bits in the swap pte, as defined by the different
2895  * architectures.
2896  *
2897  * In order to find the largest possible bit mask, a swap entry with
2898  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2899  * decoded to a swp_entry_t again, and finally the swap offset is
2900  * extracted.
2901  *
2902  * This will mask all the bits from the initial ~0UL mask that can't
2903  * be encoded in either the swp_entry_t or the architecture definition
2904  * of a swap pte.
2905  */
2906 unsigned long generic_max_swapfile_size(void)
2907 {
2908         return swp_offset(pte_to_swp_entry(
2909                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2910 }
2911
2912 /* Can be overridden by an architecture for additional checks. */
2913 __weak unsigned long max_swapfile_size(void)
2914 {
2915         return generic_max_swapfile_size();
2916 }
2917
2918 static unsigned long read_swap_header(struct swap_info_struct *p,
2919                                         union swap_header *swap_header,
2920                                         struct inode *inode)
2921 {
2922         int i;
2923         unsigned long maxpages;
2924         unsigned long swapfilepages;
2925         unsigned long last_page;
2926
2927         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2928                 pr_err("Unable to find swap-space signature\n");
2929                 return 0;
2930         }
2931
2932         /* swap partition endianess hack... */
2933         if (swab32(swap_header->info.version) == 1) {
2934                 swab32s(&swap_header->info.version);
2935                 swab32s(&swap_header->info.last_page);
2936                 swab32s(&swap_header->info.nr_badpages);
2937                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2938                         return 0;
2939                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2940                         swab32s(&swap_header->info.badpages[i]);
2941         }
2942         /* Check the swap header's sub-version */
2943         if (swap_header->info.version != 1) {
2944                 pr_warn("Unable to handle swap header version %d\n",
2945                         swap_header->info.version);
2946                 return 0;
2947         }
2948
2949         p->lowest_bit  = 1;
2950         p->cluster_next = 1;
2951         p->cluster_nr = 0;
2952
2953         maxpages = max_swapfile_size();
2954         last_page = swap_header->info.last_page;
2955         if (!last_page) {
2956                 pr_warn("Empty swap-file\n");
2957                 return 0;
2958         }
2959         if (last_page > maxpages) {
2960                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2961                         maxpages << (PAGE_SHIFT - 10),
2962                         last_page << (PAGE_SHIFT - 10));
2963         }
2964         if (maxpages > last_page) {
2965                 maxpages = last_page + 1;
2966                 /* p->max is an unsigned int: don't overflow it */
2967                 if ((unsigned int)maxpages == 0)
2968                         maxpages = UINT_MAX;
2969         }
2970         p->highest_bit = maxpages - 1;
2971
2972         if (!maxpages)
2973                 return 0;
2974         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2975         if (swapfilepages && maxpages > swapfilepages) {
2976                 pr_warn("Swap area shorter than signature indicates\n");
2977                 return 0;
2978         }
2979         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2980                 return 0;
2981         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2982                 return 0;
2983
2984         return maxpages;
2985 }
2986
2987 #define SWAP_CLUSTER_INFO_COLS                                          \
2988         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2989 #define SWAP_CLUSTER_SPACE_COLS                                         \
2990         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2991 #define SWAP_CLUSTER_COLS                                               \
2992         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2993
2994 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2995                                         union swap_header *swap_header,
2996                                         unsigned char *swap_map,
2997                                         struct swap_cluster_info *cluster_info,
2998                                         unsigned long maxpages,
2999                                         sector_t *span)
3000 {
3001         unsigned int j, k;
3002         unsigned int nr_good_pages;
3003         int nr_extents;
3004         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3005         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3006         unsigned long i, idx;
3007
3008         nr_good_pages = maxpages - 1;   /* omit header page */
3009
3010         cluster_list_init(&p->free_clusters);
3011         cluster_list_init(&p->discard_clusters);
3012
3013         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3014                 unsigned int page_nr = swap_header->info.badpages[i];
3015                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3016                         return -EINVAL;
3017                 if (page_nr < maxpages) {
3018                         swap_map[page_nr] = SWAP_MAP_BAD;
3019                         nr_good_pages--;
3020                         /*
3021                          * Haven't marked the cluster free yet, no list
3022                          * operation involved
3023                          */
3024                         inc_cluster_info_page(p, cluster_info, page_nr);
3025                 }
3026         }
3027
3028         /* Haven't marked the cluster free yet, no list operation involved */
3029         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3030                 inc_cluster_info_page(p, cluster_info, i);
3031
3032         if (nr_good_pages) {
3033                 swap_map[0] = SWAP_MAP_BAD;
3034                 /*
3035                  * Not mark the cluster free yet, no list
3036                  * operation involved
3037                  */
3038                 inc_cluster_info_page(p, cluster_info, 0);
3039                 p->max = maxpages;
3040                 p->pages = nr_good_pages;
3041                 nr_extents = setup_swap_extents(p, span);
3042                 if (nr_extents < 0)
3043                         return nr_extents;
3044                 nr_good_pages = p->pages;
3045         }
3046         if (!nr_good_pages) {
3047                 pr_warn("Empty swap-file\n");
3048                 return -EINVAL;
3049         }
3050
3051         if (!cluster_info)
3052                 return nr_extents;
3053
3054
3055         /*
3056          * Reduce false cache line sharing between cluster_info and
3057          * sharing same address space.
3058          */
3059         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3060                 j = (k + col) % SWAP_CLUSTER_COLS;
3061                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3062                         idx = i * SWAP_CLUSTER_COLS + j;
3063                         if (idx >= nr_clusters)
3064                                 continue;
3065                         if (cluster_count(&cluster_info[idx]))
3066                                 continue;
3067                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3068                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3069                                               idx);
3070                 }
3071         }
3072         return nr_extents;
3073 }
3074
3075 /*
3076  * Helper to sys_swapon determining if a given swap
3077  * backing device queue supports DISCARD operations.
3078  */
3079 static bool swap_discardable(struct swap_info_struct *si)
3080 {
3081         struct request_queue *q = bdev_get_queue(si->bdev);
3082
3083         if (!q || !blk_queue_discard(q))
3084                 return false;
3085
3086         return true;
3087 }
3088
3089 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3090 {
3091         struct swap_info_struct *p;
3092         struct filename *name;
3093         struct file *swap_file = NULL;
3094         struct address_space *mapping;
3095         int prio;
3096         int error;
3097         union swap_header *swap_header;
3098         int nr_extents;
3099         sector_t span;
3100         unsigned long maxpages;
3101         unsigned char *swap_map = NULL;
3102         struct swap_cluster_info *cluster_info = NULL;
3103         unsigned long *frontswap_map = NULL;
3104         struct page *page = NULL;
3105         struct inode *inode = NULL;
3106         bool inced_nr_rotate_swap = false;
3107
3108         if (swap_flags & ~SWAP_FLAGS_VALID)
3109                 return -EINVAL;
3110
3111         if (!capable(CAP_SYS_ADMIN))
3112                 return -EPERM;
3113
3114         if (!swap_avail_heads)
3115                 return -ENOMEM;
3116
3117         p = alloc_swap_info();
3118         if (IS_ERR(p))
3119                 return PTR_ERR(p);
3120
3121         INIT_WORK(&p->discard_work, swap_discard_work);
3122
3123         name = getname(specialfile);
3124         if (IS_ERR(name)) {
3125                 error = PTR_ERR(name);
3126                 name = NULL;
3127                 goto bad_swap;
3128         }
3129         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3130         if (IS_ERR(swap_file)) {
3131                 error = PTR_ERR(swap_file);
3132                 swap_file = NULL;
3133                 goto bad_swap;
3134         }
3135
3136         p->swap_file = swap_file;
3137         mapping = swap_file->f_mapping;
3138         inode = mapping->host;
3139
3140         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3141         error = claim_swapfile(p, inode);
3142         if (unlikely(error))
3143                 goto bad_swap;
3144
3145         /*
3146          * Read the swap header.
3147          */
3148         if (!mapping->a_ops->readpage) {
3149                 error = -EINVAL;
3150                 goto bad_swap;
3151         }
3152         page = read_mapping_page(mapping, 0, swap_file);
3153         if (IS_ERR(page)) {
3154                 error = PTR_ERR(page);
3155                 goto bad_swap;
3156         }
3157         swap_header = kmap(page);
3158
3159         maxpages = read_swap_header(p, swap_header, inode);
3160         if (unlikely(!maxpages)) {
3161                 error = -EINVAL;
3162                 goto bad_swap;
3163         }
3164
3165         /* OK, set up the swap map and apply the bad block list */
3166         swap_map = vzalloc(maxpages);
3167         if (!swap_map) {
3168                 error = -ENOMEM;
3169                 goto bad_swap;
3170         }
3171
3172         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3173                 p->flags |= SWP_STABLE_WRITES;
3174
3175         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3176                 p->flags |= SWP_SYNCHRONOUS_IO;
3177
3178         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3179                 int cpu;
3180                 unsigned long ci, nr_cluster;
3181
3182                 p->flags |= SWP_SOLIDSTATE;
3183                 /*
3184                  * select a random position to start with to help wear leveling
3185                  * SSD
3186                  */
3187                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3188                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3189
3190                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3191                                         GFP_KERNEL);
3192                 if (!cluster_info) {
3193                         error = -ENOMEM;
3194                         goto bad_swap;
3195                 }
3196
3197                 for (ci = 0; ci < nr_cluster; ci++)
3198                         spin_lock_init(&((cluster_info + ci)->lock));
3199
3200                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3201                 if (!p->percpu_cluster) {
3202                         error = -ENOMEM;
3203                         goto bad_swap;
3204                 }
3205                 for_each_possible_cpu(cpu) {
3206                         struct percpu_cluster *cluster;
3207                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3208                         cluster_set_null(&cluster->index);
3209                 }
3210         } else {
3211                 atomic_inc(&nr_rotate_swap);
3212                 inced_nr_rotate_swap = true;
3213         }
3214
3215         error = swap_cgroup_swapon(p->type, maxpages);
3216         if (error)
3217                 goto bad_swap;
3218
3219         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3220                 cluster_info, maxpages, &span);
3221         if (unlikely(nr_extents < 0)) {
3222                 error = nr_extents;
3223                 goto bad_swap;
3224         }
3225         /* frontswap enabled? set up bit-per-page map for frontswap */
3226         if (IS_ENABLED(CONFIG_FRONTSWAP))
3227                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3228                                          sizeof(long),
3229                                          GFP_KERNEL);
3230
3231         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3232                 /*
3233                  * When discard is enabled for swap with no particular
3234                  * policy flagged, we set all swap discard flags here in
3235                  * order to sustain backward compatibility with older
3236                  * swapon(8) releases.
3237                  */
3238                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3239                              SWP_PAGE_DISCARD);
3240
3241                 /*
3242                  * By flagging sys_swapon, a sysadmin can tell us to
3243                  * either do single-time area discards only, or to just
3244                  * perform discards for released swap page-clusters.
3245                  * Now it's time to adjust the p->flags accordingly.
3246                  */
3247                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3248                         p->flags &= ~SWP_PAGE_DISCARD;
3249                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3250                         p->flags &= ~SWP_AREA_DISCARD;
3251
3252                 /* issue a swapon-time discard if it's still required */
3253                 if (p->flags & SWP_AREA_DISCARD) {
3254                         int err = discard_swap(p);
3255                         if (unlikely(err))
3256                                 pr_err("swapon: discard_swap(%p): %d\n",
3257                                         p, err);
3258                 }
3259         }
3260
3261         error = init_swap_address_space(p->type, maxpages);
3262         if (error)
3263                 goto bad_swap;
3264
3265         mutex_lock(&swapon_mutex);
3266         prio = -1;
3267         if (swap_flags & SWAP_FLAG_PREFER)
3268                 prio =
3269                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3270         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3271
3272         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3273                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3274                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3275                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3276                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3277                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3278                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3279                 (frontswap_map) ? "FS" : "");
3280
3281         mutex_unlock(&swapon_mutex);
3282         atomic_inc(&proc_poll_event);
3283         wake_up_interruptible(&proc_poll_wait);
3284
3285         if (S_ISREG(inode->i_mode))
3286                 inode->i_flags |= S_SWAPFILE;
3287         error = 0;
3288         goto out;
3289 bad_swap:
3290         free_percpu(p->percpu_cluster);
3291         p->percpu_cluster = NULL;
3292         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3293                 set_blocksize(p->bdev, p->old_block_size);
3294                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3295         }
3296         destroy_swap_extents(p);
3297         swap_cgroup_swapoff(p->type);
3298         spin_lock(&swap_lock);
3299         p->swap_file = NULL;
3300         p->flags = 0;
3301         spin_unlock(&swap_lock);
3302         vfree(swap_map);
3303         kvfree(cluster_info);
3304         kvfree(frontswap_map);
3305         if (inced_nr_rotate_swap)
3306                 atomic_dec(&nr_rotate_swap);
3307         if (swap_file) {
3308                 if (inode && S_ISREG(inode->i_mode)) {
3309                         inode_unlock(inode);
3310                         inode = NULL;
3311                 }
3312                 filp_close(swap_file, NULL);
3313         }
3314 out:
3315         if (page && !IS_ERR(page)) {
3316                 kunmap(page);
3317                 put_page(page);
3318         }
3319         if (name)
3320                 putname(name);
3321         if (inode && S_ISREG(inode->i_mode))
3322                 inode_unlock(inode);
3323         if (!error)
3324                 enable_swap_slots_cache();
3325         return error;
3326 }
3327
3328 void si_swapinfo(struct sysinfo *val)
3329 {
3330         unsigned int type;
3331         unsigned long nr_to_be_unused = 0;
3332
3333         spin_lock(&swap_lock);
3334         for (type = 0; type < nr_swapfiles; type++) {
3335                 struct swap_info_struct *si = swap_info[type];
3336
3337                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3338                         nr_to_be_unused += si->inuse_pages;
3339         }
3340         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3341         val->totalswap = total_swap_pages + nr_to_be_unused;
3342         spin_unlock(&swap_lock);
3343 }
3344
3345 /*
3346  * Verify that a swap entry is valid and increment its swap map count.
3347  *
3348  * Returns error code in following case.
3349  * - success -> 0
3350  * - swp_entry is invalid -> EINVAL
3351  * - swp_entry is migration entry -> EINVAL
3352  * - swap-cache reference is requested but there is already one. -> EEXIST
3353  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3354  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3355  */
3356 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3357 {
3358         struct swap_info_struct *p;
3359         struct swap_cluster_info *ci;
3360         unsigned long offset;
3361         unsigned char count;
3362         unsigned char has_cache;
3363         int err = -EINVAL;
3364
3365         p = get_swap_device(entry);
3366         if (!p)
3367                 goto out;
3368
3369         offset = swp_offset(entry);
3370         ci = lock_cluster_or_swap_info(p, offset);
3371
3372         count = p->swap_map[offset];
3373
3374         /*
3375          * swapin_readahead() doesn't check if a swap entry is valid, so the
3376          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3377          */
3378         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3379                 err = -ENOENT;
3380                 goto unlock_out;
3381         }
3382
3383         has_cache = count & SWAP_HAS_CACHE;
3384         count &= ~SWAP_HAS_CACHE;
3385         err = 0;
3386
3387         if (usage == SWAP_HAS_CACHE) {
3388
3389                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3390                 if (!has_cache && count)
3391                         has_cache = SWAP_HAS_CACHE;
3392                 else if (has_cache)             /* someone else added cache */
3393                         err = -EEXIST;
3394                 else                            /* no users remaining */
3395                         err = -ENOENT;
3396
3397         } else if (count || has_cache) {
3398
3399                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3400                         count += usage;
3401                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3402                         err = -EINVAL;
3403                 else if (swap_count_continued(p, offset, count))
3404                         count = COUNT_CONTINUED;
3405                 else
3406                         err = -ENOMEM;
3407         } else
3408                 err = -ENOENT;                  /* unused swap entry */
3409
3410         p->swap_map[offset] = count | has_cache;
3411
3412 unlock_out:
3413         unlock_cluster_or_swap_info(p, ci);
3414 out:
3415         if (p)
3416                 put_swap_device(p);
3417         return err;
3418 }
3419
3420 /*
3421  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3422  * (in which case its reference count is never incremented).
3423  */
3424 void swap_shmem_alloc(swp_entry_t entry)
3425 {
3426         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3427 }
3428
3429 /*
3430  * Increase reference count of swap entry by 1.
3431  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3432  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3433  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3434  * might occur if a page table entry has got corrupted.
3435  */
3436 int swap_duplicate(swp_entry_t entry)
3437 {
3438         int err = 0;
3439
3440         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3441                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3442         return err;
3443 }
3444
3445 /*
3446  * @entry: swap entry for which we allocate swap cache.
3447  *
3448  * Called when allocating swap cache for existing swap entry,
3449  * This can return error codes. Returns 0 at success.
3450  * -EBUSY means there is a swap cache.
3451  * Note: return code is different from swap_duplicate().
3452  */
3453 int swapcache_prepare(swp_entry_t entry)
3454 {
3455         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3456 }
3457
3458 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3459 {
3460         return swap_type_to_swap_info(swp_type(entry));
3461 }
3462
3463 struct swap_info_struct *page_swap_info(struct page *page)
3464 {
3465         swp_entry_t entry = { .val = page_private(page) };
3466         return swp_swap_info(entry);
3467 }
3468
3469 /*
3470  * out-of-line __page_file_ methods to avoid include hell.
3471  */
3472 struct address_space *__page_file_mapping(struct page *page)
3473 {
3474         return page_swap_info(page)->swap_file->f_mapping;
3475 }
3476 EXPORT_SYMBOL_GPL(__page_file_mapping);
3477
3478 pgoff_t __page_file_index(struct page *page)
3479 {
3480         swp_entry_t swap = { .val = page_private(page) };
3481         return swp_offset(swap);
3482 }
3483 EXPORT_SYMBOL_GPL(__page_file_index);
3484
3485 /*
3486  * add_swap_count_continuation - called when a swap count is duplicated
3487  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3488  * page of the original vmalloc'ed swap_map, to hold the continuation count
3489  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3490  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3491  *
3492  * These continuation pages are seldom referenced: the common paths all work
3493  * on the original swap_map, only referring to a continuation page when the
3494  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3495  *
3496  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3497  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3498  * can be called after dropping locks.
3499  */
3500 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3501 {
3502         struct swap_info_struct *si;
3503         struct swap_cluster_info *ci;
3504         struct page *head;
3505         struct page *page;
3506         struct page *list_page;
3507         pgoff_t offset;
3508         unsigned char count;
3509         int ret = 0;
3510
3511         /*
3512          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3513          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3514          */
3515         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3516
3517         si = get_swap_device(entry);
3518         if (!si) {
3519                 /*
3520                  * An acceptable race has occurred since the failing
3521                  * __swap_duplicate(): the swap device may be swapoff
3522                  */
3523                 goto outer;
3524         }
3525         spin_lock(&si->lock);
3526
3527         offset = swp_offset(entry);
3528
3529         ci = lock_cluster(si, offset);
3530
3531         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3532
3533         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3534                 /*
3535                  * The higher the swap count, the more likely it is that tasks
3536                  * will race to add swap count continuation: we need to avoid
3537                  * over-provisioning.
3538                  */
3539                 goto out;
3540         }
3541
3542         if (!page) {
3543                 ret = -ENOMEM;
3544                 goto out;
3545         }
3546
3547         /*
3548          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3549          * no architecture is using highmem pages for kernel page tables: so it
3550          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3551          */
3552         head = vmalloc_to_page(si->swap_map + offset);
3553         offset &= ~PAGE_MASK;
3554
3555         spin_lock(&si->cont_lock);
3556         /*
3557          * Page allocation does not initialize the page's lru field,
3558          * but it does always reset its private field.
3559          */
3560         if (!page_private(head)) {
3561                 BUG_ON(count & COUNT_CONTINUED);
3562                 INIT_LIST_HEAD(&head->lru);
3563                 set_page_private(head, SWP_CONTINUED);
3564                 si->flags |= SWP_CONTINUED;
3565         }
3566
3567         list_for_each_entry(list_page, &head->lru, lru) {
3568                 unsigned char *map;
3569
3570                 /*
3571                  * If the previous map said no continuation, but we've found
3572                  * a continuation page, free our allocation and use this one.
3573                  */
3574                 if (!(count & COUNT_CONTINUED))
3575                         goto out_unlock_cont;
3576
3577                 map = kmap_atomic(list_page) + offset;
3578                 count = *map;
3579                 kunmap_atomic(map);
3580
3581                 /*
3582                  * If this continuation count now has some space in it,
3583                  * free our allocation and use this one.
3584                  */
3585                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3586                         goto out_unlock_cont;
3587         }
3588
3589         list_add_tail(&page->lru, &head->lru);
3590         page = NULL;                    /* now it's attached, don't free it */
3591 out_unlock_cont:
3592         spin_unlock(&si->cont_lock);
3593 out:
3594         unlock_cluster(ci);
3595         spin_unlock(&si->lock);
3596         put_swap_device(si);
3597 outer:
3598         if (page)
3599                 __free_page(page);
3600         return ret;
3601 }
3602
3603 /*
3604  * swap_count_continued - when the original swap_map count is incremented
3605  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3606  * into, carry if so, or else fail until a new continuation page is allocated;
3607  * when the original swap_map count is decremented from 0 with continuation,
3608  * borrow from the continuation and report whether it still holds more.
3609  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3610  * lock.
3611  */
3612 static bool swap_count_continued(struct swap_info_struct *si,
3613                                  pgoff_t offset, unsigned char count)
3614 {
3615         struct page *head;
3616         struct page *page;
3617         unsigned char *map;
3618         bool ret;
3619
3620         head = vmalloc_to_page(si->swap_map + offset);
3621         if (page_private(head) != SWP_CONTINUED) {
3622                 BUG_ON(count & COUNT_CONTINUED);
3623                 return false;           /* need to add count continuation */
3624         }
3625
3626         spin_lock(&si->cont_lock);
3627         offset &= ~PAGE_MASK;
3628         page = list_entry(head->lru.next, struct page, lru);
3629         map = kmap_atomic(page) + offset;
3630
3631         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3632                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3633
3634         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3635                 /*
3636                  * Think of how you add 1 to 999
3637                  */
3638                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3639                         kunmap_atomic(map);
3640                         page = list_entry(page->lru.next, struct page, lru);
3641                         BUG_ON(page == head);
3642                         map = kmap_atomic(page) + offset;
3643                 }
3644                 if (*map == SWAP_CONT_MAX) {
3645                         kunmap_atomic(map);
3646                         page = list_entry(page->lru.next, struct page, lru);
3647                         if (page == head) {
3648                                 ret = false;    /* add count continuation */
3649                                 goto out;
3650                         }
3651                         map = kmap_atomic(page) + offset;
3652 init_map:               *map = 0;               /* we didn't zero the page */
3653                 }
3654                 *map += 1;
3655                 kunmap_atomic(map);
3656                 page = list_entry(page->lru.prev, struct page, lru);
3657                 while (page != head) {
3658                         map = kmap_atomic(page) + offset;
3659                         *map = COUNT_CONTINUED;
3660                         kunmap_atomic(map);
3661                         page = list_entry(page->lru.prev, struct page, lru);
3662                 }
3663                 ret = true;                     /* incremented */
3664
3665         } else {                                /* decrementing */
3666                 /*
3667                  * Think of how you subtract 1 from 1000
3668                  */
3669                 BUG_ON(count != COUNT_CONTINUED);
3670                 while (*map == COUNT_CONTINUED) {
3671                         kunmap_atomic(map);
3672                         page = list_entry(page->lru.next, struct page, lru);
3673                         BUG_ON(page == head);
3674                         map = kmap_atomic(page) + offset;
3675                 }
3676                 BUG_ON(*map == 0);
3677                 *map -= 1;
3678                 if (*map == 0)
3679                         count = 0;
3680                 kunmap_atomic(map);
3681                 page = list_entry(page->lru.prev, struct page, lru);
3682                 while (page != head) {
3683                         map = kmap_atomic(page) + offset;
3684                         *map = SWAP_CONT_MAX | count;
3685                         count = COUNT_CONTINUED;
3686                         kunmap_atomic(map);
3687                         page = list_entry(page->lru.prev, struct page, lru);
3688                 }
3689                 ret = count == COUNT_CONTINUED;
3690         }
3691 out:
3692         spin_unlock(&si->cont_lock);
3693         return ret;
3694 }
3695
3696 /*
3697  * free_swap_count_continuations - swapoff free all the continuation pages
3698  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3699  */
3700 static void free_swap_count_continuations(struct swap_info_struct *si)
3701 {
3702         pgoff_t offset;
3703
3704         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3705                 struct page *head;
3706                 head = vmalloc_to_page(si->swap_map + offset);
3707                 if (page_private(head)) {
3708                         struct page *page, *next;
3709
3710                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3711                                 list_del(&page->lru);
3712                                 __free_page(page);
3713                         }
3714                 }
3715         }
3716 }
3717
3718 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3719 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3720                                   gfp_t gfp_mask)
3721 {
3722         struct swap_info_struct *si, *next;
3723         if (!(gfp_mask & __GFP_IO) || !memcg)
3724                 return;
3725
3726         if (!blk_cgroup_congested())
3727                 return;
3728
3729         /*
3730          * We've already scheduled a throttle, avoid taking the global swap
3731          * lock.
3732          */
3733         if (current->throttle_queue)
3734                 return;
3735
3736         spin_lock(&swap_avail_lock);
3737         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3738                                   avail_lists[node]) {
3739                 if (si->bdev) {
3740                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3741                                                 true);
3742                         break;
3743                 }
3744         }
3745         spin_unlock(&swap_avail_lock);
3746 }
3747 #endif
3748
3749 static int __init swapfile_init(void)
3750 {
3751         int nid;
3752
3753         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3754                                          GFP_KERNEL);
3755         if (!swap_avail_heads) {
3756                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3757                 return -ENOMEM;
3758         }
3759
3760         for_each_node(nid)
3761                 plist_head_init(&swap_avail_heads[nid]);
3762
3763         return 0;
3764 }
3765 subsys_initcall(swapfile_init);
This page took 0.237593 seconds and 4 git commands to generate.