1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/mutex.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 #include <linux/srcu.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
89 struct mem_cgroup *target_mem_cgroup;
92 * Scan pressure balancing between anon and file LRUs
94 unsigned long anon_cost;
95 unsigned long file_cost;
97 /* Can active folios be deactivated as part of reclaim? */
98 #define DEACTIVATE_ANON 1
99 #define DEACTIVATE_FILE 2
100 unsigned int may_deactivate:2;
101 unsigned int force_deactivate:1;
102 unsigned int skipped_deactivate:1;
104 /* Writepage batching in laptop mode; RECLAIM_WRITE */
105 unsigned int may_writepage:1;
107 /* Can mapped folios be reclaimed? */
108 unsigned int may_unmap:1;
110 /* Can folios be swapped as part of reclaim? */
111 unsigned int may_swap:1;
113 /* Proactive reclaim invoked by userspace through memory.reclaim */
114 unsigned int proactive:1;
117 * Cgroup memory below memory.low is protected as long as we
118 * don't threaten to OOM. If any cgroup is reclaimed at
119 * reduced force or passed over entirely due to its memory.low
120 * setting (memcg_low_skipped), and nothing is reclaimed as a
121 * result, then go back for one more cycle that reclaims the protected
122 * memory (memcg_low_reclaim) to avert OOM.
124 unsigned int memcg_low_reclaim:1;
125 unsigned int memcg_low_skipped:1;
127 unsigned int hibernation_mode:1;
129 /* One of the zones is ready for compaction */
130 unsigned int compaction_ready:1;
132 /* There is easily reclaimable cold cache in the current node */
133 unsigned int cache_trim_mode:1;
135 /* The file folios on the current node are dangerously low */
136 unsigned int file_is_tiny:1;
138 /* Always discard instead of demoting to lower tier memory */
139 unsigned int no_demotion:1;
141 /* Allocation order */
144 /* Scan (total_size >> priority) pages at once */
147 /* The highest zone to isolate folios for reclaim from */
150 /* This context's GFP mask */
153 /* Incremented by the number of inactive pages that were scanned */
154 unsigned long nr_scanned;
156 /* Number of pages freed so far during a call to shrink_zones() */
157 unsigned long nr_reclaimed;
161 unsigned int unqueued_dirty;
162 unsigned int congested;
163 unsigned int writeback;
164 unsigned int immediate;
165 unsigned int file_taken;
169 /* for recording the reclaimed slab by now */
170 struct reclaim_state reclaim_state;
173 #ifdef ARCH_HAS_PREFETCHW
174 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
176 if ((_folio)->lru.prev != _base) { \
177 struct folio *prev; \
179 prev = lru_to_folio(&(_folio->lru)); \
180 prefetchw(&prev->_field); \
184 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
188 * From 0 .. 200. Higher means more swappy.
190 int vm_swappiness = 60;
192 LIST_HEAD(shrinker_list);
193 DEFINE_MUTEX(shrinker_mutex);
194 DEFINE_SRCU(shrinker_srcu);
195 static atomic_t shrinker_srcu_generation = ATOMIC_INIT(0);
198 static int shrinker_nr_max;
200 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
201 static inline int shrinker_map_size(int nr_items)
203 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
206 static inline int shrinker_defer_size(int nr_items)
208 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
211 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
214 return srcu_dereference_check(memcg->nodeinfo[nid]->shrinker_info,
216 lockdep_is_held(&shrinker_mutex));
219 static struct shrinker_info *shrinker_info_srcu(struct mem_cgroup *memcg,
222 return srcu_dereference(memcg->nodeinfo[nid]->shrinker_info,
226 static void free_shrinker_info_rcu(struct rcu_head *head)
228 kvfree(container_of(head, struct shrinker_info, rcu));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size,
236 struct shrinker_info *new, *old;
237 struct mem_cgroup_per_node *pn;
239 int size = map_size + defer_size;
242 pn = memcg->nodeinfo[nid];
243 old = shrinker_info_protected(memcg, nid);
244 /* Not yet online memcg */
248 /* Already expanded this shrinker_info */
249 if (new_nr_max <= old->map_nr_max)
252 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
256 new->nr_deferred = (atomic_long_t *)(new + 1);
257 new->map = (void *)new->nr_deferred + defer_size;
258 new->map_nr_max = new_nr_max;
260 /* map: set all old bits, clear all new bits */
261 memset(new->map, (int)0xff, old_map_size);
262 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
263 /* nr_deferred: copy old values, clear all new values */
264 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
265 memset((void *)new->nr_deferred + old_defer_size, 0,
266 defer_size - old_defer_size);
268 rcu_assign_pointer(pn->shrinker_info, new);
269 call_srcu(&shrinker_srcu, &old->rcu, free_shrinker_info_rcu);
275 void free_shrinker_info(struct mem_cgroup *memcg)
277 struct mem_cgroup_per_node *pn;
278 struct shrinker_info *info;
282 pn = memcg->nodeinfo[nid];
283 info = rcu_dereference_protected(pn->shrinker_info, true);
285 rcu_assign_pointer(pn->shrinker_info, NULL);
289 int alloc_shrinker_info(struct mem_cgroup *memcg)
291 struct shrinker_info *info;
292 int nid, size, ret = 0;
293 int map_size, defer_size = 0;
295 mutex_lock(&shrinker_mutex);
296 map_size = shrinker_map_size(shrinker_nr_max);
297 defer_size = shrinker_defer_size(shrinker_nr_max);
298 size = map_size + defer_size;
300 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
302 free_shrinker_info(memcg);
306 info->nr_deferred = (atomic_long_t *)(info + 1);
307 info->map = (void *)info->nr_deferred + defer_size;
308 info->map_nr_max = shrinker_nr_max;
309 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
311 mutex_unlock(&shrinker_mutex);
316 static int expand_shrinker_info(int new_id)
319 int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
320 int map_size, defer_size = 0;
321 int old_map_size, old_defer_size = 0;
322 struct mem_cgroup *memcg;
324 if (!root_mem_cgroup)
327 lockdep_assert_held(&shrinker_mutex);
329 map_size = shrinker_map_size(new_nr_max);
330 defer_size = shrinker_defer_size(new_nr_max);
331 old_map_size = shrinker_map_size(shrinker_nr_max);
332 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
337 old_map_size, old_defer_size,
340 mem_cgroup_iter_break(NULL, memcg);
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
346 shrinker_nr_max = new_nr_max;
351 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
354 struct shrinker_info *info;
357 srcu_idx = srcu_read_lock(&shrinker_srcu);
358 info = shrinker_info_srcu(memcg, nid);
359 if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
360 /* Pairs with smp mb in shrink_slab() */
361 smp_mb__before_atomic();
362 set_bit(shrinker_id, info->map);
364 srcu_read_unlock(&shrinker_srcu, srcu_idx);
368 static DEFINE_IDR(shrinker_idr);
370 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
372 int id, ret = -ENOMEM;
374 if (mem_cgroup_disabled())
377 mutex_lock(&shrinker_mutex);
378 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
382 if (id >= shrinker_nr_max) {
383 if (expand_shrinker_info(id)) {
384 idr_remove(&shrinker_idr, id);
391 mutex_unlock(&shrinker_mutex);
395 static void unregister_memcg_shrinker(struct shrinker *shrinker)
397 int id = shrinker->id;
401 lockdep_assert_held(&shrinker_mutex);
403 idr_remove(&shrinker_idr, id);
406 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
407 struct mem_cgroup *memcg)
409 struct shrinker_info *info;
411 info = shrinker_info_srcu(memcg, nid);
412 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
415 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
416 struct mem_cgroup *memcg)
418 struct shrinker_info *info;
420 info = shrinker_info_srcu(memcg, nid);
421 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
424 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
428 struct mem_cgroup *parent;
429 struct shrinker_info *child_info, *parent_info;
431 parent = parent_mem_cgroup(memcg);
433 parent = root_mem_cgroup;
435 /* Prevent from concurrent shrinker_info expand */
436 mutex_lock(&shrinker_mutex);
438 child_info = shrinker_info_protected(memcg, nid);
439 parent_info = shrinker_info_protected(parent, nid);
440 for (i = 0; i < child_info->map_nr_max; i++) {
441 nr = atomic_long_read(&child_info->nr_deferred[i]);
442 atomic_long_add(nr, &parent_info->nr_deferred[i]);
445 mutex_unlock(&shrinker_mutex);
448 static bool cgroup_reclaim(struct scan_control *sc)
450 return sc->target_mem_cgroup;
453 static bool global_reclaim(struct scan_control *sc)
455 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
459 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
460 * @sc: scan_control in question
462 * The normal page dirty throttling mechanism in balance_dirty_pages() is
463 * completely broken with the legacy memcg and direct stalling in
464 * shrink_folio_list() is used for throttling instead, which lacks all the
465 * niceties such as fairness, adaptive pausing, bandwidth proportional
466 * allocation and configurability.
468 * This function tests whether the vmscan currently in progress can assume
469 * that the normal dirty throttling mechanism is operational.
471 static bool writeback_throttling_sane(struct scan_control *sc)
473 if (!cgroup_reclaim(sc))
475 #ifdef CONFIG_CGROUP_WRITEBACK
476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
482 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
487 static void unregister_memcg_shrinker(struct shrinker *shrinker)
491 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
498 struct mem_cgroup *memcg)
503 static bool cgroup_reclaim(struct scan_control *sc)
508 static bool global_reclaim(struct scan_control *sc)
513 static bool writeback_throttling_sane(struct scan_control *sc)
519 static void set_task_reclaim_state(struct task_struct *task,
520 struct reclaim_state *rs)
522 /* Check for an overwrite */
523 WARN_ON_ONCE(rs && task->reclaim_state);
525 /* Check for the nulling of an already-nulled member */
526 WARN_ON_ONCE(!rs && !task->reclaim_state);
528 task->reclaim_state = rs;
532 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
533 * scan_control->nr_reclaimed.
535 static void flush_reclaim_state(struct scan_control *sc)
538 * Currently, reclaim_state->reclaimed includes three types of pages
539 * freed outside of vmscan:
541 * (2) Clean file pages from pruned inodes (on highmem systems).
542 * (3) XFS freed buffer pages.
544 * For all of these cases, we cannot universally link the pages to a
545 * single memcg. For example, a memcg-aware shrinker can free one object
546 * charged to the target memcg, causing an entire page to be freed.
547 * If we count the entire page as reclaimed from the memcg, we end up
548 * overestimating the reclaimed amount (potentially under-reclaiming).
550 * Only count such pages for global reclaim to prevent under-reclaiming
551 * from the target memcg; preventing unnecessary retries during memcg
552 * charging and false positives from proactive reclaim.
554 * For uncommon cases where the freed pages were actually mostly
555 * charged to the target memcg, we end up underestimating the reclaimed
556 * amount. This should be fine. The freed pages will be uncharged
557 * anyway, even if they are not counted here properly, and we will be
558 * able to make forward progress in charging (which is usually in a
561 * We can go one step further, and report the uncharged objcg pages in
562 * memcg reclaim, to make reporting more accurate and reduce
563 * underestimation, but it's probably not worth the complexity for now.
565 if (current->reclaim_state && global_reclaim(sc)) {
566 sc->nr_reclaimed += current->reclaim_state->reclaimed;
567 current->reclaim_state->reclaimed = 0;
571 static long xchg_nr_deferred(struct shrinker *shrinker,
572 struct shrink_control *sc)
576 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
580 (shrinker->flags & SHRINKER_MEMCG_AWARE))
581 return xchg_nr_deferred_memcg(nid, shrinker,
584 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
588 static long add_nr_deferred(long nr, struct shrinker *shrinker,
589 struct shrink_control *sc)
593 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
597 (shrinker->flags & SHRINKER_MEMCG_AWARE))
598 return add_nr_deferred_memcg(nr, nid, shrinker,
601 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
604 static bool can_demote(int nid, struct scan_control *sc)
606 if (!numa_demotion_enabled)
608 if (sc && sc->no_demotion)
610 if (next_demotion_node(nid) == NUMA_NO_NODE)
616 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
618 struct scan_control *sc)
622 * For non-memcg reclaim, is there
623 * space in any swap device?
625 if (get_nr_swap_pages() > 0)
628 /* Is the memcg below its swap limit? */
629 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
634 * The page can not be swapped.
636 * Can it be reclaimed from this node via demotion?
638 return can_demote(nid, sc);
642 * This misses isolated folios which are not accounted for to save counters.
643 * As the data only determines if reclaim or compaction continues, it is
644 * not expected that isolated folios will be a dominating factor.
646 unsigned long zone_reclaimable_pages(struct zone *zone)
650 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
651 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
652 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
653 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
654 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
660 * lruvec_lru_size - Returns the number of pages on the given LRU list.
661 * @lruvec: lru vector
663 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
665 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
668 unsigned long size = 0;
671 for (zid = 0; zid <= zone_idx; zid++) {
672 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
674 if (!managed_zone(zone))
677 if (!mem_cgroup_disabled())
678 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
680 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
686 * Add a shrinker callback to be called from the vm.
688 static int __prealloc_shrinker(struct shrinker *shrinker)
693 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
694 err = prealloc_memcg_shrinker(shrinker);
698 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
701 size = sizeof(*shrinker->nr_deferred);
702 if (shrinker->flags & SHRINKER_NUMA_AWARE)
705 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
706 if (!shrinker->nr_deferred)
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __prealloc_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
733 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
735 return __prealloc_shrinker(shrinker);
739 void free_prealloced_shrinker(struct shrinker *shrinker)
741 #ifdef CONFIG_SHRINKER_DEBUG
742 kfree_const(shrinker->name);
743 shrinker->name = NULL;
745 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
746 mutex_lock(&shrinker_mutex);
747 unregister_memcg_shrinker(shrinker);
748 mutex_unlock(&shrinker_mutex);
752 kfree(shrinker->nr_deferred);
753 shrinker->nr_deferred = NULL;
756 void register_shrinker_prepared(struct shrinker *shrinker)
758 mutex_lock(&shrinker_mutex);
759 list_add_tail_rcu(&shrinker->list, &shrinker_list);
760 shrinker->flags |= SHRINKER_REGISTERED;
761 shrinker_debugfs_add(shrinker);
762 mutex_unlock(&shrinker_mutex);
765 static int __register_shrinker(struct shrinker *shrinker)
767 int err = __prealloc_shrinker(shrinker);
771 register_shrinker_prepared(shrinker);
775 #ifdef CONFIG_SHRINKER_DEBUG
776 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
782 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
787 err = __register_shrinker(shrinker);
789 kfree_const(shrinker->name);
790 shrinker->name = NULL;
795 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
797 return __register_shrinker(shrinker);
800 EXPORT_SYMBOL(register_shrinker);
805 void unregister_shrinker(struct shrinker *shrinker)
807 struct dentry *debugfs_entry;
810 if (!(shrinker->flags & SHRINKER_REGISTERED))
813 mutex_lock(&shrinker_mutex);
814 list_del_rcu(&shrinker->list);
815 shrinker->flags &= ~SHRINKER_REGISTERED;
816 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
817 unregister_memcg_shrinker(shrinker);
818 debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
819 mutex_unlock(&shrinker_mutex);
821 atomic_inc(&shrinker_srcu_generation);
822 synchronize_srcu(&shrinker_srcu);
824 shrinker_debugfs_remove(debugfs_entry, debugfs_id);
826 kfree(shrinker->nr_deferred);
827 shrinker->nr_deferred = NULL;
829 EXPORT_SYMBOL(unregister_shrinker);
832 * synchronize_shrinkers - Wait for all running shrinkers to complete.
834 * This is useful to guarantee that all shrinker invocations have seen an
835 * update, before freeing memory.
837 void synchronize_shrinkers(void)
839 atomic_inc(&shrinker_srcu_generation);
840 synchronize_srcu(&shrinker_srcu);
842 EXPORT_SYMBOL(synchronize_shrinkers);
844 #define SHRINK_BATCH 128
846 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
847 struct shrinker *shrinker, int priority)
849 unsigned long freed = 0;
850 unsigned long long delta;
855 long batch_size = shrinker->batch ? shrinker->batch
857 long scanned = 0, next_deferred;
859 freeable = shrinker->count_objects(shrinker, shrinkctl);
860 if (freeable == 0 || freeable == SHRINK_EMPTY)
864 * copy the current shrinker scan count into a local variable
865 * and zero it so that other concurrent shrinker invocations
866 * don't also do this scanning work.
868 nr = xchg_nr_deferred(shrinker, shrinkctl);
870 if (shrinker->seeks) {
871 delta = freeable >> priority;
873 do_div(delta, shrinker->seeks);
876 * These objects don't require any IO to create. Trim
877 * them aggressively under memory pressure to keep
878 * them from causing refetches in the IO caches.
880 delta = freeable / 2;
883 total_scan = nr >> priority;
885 total_scan = min(total_scan, (2 * freeable));
887 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
888 freeable, delta, total_scan, priority);
891 * Normally, we should not scan less than batch_size objects in one
892 * pass to avoid too frequent shrinker calls, but if the slab has less
893 * than batch_size objects in total and we are really tight on memory,
894 * we will try to reclaim all available objects, otherwise we can end
895 * up failing allocations although there are plenty of reclaimable
896 * objects spread over several slabs with usage less than the
899 * We detect the "tight on memory" situations by looking at the total
900 * number of objects we want to scan (total_scan). If it is greater
901 * than the total number of objects on slab (freeable), we must be
902 * scanning at high prio and therefore should try to reclaim as much as
905 while (total_scan >= batch_size ||
906 total_scan >= freeable) {
908 unsigned long nr_to_scan = min(batch_size, total_scan);
910 shrinkctl->nr_to_scan = nr_to_scan;
911 shrinkctl->nr_scanned = nr_to_scan;
912 ret = shrinker->scan_objects(shrinker, shrinkctl);
913 if (ret == SHRINK_STOP)
917 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
918 total_scan -= shrinkctl->nr_scanned;
919 scanned += shrinkctl->nr_scanned;
925 * The deferred work is increased by any new work (delta) that wasn't
926 * done, decreased by old deferred work that was done now.
928 * And it is capped to two times of the freeable items.
930 next_deferred = max_t(long, (nr + delta - scanned), 0);
931 next_deferred = min(next_deferred, (2 * freeable));
934 * move the unused scan count back into the shrinker in a
935 * manner that handles concurrent updates.
937 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
939 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
944 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
945 struct mem_cgroup *memcg, int priority)
947 struct shrinker_info *info;
948 unsigned long ret, freed = 0;
949 int srcu_idx, generation;
952 if (!mem_cgroup_online(memcg))
956 srcu_idx = srcu_read_lock(&shrinker_srcu);
957 info = shrinker_info_srcu(memcg, nid);
961 generation = atomic_read(&shrinker_srcu_generation);
962 for_each_set_bit_from(i, info->map, info->map_nr_max) {
963 struct shrink_control sc = {
964 .gfp_mask = gfp_mask,
968 struct shrinker *shrinker;
970 shrinker = idr_find(&shrinker_idr, i);
971 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
973 clear_bit(i, info->map);
977 /* Call non-slab shrinkers even though kmem is disabled */
978 if (!memcg_kmem_online() &&
979 !(shrinker->flags & SHRINKER_NONSLAB))
982 ret = do_shrink_slab(&sc, shrinker, priority);
983 if (ret == SHRINK_EMPTY) {
984 clear_bit(i, info->map);
986 * After the shrinker reported that it had no objects to
987 * free, but before we cleared the corresponding bit in
988 * the memcg shrinker map, a new object might have been
989 * added. To make sure, we have the bit set in this
990 * case, we invoke the shrinker one more time and reset
991 * the bit if it reports that it is not empty anymore.
992 * The memory barrier here pairs with the barrier in
993 * set_shrinker_bit():
995 * list_lru_add() shrink_slab_memcg()
996 * list_add_tail() clear_bit()
998 * set_bit() do_shrink_slab()
1000 smp_mb__after_atomic();
1001 ret = do_shrink_slab(&sc, shrinker, priority);
1002 if (ret == SHRINK_EMPTY)
1005 set_shrinker_bit(memcg, nid, i);
1008 if (atomic_read(&shrinker_srcu_generation) != generation) {
1009 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1015 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1018 #else /* CONFIG_MEMCG */
1019 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
1020 struct mem_cgroup *memcg, int priority)
1024 #endif /* CONFIG_MEMCG */
1027 * shrink_slab - shrink slab caches
1028 * @gfp_mask: allocation context
1029 * @nid: node whose slab caches to target
1030 * @memcg: memory cgroup whose slab caches to target
1031 * @priority: the reclaim priority
1033 * Call the shrink functions to age shrinkable caches.
1035 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
1036 * unaware shrinkers will receive a node id of 0 instead.
1038 * @memcg specifies the memory cgroup to target. Unaware shrinkers
1039 * are called only if it is the root cgroup.
1041 * @priority is sc->priority, we take the number of objects and >> by priority
1042 * in order to get the scan target.
1044 * Returns the number of reclaimed slab objects.
1046 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
1047 struct mem_cgroup *memcg,
1050 unsigned long ret, freed = 0;
1051 struct shrinker *shrinker;
1052 int srcu_idx, generation;
1055 * The root memcg might be allocated even though memcg is disabled
1056 * via "cgroup_disable=memory" boot parameter. This could make
1057 * mem_cgroup_is_root() return false, then just run memcg slab
1058 * shrink, but skip global shrink. This may result in premature
1061 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
1062 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
1064 srcu_idx = srcu_read_lock(&shrinker_srcu);
1066 generation = atomic_read(&shrinker_srcu_generation);
1067 list_for_each_entry_srcu(shrinker, &shrinker_list, list,
1068 srcu_read_lock_held(&shrinker_srcu)) {
1069 struct shrink_control sc = {
1070 .gfp_mask = gfp_mask,
1075 ret = do_shrink_slab(&sc, shrinker, priority);
1076 if (ret == SHRINK_EMPTY)
1080 if (atomic_read(&shrinker_srcu_generation) != generation) {
1081 freed = freed ? : 1;
1086 srcu_read_unlock(&shrinker_srcu, srcu_idx);
1091 static unsigned long drop_slab_node(int nid)
1093 unsigned long freed = 0;
1094 struct mem_cgroup *memcg = NULL;
1096 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1098 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1099 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1104 void drop_slab(void)
1108 unsigned long freed;
1112 for_each_online_node(nid) {
1113 if (fatal_signal_pending(current))
1116 freed += drop_slab_node(nid);
1118 } while ((freed >> shift++) > 1);
1121 static int reclaimer_offset(void)
1123 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1124 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1125 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1126 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1127 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1128 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1129 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1130 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1132 if (current_is_kswapd())
1134 if (current_is_khugepaged())
1135 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1136 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1139 static inline int is_page_cache_freeable(struct folio *folio)
1142 * A freeable page cache folio is referenced only by the caller
1143 * that isolated the folio, the page cache and optional filesystem
1144 * private data at folio->private.
1146 return folio_ref_count(folio) - folio_test_private(folio) ==
1147 1 + folio_nr_pages(folio);
1151 * We detected a synchronous write error writing a folio out. Probably
1152 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1153 * fsync(), msync() or close().
1155 * The tricky part is that after writepage we cannot touch the mapping: nothing
1156 * prevents it from being freed up. But we have a ref on the folio and once
1157 * that folio is locked, the mapping is pinned.
1159 * We're allowed to run sleeping folio_lock() here because we know the caller has
1162 static void handle_write_error(struct address_space *mapping,
1163 struct folio *folio, int error)
1166 if (folio_mapping(folio) == mapping)
1167 mapping_set_error(mapping, error);
1168 folio_unlock(folio);
1171 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1173 int reclaimable = 0, write_pending = 0;
1177 * If kswapd is disabled, reschedule if necessary but do not
1178 * throttle as the system is likely near OOM.
1180 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1184 * If there are a lot of dirty/writeback folios then do not
1185 * throttle as throttling will occur when the folios cycle
1186 * towards the end of the LRU if still under writeback.
1188 for (i = 0; i < MAX_NR_ZONES; i++) {
1189 struct zone *zone = pgdat->node_zones + i;
1191 if (!managed_zone(zone))
1194 reclaimable += zone_reclaimable_pages(zone);
1195 write_pending += zone_page_state_snapshot(zone,
1196 NR_ZONE_WRITE_PENDING);
1198 if (2 * write_pending <= reclaimable)
1204 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1206 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1211 * Do not throttle user workers, kthreads other than kswapd or
1212 * workqueues. They may be required for reclaim to make
1213 * forward progress (e.g. journalling workqueues or kthreads).
1215 if (!current_is_kswapd() &&
1216 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1222 * These figures are pulled out of thin air.
1223 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1224 * parallel reclaimers which is a short-lived event so the timeout is
1225 * short. Failing to make progress or waiting on writeback are
1226 * potentially long-lived events so use a longer timeout. This is shaky
1227 * logic as a failure to make progress could be due to anything from
1228 * writeback to a slow device to excessive referenced folios at the tail
1229 * of the inactive LRU.
1232 case VMSCAN_THROTTLE_WRITEBACK:
1235 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1236 WRITE_ONCE(pgdat->nr_reclaim_start,
1237 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1241 case VMSCAN_THROTTLE_CONGESTED:
1243 case VMSCAN_THROTTLE_NOPROGRESS:
1244 if (skip_throttle_noprogress(pgdat)) {
1252 case VMSCAN_THROTTLE_ISOLATED:
1261 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1262 ret = schedule_timeout(timeout);
1263 finish_wait(wqh, &wait);
1265 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1266 atomic_dec(&pgdat->nr_writeback_throttled);
1268 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1269 jiffies_to_usecs(timeout - ret),
1274 * Account for folios written if tasks are throttled waiting on dirty
1275 * folios to clean. If enough folios have been cleaned since throttling
1276 * started then wakeup the throttled tasks.
1278 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1281 unsigned long nr_written;
1283 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1286 * This is an inaccurate read as the per-cpu deltas may not
1287 * be synchronised. However, given that the system is
1288 * writeback throttled, it is not worth taking the penalty
1289 * of getting an accurate count. At worst, the throttle
1290 * timeout guarantees forward progress.
1292 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1293 READ_ONCE(pgdat->nr_reclaim_start);
1295 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1296 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1299 /* possible outcome of pageout() */
1301 /* failed to write folio out, folio is locked */
1303 /* move folio to the active list, folio is locked */
1305 /* folio has been sent to the disk successfully, folio is unlocked */
1307 /* folio is clean and locked */
1312 * pageout is called by shrink_folio_list() for each dirty folio.
1313 * Calls ->writepage().
1315 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1316 struct swap_iocb **plug)
1319 * If the folio is dirty, only perform writeback if that write
1320 * will be non-blocking. To prevent this allocation from being
1321 * stalled by pagecache activity. But note that there may be
1322 * stalls if we need to run get_block(). We could test
1323 * PagePrivate for that.
1325 * If this process is currently in __generic_file_write_iter() against
1326 * this folio's queue, we can perform writeback even if that
1329 * If the folio is swapcache, write it back even if that would
1330 * block, for some throttling. This happens by accident, because
1331 * swap_backing_dev_info is bust: it doesn't reflect the
1332 * congestion state of the swapdevs. Easy to fix, if needed.
1334 if (!is_page_cache_freeable(folio))
1338 * Some data journaling orphaned folios can have
1339 * folio->mapping == NULL while being dirty with clean buffers.
1341 if (folio_test_private(folio)) {
1342 if (try_to_free_buffers(folio)) {
1343 folio_clear_dirty(folio);
1344 pr_info("%s: orphaned folio\n", __func__);
1350 if (mapping->a_ops->writepage == NULL)
1351 return PAGE_ACTIVATE;
1353 if (folio_clear_dirty_for_io(folio)) {
1355 struct writeback_control wbc = {
1356 .sync_mode = WB_SYNC_NONE,
1357 .nr_to_write = SWAP_CLUSTER_MAX,
1359 .range_end = LLONG_MAX,
1364 folio_set_reclaim(folio);
1365 res = mapping->a_ops->writepage(&folio->page, &wbc);
1367 handle_write_error(mapping, folio, res);
1368 if (res == AOP_WRITEPAGE_ACTIVATE) {
1369 folio_clear_reclaim(folio);
1370 return PAGE_ACTIVATE;
1373 if (!folio_test_writeback(folio)) {
1374 /* synchronous write or broken a_ops? */
1375 folio_clear_reclaim(folio);
1377 trace_mm_vmscan_write_folio(folio);
1378 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1379 return PAGE_SUCCESS;
1386 * Same as remove_mapping, but if the folio is removed from the mapping, it
1387 * gets returned with a refcount of 0.
1389 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1390 bool reclaimed, struct mem_cgroup *target_memcg)
1393 void *shadow = NULL;
1395 BUG_ON(!folio_test_locked(folio));
1396 BUG_ON(mapping != folio_mapping(folio));
1398 if (!folio_test_swapcache(folio))
1399 spin_lock(&mapping->host->i_lock);
1400 xa_lock_irq(&mapping->i_pages);
1402 * The non racy check for a busy folio.
1404 * Must be careful with the order of the tests. When someone has
1405 * a ref to the folio, it may be possible that they dirty it then
1406 * drop the reference. So if the dirty flag is tested before the
1407 * refcount here, then the following race may occur:
1409 * get_user_pages(&page);
1410 * [user mapping goes away]
1412 * !folio_test_dirty(folio) [good]
1413 * folio_set_dirty(folio);
1415 * !refcount(folio) [good, discard it]
1417 * [oops, our write_to data is lost]
1419 * Reversing the order of the tests ensures such a situation cannot
1420 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1421 * load is not satisfied before that of folio->_refcount.
1423 * Note that if the dirty flag is always set via folio_mark_dirty,
1424 * and thus under the i_pages lock, then this ordering is not required.
1426 refcount = 1 + folio_nr_pages(folio);
1427 if (!folio_ref_freeze(folio, refcount))
1429 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1430 if (unlikely(folio_test_dirty(folio))) {
1431 folio_ref_unfreeze(folio, refcount);
1435 if (folio_test_swapcache(folio)) {
1436 swp_entry_t swap = folio_swap_entry(folio);
1438 if (reclaimed && !mapping_exiting(mapping))
1439 shadow = workingset_eviction(folio, target_memcg);
1440 __delete_from_swap_cache(folio, swap, shadow);
1441 mem_cgroup_swapout(folio, swap);
1442 xa_unlock_irq(&mapping->i_pages);
1443 put_swap_folio(folio, swap);
1445 void (*free_folio)(struct folio *);
1447 free_folio = mapping->a_ops->free_folio;
1449 * Remember a shadow entry for reclaimed file cache in
1450 * order to detect refaults, thus thrashing, later on.
1452 * But don't store shadows in an address space that is
1453 * already exiting. This is not just an optimization,
1454 * inode reclaim needs to empty out the radix tree or
1455 * the nodes are lost. Don't plant shadows behind its
1458 * We also don't store shadows for DAX mappings because the
1459 * only page cache folios found in these are zero pages
1460 * covering holes, and because we don't want to mix DAX
1461 * exceptional entries and shadow exceptional entries in the
1462 * same address_space.
1464 if (reclaimed && folio_is_file_lru(folio) &&
1465 !mapping_exiting(mapping) && !dax_mapping(mapping))
1466 shadow = workingset_eviction(folio, target_memcg);
1467 __filemap_remove_folio(folio, shadow);
1468 xa_unlock_irq(&mapping->i_pages);
1469 if (mapping_shrinkable(mapping))
1470 inode_add_lru(mapping->host);
1471 spin_unlock(&mapping->host->i_lock);
1480 xa_unlock_irq(&mapping->i_pages);
1481 if (!folio_test_swapcache(folio))
1482 spin_unlock(&mapping->host->i_lock);
1487 * remove_mapping() - Attempt to remove a folio from its mapping.
1488 * @mapping: The address space.
1489 * @folio: The folio to remove.
1491 * If the folio is dirty, under writeback or if someone else has a ref
1492 * on it, removal will fail.
1493 * Return: The number of pages removed from the mapping. 0 if the folio
1494 * could not be removed.
1495 * Context: The caller should have a single refcount on the folio and
1498 long remove_mapping(struct address_space *mapping, struct folio *folio)
1500 if (__remove_mapping(mapping, folio, false, NULL)) {
1502 * Unfreezing the refcount with 1 effectively
1503 * drops the pagecache ref for us without requiring another
1506 folio_ref_unfreeze(folio, 1);
1507 return folio_nr_pages(folio);
1513 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1514 * @folio: Folio to be returned to an LRU list.
1516 * Add previously isolated @folio to appropriate LRU list.
1517 * The folio may still be unevictable for other reasons.
1519 * Context: lru_lock must not be held, interrupts must be enabled.
1521 void folio_putback_lru(struct folio *folio)
1523 folio_add_lru(folio);
1524 folio_put(folio); /* drop ref from isolate */
1527 enum folio_references {
1529 FOLIOREF_RECLAIM_CLEAN,
1534 static enum folio_references folio_check_references(struct folio *folio,
1535 struct scan_control *sc)
1537 int referenced_ptes, referenced_folio;
1538 unsigned long vm_flags;
1540 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1542 referenced_folio = folio_test_clear_referenced(folio);
1545 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1546 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1548 if (vm_flags & VM_LOCKED)
1549 return FOLIOREF_ACTIVATE;
1551 /* rmap lock contention: rotate */
1552 if (referenced_ptes == -1)
1553 return FOLIOREF_KEEP;
1555 if (referenced_ptes) {
1557 * All mapped folios start out with page table
1558 * references from the instantiating fault, so we need
1559 * to look twice if a mapped file/anon folio is used more
1562 * Mark it and spare it for another trip around the
1563 * inactive list. Another page table reference will
1564 * lead to its activation.
1566 * Note: the mark is set for activated folios as well
1567 * so that recently deactivated but used folios are
1568 * quickly recovered.
1570 folio_set_referenced(folio);
1572 if (referenced_folio || referenced_ptes > 1)
1573 return FOLIOREF_ACTIVATE;
1576 * Activate file-backed executable folios after first usage.
1578 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1579 return FOLIOREF_ACTIVATE;
1581 return FOLIOREF_KEEP;
1584 /* Reclaim if clean, defer dirty folios to writeback */
1585 if (referenced_folio && folio_is_file_lru(folio))
1586 return FOLIOREF_RECLAIM_CLEAN;
1588 return FOLIOREF_RECLAIM;
1591 /* Check if a folio is dirty or under writeback */
1592 static void folio_check_dirty_writeback(struct folio *folio,
1593 bool *dirty, bool *writeback)
1595 struct address_space *mapping;
1598 * Anonymous folios are not handled by flushers and must be written
1599 * from reclaim context. Do not stall reclaim based on them.
1600 * MADV_FREE anonymous folios are put into inactive file list too.
1601 * They could be mistakenly treated as file lru. So further anon
1604 if (!folio_is_file_lru(folio) ||
1605 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1611 /* By default assume that the folio flags are accurate */
1612 *dirty = folio_test_dirty(folio);
1613 *writeback = folio_test_writeback(folio);
1615 /* Verify dirty/writeback state if the filesystem supports it */
1616 if (!folio_test_private(folio))
1619 mapping = folio_mapping(folio);
1620 if (mapping && mapping->a_ops->is_dirty_writeback)
1621 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1624 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1626 struct page *target_page;
1627 nodemask_t *allowed_mask;
1628 struct migration_target_control *mtc;
1630 mtc = (struct migration_target_control *)private;
1632 allowed_mask = mtc->nmask;
1634 * make sure we allocate from the target node first also trying to
1635 * demote or reclaim pages from the target node via kswapd if we are
1636 * low on free memory on target node. If we don't do this and if
1637 * we have free memory on the slower(lower) memtier, we would start
1638 * allocating pages from slower(lower) memory tiers without even forcing
1639 * a demotion of cold pages from the target memtier. This can result
1640 * in the kernel placing hot pages in slower(lower) memory tiers.
1643 mtc->gfp_mask |= __GFP_THISNODE;
1644 target_page = alloc_migration_target(page, (unsigned long)mtc);
1648 mtc->gfp_mask &= ~__GFP_THISNODE;
1649 mtc->nmask = allowed_mask;
1651 return alloc_migration_target(page, (unsigned long)mtc);
1655 * Take folios on @demote_folios and attempt to demote them to another node.
1656 * Folios which are not demoted are left on @demote_folios.
1658 static unsigned int demote_folio_list(struct list_head *demote_folios,
1659 struct pglist_data *pgdat)
1661 int target_nid = next_demotion_node(pgdat->node_id);
1662 unsigned int nr_succeeded;
1663 nodemask_t allowed_mask;
1665 struct migration_target_control mtc = {
1667 * Allocate from 'node', or fail quickly and quietly.
1668 * When this happens, 'page' will likely just be discarded
1669 * instead of migrated.
1671 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1672 __GFP_NOMEMALLOC | GFP_NOWAIT,
1674 .nmask = &allowed_mask
1677 if (list_empty(demote_folios))
1680 if (target_nid == NUMA_NO_NODE)
1683 node_get_allowed_targets(pgdat, &allowed_mask);
1685 /* Demotion ignores all cpuset and mempolicy settings */
1686 migrate_pages(demote_folios, alloc_demote_page, NULL,
1687 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1690 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1692 return nr_succeeded;
1695 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1697 if (gfp_mask & __GFP_FS)
1699 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1702 * We can "enter_fs" for swap-cache with only __GFP_IO
1703 * providing this isn't SWP_FS_OPS.
1704 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1705 * but that will never affect SWP_FS_OPS, so the data_race
1708 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1712 * shrink_folio_list() returns the number of reclaimed pages
1714 static unsigned int shrink_folio_list(struct list_head *folio_list,
1715 struct pglist_data *pgdat, struct scan_control *sc,
1716 struct reclaim_stat *stat, bool ignore_references)
1718 LIST_HEAD(ret_folios);
1719 LIST_HEAD(free_folios);
1720 LIST_HEAD(demote_folios);
1721 unsigned int nr_reclaimed = 0;
1722 unsigned int pgactivate = 0;
1723 bool do_demote_pass;
1724 struct swap_iocb *plug = NULL;
1726 memset(stat, 0, sizeof(*stat));
1728 do_demote_pass = can_demote(pgdat->node_id, sc);
1731 while (!list_empty(folio_list)) {
1732 struct address_space *mapping;
1733 struct folio *folio;
1734 enum folio_references references = FOLIOREF_RECLAIM;
1735 bool dirty, writeback;
1736 unsigned int nr_pages;
1740 folio = lru_to_folio(folio_list);
1741 list_del(&folio->lru);
1743 if (!folio_trylock(folio))
1746 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1748 nr_pages = folio_nr_pages(folio);
1750 /* Account the number of base pages */
1751 sc->nr_scanned += nr_pages;
1753 if (unlikely(!folio_evictable(folio)))
1754 goto activate_locked;
1756 if (!sc->may_unmap && folio_mapped(folio))
1759 /* folio_update_gen() tried to promote this page? */
1760 if (lru_gen_enabled() && !ignore_references &&
1761 folio_mapped(folio) && folio_test_referenced(folio))
1765 * The number of dirty pages determines if a node is marked
1766 * reclaim_congested. kswapd will stall and start writing
1767 * folios if the tail of the LRU is all dirty unqueued folios.
1769 folio_check_dirty_writeback(folio, &dirty, &writeback);
1770 if (dirty || writeback)
1771 stat->nr_dirty += nr_pages;
1773 if (dirty && !writeback)
1774 stat->nr_unqueued_dirty += nr_pages;
1777 * Treat this folio as congested if folios are cycling
1778 * through the LRU so quickly that the folios marked
1779 * for immediate reclaim are making it to the end of
1780 * the LRU a second time.
1782 if (writeback && folio_test_reclaim(folio))
1783 stat->nr_congested += nr_pages;
1786 * If a folio at the tail of the LRU is under writeback, there
1787 * are three cases to consider.
1789 * 1) If reclaim is encountering an excessive number
1790 * of folios under writeback and this folio has both
1791 * the writeback and reclaim flags set, then it
1792 * indicates that folios are being queued for I/O but
1793 * are being recycled through the LRU before the I/O
1794 * can complete. Waiting on the folio itself risks an
1795 * indefinite stall if it is impossible to writeback
1796 * the folio due to I/O error or disconnected storage
1797 * so instead note that the LRU is being scanned too
1798 * quickly and the caller can stall after the folio
1799 * list has been processed.
1801 * 2) Global or new memcg reclaim encounters a folio that is
1802 * not marked for immediate reclaim, or the caller does not
1803 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1804 * not to fs). In this case mark the folio for immediate
1805 * reclaim and continue scanning.
1807 * Require may_enter_fs() because we would wait on fs, which
1808 * may not have submitted I/O yet. And the loop driver might
1809 * enter reclaim, and deadlock if it waits on a folio for
1810 * which it is needed to do the write (loop masks off
1811 * __GFP_IO|__GFP_FS for this reason); but more thought
1812 * would probably show more reasons.
1814 * 3) Legacy memcg encounters a folio that already has the
1815 * reclaim flag set. memcg does not have any dirty folio
1816 * throttling so we could easily OOM just because too many
1817 * folios are in writeback and there is nothing else to
1818 * reclaim. Wait for the writeback to complete.
1820 * In cases 1) and 2) we activate the folios to get them out of
1821 * the way while we continue scanning for clean folios on the
1822 * inactive list and refilling from the active list. The
1823 * observation here is that waiting for disk writes is more
1824 * expensive than potentially causing reloads down the line.
1825 * Since they're marked for immediate reclaim, they won't put
1826 * memory pressure on the cache working set any longer than it
1827 * takes to write them to disk.
1829 if (folio_test_writeback(folio)) {
1831 if (current_is_kswapd() &&
1832 folio_test_reclaim(folio) &&
1833 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1834 stat->nr_immediate += nr_pages;
1835 goto activate_locked;
1838 } else if (writeback_throttling_sane(sc) ||
1839 !folio_test_reclaim(folio) ||
1840 !may_enter_fs(folio, sc->gfp_mask)) {
1842 * This is slightly racy -
1843 * folio_end_writeback() might have
1844 * just cleared the reclaim flag, then
1845 * setting the reclaim flag here ends up
1846 * interpreted as the readahead flag - but
1847 * that does not matter enough to care.
1848 * What we do want is for this folio to
1849 * have the reclaim flag set next time
1850 * memcg reclaim reaches the tests above,
1851 * so it will then wait for writeback to
1852 * avoid OOM; and it's also appropriate
1853 * in global reclaim.
1855 folio_set_reclaim(folio);
1856 stat->nr_writeback += nr_pages;
1857 goto activate_locked;
1861 folio_unlock(folio);
1862 folio_wait_writeback(folio);
1863 /* then go back and try same folio again */
1864 list_add_tail(&folio->lru, folio_list);
1869 if (!ignore_references)
1870 references = folio_check_references(folio, sc);
1872 switch (references) {
1873 case FOLIOREF_ACTIVATE:
1874 goto activate_locked;
1876 stat->nr_ref_keep += nr_pages;
1878 case FOLIOREF_RECLAIM:
1879 case FOLIOREF_RECLAIM_CLEAN:
1880 ; /* try to reclaim the folio below */
1884 * Before reclaiming the folio, try to relocate
1885 * its contents to another node.
1887 if (do_demote_pass &&
1888 (thp_migration_supported() || !folio_test_large(folio))) {
1889 list_add(&folio->lru, &demote_folios);
1890 folio_unlock(folio);
1895 * Anonymous process memory has backing store?
1896 * Try to allocate it some swap space here.
1897 * Lazyfree folio could be freed directly
1899 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1900 if (!folio_test_swapcache(folio)) {
1901 if (!(sc->gfp_mask & __GFP_IO))
1903 if (folio_maybe_dma_pinned(folio))
1905 if (folio_test_large(folio)) {
1906 /* cannot split folio, skip it */
1907 if (!can_split_folio(folio, NULL))
1908 goto activate_locked;
1910 * Split folios without a PMD map right
1911 * away. Chances are some or all of the
1912 * tail pages can be freed without IO.
1914 if (!folio_entire_mapcount(folio) &&
1915 split_folio_to_list(folio,
1917 goto activate_locked;
1919 if (!add_to_swap(folio)) {
1920 if (!folio_test_large(folio))
1921 goto activate_locked_split;
1922 /* Fallback to swap normal pages */
1923 if (split_folio_to_list(folio,
1925 goto activate_locked;
1926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1927 count_vm_event(THP_SWPOUT_FALLBACK);
1929 if (!add_to_swap(folio))
1930 goto activate_locked_split;
1933 } else if (folio_test_swapbacked(folio) &&
1934 folio_test_large(folio)) {
1935 /* Split shmem folio */
1936 if (split_folio_to_list(folio, folio_list))
1941 * If the folio was split above, the tail pages will make
1942 * their own pass through this function and be accounted
1945 if ((nr_pages > 1) && !folio_test_large(folio)) {
1946 sc->nr_scanned -= (nr_pages - 1);
1951 * The folio is mapped into the page tables of one or more
1952 * processes. Try to unmap it here.
1954 if (folio_mapped(folio)) {
1955 enum ttu_flags flags = TTU_BATCH_FLUSH;
1956 bool was_swapbacked = folio_test_swapbacked(folio);
1958 if (folio_test_pmd_mappable(folio))
1959 flags |= TTU_SPLIT_HUGE_PMD;
1961 try_to_unmap(folio, flags);
1962 if (folio_mapped(folio)) {
1963 stat->nr_unmap_fail += nr_pages;
1964 if (!was_swapbacked &&
1965 folio_test_swapbacked(folio))
1966 stat->nr_lazyfree_fail += nr_pages;
1967 goto activate_locked;
1972 * Folio is unmapped now so it cannot be newly pinned anymore.
1973 * No point in trying to reclaim folio if it is pinned.
1974 * Furthermore we don't want to reclaim underlying fs metadata
1975 * if the folio is pinned and thus potentially modified by the
1976 * pinning process as that may upset the filesystem.
1978 if (folio_maybe_dma_pinned(folio))
1979 goto activate_locked;
1981 mapping = folio_mapping(folio);
1982 if (folio_test_dirty(folio)) {
1984 * Only kswapd can writeback filesystem folios
1985 * to avoid risk of stack overflow. But avoid
1986 * injecting inefficient single-folio I/O into
1987 * flusher writeback as much as possible: only
1988 * write folios when we've encountered many
1989 * dirty folios, and when we've already scanned
1990 * the rest of the LRU for clean folios and see
1991 * the same dirty folios again (with the reclaim
1994 if (folio_is_file_lru(folio) &&
1995 (!current_is_kswapd() ||
1996 !folio_test_reclaim(folio) ||
1997 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1999 * Immediately reclaim when written back.
2000 * Similar in principle to folio_deactivate()
2001 * except we already have the folio isolated
2002 * and know it's dirty
2004 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
2006 folio_set_reclaim(folio);
2008 goto activate_locked;
2011 if (references == FOLIOREF_RECLAIM_CLEAN)
2013 if (!may_enter_fs(folio, sc->gfp_mask))
2015 if (!sc->may_writepage)
2019 * Folio is dirty. Flush the TLB if a writable entry
2020 * potentially exists to avoid CPU writes after I/O
2021 * starts and then write it out here.
2023 try_to_unmap_flush_dirty();
2024 switch (pageout(folio, mapping, &plug)) {
2028 goto activate_locked;
2030 stat->nr_pageout += nr_pages;
2032 if (folio_test_writeback(folio))
2034 if (folio_test_dirty(folio))
2038 * A synchronous write - probably a ramdisk. Go
2039 * ahead and try to reclaim the folio.
2041 if (!folio_trylock(folio))
2043 if (folio_test_dirty(folio) ||
2044 folio_test_writeback(folio))
2046 mapping = folio_mapping(folio);
2049 ; /* try to free the folio below */
2054 * If the folio has buffers, try to free the buffer
2055 * mappings associated with this folio. If we succeed
2056 * we try to free the folio as well.
2058 * We do this even if the folio is dirty.
2059 * filemap_release_folio() does not perform I/O, but it
2060 * is possible for a folio to have the dirty flag set,
2061 * but it is actually clean (all its buffers are clean).
2062 * This happens if the buffers were written out directly,
2063 * with submit_bh(). ext3 will do this, as well as
2064 * the blockdev mapping. filemap_release_folio() will
2065 * discover that cleanness and will drop the buffers
2066 * and mark the folio clean - it can be freed.
2068 * Rarely, folios can have buffers and no ->mapping.
2069 * These are the folios which were not successfully
2070 * invalidated in truncate_cleanup_folio(). We try to
2071 * drop those buffers here and if that worked, and the
2072 * folio is no longer mapped into process address space
2073 * (refcount == 1) it can be freed. Otherwise, leave
2074 * the folio on the LRU so it is swappable.
2076 if (folio_has_private(folio)) {
2077 if (!filemap_release_folio(folio, sc->gfp_mask))
2078 goto activate_locked;
2079 if (!mapping && folio_ref_count(folio) == 1) {
2080 folio_unlock(folio);
2081 if (folio_put_testzero(folio))
2085 * rare race with speculative reference.
2086 * the speculative reference will free
2087 * this folio shortly, so we may
2088 * increment nr_reclaimed here (and
2089 * leave it off the LRU).
2091 nr_reclaimed += nr_pages;
2097 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2098 /* follow __remove_mapping for reference */
2099 if (!folio_ref_freeze(folio, 1))
2102 * The folio has only one reference left, which is
2103 * from the isolation. After the caller puts the
2104 * folio back on the lru and drops the reference, the
2105 * folio will be freed anyway. It doesn't matter
2106 * which lru it goes on. So we don't bother checking
2107 * the dirty flag here.
2109 count_vm_events(PGLAZYFREED, nr_pages);
2110 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2111 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2112 sc->target_mem_cgroup))
2115 folio_unlock(folio);
2118 * Folio may get swapped out as a whole, need to account
2121 nr_reclaimed += nr_pages;
2124 * Is there need to periodically free_folio_list? It would
2125 * appear not as the counts should be low
2127 if (unlikely(folio_test_large(folio)))
2128 destroy_large_folio(folio);
2130 list_add(&folio->lru, &free_folios);
2133 activate_locked_split:
2135 * The tail pages that are failed to add into swap cache
2136 * reach here. Fixup nr_scanned and nr_pages.
2139 sc->nr_scanned -= (nr_pages - 1);
2143 /* Not a candidate for swapping, so reclaim swap space. */
2144 if (folio_test_swapcache(folio) &&
2145 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2146 folio_free_swap(folio);
2147 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2148 if (!folio_test_mlocked(folio)) {
2149 int type = folio_is_file_lru(folio);
2150 folio_set_active(folio);
2151 stat->nr_activate[type] += nr_pages;
2152 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2155 folio_unlock(folio);
2157 list_add(&folio->lru, &ret_folios);
2158 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2159 folio_test_unevictable(folio), folio);
2161 /* 'folio_list' is always empty here */
2163 /* Migrate folios selected for demotion */
2164 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2165 /* Folios that could not be demoted are still in @demote_folios */
2166 if (!list_empty(&demote_folios)) {
2167 /* Folios which weren't demoted go back on @folio_list */
2168 list_splice_init(&demote_folios, folio_list);
2171 * goto retry to reclaim the undemoted folios in folio_list if
2174 * Reclaiming directly from top tier nodes is not often desired
2175 * due to it breaking the LRU ordering: in general memory
2176 * should be reclaimed from lower tier nodes and demoted from
2179 * However, disabling reclaim from top tier nodes entirely
2180 * would cause ooms in edge scenarios where lower tier memory
2181 * is unreclaimable for whatever reason, eg memory being
2182 * mlocked or too hot to reclaim. We can disable reclaim
2183 * from top tier nodes in proactive reclaim though as that is
2184 * not real memory pressure.
2186 if (!sc->proactive) {
2187 do_demote_pass = false;
2192 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2194 mem_cgroup_uncharge_list(&free_folios);
2195 try_to_unmap_flush();
2196 free_unref_page_list(&free_folios);
2198 list_splice(&ret_folios, folio_list);
2199 count_vm_events(PGACTIVATE, pgactivate);
2202 swap_write_unplug(plug);
2203 return nr_reclaimed;
2206 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2207 struct list_head *folio_list)
2209 struct scan_control sc = {
2210 .gfp_mask = GFP_KERNEL,
2213 struct reclaim_stat stat;
2214 unsigned int nr_reclaimed;
2215 struct folio *folio, *next;
2216 LIST_HEAD(clean_folios);
2217 unsigned int noreclaim_flag;
2219 list_for_each_entry_safe(folio, next, folio_list, lru) {
2220 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2221 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2222 !folio_test_unevictable(folio)) {
2223 folio_clear_active(folio);
2224 list_move(&folio->lru, &clean_folios);
2229 * We should be safe here since we are only dealing with file pages and
2230 * we are not kswapd and therefore cannot write dirty file pages. But
2231 * call memalloc_noreclaim_save() anyway, just in case these conditions
2232 * change in the future.
2234 noreclaim_flag = memalloc_noreclaim_save();
2235 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2237 memalloc_noreclaim_restore(noreclaim_flag);
2239 list_splice(&clean_folios, folio_list);
2240 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2241 -(long)nr_reclaimed);
2243 * Since lazyfree pages are isolated from file LRU from the beginning,
2244 * they will rotate back to anonymous LRU in the end if it failed to
2245 * discard so isolated count will be mismatched.
2246 * Compensate the isolated count for both LRU lists.
2248 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2249 stat.nr_lazyfree_fail);
2250 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2251 -(long)stat.nr_lazyfree_fail);
2252 return nr_reclaimed;
2256 * Update LRU sizes after isolating pages. The LRU size updates must
2257 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2259 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2260 enum lru_list lru, unsigned long *nr_zone_taken)
2264 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2265 if (!nr_zone_taken[zid])
2268 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2274 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2276 * lruvec->lru_lock is heavily contended. Some of the functions that
2277 * shrink the lists perform better by taking out a batch of pages
2278 * and working on them outside the LRU lock.
2280 * For pagecache intensive workloads, this function is the hottest
2281 * spot in the kernel (apart from copy_*_user functions).
2283 * Lru_lock must be held before calling this function.
2285 * @nr_to_scan: The number of eligible pages to look through on the list.
2286 * @lruvec: The LRU vector to pull pages from.
2287 * @dst: The temp list to put pages on to.
2288 * @nr_scanned: The number of pages that were scanned.
2289 * @sc: The scan_control struct for this reclaim session
2290 * @lru: LRU list id for isolating
2292 * returns how many pages were moved onto *@dst.
2294 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2295 struct lruvec *lruvec, struct list_head *dst,
2296 unsigned long *nr_scanned, struct scan_control *sc,
2299 struct list_head *src = &lruvec->lists[lru];
2300 unsigned long nr_taken = 0;
2301 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2302 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2303 unsigned long skipped = 0;
2304 unsigned long scan, total_scan, nr_pages;
2305 LIST_HEAD(folios_skipped);
2309 while (scan < nr_to_scan && !list_empty(src)) {
2310 struct list_head *move_to = src;
2311 struct folio *folio;
2313 folio = lru_to_folio(src);
2314 prefetchw_prev_lru_folio(folio, src, flags);
2316 nr_pages = folio_nr_pages(folio);
2317 total_scan += nr_pages;
2319 if (folio_zonenum(folio) > sc->reclaim_idx) {
2320 nr_skipped[folio_zonenum(folio)] += nr_pages;
2321 move_to = &folios_skipped;
2326 * Do not count skipped folios because that makes the function
2327 * return with no isolated folios if the LRU mostly contains
2328 * ineligible folios. This causes the VM to not reclaim any
2329 * folios, triggering a premature OOM.
2330 * Account all pages in a folio.
2334 if (!folio_test_lru(folio))
2336 if (!sc->may_unmap && folio_mapped(folio))
2340 * Be careful not to clear the lru flag until after we're
2341 * sure the folio is not being freed elsewhere -- the
2342 * folio release code relies on it.
2344 if (unlikely(!folio_try_get(folio)))
2347 if (!folio_test_clear_lru(folio)) {
2348 /* Another thread is already isolating this folio */
2353 nr_taken += nr_pages;
2354 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2357 list_move(&folio->lru, move_to);
2361 * Splice any skipped folios to the start of the LRU list. Note that
2362 * this disrupts the LRU order when reclaiming for lower zones but
2363 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2364 * scanning would soon rescan the same folios to skip and waste lots
2367 if (!list_empty(&folios_skipped)) {
2370 list_splice(&folios_skipped, src);
2371 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2372 if (!nr_skipped[zid])
2375 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2376 skipped += nr_skipped[zid];
2379 *nr_scanned = total_scan;
2380 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2381 total_scan, skipped, nr_taken,
2382 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2383 update_lru_sizes(lruvec, lru, nr_zone_taken);
2388 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2389 * @folio: Folio to isolate from its LRU list.
2391 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2392 * corresponding to whatever LRU list the folio was on.
2394 * The folio will have its LRU flag cleared. If it was found on the
2395 * active list, it will have the Active flag set. If it was found on the
2396 * unevictable list, it will have the Unevictable flag set. These flags
2397 * may need to be cleared by the caller before letting the page go.
2401 * (1) Must be called with an elevated refcount on the folio. This is a
2402 * fundamental difference from isolate_lru_folios() (which is called
2403 * without a stable reference).
2404 * (2) The lru_lock must not be held.
2405 * (3) Interrupts must be enabled.
2407 * Return: true if the folio was removed from an LRU list.
2408 * false if the folio was not on an LRU list.
2410 bool folio_isolate_lru(struct folio *folio)
2414 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2416 if (folio_test_clear_lru(folio)) {
2417 struct lruvec *lruvec;
2420 lruvec = folio_lruvec_lock_irq(folio);
2421 lruvec_del_folio(lruvec, folio);
2422 unlock_page_lruvec_irq(lruvec);
2430 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2431 * then get rescheduled. When there are massive number of tasks doing page
2432 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2433 * the LRU list will go small and be scanned faster than necessary, leading to
2434 * unnecessary swapping, thrashing and OOM.
2436 static int too_many_isolated(struct pglist_data *pgdat, int file,
2437 struct scan_control *sc)
2439 unsigned long inactive, isolated;
2442 if (current_is_kswapd())
2445 if (!writeback_throttling_sane(sc))
2449 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2450 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2452 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2453 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2457 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2458 * won't get blocked by normal direct-reclaimers, forming a circular
2461 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2464 too_many = isolated > inactive;
2466 /* Wake up tasks throttled due to too_many_isolated. */
2468 wake_throttle_isolated(pgdat);
2474 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2475 * On return, @list is reused as a list of folios to be freed by the caller.
2477 * Returns the number of pages moved to the given lruvec.
2479 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2480 struct list_head *list)
2482 int nr_pages, nr_moved = 0;
2483 LIST_HEAD(folios_to_free);
2485 while (!list_empty(list)) {
2486 struct folio *folio = lru_to_folio(list);
2488 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2489 list_del(&folio->lru);
2490 if (unlikely(!folio_evictable(folio))) {
2491 spin_unlock_irq(&lruvec->lru_lock);
2492 folio_putback_lru(folio);
2493 spin_lock_irq(&lruvec->lru_lock);
2498 * The folio_set_lru needs to be kept here for list integrity.
2500 * #0 move_folios_to_lru #1 release_pages
2501 * if (!folio_put_testzero())
2502 * if (folio_put_testzero())
2503 * !lru //skip lru_lock
2505 * list_add(&folio->lru,)
2506 * list_add(&folio->lru,)
2508 folio_set_lru(folio);
2510 if (unlikely(folio_put_testzero(folio))) {
2511 __folio_clear_lru_flags(folio);
2513 if (unlikely(folio_test_large(folio))) {
2514 spin_unlock_irq(&lruvec->lru_lock);
2515 destroy_large_folio(folio);
2516 spin_lock_irq(&lruvec->lru_lock);
2518 list_add(&folio->lru, &folios_to_free);
2524 * All pages were isolated from the same lruvec (and isolation
2525 * inhibits memcg migration).
2527 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2528 lruvec_add_folio(lruvec, folio);
2529 nr_pages = folio_nr_pages(folio);
2530 nr_moved += nr_pages;
2531 if (folio_test_active(folio))
2532 workingset_age_nonresident(lruvec, nr_pages);
2536 * To save our caller's stack, now use input list for pages to free.
2538 list_splice(&folios_to_free, list);
2544 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2545 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2546 * we should not throttle. Otherwise it is safe to do so.
2548 static int current_may_throttle(void)
2550 return !(current->flags & PF_LOCAL_THROTTLE);
2554 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2555 * of reclaimed pages
2557 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2558 struct lruvec *lruvec, struct scan_control *sc,
2561 LIST_HEAD(folio_list);
2562 unsigned long nr_scanned;
2563 unsigned int nr_reclaimed = 0;
2564 unsigned long nr_taken;
2565 struct reclaim_stat stat;
2566 bool file = is_file_lru(lru);
2567 enum vm_event_item item;
2568 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2569 bool stalled = false;
2571 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2575 /* wait a bit for the reclaimer. */
2577 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2579 /* We are about to die and free our memory. Return now. */
2580 if (fatal_signal_pending(current))
2581 return SWAP_CLUSTER_MAX;
2586 spin_lock_irq(&lruvec->lru_lock);
2588 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2589 &nr_scanned, sc, lru);
2591 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2592 item = PGSCAN_KSWAPD + reclaimer_offset();
2593 if (!cgroup_reclaim(sc))
2594 __count_vm_events(item, nr_scanned);
2595 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2596 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2598 spin_unlock_irq(&lruvec->lru_lock);
2603 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2605 spin_lock_irq(&lruvec->lru_lock);
2606 move_folios_to_lru(lruvec, &folio_list);
2608 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2609 item = PGSTEAL_KSWAPD + reclaimer_offset();
2610 if (!cgroup_reclaim(sc))
2611 __count_vm_events(item, nr_reclaimed);
2612 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2613 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2614 spin_unlock_irq(&lruvec->lru_lock);
2616 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2617 mem_cgroup_uncharge_list(&folio_list);
2618 free_unref_page_list(&folio_list);
2621 * If dirty folios are scanned that are not queued for IO, it
2622 * implies that flushers are not doing their job. This can
2623 * happen when memory pressure pushes dirty folios to the end of
2624 * the LRU before the dirty limits are breached and the dirty
2625 * data has expired. It can also happen when the proportion of
2626 * dirty folios grows not through writes but through memory
2627 * pressure reclaiming all the clean cache. And in some cases,
2628 * the flushers simply cannot keep up with the allocation
2629 * rate. Nudge the flusher threads in case they are asleep.
2631 if (stat.nr_unqueued_dirty == nr_taken) {
2632 wakeup_flusher_threads(WB_REASON_VMSCAN);
2634 * For cgroupv1 dirty throttling is achieved by waking up
2635 * the kernel flusher here and later waiting on folios
2636 * which are in writeback to finish (see shrink_folio_list()).
2638 * Flusher may not be able to issue writeback quickly
2639 * enough for cgroupv1 writeback throttling to work
2640 * on a large system.
2642 if (!writeback_throttling_sane(sc))
2643 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2646 sc->nr.dirty += stat.nr_dirty;
2647 sc->nr.congested += stat.nr_congested;
2648 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2649 sc->nr.writeback += stat.nr_writeback;
2650 sc->nr.immediate += stat.nr_immediate;
2651 sc->nr.taken += nr_taken;
2653 sc->nr.file_taken += nr_taken;
2655 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2656 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2657 return nr_reclaimed;
2661 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2663 * We move them the other way if the folio is referenced by one or more
2666 * If the folios are mostly unmapped, the processing is fast and it is
2667 * appropriate to hold lru_lock across the whole operation. But if
2668 * the folios are mapped, the processing is slow (folio_referenced()), so
2669 * we should drop lru_lock around each folio. It's impossible to balance
2670 * this, so instead we remove the folios from the LRU while processing them.
2671 * It is safe to rely on the active flag against the non-LRU folios in here
2672 * because nobody will play with that bit on a non-LRU folio.
2674 * The downside is that we have to touch folio->_refcount against each folio.
2675 * But we had to alter folio->flags anyway.
2677 static void shrink_active_list(unsigned long nr_to_scan,
2678 struct lruvec *lruvec,
2679 struct scan_control *sc,
2682 unsigned long nr_taken;
2683 unsigned long nr_scanned;
2684 unsigned long vm_flags;
2685 LIST_HEAD(l_hold); /* The folios which were snipped off */
2686 LIST_HEAD(l_active);
2687 LIST_HEAD(l_inactive);
2688 unsigned nr_deactivate, nr_activate;
2689 unsigned nr_rotated = 0;
2690 int file = is_file_lru(lru);
2691 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2695 spin_lock_irq(&lruvec->lru_lock);
2697 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2698 &nr_scanned, sc, lru);
2700 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2702 if (!cgroup_reclaim(sc))
2703 __count_vm_events(PGREFILL, nr_scanned);
2704 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2706 spin_unlock_irq(&lruvec->lru_lock);
2708 while (!list_empty(&l_hold)) {
2709 struct folio *folio;
2712 folio = lru_to_folio(&l_hold);
2713 list_del(&folio->lru);
2715 if (unlikely(!folio_evictable(folio))) {
2716 folio_putback_lru(folio);
2720 if (unlikely(buffer_heads_over_limit)) {
2721 if (folio_test_private(folio) && folio_trylock(folio)) {
2722 if (folio_test_private(folio))
2723 filemap_release_folio(folio, 0);
2724 folio_unlock(folio);
2728 /* Referenced or rmap lock contention: rotate */
2729 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2732 * Identify referenced, file-backed active folios and
2733 * give them one more trip around the active list. So
2734 * that executable code get better chances to stay in
2735 * memory under moderate memory pressure. Anon folios
2736 * are not likely to be evicted by use-once streaming
2737 * IO, plus JVM can create lots of anon VM_EXEC folios,
2738 * so we ignore them here.
2740 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2741 nr_rotated += folio_nr_pages(folio);
2742 list_add(&folio->lru, &l_active);
2747 folio_clear_active(folio); /* we are de-activating */
2748 folio_set_workingset(folio);
2749 list_add(&folio->lru, &l_inactive);
2753 * Move folios back to the lru list.
2755 spin_lock_irq(&lruvec->lru_lock);
2757 nr_activate = move_folios_to_lru(lruvec, &l_active);
2758 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2759 /* Keep all free folios in l_active list */
2760 list_splice(&l_inactive, &l_active);
2762 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2763 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2765 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2766 spin_unlock_irq(&lruvec->lru_lock);
2769 lru_note_cost(lruvec, file, 0, nr_rotated);
2770 mem_cgroup_uncharge_list(&l_active);
2771 free_unref_page_list(&l_active);
2772 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2773 nr_deactivate, nr_rotated, sc->priority, file);
2776 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2777 struct pglist_data *pgdat)
2779 struct reclaim_stat dummy_stat;
2780 unsigned int nr_reclaimed;
2781 struct folio *folio;
2782 struct scan_control sc = {
2783 .gfp_mask = GFP_KERNEL,
2790 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2791 while (!list_empty(folio_list)) {
2792 folio = lru_to_folio(folio_list);
2793 list_del(&folio->lru);
2794 folio_putback_lru(folio);
2797 return nr_reclaimed;
2800 unsigned long reclaim_pages(struct list_head *folio_list)
2803 unsigned int nr_reclaimed = 0;
2804 LIST_HEAD(node_folio_list);
2805 unsigned int noreclaim_flag;
2807 if (list_empty(folio_list))
2808 return nr_reclaimed;
2810 noreclaim_flag = memalloc_noreclaim_save();
2812 nid = folio_nid(lru_to_folio(folio_list));
2814 struct folio *folio = lru_to_folio(folio_list);
2816 if (nid == folio_nid(folio)) {
2817 folio_clear_active(folio);
2818 list_move(&folio->lru, &node_folio_list);
2822 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2823 nid = folio_nid(lru_to_folio(folio_list));
2824 } while (!list_empty(folio_list));
2826 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2828 memalloc_noreclaim_restore(noreclaim_flag);
2830 return nr_reclaimed;
2833 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2834 struct lruvec *lruvec, struct scan_control *sc)
2836 if (is_active_lru(lru)) {
2837 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2838 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2840 sc->skipped_deactivate = 1;
2844 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2848 * The inactive anon list should be small enough that the VM never has
2849 * to do too much work.
2851 * The inactive file list should be small enough to leave most memory
2852 * to the established workingset on the scan-resistant active list,
2853 * but large enough to avoid thrashing the aggregate readahead window.
2855 * Both inactive lists should also be large enough that each inactive
2856 * folio has a chance to be referenced again before it is reclaimed.
2858 * If that fails and refaulting is observed, the inactive list grows.
2860 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2861 * on this LRU, maintained by the pageout code. An inactive_ratio
2862 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2865 * memory ratio inactive
2866 * -------------------------------------
2875 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2877 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2878 unsigned long inactive, active;
2879 unsigned long inactive_ratio;
2882 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2883 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2885 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2887 inactive_ratio = int_sqrt(10 * gb);
2891 return inactive * inactive_ratio < active;
2901 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2904 struct lruvec *target_lruvec;
2906 if (lru_gen_enabled())
2909 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2912 * Flush the memory cgroup stats, so that we read accurate per-memcg
2913 * lruvec stats for heuristics.
2915 mem_cgroup_flush_stats();
2918 * Determine the scan balance between anon and file LRUs.
2920 spin_lock_irq(&target_lruvec->lru_lock);
2921 sc->anon_cost = target_lruvec->anon_cost;
2922 sc->file_cost = target_lruvec->file_cost;
2923 spin_unlock_irq(&target_lruvec->lru_lock);
2926 * Target desirable inactive:active list ratios for the anon
2927 * and file LRU lists.
2929 if (!sc->force_deactivate) {
2930 unsigned long refaults;
2933 * When refaults are being observed, it means a new
2934 * workingset is being established. Deactivate to get
2935 * rid of any stale active pages quickly.
2937 refaults = lruvec_page_state(target_lruvec,
2938 WORKINGSET_ACTIVATE_ANON);
2939 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2940 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2941 sc->may_deactivate |= DEACTIVATE_ANON;
2943 sc->may_deactivate &= ~DEACTIVATE_ANON;
2945 refaults = lruvec_page_state(target_lruvec,
2946 WORKINGSET_ACTIVATE_FILE);
2947 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2948 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2949 sc->may_deactivate |= DEACTIVATE_FILE;
2951 sc->may_deactivate &= ~DEACTIVATE_FILE;
2953 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2956 * If we have plenty of inactive file pages that aren't
2957 * thrashing, try to reclaim those first before touching
2960 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2961 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2962 sc->cache_trim_mode = 1;
2964 sc->cache_trim_mode = 0;
2967 * Prevent the reclaimer from falling into the cache trap: as
2968 * cache pages start out inactive, every cache fault will tip
2969 * the scan balance towards the file LRU. And as the file LRU
2970 * shrinks, so does the window for rotation from references.
2971 * This means we have a runaway feedback loop where a tiny
2972 * thrashing file LRU becomes infinitely more attractive than
2973 * anon pages. Try to detect this based on file LRU size.
2975 if (!cgroup_reclaim(sc)) {
2976 unsigned long total_high_wmark = 0;
2977 unsigned long free, anon;
2980 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2981 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2982 node_page_state(pgdat, NR_INACTIVE_FILE);
2984 for (z = 0; z < MAX_NR_ZONES; z++) {
2985 struct zone *zone = &pgdat->node_zones[z];
2987 if (!managed_zone(zone))
2990 total_high_wmark += high_wmark_pages(zone);
2994 * Consider anon: if that's low too, this isn't a
2995 * runaway file reclaim problem, but rather just
2996 * extreme pressure. Reclaim as per usual then.
2998 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3001 file + free <= total_high_wmark &&
3002 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3003 anon >> sc->priority;
3008 * Determine how aggressively the anon and file LRU lists should be
3011 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
3012 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
3014 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
3017 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3018 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3019 unsigned long anon_cost, file_cost, total_cost;
3020 int swappiness = mem_cgroup_swappiness(memcg);
3021 u64 fraction[ANON_AND_FILE];
3022 u64 denominator = 0; /* gcc */
3023 enum scan_balance scan_balance;
3024 unsigned long ap, fp;
3027 /* If we have no swap space, do not bother scanning anon folios. */
3028 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
3029 scan_balance = SCAN_FILE;
3034 * Global reclaim will swap to prevent OOM even with no
3035 * swappiness, but memcg users want to use this knob to
3036 * disable swapping for individual groups completely when
3037 * using the memory controller's swap limit feature would be
3040 if (cgroup_reclaim(sc) && !swappiness) {
3041 scan_balance = SCAN_FILE;
3046 * Do not apply any pressure balancing cleverness when the
3047 * system is close to OOM, scan both anon and file equally
3048 * (unless the swappiness setting disagrees with swapping).
3050 if (!sc->priority && swappiness) {
3051 scan_balance = SCAN_EQUAL;
3056 * If the system is almost out of file pages, force-scan anon.
3058 if (sc->file_is_tiny) {
3059 scan_balance = SCAN_ANON;
3064 * If there is enough inactive page cache, we do not reclaim
3065 * anything from the anonymous working right now.
3067 if (sc->cache_trim_mode) {
3068 scan_balance = SCAN_FILE;
3072 scan_balance = SCAN_FRACT;
3074 * Calculate the pressure balance between anon and file pages.
3076 * The amount of pressure we put on each LRU is inversely
3077 * proportional to the cost of reclaiming each list, as
3078 * determined by the share of pages that are refaulting, times
3079 * the relative IO cost of bringing back a swapped out
3080 * anonymous page vs reloading a filesystem page (swappiness).
3082 * Although we limit that influence to ensure no list gets
3083 * left behind completely: at least a third of the pressure is
3084 * applied, before swappiness.
3086 * With swappiness at 100, anon and file have equal IO cost.
3088 total_cost = sc->anon_cost + sc->file_cost;
3089 anon_cost = total_cost + sc->anon_cost;
3090 file_cost = total_cost + sc->file_cost;
3091 total_cost = anon_cost + file_cost;
3093 ap = swappiness * (total_cost + 1);
3094 ap /= anon_cost + 1;
3096 fp = (200 - swappiness) * (total_cost + 1);
3097 fp /= file_cost + 1;
3101 denominator = ap + fp;
3103 for_each_evictable_lru(lru) {
3104 int file = is_file_lru(lru);
3105 unsigned long lruvec_size;
3106 unsigned long low, min;
3109 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3110 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3115 * Scale a cgroup's reclaim pressure by proportioning
3116 * its current usage to its memory.low or memory.min
3119 * This is important, as otherwise scanning aggression
3120 * becomes extremely binary -- from nothing as we
3121 * approach the memory protection threshold, to totally
3122 * nominal as we exceed it. This results in requiring
3123 * setting extremely liberal protection thresholds. It
3124 * also means we simply get no protection at all if we
3125 * set it too low, which is not ideal.
3127 * If there is any protection in place, we reduce scan
3128 * pressure by how much of the total memory used is
3129 * within protection thresholds.
3131 * There is one special case: in the first reclaim pass,
3132 * we skip over all groups that are within their low
3133 * protection. If that fails to reclaim enough pages to
3134 * satisfy the reclaim goal, we come back and override
3135 * the best-effort low protection. However, we still
3136 * ideally want to honor how well-behaved groups are in
3137 * that case instead of simply punishing them all
3138 * equally. As such, we reclaim them based on how much
3139 * memory they are using, reducing the scan pressure
3140 * again by how much of the total memory used is under
3143 unsigned long cgroup_size = mem_cgroup_size(memcg);
3144 unsigned long protection;
3146 /* memory.low scaling, make sure we retry before OOM */
3147 if (!sc->memcg_low_reclaim && low > min) {
3149 sc->memcg_low_skipped = 1;
3154 /* Avoid TOCTOU with earlier protection check */
3155 cgroup_size = max(cgroup_size, protection);
3157 scan = lruvec_size - lruvec_size * protection /
3161 * Minimally target SWAP_CLUSTER_MAX pages to keep
3162 * reclaim moving forwards, avoiding decrementing
3163 * sc->priority further than desirable.
3165 scan = max(scan, SWAP_CLUSTER_MAX);
3170 scan >>= sc->priority;
3173 * If the cgroup's already been deleted, make sure to
3174 * scrape out the remaining cache.
3176 if (!scan && !mem_cgroup_online(memcg))
3177 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3179 switch (scan_balance) {
3181 /* Scan lists relative to size */
3185 * Scan types proportional to swappiness and
3186 * their relative recent reclaim efficiency.
3187 * Make sure we don't miss the last page on
3188 * the offlined memory cgroups because of a
3191 scan = mem_cgroup_online(memcg) ?
3192 div64_u64(scan * fraction[file], denominator) :
3193 DIV64_U64_ROUND_UP(scan * fraction[file],
3198 /* Scan one type exclusively */
3199 if ((scan_balance == SCAN_FILE) != file)
3203 /* Look ma, no brain */
3212 * Anonymous LRU management is a waste if there is
3213 * ultimately no way to reclaim the memory.
3215 static bool can_age_anon_pages(struct pglist_data *pgdat,
3216 struct scan_control *sc)
3218 /* Aging the anon LRU is valuable if swap is present: */
3219 if (total_swap_pages > 0)
3222 /* Also valuable if anon pages can be demoted: */
3223 return can_demote(pgdat->node_id, sc);
3226 #ifdef CONFIG_LRU_GEN
3228 #ifdef CONFIG_LRU_GEN_ENABLED
3229 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3230 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3232 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3233 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3236 /******************************************************************************
3238 ******************************************************************************/
3240 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3242 #define DEFINE_MAX_SEQ(lruvec) \
3243 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3245 #define DEFINE_MIN_SEQ(lruvec) \
3246 unsigned long min_seq[ANON_AND_FILE] = { \
3247 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3248 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3251 #define for_each_gen_type_zone(gen, type, zone) \
3252 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3253 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3254 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3256 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3257 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3259 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3261 struct pglist_data *pgdat = NODE_DATA(nid);
3265 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3267 /* see the comment in mem_cgroup_lruvec() */
3269 lruvec->pgdat = pgdat;
3274 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3276 return &pgdat->__lruvec;
3279 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3281 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3282 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3287 if (!can_demote(pgdat->node_id, sc) &&
3288 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3291 return mem_cgroup_swappiness(memcg);
3294 static int get_nr_gens(struct lruvec *lruvec, int type)
3296 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3299 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3301 /* see the comment on lru_gen_folio */
3302 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3303 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3304 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3307 /******************************************************************************
3309 ******************************************************************************/
3312 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3313 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3314 * bits in a bitmap, k is the number of hash functions and n is the number of
3317 * Page table walkers use one of the two filters to reduce their search space.
3318 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3319 * aging uses the double-buffering technique to flip to the other filter each
3320 * time it produces a new generation. For non-leaf entries that have enough
3321 * leaf entries, the aging carries them over to the next generation in
3322 * walk_pmd_range(); the eviction also report them when walking the rmap
3323 * in lru_gen_look_around().
3325 * For future optimizations:
3326 * 1. It's not necessary to keep both filters all the time. The spare one can be
3327 * freed after the RCU grace period and reallocated if needed again.
3328 * 2. And when reallocating, it's worth scaling its size according to the number
3329 * of inserted entries in the other filter, to reduce the memory overhead on
3330 * small systems and false positives on large systems.
3331 * 3. Jenkins' hash function is an alternative to Knuth's.
3333 #define BLOOM_FILTER_SHIFT 15
3335 static inline int filter_gen_from_seq(unsigned long seq)
3337 return seq % NR_BLOOM_FILTERS;
3340 static void get_item_key(void *item, int *key)
3342 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3344 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3346 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3347 key[1] = hash >> BLOOM_FILTER_SHIFT;
3350 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3353 unsigned long *filter;
3354 int gen = filter_gen_from_seq(seq);
3356 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3360 get_item_key(item, key);
3362 return test_bit(key[0], filter) && test_bit(key[1], filter);
3365 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3368 unsigned long *filter;
3369 int gen = filter_gen_from_seq(seq);
3371 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3375 get_item_key(item, key);
3377 if (!test_bit(key[0], filter))
3378 set_bit(key[0], filter);
3379 if (!test_bit(key[1], filter))
3380 set_bit(key[1], filter);
3383 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3385 unsigned long *filter;
3386 int gen = filter_gen_from_seq(seq);
3388 filter = lruvec->mm_state.filters[gen];
3390 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3394 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3395 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3396 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3399 /******************************************************************************
3401 ******************************************************************************/
3403 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3405 static struct lru_gen_mm_list mm_list = {
3406 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3407 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3412 return &memcg->mm_list;
3414 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3419 void lru_gen_add_mm(struct mm_struct *mm)
3422 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3423 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3425 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3427 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3428 mm->lru_gen.memcg = memcg;
3430 spin_lock(&mm_list->lock);
3432 for_each_node_state(nid, N_MEMORY) {
3433 struct lruvec *lruvec = get_lruvec(memcg, nid);
3435 /* the first addition since the last iteration */
3436 if (lruvec->mm_state.tail == &mm_list->fifo)
3437 lruvec->mm_state.tail = &mm->lru_gen.list;
3440 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3442 spin_unlock(&mm_list->lock);
3445 void lru_gen_del_mm(struct mm_struct *mm)
3448 struct lru_gen_mm_list *mm_list;
3449 struct mem_cgroup *memcg = NULL;
3451 if (list_empty(&mm->lru_gen.list))
3455 memcg = mm->lru_gen.memcg;
3457 mm_list = get_mm_list(memcg);
3459 spin_lock(&mm_list->lock);
3461 for_each_node(nid) {
3462 struct lruvec *lruvec = get_lruvec(memcg, nid);
3464 /* where the current iteration continues after */
3465 if (lruvec->mm_state.head == &mm->lru_gen.list)
3466 lruvec->mm_state.head = lruvec->mm_state.head->prev;
3468 /* where the last iteration ended before */
3469 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3470 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3473 list_del_init(&mm->lru_gen.list);
3475 spin_unlock(&mm_list->lock);
3478 mem_cgroup_put(mm->lru_gen.memcg);
3479 mm->lru_gen.memcg = NULL;
3484 void lru_gen_migrate_mm(struct mm_struct *mm)
3486 struct mem_cgroup *memcg;
3487 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3489 VM_WARN_ON_ONCE(task->mm != mm);
3490 lockdep_assert_held(&task->alloc_lock);
3492 /* for mm_update_next_owner() */
3493 if (mem_cgroup_disabled())
3496 /* migration can happen before addition */
3497 if (!mm->lru_gen.memcg)
3501 memcg = mem_cgroup_from_task(task);
3503 if (memcg == mm->lru_gen.memcg)
3506 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3513 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3518 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3521 hist = lru_hist_from_seq(walk->max_seq);
3523 for (i = 0; i < NR_MM_STATS; i++) {
3524 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3525 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3526 walk->mm_stats[i] = 0;
3530 if (NR_HIST_GENS > 1 && last) {
3531 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3533 for (i = 0; i < NR_MM_STATS; i++)
3534 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3538 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3541 unsigned long size = 0;
3542 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3543 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3545 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3548 clear_bit(key, &mm->lru_gen.bitmap);
3550 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3551 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3552 get_mm_counter(mm, MM_ANONPAGES) +
3553 get_mm_counter(mm, MM_SHMEMPAGES);
3556 if (size < MIN_LRU_BATCH)
3559 return !mmget_not_zero(mm);
3562 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3563 struct mm_struct **iter)
3567 struct mm_struct *mm = NULL;
3568 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3569 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3570 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3573 * mm_state->seq is incremented after each iteration of mm_list. There
3574 * are three interesting cases for this page table walker:
3575 * 1. It tries to start a new iteration with a stale max_seq: there is
3576 * nothing left to do.
3577 * 2. It started the next iteration: it needs to reset the Bloom filter
3578 * so that a fresh set of PTE tables can be recorded.
3579 * 3. It ended the current iteration: it needs to reset the mm stats
3580 * counters and tell its caller to increment max_seq.
3582 spin_lock(&mm_list->lock);
3584 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3586 if (walk->max_seq <= mm_state->seq)
3589 if (!mm_state->head)
3590 mm_state->head = &mm_list->fifo;
3592 if (mm_state->head == &mm_list->fifo)
3596 mm_state->head = mm_state->head->next;
3597 if (mm_state->head == &mm_list->fifo) {
3598 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3603 /* force scan for those added after the last iteration */
3604 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3605 mm_state->tail = mm_state->head->next;
3606 walk->force_scan = true;
3609 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3610 if (should_skip_mm(mm, walk))
3615 reset_mm_stats(lruvec, walk, last);
3617 spin_unlock(&mm_list->lock);
3620 reset_bloom_filter(lruvec, walk->max_seq + 1);
3630 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3632 bool success = false;
3633 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3634 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3635 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3637 spin_lock(&mm_list->lock);
3639 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3641 if (max_seq > mm_state->seq) {
3642 mm_state->head = NULL;
3643 mm_state->tail = NULL;
3644 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3645 reset_mm_stats(lruvec, NULL, true);
3649 spin_unlock(&mm_list->lock);
3654 /******************************************************************************
3656 ******************************************************************************/
3659 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3661 * The P term is refaulted/(evicted+protected) from a tier in the generation
3662 * currently being evicted; the I term is the exponential moving average of the
3663 * P term over the generations previously evicted, using the smoothing factor
3664 * 1/2; the D term isn't supported.
3666 * The setpoint (SP) is always the first tier of one type; the process variable
3667 * (PV) is either any tier of the other type or any other tier of the same
3670 * The error is the difference between the SP and the PV; the correction is to
3671 * turn off protection when SP>PV or turn on protection when SP<PV.
3673 * For future optimizations:
3674 * 1. The D term may discount the other two terms over time so that long-lived
3675 * generations can resist stale information.
3678 unsigned long refaulted;
3679 unsigned long total;
3683 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3684 struct ctrl_pos *pos)
3686 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3687 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3689 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3690 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3691 pos->total = lrugen->avg_total[type][tier] +
3692 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3694 pos->total += lrugen->protected[hist][type][tier - 1];
3698 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3701 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3702 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3703 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3705 lockdep_assert_held(&lruvec->lru_lock);
3707 if (!carryover && !clear)
3710 hist = lru_hist_from_seq(seq);
3712 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3716 sum = lrugen->avg_refaulted[type][tier] +
3717 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3718 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3720 sum = lrugen->avg_total[type][tier] +
3721 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3723 sum += lrugen->protected[hist][type][tier - 1];
3724 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3728 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3729 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3731 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3736 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3739 * Return true if the PV has a limited number of refaults or a lower
3740 * refaulted/total than the SP.
3742 return pv->refaulted < MIN_LRU_BATCH ||
3743 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3744 (sp->refaulted + 1) * pv->total * pv->gain;
3747 /******************************************************************************
3749 ******************************************************************************/
3751 /* promote pages accessed through page tables */
3752 static int folio_update_gen(struct folio *folio, int gen)
3754 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3756 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3757 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3760 /* lru_gen_del_folio() has isolated this page? */
3761 if (!(old_flags & LRU_GEN_MASK)) {
3762 /* for shrink_folio_list() */
3763 new_flags = old_flags | BIT(PG_referenced);
3767 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3768 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3769 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3771 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3774 /* protect pages accessed multiple times through file descriptors */
3775 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3777 int type = folio_is_file_lru(folio);
3778 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3779 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3780 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3782 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3785 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3786 /* folio_update_gen() has promoted this page? */
3787 if (new_gen >= 0 && new_gen != old_gen)
3790 new_gen = (old_gen + 1) % MAX_NR_GENS;
3792 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3793 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3794 /* for folio_end_writeback() */
3796 new_flags |= BIT(PG_reclaim);
3797 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3799 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3804 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3805 int old_gen, int new_gen)
3807 int type = folio_is_file_lru(folio);
3808 int zone = folio_zonenum(folio);
3809 int delta = folio_nr_pages(folio);
3811 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3812 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3816 walk->nr_pages[old_gen][type][zone] -= delta;
3817 walk->nr_pages[new_gen][type][zone] += delta;
3820 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3822 int gen, type, zone;
3823 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3827 for_each_gen_type_zone(gen, type, zone) {
3828 enum lru_list lru = type * LRU_INACTIVE_FILE;
3829 int delta = walk->nr_pages[gen][type][zone];
3834 walk->nr_pages[gen][type][zone] = 0;
3835 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3836 lrugen->nr_pages[gen][type][zone] + delta);
3838 if (lru_gen_is_active(lruvec, gen))
3840 __update_lru_size(lruvec, lru, zone, delta);
3844 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3846 struct address_space *mapping;
3847 struct vm_area_struct *vma = args->vma;
3848 struct lru_gen_mm_walk *walk = args->private;
3850 if (!vma_is_accessible(vma))
3853 if (is_vm_hugetlb_page(vma))
3856 if (!vma_has_recency(vma))
3859 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3862 if (vma == get_gate_vma(vma->vm_mm))
3865 if (vma_is_anonymous(vma))
3866 return !walk->can_swap;
3868 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3871 mapping = vma->vm_file->f_mapping;
3872 if (mapping_unevictable(mapping))
3875 if (shmem_mapping(mapping))
3876 return !walk->can_swap;
3878 /* to exclude special mappings like dax, etc. */
3879 return !mapping->a_ops->read_folio;
3883 * Some userspace memory allocators map many single-page VMAs. Instead of
3884 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3885 * table to reduce zigzags and improve cache performance.
3887 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3888 unsigned long *vm_start, unsigned long *vm_end)
3890 unsigned long start = round_up(*vm_end, size);
3891 unsigned long end = (start | ~mask) + 1;
3892 VMA_ITERATOR(vmi, args->mm, start);
3894 VM_WARN_ON_ONCE(mask & size);
3895 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3897 for_each_vma(vmi, args->vma) {
3898 if (end && end <= args->vma->vm_start)
3901 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3904 *vm_start = max(start, args->vma->vm_start);
3905 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3913 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3915 unsigned long pfn = pte_pfn(pte);
3917 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3919 if (!pte_present(pte) || is_zero_pfn(pfn))
3922 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3925 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3931 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3932 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3934 unsigned long pfn = pmd_pfn(pmd);
3936 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3938 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3941 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3944 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3951 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3952 struct pglist_data *pgdat, bool can_swap)
3954 struct folio *folio;
3956 /* try to avoid unnecessary memory loads */
3957 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3960 folio = pfn_folio(pfn);
3961 if (folio_nid(folio) != pgdat->node_id)
3964 if (folio_memcg_rcu(folio) != memcg)
3967 /* file VMAs can contain anon pages from COW */
3968 if (!folio_is_file_lru(folio) && !can_swap)
3974 static bool suitable_to_scan(int total, int young)
3976 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3978 /* suitable if the average number of young PTEs per cacheline is >=1 */
3979 return young * n >= total;
3982 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3983 struct mm_walk *args)
3991 struct lru_gen_mm_walk *walk = args->private;
3992 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3993 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3994 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3996 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3998 ptl = pte_lockptr(args->mm, pmd);
3999 if (!spin_trylock(ptl))
4002 arch_enter_lazy_mmu_mode();
4004 pte = pte_offset_map(pmd, start & PMD_MASK);
4006 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
4008 struct folio *folio;
4011 walk->mm_stats[MM_LEAF_TOTAL]++;
4013 pfn = get_pte_pfn(pte[i], args->vma, addr);
4017 if (!pte_young(pte[i])) {
4018 walk->mm_stats[MM_LEAF_OLD]++;
4022 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4026 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
4027 VM_WARN_ON_ONCE(true);
4030 walk->mm_stats[MM_LEAF_YOUNG]++;
4032 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4033 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4034 !folio_test_swapcache(folio)))
4035 folio_mark_dirty(folio);
4037 old_gen = folio_update_gen(folio, new_gen);
4038 if (old_gen >= 0 && old_gen != new_gen)
4039 update_batch_size(walk, folio, old_gen, new_gen);
4042 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4047 arch_leave_lazy_mmu_mode();
4050 return suitable_to_scan(total, young);
4053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4054 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4055 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4060 struct lru_gen_mm_walk *walk = args->private;
4061 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4062 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4063 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4065 VM_WARN_ON_ONCE(pud_leaf(*pud));
4067 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4070 bitmap_zero(bitmap, MIN_LRU_BATCH);
4074 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4075 if (i && i <= MIN_LRU_BATCH) {
4076 __set_bit(i - 1, bitmap);
4080 pmd = pmd_offset(pud, *first);
4082 ptl = pmd_lockptr(args->mm, pmd);
4083 if (!spin_trylock(ptl))
4086 arch_enter_lazy_mmu_mode();
4090 struct folio *folio;
4092 /* don't round down the first address */
4093 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4095 pfn = get_pmd_pfn(pmd[i], vma, addr);
4099 if (!pmd_trans_huge(pmd[i])) {
4100 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4101 pmdp_test_and_clear_young(vma, addr, pmd + i);
4105 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4109 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4112 walk->mm_stats[MM_LEAF_YOUNG]++;
4114 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4115 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4116 !folio_test_swapcache(folio)))
4117 folio_mark_dirty(folio);
4119 old_gen = folio_update_gen(folio, new_gen);
4120 if (old_gen >= 0 && old_gen != new_gen)
4121 update_batch_size(walk, folio, old_gen, new_gen);
4123 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4124 } while (i <= MIN_LRU_BATCH);
4126 arch_leave_lazy_mmu_mode();
4132 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4133 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4138 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4139 struct mm_walk *args)
4145 struct vm_area_struct *vma;
4146 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4147 unsigned long first = -1;
4148 struct lru_gen_mm_walk *walk = args->private;
4150 VM_WARN_ON_ONCE(pud_leaf(*pud));
4153 * Finish an entire PMD in two passes: the first only reaches to PTE
4154 * tables to avoid taking the PMD lock; the second, if necessary, takes
4155 * the PMD lock to clear the accessed bit in PMD entries.
4157 pmd = pmd_offset(pud, start & PUD_MASK);
4159 /* walk_pte_range() may call get_next_vma() */
4161 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4162 pmd_t val = pmdp_get_lockless(pmd + i);
4164 next = pmd_addr_end(addr, end);
4166 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4167 walk->mm_stats[MM_LEAF_TOTAL]++;
4171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4172 if (pmd_trans_huge(val)) {
4173 unsigned long pfn = pmd_pfn(val);
4174 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4176 walk->mm_stats[MM_LEAF_TOTAL]++;
4178 if (!pmd_young(val)) {
4179 walk->mm_stats[MM_LEAF_OLD]++;
4183 /* try to avoid unnecessary memory loads */
4184 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4187 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4191 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4193 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4194 if (!pmd_young(val))
4197 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4200 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4203 walk->mm_stats[MM_NONLEAF_FOUND]++;
4205 if (!walk_pte_range(&val, addr, next, args))
4208 walk->mm_stats[MM_NONLEAF_ADDED]++;
4210 /* carry over to the next generation */
4211 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4214 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4216 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4220 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4221 struct mm_walk *args)
4227 struct lru_gen_mm_walk *walk = args->private;
4229 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4231 pud = pud_offset(p4d, start & P4D_MASK);
4233 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4234 pud_t val = READ_ONCE(pud[i]);
4236 next = pud_addr_end(addr, end);
4238 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4241 walk_pmd_range(&val, addr, next, args);
4243 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4244 end = (addr | ~PUD_MASK) + 1;
4249 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4252 end = round_up(end, P4D_SIZE);
4254 if (!end || !args->vma)
4257 walk->next_addr = max(end, args->vma->vm_start);
4262 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4264 static const struct mm_walk_ops mm_walk_ops = {
4265 .test_walk = should_skip_vma,
4266 .p4d_entry = walk_pud_range,
4270 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4272 walk->next_addr = FIRST_USER_ADDRESS;
4275 DEFINE_MAX_SEQ(lruvec);
4279 /* another thread might have called inc_max_seq() */
4280 if (walk->max_seq != max_seq)
4283 /* folio_update_gen() requires stable folio_memcg() */
4284 if (!mem_cgroup_trylock_pages(memcg))
4287 /* the caller might be holding the lock for write */
4288 if (mmap_read_trylock(mm)) {
4289 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4291 mmap_read_unlock(mm);
4294 mem_cgroup_unlock_pages();
4296 if (walk->batched) {
4297 spin_lock_irq(&lruvec->lru_lock);
4298 reset_batch_size(lruvec, walk);
4299 spin_unlock_irq(&lruvec->lru_lock);
4303 } while (err == -EAGAIN);
4306 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4308 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4310 if (pgdat && current_is_kswapd()) {
4311 VM_WARN_ON_ONCE(walk);
4313 walk = &pgdat->mm_walk;
4314 } else if (!walk && force_alloc) {
4315 VM_WARN_ON_ONCE(current_is_kswapd());
4317 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4320 current->reclaim_state->mm_walk = walk;
4325 static void clear_mm_walk(void)
4327 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4329 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4330 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4332 current->reclaim_state->mm_walk = NULL;
4334 if (!current_is_kswapd())
4338 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4341 int remaining = MAX_LRU_BATCH;
4342 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4343 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4345 if (type == LRU_GEN_ANON && !can_swap)
4348 /* prevent cold/hot inversion if force_scan is true */
4349 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4350 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4352 while (!list_empty(head)) {
4353 struct folio *folio = lru_to_folio(head);
4355 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4356 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4357 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4358 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4360 new_gen = folio_inc_gen(lruvec, folio, false);
4361 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4368 reset_ctrl_pos(lruvec, type, true);
4369 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4374 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4376 int gen, type, zone;
4377 bool success = false;
4378 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4379 DEFINE_MIN_SEQ(lruvec);
4381 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4383 /* find the oldest populated generation */
4384 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4385 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4386 gen = lru_gen_from_seq(min_seq[type]);
4388 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4389 if (!list_empty(&lrugen->folios[gen][type][zone]))
4399 /* see the comment on lru_gen_folio */
4401 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4402 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4405 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4406 if (min_seq[type] == lrugen->min_seq[type])
4409 reset_ctrl_pos(lruvec, type, true);
4410 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4417 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4421 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4423 spin_lock_irq(&lruvec->lru_lock);
4425 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4427 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4428 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4431 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4433 while (!inc_min_seq(lruvec, type, can_swap)) {
4434 spin_unlock_irq(&lruvec->lru_lock);
4436 spin_lock_irq(&lruvec->lru_lock);
4441 * Update the active/inactive LRU sizes for compatibility. Both sides of
4442 * the current max_seq need to be covered, since max_seq+1 can overlap
4443 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4444 * overlap, cold/hot inversion happens.
4446 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4447 next = lru_gen_from_seq(lrugen->max_seq + 1);
4449 for (type = 0; type < ANON_AND_FILE; type++) {
4450 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4451 enum lru_list lru = type * LRU_INACTIVE_FILE;
4452 long delta = lrugen->nr_pages[prev][type][zone] -
4453 lrugen->nr_pages[next][type][zone];
4458 __update_lru_size(lruvec, lru, zone, delta);
4459 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4463 for (type = 0; type < ANON_AND_FILE; type++)
4464 reset_ctrl_pos(lruvec, type, false);
4466 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4467 /* make sure preceding modifications appear */
4468 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4470 spin_unlock_irq(&lruvec->lru_lock);
4473 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4474 struct scan_control *sc, bool can_swap, bool force_scan)
4477 struct lru_gen_mm_walk *walk;
4478 struct mm_struct *mm = NULL;
4479 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4481 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4483 /* see the comment in iterate_mm_list() */
4484 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4490 * If the hardware doesn't automatically set the accessed bit, fallback
4491 * to lru_gen_look_around(), which only clears the accessed bit in a
4492 * handful of PTEs. Spreading the work out over a period of time usually
4493 * is less efficient, but it avoids bursty page faults.
4495 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4496 success = iterate_mm_list_nowalk(lruvec, max_seq);
4500 walk = set_mm_walk(NULL, true);
4502 success = iterate_mm_list_nowalk(lruvec, max_seq);
4506 walk->lruvec = lruvec;
4507 walk->max_seq = max_seq;
4508 walk->can_swap = can_swap;
4509 walk->force_scan = force_scan;
4512 success = iterate_mm_list(lruvec, walk, &mm);
4514 walk_mm(lruvec, mm, walk);
4518 inc_max_seq(lruvec, can_swap, force_scan);
4523 /******************************************************************************
4524 * working set protection
4525 ******************************************************************************/
4527 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4529 int gen, type, zone;
4530 unsigned long total = 0;
4531 bool can_swap = get_swappiness(lruvec, sc);
4532 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4533 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4534 DEFINE_MAX_SEQ(lruvec);
4535 DEFINE_MIN_SEQ(lruvec);
4537 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4540 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4541 gen = lru_gen_from_seq(seq);
4543 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4544 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4548 /* whether the size is big enough to be helpful */
4549 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4552 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4553 unsigned long min_ttl)
4556 unsigned long birth;
4557 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4558 DEFINE_MIN_SEQ(lruvec);
4560 /* see the comment on lru_gen_folio */
4561 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4562 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4564 if (time_is_after_jiffies(birth + min_ttl))
4567 if (!lruvec_is_sizable(lruvec, sc))
4570 mem_cgroup_calculate_protection(NULL, memcg);
4572 return !mem_cgroup_below_min(NULL, memcg);
4575 /* to protect the working set of the last N jiffies */
4576 static unsigned long lru_gen_min_ttl __read_mostly;
4578 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4580 struct mem_cgroup *memcg;
4581 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4583 VM_WARN_ON_ONCE(!current_is_kswapd());
4585 /* check the order to exclude compaction-induced reclaim */
4586 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4589 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4591 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4593 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4594 mem_cgroup_iter_break(NULL, memcg);
4599 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4602 * The main goal is to OOM kill if every generation from all memcgs is
4603 * younger than min_ttl. However, another possibility is all memcgs are
4604 * either too small or below min.
4606 if (mutex_trylock(&oom_lock)) {
4607 struct oom_control oc = {
4608 .gfp_mask = sc->gfp_mask,
4613 mutex_unlock(&oom_lock);
4617 /******************************************************************************
4618 * rmap/PT walk feedback
4619 ******************************************************************************/
4622 * This function exploits spatial locality when shrink_folio_list() walks the
4623 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4624 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4625 * the PTE table to the Bloom filter. This forms a feedback loop between the
4626 * eviction and the aging.
4628 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4631 unsigned long start;
4633 struct lru_gen_mm_walk *walk;
4635 pte_t *pte = pvmw->pte;
4636 unsigned long addr = pvmw->address;
4637 struct folio *folio = pfn_folio(pvmw->pfn);
4638 struct mem_cgroup *memcg = folio_memcg(folio);
4639 struct pglist_data *pgdat = folio_pgdat(folio);
4640 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4641 DEFINE_MAX_SEQ(lruvec);
4642 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4644 lockdep_assert_held(pvmw->ptl);
4645 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4647 if (spin_is_contended(pvmw->ptl))
4650 /* avoid taking the LRU lock under the PTL when possible */
4651 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4653 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4654 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4656 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4657 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4658 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4659 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4660 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4662 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4663 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4667 /* folio_update_gen() requires stable folio_memcg() */
4668 if (!mem_cgroup_trylock_pages(memcg))
4671 arch_enter_lazy_mmu_mode();
4673 pte -= (addr - start) / PAGE_SIZE;
4675 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4678 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4682 if (!pte_young(pte[i]))
4685 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4689 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4690 VM_WARN_ON_ONCE(true);
4694 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4695 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4696 !folio_test_swapcache(folio)))
4697 folio_mark_dirty(folio);
4700 old_gen = folio_update_gen(folio, new_gen);
4701 if (old_gen >= 0 && old_gen != new_gen)
4702 update_batch_size(walk, folio, old_gen, new_gen);
4707 old_gen = folio_lru_gen(folio);
4709 folio_set_referenced(folio);
4710 else if (old_gen != new_gen)
4711 folio_activate(folio);
4714 arch_leave_lazy_mmu_mode();
4715 mem_cgroup_unlock_pages();
4717 /* feedback from rmap walkers to page table walkers */
4718 if (suitable_to_scan(i, young))
4719 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4722 /******************************************************************************
4724 ******************************************************************************/
4726 /* see the comment on MEMCG_NR_GENS */
4737 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4739 return READ_ONCE(lruvec->lrugen.seg);
4742 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4746 int bin = get_random_u32_below(MEMCG_NR_BINS);
4747 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4749 spin_lock(&pgdat->memcg_lru.lock);
4751 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4754 new = old = lruvec->lrugen.gen;
4756 /* see the comment on MEMCG_NR_GENS */
4757 if (op == MEMCG_LRU_HEAD)
4758 seg = MEMCG_LRU_HEAD;
4759 else if (op == MEMCG_LRU_TAIL)
4760 seg = MEMCG_LRU_TAIL;
4761 else if (op == MEMCG_LRU_OLD)
4762 new = get_memcg_gen(pgdat->memcg_lru.seq);
4763 else if (op == MEMCG_LRU_YOUNG)
4764 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4766 VM_WARN_ON_ONCE(true);
4768 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4770 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4771 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4773 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4775 pgdat->memcg_lru.nr_memcgs[old]--;
4776 pgdat->memcg_lru.nr_memcgs[new]++;
4778 lruvec->lrugen.gen = new;
4779 WRITE_ONCE(lruvec->lrugen.seg, seg);
4781 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4782 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4784 spin_unlock(&pgdat->memcg_lru.lock);
4787 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4791 int bin = get_random_u32_below(MEMCG_NR_BINS);
4793 for_each_node(nid) {
4794 struct pglist_data *pgdat = NODE_DATA(nid);
4795 struct lruvec *lruvec = get_lruvec(memcg, nid);
4797 spin_lock(&pgdat->memcg_lru.lock);
4799 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4801 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4803 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4804 pgdat->memcg_lru.nr_memcgs[gen]++;
4806 lruvec->lrugen.gen = gen;
4808 spin_unlock(&pgdat->memcg_lru.lock);
4812 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4816 for_each_node(nid) {
4817 struct lruvec *lruvec = get_lruvec(memcg, nid);
4819 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4823 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4828 for_each_node(nid) {
4829 struct pglist_data *pgdat = NODE_DATA(nid);
4830 struct lruvec *lruvec = get_lruvec(memcg, nid);
4832 spin_lock(&pgdat->memcg_lru.lock);
4834 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4836 gen = lruvec->lrugen.gen;
4838 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4839 pgdat->memcg_lru.nr_memcgs[gen]--;
4841 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4842 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4844 spin_unlock(&pgdat->memcg_lru.lock);
4848 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4850 /* see the comment on MEMCG_NR_GENS */
4851 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4852 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4855 #else /* !CONFIG_MEMCG */
4857 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4864 /******************************************************************************
4866 ******************************************************************************/
4868 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4871 int gen = folio_lru_gen(folio);
4872 int type = folio_is_file_lru(folio);
4873 int zone = folio_zonenum(folio);
4874 int delta = folio_nr_pages(folio);
4875 int refs = folio_lru_refs(folio);
4876 int tier = lru_tier_from_refs(refs);
4877 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4879 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4882 if (!folio_evictable(folio)) {
4883 success = lru_gen_del_folio(lruvec, folio, true);
4884 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4885 folio_set_unevictable(folio);
4886 lruvec_add_folio(lruvec, folio);
4887 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4891 /* dirty lazyfree */
4892 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4893 success = lru_gen_del_folio(lruvec, folio, true);
4894 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4895 folio_set_swapbacked(folio);
4896 lruvec_add_folio_tail(lruvec, folio);
4901 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4902 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4907 if (tier > tier_idx) {
4908 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4910 gen = folio_inc_gen(lruvec, folio, false);
4911 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4913 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4914 lrugen->protected[hist][type][tier - 1] + delta);
4915 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4919 /* waiting for writeback */
4920 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4921 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4922 gen = folio_inc_gen(lruvec, folio, true);
4923 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4930 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4934 /* swapping inhibited */
4935 if (!(sc->gfp_mask & __GFP_IO) &&
4936 (folio_test_dirty(folio) ||
4937 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4940 /* raced with release_pages() */
4941 if (!folio_try_get(folio))
4944 /* raced with another isolation */
4945 if (!folio_test_clear_lru(folio)) {
4950 /* see the comment on MAX_NR_TIERS */
4951 if (!folio_test_referenced(folio))
4952 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4954 /* for shrink_folio_list() */
4955 folio_clear_reclaim(folio);
4956 folio_clear_referenced(folio);
4958 success = lru_gen_del_folio(lruvec, folio, true);
4959 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4964 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4965 int type, int tier, struct list_head *list)
4968 enum vm_event_item item;
4972 int remaining = MAX_LRU_BATCH;
4973 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4974 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4976 VM_WARN_ON_ONCE(!list_empty(list));
4978 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4981 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4983 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4986 struct list_head *head = &lrugen->folios[gen][type][zone];
4988 while (!list_empty(head)) {
4989 struct folio *folio = lru_to_folio(head);
4990 int delta = folio_nr_pages(folio);
4992 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4993 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4994 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4995 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4999 if (sort_folio(lruvec, folio, tier))
5001 else if (isolate_folio(lruvec, folio, sc)) {
5002 list_add(&folio->lru, list);
5005 list_move(&folio->lru, &moved);
5009 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5014 list_splice(&moved, head);
5015 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5018 if (!remaining || isolated >= MIN_LRU_BATCH)
5022 item = PGSCAN_KSWAPD + reclaimer_offset();
5023 if (!cgroup_reclaim(sc)) {
5024 __count_vm_events(item, isolated);
5025 __count_vm_events(PGREFILL, sorted);
5027 __count_memcg_events(memcg, item, isolated);
5028 __count_memcg_events(memcg, PGREFILL, sorted);
5029 __count_vm_events(PGSCAN_ANON + type, isolated);
5032 * There might not be eligible folios due to reclaim_idx. Check the
5033 * remaining to prevent livelock if it's not making progress.
5035 return isolated || !remaining ? scanned : 0;
5038 static int get_tier_idx(struct lruvec *lruvec, int type)
5041 struct ctrl_pos sp, pv;
5044 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5045 * This value is chosen because any other tier would have at least twice
5046 * as many refaults as the first tier.
5048 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5049 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5050 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5051 if (!positive_ctrl_err(&sp, &pv))
5058 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5061 struct ctrl_pos sp, pv;
5062 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5065 * Compare the first tier of anon with that of file to determine which
5066 * type to scan. Also need to compare other tiers of the selected type
5067 * with the first tier of the other type to determine the last tier (of
5068 * the selected type) to evict.
5070 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5071 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5072 type = positive_ctrl_err(&sp, &pv);
5074 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5075 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5076 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5077 if (!positive_ctrl_err(&sp, &pv))
5081 *tier_idx = tier - 1;
5086 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5087 int *type_scanned, struct list_head *list)
5093 DEFINE_MIN_SEQ(lruvec);
5096 * Try to make the obvious choice first. When anon and file are both
5097 * available from the same generation, interpret swappiness 1 as file
5098 * first and 200 as anon first.
5101 type = LRU_GEN_FILE;
5102 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5103 type = LRU_GEN_ANON;
5104 else if (swappiness == 1)
5105 type = LRU_GEN_FILE;
5106 else if (swappiness == 200)
5107 type = LRU_GEN_ANON;
5109 type = get_type_to_scan(lruvec, swappiness, &tier);
5111 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5113 tier = get_tier_idx(lruvec, type);
5115 scanned = scan_folios(lruvec, sc, type, tier, list);
5123 *type_scanned = type;
5128 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5135 struct folio *folio;
5137 enum vm_event_item item;
5138 struct reclaim_stat stat;
5139 struct lru_gen_mm_walk *walk;
5140 bool skip_retry = false;
5141 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5142 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5144 spin_lock_irq(&lruvec->lru_lock);
5146 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5148 scanned += try_to_inc_min_seq(lruvec, swappiness);
5150 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5153 spin_unlock_irq(&lruvec->lru_lock);
5155 if (list_empty(&list))
5158 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5159 sc->nr_reclaimed += reclaimed;
5161 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5162 if (!folio_evictable(folio)) {
5163 list_del(&folio->lru);
5164 folio_putback_lru(folio);
5168 if (folio_test_reclaim(folio) &&
5169 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5170 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5171 if (folio_test_workingset(folio))
5172 folio_set_referenced(folio);
5176 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5177 folio_mapped(folio) || folio_test_locked(folio) ||
5178 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5179 /* don't add rejected folios to the oldest generation */
5180 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5185 /* retry folios that may have missed folio_rotate_reclaimable() */
5186 list_move(&folio->lru, &clean);
5187 sc->nr_scanned -= folio_nr_pages(folio);
5190 spin_lock_irq(&lruvec->lru_lock);
5192 move_folios_to_lru(lruvec, &list);
5194 walk = current->reclaim_state->mm_walk;
5195 if (walk && walk->batched)
5196 reset_batch_size(lruvec, walk);
5198 item = PGSTEAL_KSWAPD + reclaimer_offset();
5199 if (!cgroup_reclaim(sc))
5200 __count_vm_events(item, reclaimed);
5201 __count_memcg_events(memcg, item, reclaimed);
5202 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5204 spin_unlock_irq(&lruvec->lru_lock);
5206 mem_cgroup_uncharge_list(&list);
5207 free_unref_page_list(&list);
5209 INIT_LIST_HEAD(&list);
5210 list_splice_init(&clean, &list);
5212 if (!list_empty(&list)) {
5220 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5221 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5223 int gen, type, zone;
5224 unsigned long old = 0;
5225 unsigned long young = 0;
5226 unsigned long total = 0;
5227 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5228 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5229 DEFINE_MIN_SEQ(lruvec);
5231 /* whether this lruvec is completely out of cold folios */
5232 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5237 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5240 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5241 unsigned long size = 0;
5243 gen = lru_gen_from_seq(seq);
5245 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5246 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5251 else if (seq + MIN_NR_GENS == max_seq)
5256 /* try to scrape all its memory if this memcg was deleted */
5257 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5260 * The aging tries to be lazy to reduce the overhead, while the eviction
5261 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5262 * ideal number of generations is MIN_NR_GENS+1.
5264 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5268 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5269 * of the total number of pages for each generation. A reasonable range
5270 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5271 * aging cares about the upper bound of hot pages, while the eviction
5272 * cares about the lower bound of cold pages.
5274 if (young * MIN_NR_GENS > total)
5276 if (old * (MIN_NR_GENS + 2) < total)
5283 * For future optimizations:
5284 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5287 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5289 unsigned long nr_to_scan;
5290 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5291 DEFINE_MAX_SEQ(lruvec);
5293 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5296 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5299 /* skip the aging path at the default priority */
5300 if (sc->priority == DEF_PRIORITY)
5303 /* skip this lruvec as it's low on cold folios */
5304 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5307 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5309 /* don't abort memcg reclaim to ensure fairness */
5310 if (!global_reclaim(sc))
5313 return max(sc->nr_to_reclaim, compact_gap(sc->order));
5316 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5319 unsigned long scanned = 0;
5320 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5321 int swappiness = get_swappiness(lruvec, sc);
5323 /* clean file folios are more likely to exist */
5324 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5330 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5331 if (nr_to_scan <= 0)
5334 delta = evict_folios(lruvec, sc, swappiness);
5339 if (scanned >= nr_to_scan)
5342 if (sc->nr_reclaimed >= nr_to_reclaim)
5348 /* whether try_to_inc_max_seq() was successful */
5349 return nr_to_scan < 0;
5352 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5355 unsigned long scanned = sc->nr_scanned;
5356 unsigned long reclaimed = sc->nr_reclaimed;
5357 int seg = lru_gen_memcg_seg(lruvec);
5358 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5359 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5361 /* see the comment on MEMCG_NR_GENS */
5362 if (!lruvec_is_sizable(lruvec, sc))
5363 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5365 mem_cgroup_calculate_protection(NULL, memcg);
5367 if (mem_cgroup_below_min(NULL, memcg))
5368 return MEMCG_LRU_YOUNG;
5370 if (mem_cgroup_below_low(NULL, memcg)) {
5371 /* see the comment on MEMCG_NR_GENS */
5372 if (seg != MEMCG_LRU_TAIL)
5373 return MEMCG_LRU_TAIL;
5375 memcg_memory_event(memcg, MEMCG_LOW);
5378 success = try_to_shrink_lruvec(lruvec, sc);
5380 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5383 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5384 sc->nr_reclaimed - reclaimed);
5386 flush_reclaim_state(sc);
5388 return success ? MEMCG_LRU_YOUNG : 0;
5393 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5399 struct lruvec *lruvec;
5400 struct lru_gen_folio *lrugen;
5401 struct mem_cgroup *memcg;
5402 const struct hlist_nulls_node *pos;
5403 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5405 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5409 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5413 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5415 lru_gen_rotate_memcg(lruvec, op);
5417 mem_cgroup_put(memcg);
5419 lruvec = container_of(lrugen, struct lruvec, lrugen);
5420 memcg = lruvec_memcg(lruvec);
5422 if (!mem_cgroup_tryget(memcg)) {
5430 op = shrink_one(lruvec, sc);
5434 if (sc->nr_reclaimed >= nr_to_reclaim)
5441 lru_gen_rotate_memcg(lruvec, op);
5443 mem_cgroup_put(memcg);
5445 if (sc->nr_reclaimed >= nr_to_reclaim)
5448 /* restart if raced with lru_gen_rotate_memcg() */
5449 if (gen != get_nulls_value(pos))
5452 /* try the rest of the bins of the current generation */
5453 bin = get_memcg_bin(bin + 1);
5454 if (bin != first_bin)
5458 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5460 struct blk_plug plug;
5462 VM_WARN_ON_ONCE(global_reclaim(sc));
5463 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5467 blk_start_plug(&plug);
5469 set_mm_walk(NULL, sc->proactive);
5471 if (try_to_shrink_lruvec(lruvec, sc))
5472 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5476 blk_finish_plug(&plug);
5479 #else /* !CONFIG_MEMCG */
5481 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5486 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5493 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5496 unsigned long reclaimable;
5497 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5499 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5502 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5503 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5504 * estimated reclaimed_to_scanned_ratio = inactive / total.
5506 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5507 if (get_swappiness(lruvec, sc))
5508 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5510 reclaimable /= MEMCG_NR_GENS;
5512 /* round down reclaimable and round up sc->nr_to_reclaim */
5513 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5515 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5518 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5520 struct blk_plug plug;
5521 unsigned long reclaimed = sc->nr_reclaimed;
5523 VM_WARN_ON_ONCE(!global_reclaim(sc));
5526 * Unmapped clean folios are already prioritized. Scanning for more of
5527 * them is likely futile and can cause high reclaim latency when there
5528 * is a large number of memcgs.
5530 if (!sc->may_writepage || !sc->may_unmap)
5535 blk_start_plug(&plug);
5537 set_mm_walk(pgdat, sc->proactive);
5539 set_initial_priority(pgdat, sc);
5541 if (current_is_kswapd())
5542 sc->nr_reclaimed = 0;
5544 if (mem_cgroup_disabled())
5545 shrink_one(&pgdat->__lruvec, sc);
5547 shrink_many(pgdat, sc);
5549 if (current_is_kswapd())
5550 sc->nr_reclaimed += reclaimed;
5554 blk_finish_plug(&plug);
5556 /* kswapd should never fail */
5557 pgdat->kswapd_failures = 0;
5560 /******************************************************************************
5562 ******************************************************************************/
5564 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5566 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5568 if (lrugen->enabled) {
5571 for_each_evictable_lru(lru) {
5572 if (!list_empty(&lruvec->lists[lru]))
5576 int gen, type, zone;
5578 for_each_gen_type_zone(gen, type, zone) {
5579 if (!list_empty(&lrugen->folios[gen][type][zone]))
5587 static bool fill_evictable(struct lruvec *lruvec)
5590 int remaining = MAX_LRU_BATCH;
5592 for_each_evictable_lru(lru) {
5593 int type = is_file_lru(lru);
5594 bool active = is_active_lru(lru);
5595 struct list_head *head = &lruvec->lists[lru];
5597 while (!list_empty(head)) {
5599 struct folio *folio = lru_to_folio(head);
5601 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5602 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5603 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5604 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5606 lruvec_del_folio(lruvec, folio);
5607 success = lru_gen_add_folio(lruvec, folio, false);
5608 VM_WARN_ON_ONCE(!success);
5618 static bool drain_evictable(struct lruvec *lruvec)
5620 int gen, type, zone;
5621 int remaining = MAX_LRU_BATCH;
5623 for_each_gen_type_zone(gen, type, zone) {
5624 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5626 while (!list_empty(head)) {
5628 struct folio *folio = lru_to_folio(head);
5630 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5631 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5632 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5633 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5635 success = lru_gen_del_folio(lruvec, folio, false);
5636 VM_WARN_ON_ONCE(!success);
5637 lruvec_add_folio(lruvec, folio);
5647 static void lru_gen_change_state(bool enabled)
5649 static DEFINE_MUTEX(state_mutex);
5651 struct mem_cgroup *memcg;
5656 mutex_lock(&state_mutex);
5658 if (enabled == lru_gen_enabled())
5662 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5664 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5666 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5670 for_each_node(nid) {
5671 struct lruvec *lruvec = get_lruvec(memcg, nid);
5673 spin_lock_irq(&lruvec->lru_lock);
5675 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5676 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5678 lruvec->lrugen.enabled = enabled;
5680 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5681 spin_unlock_irq(&lruvec->lru_lock);
5683 spin_lock_irq(&lruvec->lru_lock);
5686 spin_unlock_irq(&lruvec->lru_lock);
5690 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5692 mutex_unlock(&state_mutex);
5698 /******************************************************************************
5700 ******************************************************************************/
5702 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5704 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5707 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5708 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5709 const char *buf, size_t len)
5713 if (kstrtouint(buf, 0, &msecs))
5716 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5721 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5723 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5725 unsigned int caps = 0;
5727 if (get_cap(LRU_GEN_CORE))
5728 caps |= BIT(LRU_GEN_CORE);
5730 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5731 caps |= BIT(LRU_GEN_MM_WALK);
5733 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5734 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5736 return sysfs_emit(buf, "0x%04x\n", caps);
5739 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5740 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5741 const char *buf, size_t len)
5746 if (tolower(*buf) == 'n')
5748 else if (tolower(*buf) == 'y')
5750 else if (kstrtouint(buf, 0, &caps))
5753 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5754 bool enabled = caps & BIT(i);
5756 if (i == LRU_GEN_CORE)
5757 lru_gen_change_state(enabled);
5759 static_branch_enable(&lru_gen_caps[i]);
5761 static_branch_disable(&lru_gen_caps[i]);
5767 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5769 static struct attribute *lru_gen_attrs[] = {
5770 &lru_gen_min_ttl_attr.attr,
5771 &lru_gen_enabled_attr.attr,
5775 static const struct attribute_group lru_gen_attr_group = {
5777 .attrs = lru_gen_attrs,
5780 /******************************************************************************
5782 ******************************************************************************/
5784 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5786 struct mem_cgroup *memcg;
5787 loff_t nr_to_skip = *pos;
5789 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5791 return ERR_PTR(-ENOMEM);
5793 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5797 for_each_node_state(nid, N_MEMORY) {
5799 return get_lruvec(memcg, nid);
5801 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5806 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5808 if (!IS_ERR_OR_NULL(v))
5809 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5815 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5817 int nid = lruvec_pgdat(v)->node_id;
5818 struct mem_cgroup *memcg = lruvec_memcg(v);
5822 nid = next_memory_node(nid);
5823 if (nid == MAX_NUMNODES) {
5824 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5828 nid = first_memory_node;
5831 return get_lruvec(memcg, nid);
5834 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5835 unsigned long max_seq, unsigned long *min_seq,
5840 int hist = lru_hist_from_seq(seq);
5841 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5843 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5844 seq_printf(m, " %10d", tier);
5845 for (type = 0; type < ANON_AND_FILE; type++) {
5846 const char *s = " ";
5847 unsigned long n[3] = {};
5849 if (seq == max_seq) {
5851 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5852 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5853 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5855 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5856 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5858 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5861 for (i = 0; i < 3; i++)
5862 seq_printf(m, " %10lu%c", n[i], s[i]);
5868 for (i = 0; i < NR_MM_STATS; i++) {
5869 const char *s = " ";
5870 unsigned long n = 0;
5872 if (seq == max_seq && NR_HIST_GENS == 1) {
5874 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5875 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5877 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5880 seq_printf(m, " %10lu%c", n, s[i]);
5885 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5886 static int lru_gen_seq_show(struct seq_file *m, void *v)
5889 bool full = !debugfs_real_fops(m->file)->write;
5890 struct lruvec *lruvec = v;
5891 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5892 int nid = lruvec_pgdat(lruvec)->node_id;
5893 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5894 DEFINE_MAX_SEQ(lruvec);
5895 DEFINE_MIN_SEQ(lruvec);
5897 if (nid == first_memory_node) {
5898 const char *path = memcg ? m->private : "";
5902 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5904 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5907 seq_printf(m, " node %5d\n", nid);
5910 seq = min_seq[LRU_GEN_ANON];
5911 else if (max_seq >= MAX_NR_GENS)
5912 seq = max_seq - MAX_NR_GENS + 1;
5916 for (; seq <= max_seq; seq++) {
5918 int gen = lru_gen_from_seq(seq);
5919 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5921 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5923 for (type = 0; type < ANON_AND_FILE; type++) {
5924 unsigned long size = 0;
5925 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5927 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5928 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5930 seq_printf(m, " %10lu%c", size, mark);
5936 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5942 static const struct seq_operations lru_gen_seq_ops = {
5943 .start = lru_gen_seq_start,
5944 .stop = lru_gen_seq_stop,
5945 .next = lru_gen_seq_next,
5946 .show = lru_gen_seq_show,
5949 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5950 bool can_swap, bool force_scan)
5952 DEFINE_MAX_SEQ(lruvec);
5953 DEFINE_MIN_SEQ(lruvec);
5961 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5964 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5969 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5970 int swappiness, unsigned long nr_to_reclaim)
5972 DEFINE_MAX_SEQ(lruvec);
5974 if (seq + MIN_NR_GENS > max_seq)
5977 sc->nr_reclaimed = 0;
5979 while (!signal_pending(current)) {
5980 DEFINE_MIN_SEQ(lruvec);
5982 if (seq < min_seq[!swappiness])
5985 if (sc->nr_reclaimed >= nr_to_reclaim)
5988 if (!evict_folios(lruvec, sc, swappiness))
5997 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5998 struct scan_control *sc, int swappiness, unsigned long opt)
6000 struct lruvec *lruvec;
6002 struct mem_cgroup *memcg = NULL;
6004 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6007 if (!mem_cgroup_disabled()) {
6010 memcg = mem_cgroup_from_id(memcg_id);
6011 if (!mem_cgroup_tryget(memcg))
6020 if (memcg_id != mem_cgroup_id(memcg))
6023 lruvec = get_lruvec(memcg, nid);
6026 swappiness = get_swappiness(lruvec, sc);
6027 else if (swappiness > 200)
6032 err = run_aging(lruvec, seq, sc, swappiness, opt);
6035 err = run_eviction(lruvec, seq, sc, swappiness, opt);
6039 mem_cgroup_put(memcg);
6044 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6045 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6046 size_t len, loff_t *pos)
6051 struct blk_plug plug;
6053 struct scan_control sc = {
6054 .may_writepage = true,
6057 .reclaim_idx = MAX_NR_ZONES - 1,
6058 .gfp_mask = GFP_KERNEL,
6061 buf = kvmalloc(len + 1, GFP_KERNEL);
6065 if (copy_from_user(buf, src, len)) {
6070 set_task_reclaim_state(current, &sc.reclaim_state);
6071 flags = memalloc_noreclaim_save();
6072 blk_start_plug(&plug);
6073 if (!set_mm_walk(NULL, true)) {
6081 while ((cur = strsep(&next, ",;\n"))) {
6085 unsigned int memcg_id;
6088 unsigned int swappiness = -1;
6089 unsigned long opt = -1;
6091 cur = skip_spaces(cur);
6095 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6096 &seq, &end, &swappiness, &end, &opt, &end);
6097 if (n < 4 || cur[end]) {
6102 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6108 blk_finish_plug(&plug);
6109 memalloc_noreclaim_restore(flags);
6110 set_task_reclaim_state(current, NULL);
6117 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6119 return seq_open(file, &lru_gen_seq_ops);
6122 static const struct file_operations lru_gen_rw_fops = {
6123 .open = lru_gen_seq_open,
6125 .write = lru_gen_seq_write,
6126 .llseek = seq_lseek,
6127 .release = seq_release,
6130 static const struct file_operations lru_gen_ro_fops = {
6131 .open = lru_gen_seq_open,
6133 .llseek = seq_lseek,
6134 .release = seq_release,
6137 /******************************************************************************
6139 ******************************************************************************/
6141 void lru_gen_init_lruvec(struct lruvec *lruvec)
6144 int gen, type, zone;
6145 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6147 lrugen->max_seq = MIN_NR_GENS + 1;
6148 lrugen->enabled = lru_gen_enabled();
6150 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6151 lrugen->timestamps[i] = jiffies;
6153 for_each_gen_type_zone(gen, type, zone)
6154 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6156 lruvec->mm_state.seq = MIN_NR_GENS;
6161 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6165 spin_lock_init(&pgdat->memcg_lru.lock);
6167 for (i = 0; i < MEMCG_NR_GENS; i++) {
6168 for (j = 0; j < MEMCG_NR_BINS; j++)
6169 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6173 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6175 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6176 spin_lock_init(&memcg->mm_list.lock);
6179 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6184 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6186 for_each_node(nid) {
6187 struct lruvec *lruvec = get_lruvec(memcg, nid);
6189 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6190 sizeof(lruvec->lrugen.nr_pages)));
6192 lruvec->lrugen.list.next = LIST_POISON1;
6194 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6195 bitmap_free(lruvec->mm_state.filters[i]);
6196 lruvec->mm_state.filters[i] = NULL;
6201 #endif /* CONFIG_MEMCG */
6203 static int __init init_lru_gen(void)
6205 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6206 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6208 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6209 pr_err("lru_gen: failed to create sysfs group\n");
6211 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6212 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6216 late_initcall(init_lru_gen);
6218 #else /* !CONFIG_LRU_GEN */
6220 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6224 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6228 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6232 #endif /* CONFIG_LRU_GEN */
6234 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6236 unsigned long nr[NR_LRU_LISTS];
6237 unsigned long targets[NR_LRU_LISTS];
6238 unsigned long nr_to_scan;
6240 unsigned long nr_reclaimed = 0;
6241 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6242 bool proportional_reclaim;
6243 struct blk_plug plug;
6245 if (lru_gen_enabled() && !global_reclaim(sc)) {
6246 lru_gen_shrink_lruvec(lruvec, sc);
6250 get_scan_count(lruvec, sc, nr);
6252 /* Record the original scan target for proportional adjustments later */
6253 memcpy(targets, nr, sizeof(nr));
6256 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6257 * event that can occur when there is little memory pressure e.g.
6258 * multiple streaming readers/writers. Hence, we do not abort scanning
6259 * when the requested number of pages are reclaimed when scanning at
6260 * DEF_PRIORITY on the assumption that the fact we are direct
6261 * reclaiming implies that kswapd is not keeping up and it is best to
6262 * do a batch of work at once. For memcg reclaim one check is made to
6263 * abort proportional reclaim if either the file or anon lru has already
6264 * dropped to zero at the first pass.
6266 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6267 sc->priority == DEF_PRIORITY);
6269 blk_start_plug(&plug);
6270 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6271 nr[LRU_INACTIVE_FILE]) {
6272 unsigned long nr_anon, nr_file, percentage;
6273 unsigned long nr_scanned;
6275 for_each_evictable_lru(lru) {
6277 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6278 nr[lru] -= nr_to_scan;
6280 nr_reclaimed += shrink_list(lru, nr_to_scan,
6287 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6291 * For kswapd and memcg, reclaim at least the number of pages
6292 * requested. Ensure that the anon and file LRUs are scanned
6293 * proportionally what was requested by get_scan_count(). We
6294 * stop reclaiming one LRU and reduce the amount scanning
6295 * proportional to the original scan target.
6297 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6298 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6301 * It's just vindictive to attack the larger once the smaller
6302 * has gone to zero. And given the way we stop scanning the
6303 * smaller below, this makes sure that we only make one nudge
6304 * towards proportionality once we've got nr_to_reclaim.
6306 if (!nr_file || !nr_anon)
6309 if (nr_file > nr_anon) {
6310 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6311 targets[LRU_ACTIVE_ANON] + 1;
6313 percentage = nr_anon * 100 / scan_target;
6315 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6316 targets[LRU_ACTIVE_FILE] + 1;
6318 percentage = nr_file * 100 / scan_target;
6321 /* Stop scanning the smaller of the LRU */
6323 nr[lru + LRU_ACTIVE] = 0;
6326 * Recalculate the other LRU scan count based on its original
6327 * scan target and the percentage scanning already complete
6329 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6330 nr_scanned = targets[lru] - nr[lru];
6331 nr[lru] = targets[lru] * (100 - percentage) / 100;
6332 nr[lru] -= min(nr[lru], nr_scanned);
6335 nr_scanned = targets[lru] - nr[lru];
6336 nr[lru] = targets[lru] * (100 - percentage) / 100;
6337 nr[lru] -= min(nr[lru], nr_scanned);
6339 blk_finish_plug(&plug);
6340 sc->nr_reclaimed += nr_reclaimed;
6343 * Even if we did not try to evict anon pages at all, we want to
6344 * rebalance the anon lru active/inactive ratio.
6346 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6347 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6348 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6349 sc, LRU_ACTIVE_ANON);
6352 /* Use reclaim/compaction for costly allocs or under memory pressure */
6353 static bool in_reclaim_compaction(struct scan_control *sc)
6355 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6356 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6357 sc->priority < DEF_PRIORITY - 2))
6364 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6365 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6366 * true if more pages should be reclaimed such that when the page allocator
6367 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6368 * It will give up earlier than that if there is difficulty reclaiming pages.
6370 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6371 unsigned long nr_reclaimed,
6372 struct scan_control *sc)
6374 unsigned long pages_for_compaction;
6375 unsigned long inactive_lru_pages;
6378 /* If not in reclaim/compaction mode, stop */
6379 if (!in_reclaim_compaction(sc))
6383 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6384 * number of pages that were scanned. This will return to the caller
6385 * with the risk reclaim/compaction and the resulting allocation attempt
6386 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6387 * allocations through requiring that the full LRU list has been scanned
6388 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6389 * scan, but that approximation was wrong, and there were corner cases
6390 * where always a non-zero amount of pages were scanned.
6395 /* If compaction would go ahead or the allocation would succeed, stop */
6396 for (z = 0; z <= sc->reclaim_idx; z++) {
6397 struct zone *zone = &pgdat->node_zones[z];
6398 if (!managed_zone(zone))
6401 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6402 case COMPACT_SUCCESS:
6403 case COMPACT_CONTINUE:
6406 /* check next zone */
6412 * If we have not reclaimed enough pages for compaction and the
6413 * inactive lists are large enough, continue reclaiming
6415 pages_for_compaction = compact_gap(sc->order);
6416 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6417 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6418 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6420 return inactive_lru_pages > pages_for_compaction;
6423 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6425 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6426 struct mem_cgroup *memcg;
6428 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6430 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6431 unsigned long reclaimed;
6432 unsigned long scanned;
6435 * This loop can become CPU-bound when target memcgs
6436 * aren't eligible for reclaim - either because they
6437 * don't have any reclaimable pages, or because their
6438 * memory is explicitly protected. Avoid soft lockups.
6442 mem_cgroup_calculate_protection(target_memcg, memcg);
6444 if (mem_cgroup_below_min(target_memcg, memcg)) {
6447 * If there is no reclaimable memory, OOM.
6450 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6453 * Respect the protection only as long as
6454 * there is an unprotected supply
6455 * of reclaimable memory from other cgroups.
6457 if (!sc->memcg_low_reclaim) {
6458 sc->memcg_low_skipped = 1;
6461 memcg_memory_event(memcg, MEMCG_LOW);
6464 reclaimed = sc->nr_reclaimed;
6465 scanned = sc->nr_scanned;
6467 shrink_lruvec(lruvec, sc);
6469 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6472 /* Record the group's reclaim efficiency */
6474 vmpressure(sc->gfp_mask, memcg, false,
6475 sc->nr_scanned - scanned,
6476 sc->nr_reclaimed - reclaimed);
6478 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6481 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6483 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6484 struct lruvec *target_lruvec;
6485 bool reclaimable = false;
6487 if (lru_gen_enabled() && global_reclaim(sc)) {
6488 lru_gen_shrink_node(pgdat, sc);
6492 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6495 memset(&sc->nr, 0, sizeof(sc->nr));
6497 nr_reclaimed = sc->nr_reclaimed;
6498 nr_scanned = sc->nr_scanned;
6500 prepare_scan_count(pgdat, sc);
6502 shrink_node_memcgs(pgdat, sc);
6504 flush_reclaim_state(sc);
6506 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6508 /* Record the subtree's reclaim efficiency */
6510 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6511 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6513 if (nr_node_reclaimed)
6516 if (current_is_kswapd()) {
6518 * If reclaim is isolating dirty pages under writeback,
6519 * it implies that the long-lived page allocation rate
6520 * is exceeding the page laundering rate. Either the
6521 * global limits are not being effective at throttling
6522 * processes due to the page distribution throughout
6523 * zones or there is heavy usage of a slow backing
6524 * device. The only option is to throttle from reclaim
6525 * context which is not ideal as there is no guarantee
6526 * the dirtying process is throttled in the same way
6527 * balance_dirty_pages() manages.
6529 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6530 * count the number of pages under pages flagged for
6531 * immediate reclaim and stall if any are encountered
6532 * in the nr_immediate check below.
6534 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6535 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6537 /* Allow kswapd to start writing pages during reclaim.*/
6538 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6539 set_bit(PGDAT_DIRTY, &pgdat->flags);
6542 * If kswapd scans pages marked for immediate
6543 * reclaim and under writeback (nr_immediate), it
6544 * implies that pages are cycling through the LRU
6545 * faster than they are written so forcibly stall
6546 * until some pages complete writeback.
6548 if (sc->nr.immediate)
6549 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6553 * Tag a node/memcg as congested if all the dirty pages were marked
6554 * for writeback and immediate reclaim (counted in nr.congested).
6556 * Legacy memcg will stall in page writeback so avoid forcibly
6557 * stalling in reclaim_throttle().
6559 if ((current_is_kswapd() ||
6560 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6561 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6562 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6565 * Stall direct reclaim for IO completions if the lruvec is
6566 * node is congested. Allow kswapd to continue until it
6567 * starts encountering unqueued dirty pages or cycling through
6568 * the LRU too quickly.
6570 if (!current_is_kswapd() && current_may_throttle() &&
6571 !sc->hibernation_mode &&
6572 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6573 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6575 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6579 * Kswapd gives up on balancing particular nodes after too
6580 * many failures to reclaim anything from them and goes to
6581 * sleep. On reclaim progress, reset the failure counter. A
6582 * successful direct reclaim run will revive a dormant kswapd.
6585 pgdat->kswapd_failures = 0;
6589 * Returns true if compaction should go ahead for a costly-order request, or
6590 * the allocation would already succeed without compaction. Return false if we
6591 * should reclaim first.
6593 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6595 unsigned long watermark;
6596 enum compact_result suitable;
6598 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6599 if (suitable == COMPACT_SUCCESS)
6600 /* Allocation should succeed already. Don't reclaim. */
6602 if (suitable == COMPACT_SKIPPED)
6603 /* Compaction cannot yet proceed. Do reclaim. */
6607 * Compaction is already possible, but it takes time to run and there
6608 * are potentially other callers using the pages just freed. So proceed
6609 * with reclaim to make a buffer of free pages available to give
6610 * compaction a reasonable chance of completing and allocating the page.
6611 * Note that we won't actually reclaim the whole buffer in one attempt
6612 * as the target watermark in should_continue_reclaim() is lower. But if
6613 * we are already above the high+gap watermark, don't reclaim at all.
6615 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6617 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6620 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6623 * If reclaim is making progress greater than 12% efficiency then
6624 * wake all the NOPROGRESS throttled tasks.
6626 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6627 wait_queue_head_t *wqh;
6629 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6630 if (waitqueue_active(wqh))
6637 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6638 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6639 * under writeback and marked for immediate reclaim at the tail of the
6642 if (current_is_kswapd() || cgroup_reclaim(sc))
6645 /* Throttle if making no progress at high prioities. */
6646 if (sc->priority == 1 && !sc->nr_reclaimed)
6647 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6651 * This is the direct reclaim path, for page-allocating processes. We only
6652 * try to reclaim pages from zones which will satisfy the caller's allocation
6655 * If a zone is deemed to be full of pinned pages then just give it a light
6656 * scan then give up on it.
6658 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6662 unsigned long nr_soft_reclaimed;
6663 unsigned long nr_soft_scanned;
6665 pg_data_t *last_pgdat = NULL;
6666 pg_data_t *first_pgdat = NULL;
6669 * If the number of buffer_heads in the machine exceeds the maximum
6670 * allowed level, force direct reclaim to scan the highmem zone as
6671 * highmem pages could be pinning lowmem pages storing buffer_heads
6673 orig_mask = sc->gfp_mask;
6674 if (buffer_heads_over_limit) {
6675 sc->gfp_mask |= __GFP_HIGHMEM;
6676 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6679 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6680 sc->reclaim_idx, sc->nodemask) {
6682 * Take care memory controller reclaiming has small influence
6685 if (!cgroup_reclaim(sc)) {
6686 if (!cpuset_zone_allowed(zone,
6687 GFP_KERNEL | __GFP_HARDWALL))
6691 * If we already have plenty of memory free for
6692 * compaction in this zone, don't free any more.
6693 * Even though compaction is invoked for any
6694 * non-zero order, only frequent costly order
6695 * reclamation is disruptive enough to become a
6696 * noticeable problem, like transparent huge
6699 if (IS_ENABLED(CONFIG_COMPACTION) &&
6700 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6701 compaction_ready(zone, sc)) {
6702 sc->compaction_ready = true;
6707 * Shrink each node in the zonelist once. If the
6708 * zonelist is ordered by zone (not the default) then a
6709 * node may be shrunk multiple times but in that case
6710 * the user prefers lower zones being preserved.
6712 if (zone->zone_pgdat == last_pgdat)
6716 * This steals pages from memory cgroups over softlimit
6717 * and returns the number of reclaimed pages and
6718 * scanned pages. This works for global memory pressure
6719 * and balancing, not for a memcg's limit.
6721 nr_soft_scanned = 0;
6722 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6723 sc->order, sc->gfp_mask,
6725 sc->nr_reclaimed += nr_soft_reclaimed;
6726 sc->nr_scanned += nr_soft_scanned;
6727 /* need some check for avoid more shrink_zone() */
6731 first_pgdat = zone->zone_pgdat;
6733 /* See comment about same check for global reclaim above */
6734 if (zone->zone_pgdat == last_pgdat)
6736 last_pgdat = zone->zone_pgdat;
6737 shrink_node(zone->zone_pgdat, sc);
6741 consider_reclaim_throttle(first_pgdat, sc);
6744 * Restore to original mask to avoid the impact on the caller if we
6745 * promoted it to __GFP_HIGHMEM.
6747 sc->gfp_mask = orig_mask;
6750 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6752 struct lruvec *target_lruvec;
6753 unsigned long refaults;
6755 if (lru_gen_enabled())
6758 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6759 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6760 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6761 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6762 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6766 * This is the main entry point to direct page reclaim.
6768 * If a full scan of the inactive list fails to free enough memory then we
6769 * are "out of memory" and something needs to be killed.
6771 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6772 * high - the zone may be full of dirty or under-writeback pages, which this
6773 * caller can't do much about. We kick the writeback threads and take explicit
6774 * naps in the hope that some of these pages can be written. But if the
6775 * allocating task holds filesystem locks which prevent writeout this might not
6776 * work, and the allocation attempt will fail.
6778 * returns: 0, if no pages reclaimed
6779 * else, the number of pages reclaimed
6781 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6782 struct scan_control *sc)
6784 int initial_priority = sc->priority;
6785 pg_data_t *last_pgdat;
6789 delayacct_freepages_start();
6791 if (!cgroup_reclaim(sc))
6792 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6796 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6799 shrink_zones(zonelist, sc);
6801 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6804 if (sc->compaction_ready)
6808 * If we're getting trouble reclaiming, start doing
6809 * writepage even in laptop mode.
6811 if (sc->priority < DEF_PRIORITY - 2)
6812 sc->may_writepage = 1;
6813 } while (--sc->priority >= 0);
6816 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6818 if (zone->zone_pgdat == last_pgdat)
6820 last_pgdat = zone->zone_pgdat;
6822 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6824 if (cgroup_reclaim(sc)) {
6825 struct lruvec *lruvec;
6827 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6829 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6833 delayacct_freepages_end();
6835 if (sc->nr_reclaimed)
6836 return sc->nr_reclaimed;
6838 /* Aborted reclaim to try compaction? don't OOM, then */
6839 if (sc->compaction_ready)
6843 * We make inactive:active ratio decisions based on the node's
6844 * composition of memory, but a restrictive reclaim_idx or a
6845 * memory.low cgroup setting can exempt large amounts of
6846 * memory from reclaim. Neither of which are very common, so
6847 * instead of doing costly eligibility calculations of the
6848 * entire cgroup subtree up front, we assume the estimates are
6849 * good, and retry with forcible deactivation if that fails.
6851 if (sc->skipped_deactivate) {
6852 sc->priority = initial_priority;
6853 sc->force_deactivate = 1;
6854 sc->skipped_deactivate = 0;
6858 /* Untapped cgroup reserves? Don't OOM, retry. */
6859 if (sc->memcg_low_skipped) {
6860 sc->priority = initial_priority;
6861 sc->force_deactivate = 0;
6862 sc->memcg_low_reclaim = 1;
6863 sc->memcg_low_skipped = 0;
6870 static bool allow_direct_reclaim(pg_data_t *pgdat)
6873 unsigned long pfmemalloc_reserve = 0;
6874 unsigned long free_pages = 0;
6878 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6881 for (i = 0; i <= ZONE_NORMAL; i++) {
6882 zone = &pgdat->node_zones[i];
6883 if (!managed_zone(zone))
6886 if (!zone_reclaimable_pages(zone))
6889 pfmemalloc_reserve += min_wmark_pages(zone);
6890 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6893 /* If there are no reserves (unexpected config) then do not throttle */
6894 if (!pfmemalloc_reserve)
6897 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6899 /* kswapd must be awake if processes are being throttled */
6900 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6901 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6902 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6904 wake_up_interruptible(&pgdat->kswapd_wait);
6911 * Throttle direct reclaimers if backing storage is backed by the network
6912 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6913 * depleted. kswapd will continue to make progress and wake the processes
6914 * when the low watermark is reached.
6916 * Returns true if a fatal signal was delivered during throttling. If this
6917 * happens, the page allocator should not consider triggering the OOM killer.
6919 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6920 nodemask_t *nodemask)
6924 pg_data_t *pgdat = NULL;
6927 * Kernel threads should not be throttled as they may be indirectly
6928 * responsible for cleaning pages necessary for reclaim to make forward
6929 * progress. kjournald for example may enter direct reclaim while
6930 * committing a transaction where throttling it could forcing other
6931 * processes to block on log_wait_commit().
6933 if (current->flags & PF_KTHREAD)
6937 * If a fatal signal is pending, this process should not throttle.
6938 * It should return quickly so it can exit and free its memory
6940 if (fatal_signal_pending(current))
6944 * Check if the pfmemalloc reserves are ok by finding the first node
6945 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6946 * GFP_KERNEL will be required for allocating network buffers when
6947 * swapping over the network so ZONE_HIGHMEM is unusable.
6949 * Throttling is based on the first usable node and throttled processes
6950 * wait on a queue until kswapd makes progress and wakes them. There
6951 * is an affinity then between processes waking up and where reclaim
6952 * progress has been made assuming the process wakes on the same node.
6953 * More importantly, processes running on remote nodes will not compete
6954 * for remote pfmemalloc reserves and processes on different nodes
6955 * should make reasonable progress.
6957 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6958 gfp_zone(gfp_mask), nodemask) {
6959 if (zone_idx(zone) > ZONE_NORMAL)
6962 /* Throttle based on the first usable node */
6963 pgdat = zone->zone_pgdat;
6964 if (allow_direct_reclaim(pgdat))
6969 /* If no zone was usable by the allocation flags then do not throttle */
6973 /* Account for the throttling */
6974 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6977 * If the caller cannot enter the filesystem, it's possible that it
6978 * is due to the caller holding an FS lock or performing a journal
6979 * transaction in the case of a filesystem like ext[3|4]. In this case,
6980 * it is not safe to block on pfmemalloc_wait as kswapd could be
6981 * blocked waiting on the same lock. Instead, throttle for up to a
6982 * second before continuing.
6984 if (!(gfp_mask & __GFP_FS))
6985 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6986 allow_direct_reclaim(pgdat), HZ);
6988 /* Throttle until kswapd wakes the process */
6989 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6990 allow_direct_reclaim(pgdat));
6992 if (fatal_signal_pending(current))
6999 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7000 gfp_t gfp_mask, nodemask_t *nodemask)
7002 unsigned long nr_reclaimed;
7003 struct scan_control sc = {
7004 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7005 .gfp_mask = current_gfp_context(gfp_mask),
7006 .reclaim_idx = gfp_zone(gfp_mask),
7008 .nodemask = nodemask,
7009 .priority = DEF_PRIORITY,
7010 .may_writepage = !laptop_mode,
7016 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7017 * Confirm they are large enough for max values.
7019 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7020 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7021 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7024 * Do not enter reclaim if fatal signal was delivered while throttled.
7025 * 1 is returned so that the page allocator does not OOM kill at this
7028 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7031 set_task_reclaim_state(current, &sc.reclaim_state);
7032 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7034 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7036 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7037 set_task_reclaim_state(current, NULL);
7039 return nr_reclaimed;
7044 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7045 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7046 gfp_t gfp_mask, bool noswap,
7048 unsigned long *nr_scanned)
7050 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7051 struct scan_control sc = {
7052 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7053 .target_mem_cgroup = memcg,
7054 .may_writepage = !laptop_mode,
7056 .reclaim_idx = MAX_NR_ZONES - 1,
7057 .may_swap = !noswap,
7060 WARN_ON_ONCE(!current->reclaim_state);
7062 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7063 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7065 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7069 * NOTE: Although we can get the priority field, using it
7070 * here is not a good idea, since it limits the pages we can scan.
7071 * if we don't reclaim here, the shrink_node from balance_pgdat
7072 * will pick up pages from other mem cgroup's as well. We hack
7073 * the priority and make it zero.
7075 shrink_lruvec(lruvec, &sc);
7077 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7079 *nr_scanned = sc.nr_scanned;
7081 return sc.nr_reclaimed;
7084 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7085 unsigned long nr_pages,
7087 unsigned int reclaim_options)
7089 unsigned long nr_reclaimed;
7090 unsigned int noreclaim_flag;
7091 struct scan_control sc = {
7092 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7093 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7094 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7095 .reclaim_idx = MAX_NR_ZONES - 1,
7096 .target_mem_cgroup = memcg,
7097 .priority = DEF_PRIORITY,
7098 .may_writepage = !laptop_mode,
7100 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7101 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7104 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7105 * equal pressure on all the nodes. This is based on the assumption that
7106 * the reclaim does not bail out early.
7108 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7110 set_task_reclaim_state(current, &sc.reclaim_state);
7111 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7112 noreclaim_flag = memalloc_noreclaim_save();
7114 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7116 memalloc_noreclaim_restore(noreclaim_flag);
7117 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7118 set_task_reclaim_state(current, NULL);
7120 return nr_reclaimed;
7124 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7126 struct mem_cgroup *memcg;
7127 struct lruvec *lruvec;
7129 if (lru_gen_enabled()) {
7130 lru_gen_age_node(pgdat, sc);
7134 if (!can_age_anon_pages(pgdat, sc))
7137 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7138 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7141 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7143 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7144 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7145 sc, LRU_ACTIVE_ANON);
7146 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7150 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7156 * Check for watermark boosts top-down as the higher zones
7157 * are more likely to be boosted. Both watermarks and boosts
7158 * should not be checked at the same time as reclaim would
7159 * start prematurely when there is no boosting and a lower
7162 for (i = highest_zoneidx; i >= 0; i--) {
7163 zone = pgdat->node_zones + i;
7164 if (!managed_zone(zone))
7167 if (zone->watermark_boost)
7175 * Returns true if there is an eligible zone balanced for the request order
7176 * and highest_zoneidx
7178 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7181 unsigned long mark = -1;
7185 * Check watermarks bottom-up as lower zones are more likely to
7188 for (i = 0; i <= highest_zoneidx; i++) {
7189 zone = pgdat->node_zones + i;
7191 if (!managed_zone(zone))
7194 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7195 mark = wmark_pages(zone, WMARK_PROMO);
7197 mark = high_wmark_pages(zone);
7198 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7203 * If a node has no managed zone within highest_zoneidx, it does not
7204 * need balancing by definition. This can happen if a zone-restricted
7205 * allocation tries to wake a remote kswapd.
7213 /* Clear pgdat state for congested, dirty or under writeback. */
7214 static void clear_pgdat_congested(pg_data_t *pgdat)
7216 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7218 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7219 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7220 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7224 * Prepare kswapd for sleeping. This verifies that there are no processes
7225 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7227 * Returns true if kswapd is ready to sleep
7229 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7230 int highest_zoneidx)
7233 * The throttled processes are normally woken up in balance_pgdat() as
7234 * soon as allow_direct_reclaim() is true. But there is a potential
7235 * race between when kswapd checks the watermarks and a process gets
7236 * throttled. There is also a potential race if processes get
7237 * throttled, kswapd wakes, a large process exits thereby balancing the
7238 * zones, which causes kswapd to exit balance_pgdat() before reaching
7239 * the wake up checks. If kswapd is going to sleep, no process should
7240 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7241 * the wake up is premature, processes will wake kswapd and get
7242 * throttled again. The difference from wake ups in balance_pgdat() is
7243 * that here we are under prepare_to_wait().
7245 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7246 wake_up_all(&pgdat->pfmemalloc_wait);
7248 /* Hopeless node, leave it to direct reclaim */
7249 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7252 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7253 clear_pgdat_congested(pgdat);
7261 * kswapd shrinks a node of pages that are at or below the highest usable
7262 * zone that is currently unbalanced.
7264 * Returns true if kswapd scanned at least the requested number of pages to
7265 * reclaim or if the lack of progress was due to pages under writeback.
7266 * This is used to determine if the scanning priority needs to be raised.
7268 static bool kswapd_shrink_node(pg_data_t *pgdat,
7269 struct scan_control *sc)
7274 /* Reclaim a number of pages proportional to the number of zones */
7275 sc->nr_to_reclaim = 0;
7276 for (z = 0; z <= sc->reclaim_idx; z++) {
7277 zone = pgdat->node_zones + z;
7278 if (!managed_zone(zone))
7281 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7285 * Historically care was taken to put equal pressure on all zones but
7286 * now pressure is applied based on node LRU order.
7288 shrink_node(pgdat, sc);
7291 * Fragmentation may mean that the system cannot be rebalanced for
7292 * high-order allocations. If twice the allocation size has been
7293 * reclaimed then recheck watermarks only at order-0 to prevent
7294 * excessive reclaim. Assume that a process requested a high-order
7295 * can direct reclaim/compact.
7297 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7300 return sc->nr_scanned >= sc->nr_to_reclaim;
7303 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7305 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7310 for (i = 0; i <= highest_zoneidx; i++) {
7311 zone = pgdat->node_zones + i;
7313 if (!managed_zone(zone))
7317 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7319 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7324 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7326 update_reclaim_active(pgdat, highest_zoneidx, true);
7330 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7332 update_reclaim_active(pgdat, highest_zoneidx, false);
7336 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7337 * that are eligible for use by the caller until at least one zone is
7340 * Returns the order kswapd finished reclaiming at.
7342 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7343 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7344 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7345 * or lower is eligible for reclaim until at least one usable zone is
7348 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7351 unsigned long nr_soft_reclaimed;
7352 unsigned long nr_soft_scanned;
7353 unsigned long pflags;
7354 unsigned long nr_boost_reclaim;
7355 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7358 struct scan_control sc = {
7359 .gfp_mask = GFP_KERNEL,
7364 set_task_reclaim_state(current, &sc.reclaim_state);
7365 psi_memstall_enter(&pflags);
7366 __fs_reclaim_acquire(_THIS_IP_);
7368 count_vm_event(PAGEOUTRUN);
7371 * Account for the reclaim boost. Note that the zone boost is left in
7372 * place so that parallel allocations that are near the watermark will
7373 * stall or direct reclaim until kswapd is finished.
7375 nr_boost_reclaim = 0;
7376 for (i = 0; i <= highest_zoneidx; i++) {
7377 zone = pgdat->node_zones + i;
7378 if (!managed_zone(zone))
7381 nr_boost_reclaim += zone->watermark_boost;
7382 zone_boosts[i] = zone->watermark_boost;
7384 boosted = nr_boost_reclaim;
7387 set_reclaim_active(pgdat, highest_zoneidx);
7388 sc.priority = DEF_PRIORITY;
7390 unsigned long nr_reclaimed = sc.nr_reclaimed;
7391 bool raise_priority = true;
7395 sc.reclaim_idx = highest_zoneidx;
7398 * If the number of buffer_heads exceeds the maximum allowed
7399 * then consider reclaiming from all zones. This has a dual
7400 * purpose -- on 64-bit systems it is expected that
7401 * buffer_heads are stripped during active rotation. On 32-bit
7402 * systems, highmem pages can pin lowmem memory and shrinking
7403 * buffers can relieve lowmem pressure. Reclaim may still not
7404 * go ahead if all eligible zones for the original allocation
7405 * request are balanced to avoid excessive reclaim from kswapd.
7407 if (buffer_heads_over_limit) {
7408 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7409 zone = pgdat->node_zones + i;
7410 if (!managed_zone(zone))
7419 * If the pgdat is imbalanced then ignore boosting and preserve
7420 * the watermarks for a later time and restart. Note that the
7421 * zone watermarks will be still reset at the end of balancing
7422 * on the grounds that the normal reclaim should be enough to
7423 * re-evaluate if boosting is required when kswapd next wakes.
7425 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7426 if (!balanced && nr_boost_reclaim) {
7427 nr_boost_reclaim = 0;
7432 * If boosting is not active then only reclaim if there are no
7433 * eligible zones. Note that sc.reclaim_idx is not used as
7434 * buffer_heads_over_limit may have adjusted it.
7436 if (!nr_boost_reclaim && balanced)
7439 /* Limit the priority of boosting to avoid reclaim writeback */
7440 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7441 raise_priority = false;
7444 * Do not writeback or swap pages for boosted reclaim. The
7445 * intent is to relieve pressure not issue sub-optimal IO
7446 * from reclaim context. If no pages are reclaimed, the
7447 * reclaim will be aborted.
7449 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7450 sc.may_swap = !nr_boost_reclaim;
7453 * Do some background aging, to give pages a chance to be
7454 * referenced before reclaiming. All pages are rotated
7455 * regardless of classzone as this is about consistent aging.
7457 kswapd_age_node(pgdat, &sc);
7460 * If we're getting trouble reclaiming, start doing writepage
7461 * even in laptop mode.
7463 if (sc.priority < DEF_PRIORITY - 2)
7464 sc.may_writepage = 1;
7466 /* Call soft limit reclaim before calling shrink_node. */
7468 nr_soft_scanned = 0;
7469 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7470 sc.gfp_mask, &nr_soft_scanned);
7471 sc.nr_reclaimed += nr_soft_reclaimed;
7474 * There should be no need to raise the scanning priority if
7475 * enough pages are already being scanned that that high
7476 * watermark would be met at 100% efficiency.
7478 if (kswapd_shrink_node(pgdat, &sc))
7479 raise_priority = false;
7482 * If the low watermark is met there is no need for processes
7483 * to be throttled on pfmemalloc_wait as they should not be
7484 * able to safely make forward progress. Wake them
7486 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7487 allow_direct_reclaim(pgdat))
7488 wake_up_all(&pgdat->pfmemalloc_wait);
7490 /* Check if kswapd should be suspending */
7491 __fs_reclaim_release(_THIS_IP_);
7492 ret = try_to_freeze();
7493 __fs_reclaim_acquire(_THIS_IP_);
7494 if (ret || kthread_should_stop())
7498 * Raise priority if scanning rate is too low or there was no
7499 * progress in reclaiming pages
7501 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7502 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7505 * If reclaim made no progress for a boost, stop reclaim as
7506 * IO cannot be queued and it could be an infinite loop in
7507 * extreme circumstances.
7509 if (nr_boost_reclaim && !nr_reclaimed)
7512 if (raise_priority || !nr_reclaimed)
7514 } while (sc.priority >= 1);
7516 if (!sc.nr_reclaimed)
7517 pgdat->kswapd_failures++;
7520 clear_reclaim_active(pgdat, highest_zoneidx);
7522 /* If reclaim was boosted, account for the reclaim done in this pass */
7524 unsigned long flags;
7526 for (i = 0; i <= highest_zoneidx; i++) {
7527 if (!zone_boosts[i])
7530 /* Increments are under the zone lock */
7531 zone = pgdat->node_zones + i;
7532 spin_lock_irqsave(&zone->lock, flags);
7533 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7534 spin_unlock_irqrestore(&zone->lock, flags);
7538 * As there is now likely space, wakeup kcompact to defragment
7541 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7544 snapshot_refaults(NULL, pgdat);
7545 __fs_reclaim_release(_THIS_IP_);
7546 psi_memstall_leave(&pflags);
7547 set_task_reclaim_state(current, NULL);
7550 * Return the order kswapd stopped reclaiming at as
7551 * prepare_kswapd_sleep() takes it into account. If another caller
7552 * entered the allocator slow path while kswapd was awake, order will
7553 * remain at the higher level.
7559 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7560 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7561 * not a valid index then either kswapd runs for first time or kswapd couldn't
7562 * sleep after previous reclaim attempt (node is still unbalanced). In that
7563 * case return the zone index of the previous kswapd reclaim cycle.
7565 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7566 enum zone_type prev_highest_zoneidx)
7568 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7570 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7573 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7574 unsigned int highest_zoneidx)
7579 if (freezing(current) || kthread_should_stop())
7582 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7585 * Try to sleep for a short interval. Note that kcompactd will only be
7586 * woken if it is possible to sleep for a short interval. This is
7587 * deliberate on the assumption that if reclaim cannot keep an
7588 * eligible zone balanced that it's also unlikely that compaction will
7591 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7593 * Compaction records what page blocks it recently failed to
7594 * isolate pages from and skips them in the future scanning.
7595 * When kswapd is going to sleep, it is reasonable to assume
7596 * that pages and compaction may succeed so reset the cache.
7598 reset_isolation_suitable(pgdat);
7601 * We have freed the memory, now we should compact it to make
7602 * allocation of the requested order possible.
7604 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7606 remaining = schedule_timeout(HZ/10);
7609 * If woken prematurely then reset kswapd_highest_zoneidx and
7610 * order. The values will either be from a wakeup request or
7611 * the previous request that slept prematurely.
7614 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7615 kswapd_highest_zoneidx(pgdat,
7618 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7619 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7622 finish_wait(&pgdat->kswapd_wait, &wait);
7623 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7627 * After a short sleep, check if it was a premature sleep. If not, then
7628 * go fully to sleep until explicitly woken up.
7631 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7632 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7635 * vmstat counters are not perfectly accurate and the estimated
7636 * value for counters such as NR_FREE_PAGES can deviate from the
7637 * true value by nr_online_cpus * threshold. To avoid the zone
7638 * watermarks being breached while under pressure, we reduce the
7639 * per-cpu vmstat threshold while kswapd is awake and restore
7640 * them before going back to sleep.
7642 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7644 if (!kthread_should_stop())
7647 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7650 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7652 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7654 finish_wait(&pgdat->kswapd_wait, &wait);
7658 * The background pageout daemon, started as a kernel thread
7659 * from the init process.
7661 * This basically trickles out pages so that we have _some_
7662 * free memory available even if there is no other activity
7663 * that frees anything up. This is needed for things like routing
7664 * etc, where we otherwise might have all activity going on in
7665 * asynchronous contexts that cannot page things out.
7667 * If there are applications that are active memory-allocators
7668 * (most normal use), this basically shouldn't matter.
7670 static int kswapd(void *p)
7672 unsigned int alloc_order, reclaim_order;
7673 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7674 pg_data_t *pgdat = (pg_data_t *)p;
7675 struct task_struct *tsk = current;
7676 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7678 if (!cpumask_empty(cpumask))
7679 set_cpus_allowed_ptr(tsk, cpumask);
7682 * Tell the memory management that we're a "memory allocator",
7683 * and that if we need more memory we should get access to it
7684 * regardless (see "__alloc_pages()"). "kswapd" should
7685 * never get caught in the normal page freeing logic.
7687 * (Kswapd normally doesn't need memory anyway, but sometimes
7688 * you need a small amount of memory in order to be able to
7689 * page out something else, and this flag essentially protects
7690 * us from recursively trying to free more memory as we're
7691 * trying to free the first piece of memory in the first place).
7693 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7696 WRITE_ONCE(pgdat->kswapd_order, 0);
7697 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7698 atomic_set(&pgdat->nr_writeback_throttled, 0);
7702 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7703 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7707 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7710 /* Read the new order and highest_zoneidx */
7711 alloc_order = READ_ONCE(pgdat->kswapd_order);
7712 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7714 WRITE_ONCE(pgdat->kswapd_order, 0);
7715 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7717 ret = try_to_freeze();
7718 if (kthread_should_stop())
7722 * We can speed up thawing tasks if we don't call balance_pgdat
7723 * after returning from the refrigerator
7729 * Reclaim begins at the requested order but if a high-order
7730 * reclaim fails then kswapd falls back to reclaiming for
7731 * order-0. If that happens, kswapd will consider sleeping
7732 * for the order it finished reclaiming at (reclaim_order)
7733 * but kcompactd is woken to compact for the original
7734 * request (alloc_order).
7736 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7738 reclaim_order = balance_pgdat(pgdat, alloc_order,
7740 if (reclaim_order < alloc_order)
7741 goto kswapd_try_sleep;
7744 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7750 * A zone is low on free memory or too fragmented for high-order memory. If
7751 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7752 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7753 * has failed or is not needed, still wake up kcompactd if only compaction is
7756 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7757 enum zone_type highest_zoneidx)
7760 enum zone_type curr_idx;
7762 if (!managed_zone(zone))
7765 if (!cpuset_zone_allowed(zone, gfp_flags))
7768 pgdat = zone->zone_pgdat;
7769 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7771 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7772 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7774 if (READ_ONCE(pgdat->kswapd_order) < order)
7775 WRITE_ONCE(pgdat->kswapd_order, order);
7777 if (!waitqueue_active(&pgdat->kswapd_wait))
7780 /* Hopeless node, leave it to direct reclaim if possible */
7781 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7782 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7783 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7785 * There may be plenty of free memory available, but it's too
7786 * fragmented for high-order allocations. Wake up kcompactd
7787 * and rely on compaction_suitable() to determine if it's
7788 * needed. If it fails, it will defer subsequent attempts to
7789 * ratelimit its work.
7791 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7792 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7796 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7798 wake_up_interruptible(&pgdat->kswapd_wait);
7801 #ifdef CONFIG_HIBERNATION
7803 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7806 * Rather than trying to age LRUs the aim is to preserve the overall
7807 * LRU order by reclaiming preferentially
7808 * inactive > active > active referenced > active mapped
7810 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7812 struct scan_control sc = {
7813 .nr_to_reclaim = nr_to_reclaim,
7814 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7815 .reclaim_idx = MAX_NR_ZONES - 1,
7816 .priority = DEF_PRIORITY,
7820 .hibernation_mode = 1,
7822 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7823 unsigned long nr_reclaimed;
7824 unsigned int noreclaim_flag;
7826 fs_reclaim_acquire(sc.gfp_mask);
7827 noreclaim_flag = memalloc_noreclaim_save();
7828 set_task_reclaim_state(current, &sc.reclaim_state);
7830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7832 set_task_reclaim_state(current, NULL);
7833 memalloc_noreclaim_restore(noreclaim_flag);
7834 fs_reclaim_release(sc.gfp_mask);
7836 return nr_reclaimed;
7838 #endif /* CONFIG_HIBERNATION */
7841 * This kswapd start function will be called by init and node-hot-add.
7843 void kswapd_run(int nid)
7845 pg_data_t *pgdat = NODE_DATA(nid);
7847 pgdat_kswapd_lock(pgdat);
7848 if (!pgdat->kswapd) {
7849 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7850 if (IS_ERR(pgdat->kswapd)) {
7851 /* failure at boot is fatal */
7852 BUG_ON(system_state < SYSTEM_RUNNING);
7853 pr_err("Failed to start kswapd on node %d\n", nid);
7854 pgdat->kswapd = NULL;
7857 pgdat_kswapd_unlock(pgdat);
7861 * Called by memory hotplug when all memory in a node is offlined. Caller must
7862 * be holding mem_hotplug_begin/done().
7864 void kswapd_stop(int nid)
7866 pg_data_t *pgdat = NODE_DATA(nid);
7867 struct task_struct *kswapd;
7869 pgdat_kswapd_lock(pgdat);
7870 kswapd = pgdat->kswapd;
7872 kthread_stop(kswapd);
7873 pgdat->kswapd = NULL;
7875 pgdat_kswapd_unlock(pgdat);
7878 static int __init kswapd_init(void)
7883 for_each_node_state(nid, N_MEMORY)
7888 module_init(kswapd_init)
7894 * If non-zero call node_reclaim when the number of free pages falls below
7897 int node_reclaim_mode __read_mostly;
7900 * Priority for NODE_RECLAIM. This determines the fraction of pages
7901 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7904 #define NODE_RECLAIM_PRIORITY 4
7907 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7910 int sysctl_min_unmapped_ratio = 1;
7913 * If the number of slab pages in a zone grows beyond this percentage then
7914 * slab reclaim needs to occur.
7916 int sysctl_min_slab_ratio = 5;
7918 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7920 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7921 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7922 node_page_state(pgdat, NR_ACTIVE_FILE);
7925 * It's possible for there to be more file mapped pages than
7926 * accounted for by the pages on the file LRU lists because
7927 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7929 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7932 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7933 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7935 unsigned long nr_pagecache_reclaimable;
7936 unsigned long delta = 0;
7939 * If RECLAIM_UNMAP is set, then all file pages are considered
7940 * potentially reclaimable. Otherwise, we have to worry about
7941 * pages like swapcache and node_unmapped_file_pages() provides
7944 if (node_reclaim_mode & RECLAIM_UNMAP)
7945 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7947 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7949 /* If we can't clean pages, remove dirty pages from consideration */
7950 if (!(node_reclaim_mode & RECLAIM_WRITE))
7951 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7953 /* Watch for any possible underflows due to delta */
7954 if (unlikely(delta > nr_pagecache_reclaimable))
7955 delta = nr_pagecache_reclaimable;
7957 return nr_pagecache_reclaimable - delta;
7961 * Try to free up some pages from this node through reclaim.
7963 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7965 /* Minimum pages needed in order to stay on node */
7966 const unsigned long nr_pages = 1 << order;
7967 struct task_struct *p = current;
7968 unsigned int noreclaim_flag;
7969 struct scan_control sc = {
7970 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7971 .gfp_mask = current_gfp_context(gfp_mask),
7973 .priority = NODE_RECLAIM_PRIORITY,
7974 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7975 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7977 .reclaim_idx = gfp_zone(gfp_mask),
7979 unsigned long pflags;
7981 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7985 psi_memstall_enter(&pflags);
7986 fs_reclaim_acquire(sc.gfp_mask);
7988 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7990 noreclaim_flag = memalloc_noreclaim_save();
7991 set_task_reclaim_state(p, &sc.reclaim_state);
7993 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7994 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7996 * Free memory by calling shrink node with increasing
7997 * priorities until we have enough memory freed.
8000 shrink_node(pgdat, &sc);
8001 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8004 set_task_reclaim_state(p, NULL);
8005 memalloc_noreclaim_restore(noreclaim_flag);
8006 fs_reclaim_release(sc.gfp_mask);
8007 psi_memstall_leave(&pflags);
8009 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8011 return sc.nr_reclaimed >= nr_pages;
8014 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8019 * Node reclaim reclaims unmapped file backed pages and
8020 * slab pages if we are over the defined limits.
8022 * A small portion of unmapped file backed pages is needed for
8023 * file I/O otherwise pages read by file I/O will be immediately
8024 * thrown out if the node is overallocated. So we do not reclaim
8025 * if less than a specified percentage of the node is used by
8026 * unmapped file backed pages.
8028 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8029 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8030 pgdat->min_slab_pages)
8031 return NODE_RECLAIM_FULL;
8034 * Do not scan if the allocation should not be delayed.
8036 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8037 return NODE_RECLAIM_NOSCAN;
8040 * Only run node reclaim on the local node or on nodes that do not
8041 * have associated processors. This will favor the local processor
8042 * over remote processors and spread off node memory allocations
8043 * as wide as possible.
8045 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8046 return NODE_RECLAIM_NOSCAN;
8048 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8049 return NODE_RECLAIM_NOSCAN;
8051 ret = __node_reclaim(pgdat, gfp_mask, order);
8052 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8055 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8061 void check_move_unevictable_pages(struct pagevec *pvec)
8063 struct folio_batch fbatch;
8066 folio_batch_init(&fbatch);
8067 for (i = 0; i < pvec->nr; i++) {
8068 struct page *page = pvec->pages[i];
8070 if (PageTransTail(page))
8072 folio_batch_add(&fbatch, page_folio(page));
8074 check_move_unevictable_folios(&fbatch);
8076 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8079 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8081 * @fbatch: Batch of lru folios to check.
8083 * Checks folios for evictability, if an evictable folio is in the unevictable
8084 * lru list, moves it to the appropriate evictable lru list. This function
8085 * should be only used for lru folios.
8087 void check_move_unevictable_folios(struct folio_batch *fbatch)
8089 struct lruvec *lruvec = NULL;
8094 for (i = 0; i < fbatch->nr; i++) {
8095 struct folio *folio = fbatch->folios[i];
8096 int nr_pages = folio_nr_pages(folio);
8098 pgscanned += nr_pages;
8100 /* block memcg migration while the folio moves between lrus */
8101 if (!folio_test_clear_lru(folio))
8104 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8105 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8106 lruvec_del_folio(lruvec, folio);
8107 folio_clear_unevictable(folio);
8108 lruvec_add_folio(lruvec, folio);
8109 pgrescued += nr_pages;
8111 folio_set_lru(folio);
8115 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8116 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8117 unlock_page_lruvec_irq(lruvec);
8118 } else if (pgscanned) {
8119 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8122 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);