1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * Symmetric key ciphers.
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
16 * struct skcipher_request - Symmetric key cipher request
17 * @cryptlen: Number of bytes to encrypt or decrypt
18 * @iv: Initialisation Vector
19 * @src: Source SG list
20 * @dst: Destination SG list
21 * @base: Underlying async request request
22 * @__ctx: Start of private context data
24 struct skcipher_request {
25 unsigned int cryptlen;
29 struct scatterlist *src;
30 struct scatterlist *dst;
32 struct crypto_async_request base;
34 void *__ctx[] CRYPTO_MINALIGN_ATTR;
37 struct crypto_skcipher {
38 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
40 int (*encrypt)(struct skcipher_request *req);
41 int (*decrypt)(struct skcipher_request *req);
47 struct crypto_tfm base;
50 struct crypto_sync_skcipher {
51 struct crypto_skcipher base;
55 * struct skcipher_alg - symmetric key cipher definition
56 * @min_keysize: Minimum key size supported by the transformation. This is the
57 * smallest key length supported by this transformation algorithm.
58 * This must be set to one of the pre-defined values as this is
59 * not hardware specific. Possible values for this field can be
60 * found via git grep "_MIN_KEY_SIZE" include/crypto/
61 * @max_keysize: Maximum key size supported by the transformation. This is the
62 * largest key length supported by this transformation algorithm.
63 * This must be set to one of the pre-defined values as this is
64 * not hardware specific. Possible values for this field can be
65 * found via git grep "_MAX_KEY_SIZE" include/crypto/
66 * @setkey: Set key for the transformation. This function is used to either
67 * program a supplied key into the hardware or store the key in the
68 * transformation context for programming it later. Note that this
69 * function does modify the transformation context. This function can
70 * be called multiple times during the existence of the transformation
71 * object, so one must make sure the key is properly reprogrammed into
72 * the hardware. This function is also responsible for checking the key
73 * length for validity. In case a software fallback was put in place in
74 * the @cra_init call, this function might need to use the fallback if
75 * the algorithm doesn't support all of the key sizes.
76 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
77 * the supplied scatterlist containing the blocks of data. The crypto
78 * API consumer is responsible for aligning the entries of the
79 * scatterlist properly and making sure the chunks are correctly
80 * sized. In case a software fallback was put in place in the
81 * @cra_init call, this function might need to use the fallback if
82 * the algorithm doesn't support all of the key sizes. In case the
83 * key was stored in transformation context, the key might need to be
84 * re-programmed into the hardware in this function. This function
85 * shall not modify the transformation context, as this function may
86 * be called in parallel with the same transformation object.
87 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
88 * and the conditions are exactly the same.
89 * @init: Initialize the cryptographic transformation object. This function
90 * is used to initialize the cryptographic transformation object.
91 * This function is called only once at the instantiation time, right
92 * after the transformation context was allocated. In case the
93 * cryptographic hardware has some special requirements which need to
94 * be handled by software, this function shall check for the precise
95 * requirement of the transformation and put any software fallbacks
97 * @exit: Deinitialize the cryptographic transformation object. This is a
98 * counterpart to @init, used to remove various changes set in
100 * @ivsize: IV size applicable for transformation. The consumer must provide an
101 * IV of exactly that size to perform the encrypt or decrypt operation.
102 * @chunksize: Equal to the block size except for stream ciphers such as
103 * CTR where it is set to the underlying block size.
104 * @walksize: Equal to the chunk size except in cases where the algorithm is
105 * considerably more efficient if it can operate on multiple chunks
106 * in parallel. Should be a multiple of chunksize.
107 * @base: Definition of a generic crypto algorithm.
109 * All fields except @ivsize are mandatory and must be filled.
111 struct skcipher_alg {
112 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
113 unsigned int keylen);
114 int (*encrypt)(struct skcipher_request *req);
115 int (*decrypt)(struct skcipher_request *req);
116 int (*init)(struct crypto_skcipher *tfm);
117 void (*exit)(struct crypto_skcipher *tfm);
119 unsigned int min_keysize;
120 unsigned int max_keysize;
122 unsigned int chunksize;
123 unsigned int walksize;
125 struct crypto_alg base;
128 #define MAX_SYNC_SKCIPHER_REQSIZE 384
130 * This performs a type-check against the "tfm" argument to make sure
131 * all users have the correct skcipher tfm for doing on-stack requests.
133 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
134 char __##name##_desc[sizeof(struct skcipher_request) + \
135 MAX_SYNC_SKCIPHER_REQSIZE + \
136 (!(sizeof((struct crypto_sync_skcipher *)1 == \
138 ] CRYPTO_MINALIGN_ATTR; \
139 struct skcipher_request *name = (void *)__##name##_desc
142 * DOC: Symmetric Key Cipher API
144 * Symmetric key cipher API is used with the ciphers of type
145 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
147 * Asynchronous cipher operations imply that the function invocation for a
148 * cipher request returns immediately before the completion of the operation.
149 * The cipher request is scheduled as a separate kernel thread and therefore
150 * load-balanced on the different CPUs via the process scheduler. To allow
151 * the kernel crypto API to inform the caller about the completion of a cipher
152 * request, the caller must provide a callback function. That function is
153 * invoked with the cipher handle when the request completes.
155 * To support the asynchronous operation, additional information than just the
156 * cipher handle must be supplied to the kernel crypto API. That additional
157 * information is given by filling in the skcipher_request data structure.
159 * For the symmetric key cipher API, the state is maintained with the tfm
160 * cipher handle. A single tfm can be used across multiple calls and in
161 * parallel. For asynchronous block cipher calls, context data supplied and
162 * only used by the caller can be referenced the request data structure in
163 * addition to the IV used for the cipher request. The maintenance of such
164 * state information would be important for a crypto driver implementer to
165 * have, because when calling the callback function upon completion of the
166 * cipher operation, that callback function may need some information about
167 * which operation just finished if it invoked multiple in parallel. This
168 * state information is unused by the kernel crypto API.
171 static inline struct crypto_skcipher *__crypto_skcipher_cast(
172 struct crypto_tfm *tfm)
174 return container_of(tfm, struct crypto_skcipher, base);
178 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
179 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
181 * @type: specifies the type of the cipher
182 * @mask: specifies the mask for the cipher
184 * Allocate a cipher handle for an skcipher. The returned struct
185 * crypto_skcipher is the cipher handle that is required for any subsequent
186 * API invocation for that skcipher.
188 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
189 * of an error, PTR_ERR() returns the error code.
191 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
194 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
197 static inline struct crypto_tfm *crypto_skcipher_tfm(
198 struct crypto_skcipher *tfm)
204 * crypto_free_skcipher() - zeroize and free cipher handle
205 * @tfm: cipher handle to be freed
207 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
209 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
212 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
214 crypto_free_skcipher(&tfm->base);
218 * crypto_has_skcipher() - Search for the availability of an skcipher.
219 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
221 * @type: specifies the type of the cipher
222 * @mask: specifies the mask for the cipher
224 * Return: true when the skcipher is known to the kernel crypto API; false
227 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
230 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
231 crypto_skcipher_mask(mask));
235 * crypto_has_skcipher2() - Search for the availability of an skcipher.
236 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
238 * @type: specifies the type of the skcipher
239 * @mask: specifies the mask for the skcipher
241 * Return: true when the skcipher is known to the kernel crypto API; false
244 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
246 static inline const char *crypto_skcipher_driver_name(
247 struct crypto_skcipher *tfm)
249 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
252 static inline struct skcipher_alg *crypto_skcipher_alg(
253 struct crypto_skcipher *tfm)
255 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
256 struct skcipher_alg, base);
259 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
261 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
262 CRYPTO_ALG_TYPE_BLKCIPHER)
263 return alg->base.cra_blkcipher.ivsize;
265 if (alg->base.cra_ablkcipher.encrypt)
266 return alg->base.cra_ablkcipher.ivsize;
272 * crypto_skcipher_ivsize() - obtain IV size
273 * @tfm: cipher handle
275 * The size of the IV for the skcipher referenced by the cipher handle is
276 * returned. This IV size may be zero if the cipher does not need an IV.
278 * Return: IV size in bytes
280 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
285 static inline unsigned int crypto_sync_skcipher_ivsize(
286 struct crypto_sync_skcipher *tfm)
288 return crypto_skcipher_ivsize(&tfm->base);
292 * crypto_skcipher_blocksize() - obtain block size of cipher
293 * @tfm: cipher handle
295 * The block size for the skcipher referenced with the cipher handle is
296 * returned. The caller may use that information to allocate appropriate
297 * memory for the data returned by the encryption or decryption operation
299 * Return: block size of cipher
301 static inline unsigned int crypto_skcipher_blocksize(
302 struct crypto_skcipher *tfm)
304 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
307 static inline unsigned int crypto_sync_skcipher_blocksize(
308 struct crypto_sync_skcipher *tfm)
310 return crypto_skcipher_blocksize(&tfm->base);
313 static inline unsigned int crypto_skcipher_alignmask(
314 struct crypto_skcipher *tfm)
316 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
319 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
321 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
324 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
327 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
330 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
333 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
336 static inline u32 crypto_sync_skcipher_get_flags(
337 struct crypto_sync_skcipher *tfm)
339 return crypto_skcipher_get_flags(&tfm->base);
342 static inline void crypto_sync_skcipher_set_flags(
343 struct crypto_sync_skcipher *tfm, u32 flags)
345 crypto_skcipher_set_flags(&tfm->base, flags);
348 static inline void crypto_sync_skcipher_clear_flags(
349 struct crypto_sync_skcipher *tfm, u32 flags)
351 crypto_skcipher_clear_flags(&tfm->base, flags);
355 * crypto_skcipher_setkey() - set key for cipher
356 * @tfm: cipher handle
357 * @key: buffer holding the key
358 * @keylen: length of the key in bytes
360 * The caller provided key is set for the skcipher referenced by the cipher
363 * Note, the key length determines the cipher type. Many block ciphers implement
364 * different cipher modes depending on the key size, such as AES-128 vs AES-192
365 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
368 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
370 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
371 const u8 *key, unsigned int keylen)
373 return tfm->setkey(tfm, key, keylen);
376 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
377 const u8 *key, unsigned int keylen)
379 return crypto_skcipher_setkey(&tfm->base, key, keylen);
382 static inline unsigned int crypto_skcipher_default_keysize(
383 struct crypto_skcipher *tfm)
389 * crypto_skcipher_reqtfm() - obtain cipher handle from request
390 * @req: skcipher_request out of which the cipher handle is to be obtained
392 * Return the crypto_skcipher handle when furnishing an skcipher_request
395 * Return: crypto_skcipher handle
397 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
398 struct skcipher_request *req)
400 return __crypto_skcipher_cast(req->base.tfm);
403 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
404 struct skcipher_request *req)
406 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
408 return container_of(tfm, struct crypto_sync_skcipher, base);
412 * crypto_skcipher_encrypt() - encrypt plaintext
413 * @req: reference to the skcipher_request handle that holds all information
414 * needed to perform the cipher operation
416 * Encrypt plaintext data using the skcipher_request handle. That data
417 * structure and how it is filled with data is discussed with the
418 * skcipher_request_* functions.
420 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
422 int crypto_skcipher_encrypt(struct skcipher_request *req);
425 * crypto_skcipher_decrypt() - decrypt ciphertext
426 * @req: reference to the skcipher_request handle that holds all information
427 * needed to perform the cipher operation
429 * Decrypt ciphertext data using the skcipher_request handle. That data
430 * structure and how it is filled with data is discussed with the
431 * skcipher_request_* functions.
433 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
435 int crypto_skcipher_decrypt(struct skcipher_request *req);
438 * DOC: Symmetric Key Cipher Request Handle
440 * The skcipher_request data structure contains all pointers to data
441 * required for the symmetric key cipher operation. This includes the cipher
442 * handle (which can be used by multiple skcipher_request instances), pointer
443 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
444 * as a handle to the skcipher_request_* API calls in a similar way as
445 * skcipher handle to the crypto_skcipher_* API calls.
449 * crypto_skcipher_reqsize() - obtain size of the request data structure
450 * @tfm: cipher handle
452 * Return: number of bytes
454 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
460 * skcipher_request_set_tfm() - update cipher handle reference in request
461 * @req: request handle to be modified
462 * @tfm: cipher handle that shall be added to the request handle
464 * Allow the caller to replace the existing skcipher handle in the request
465 * data structure with a different one.
467 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
468 struct crypto_skcipher *tfm)
470 req->base.tfm = crypto_skcipher_tfm(tfm);
473 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
474 struct crypto_sync_skcipher *tfm)
476 skcipher_request_set_tfm(req, &tfm->base);
479 static inline struct skcipher_request *skcipher_request_cast(
480 struct crypto_async_request *req)
482 return container_of(req, struct skcipher_request, base);
486 * skcipher_request_alloc() - allocate request data structure
487 * @tfm: cipher handle to be registered with the request
488 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
490 * Allocate the request data structure that must be used with the skcipher
491 * encrypt and decrypt API calls. During the allocation, the provided skcipher
492 * handle is registered in the request data structure.
494 * Return: allocated request handle in case of success, or NULL if out of memory
496 static inline struct skcipher_request *skcipher_request_alloc(
497 struct crypto_skcipher *tfm, gfp_t gfp)
499 struct skcipher_request *req;
501 req = kmalloc(sizeof(struct skcipher_request) +
502 crypto_skcipher_reqsize(tfm), gfp);
505 skcipher_request_set_tfm(req, tfm);
511 * skcipher_request_free() - zeroize and free request data structure
512 * @req: request data structure cipher handle to be freed
514 static inline void skcipher_request_free(struct skcipher_request *req)
519 static inline void skcipher_request_zero(struct skcipher_request *req)
521 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
523 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
527 * skcipher_request_set_callback() - set asynchronous callback function
528 * @req: request handle
529 * @flags: specify zero or an ORing of the flags
530 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
531 * increase the wait queue beyond the initial maximum size;
532 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
533 * @compl: callback function pointer to be registered with the request handle
534 * @data: The data pointer refers to memory that is not used by the kernel
535 * crypto API, but provided to the callback function for it to use. Here,
536 * the caller can provide a reference to memory the callback function can
537 * operate on. As the callback function is invoked asynchronously to the
538 * related functionality, it may need to access data structures of the
539 * related functionality which can be referenced using this pointer. The
540 * callback function can access the memory via the "data" field in the
541 * crypto_async_request data structure provided to the callback function.
543 * This function allows setting the callback function that is triggered once the
544 * cipher operation completes.
546 * The callback function is registered with the skcipher_request handle and
547 * must comply with the following template::
549 * void callback_function(struct crypto_async_request *req, int error)
551 static inline void skcipher_request_set_callback(struct skcipher_request *req,
553 crypto_completion_t compl,
556 req->base.complete = compl;
557 req->base.data = data;
558 req->base.flags = flags;
562 * skcipher_request_set_crypt() - set data buffers
563 * @req: request handle
564 * @src: source scatter / gather list
565 * @dst: destination scatter / gather list
566 * @cryptlen: number of bytes to process from @src
567 * @iv: IV for the cipher operation which must comply with the IV size defined
568 * by crypto_skcipher_ivsize
570 * This function allows setting of the source data and destination data
571 * scatter / gather lists.
573 * For encryption, the source is treated as the plaintext and the
574 * destination is the ciphertext. For a decryption operation, the use is
575 * reversed - the source is the ciphertext and the destination is the plaintext.
577 static inline void skcipher_request_set_crypt(
578 struct skcipher_request *req,
579 struct scatterlist *src, struct scatterlist *dst,
580 unsigned int cryptlen, void *iv)
584 req->cryptlen = cryptlen;
588 #endif /* _CRYPTO_SKCIPHER_H */