1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 DECLARE_RWSEM(kernfs_rwsem);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_rwsem);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
45 return strlcpy(buf, "(null)", buflen);
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
55 while (to->parent && to != from) {
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
83 /* worst case b and a will be the same at root */
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_to: /n1/n2/n3/n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
132 return strlcpy(buf, "(null)", buflen);
135 kn_from = kernfs_root(kn_to)->kn;
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
179 * Fills buffer with "(null)" if @kn is NULL.
181 * This function can be called from any context.
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
227 * This function can be called from any context.
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
245 * This function can be called from any context.
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
266 pr_cont("%s", kernfs_pr_cont_buf);
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
281 struct kernfs_node *parent;
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
326 return strcmp(name, kn->name);
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
343 * kernfs_rwsem held exclusive
346 * 0 on susccess -EEXIST on failure.
348 static int kernfs_link_sibling(struct kernfs_node *kn)
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
354 struct kernfs_node *pos;
357 pos = rb_to_kn(*node);
359 result = kernfs_sd_compare(kn, pos);
361 node = &pos->rb.rb_left;
363 node = &pos->rb.rb_right;
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375 kernfs_inc_rev(kn->parent);
381 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
382 * @kn: kernfs_node of interest
384 * Try to unlink @kn from its sibling rbtree which starts from
385 * kn->parent->dir.children. Returns %true if @kn was actually
386 * removed, %false if @kn wasn't on the rbtree.
389 * kernfs_rwsem held exclusive
391 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
393 if (RB_EMPTY_NODE(&kn->rb))
396 if (kernfs_type(kn) == KERNFS_DIR)
397 kn->parent->dir.subdirs--;
398 kernfs_inc_rev(kn->parent);
400 rb_erase(&kn->rb, &kn->parent->dir.children);
401 RB_CLEAR_NODE(&kn->rb);
406 * kernfs_get_active - get an active reference to kernfs_node
407 * @kn: kernfs_node to get an active reference to
409 * Get an active reference of @kn. This function is noop if @kn
413 * Pointer to @kn on success, NULL on failure.
415 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
420 if (!atomic_inc_unless_negative(&kn->active))
423 if (kernfs_lockdep(kn))
424 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
429 * kernfs_put_active - put an active reference to kernfs_node
430 * @kn: kernfs_node to put an active reference to
432 * Put an active reference to @kn. This function is noop if @kn
435 void kernfs_put_active(struct kernfs_node *kn)
442 if (kernfs_lockdep(kn))
443 rwsem_release(&kn->dep_map, _RET_IP_);
444 v = atomic_dec_return(&kn->active);
445 if (likely(v != KN_DEACTIVATED_BIAS))
448 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
452 * kernfs_drain - drain kernfs_node
453 * @kn: kernfs_node to drain
455 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
456 * removers may invoke this function concurrently on @kn and all will
457 * return after draining is complete.
459 static void kernfs_drain(struct kernfs_node *kn)
460 __releases(&kernfs_rwsem) __acquires(&kernfs_rwsem)
462 struct kernfs_root *root = kernfs_root(kn);
464 lockdep_assert_held_write(&kernfs_rwsem);
465 WARN_ON_ONCE(kernfs_active(kn));
467 up_write(&kernfs_rwsem);
469 if (kernfs_lockdep(kn)) {
470 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
471 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
472 lock_contended(&kn->dep_map, _RET_IP_);
475 /* but everyone should wait for draining */
476 wait_event(root->deactivate_waitq,
477 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
479 if (kernfs_lockdep(kn)) {
480 lock_acquired(&kn->dep_map, _RET_IP_);
481 rwsem_release(&kn->dep_map, _RET_IP_);
484 kernfs_drain_open_files(kn);
486 down_write(&kernfs_rwsem);
490 * kernfs_get - get a reference count on a kernfs_node
491 * @kn: the target kernfs_node
493 void kernfs_get(struct kernfs_node *kn)
496 WARN_ON(!atomic_read(&kn->count));
497 atomic_inc(&kn->count);
500 EXPORT_SYMBOL_GPL(kernfs_get);
503 * kernfs_put - put a reference count on a kernfs_node
504 * @kn: the target kernfs_node
506 * Put a reference count of @kn and destroy it if it reached zero.
508 void kernfs_put(struct kernfs_node *kn)
510 struct kernfs_node *parent;
511 struct kernfs_root *root;
513 if (!kn || !atomic_dec_and_test(&kn->count))
515 root = kernfs_root(kn);
518 * Moving/renaming is always done while holding reference.
519 * kn->parent won't change beneath us.
523 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
524 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
525 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
527 if (kernfs_type(kn) == KERNFS_LINK)
528 kernfs_put(kn->symlink.target_kn);
530 kfree_const(kn->name);
533 simple_xattrs_free(&kn->iattr->xattrs);
534 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
536 spin_lock(&kernfs_idr_lock);
537 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
538 spin_unlock(&kernfs_idr_lock);
539 kmem_cache_free(kernfs_node_cache, kn);
543 if (atomic_dec_and_test(&kn->count))
546 /* just released the root kn, free @root too */
547 idr_destroy(&root->ino_idr);
551 EXPORT_SYMBOL_GPL(kernfs_put);
554 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
555 * @dentry: the dentry in question
557 * Return the kernfs_node associated with @dentry. If @dentry is not a
558 * kernfs one, %NULL is returned.
560 * While the returned kernfs_node will stay accessible as long as @dentry
561 * is accessible, the returned node can be in any state and the caller is
562 * fully responsible for determining what's accessible.
564 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
566 if (dentry->d_sb->s_op == &kernfs_sops)
567 return kernfs_dentry_node(dentry);
571 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
572 struct kernfs_node *parent,
573 const char *name, umode_t mode,
574 kuid_t uid, kgid_t gid,
577 struct kernfs_node *kn;
581 name = kstrdup_const(name, GFP_KERNEL);
585 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
589 idr_preload(GFP_KERNEL);
590 spin_lock(&kernfs_idr_lock);
591 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
592 if (ret >= 0 && ret < root->last_id_lowbits)
594 id_highbits = root->id_highbits;
595 root->last_id_lowbits = ret;
596 spin_unlock(&kernfs_idr_lock);
601 kn->id = (u64)id_highbits << 32 | ret;
603 atomic_set(&kn->count, 1);
604 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
605 RB_CLEAR_NODE(&kn->rb);
611 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
612 struct iattr iattr = {
613 .ia_valid = ATTR_UID | ATTR_GID,
618 ret = __kernfs_setattr(kn, &iattr);
624 ret = security_kernfs_init_security(parent, kn);
632 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
634 kmem_cache_free(kernfs_node_cache, kn);
640 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
641 const char *name, umode_t mode,
642 kuid_t uid, kgid_t gid,
645 struct kernfs_node *kn;
647 kn = __kernfs_new_node(kernfs_root(parent), parent,
648 name, mode, uid, gid, flags);
657 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
658 * @root: the kernfs root
659 * @id: the target node id
661 * @id's lower 32bits encode ino and upper gen. If the gen portion is
662 * zero, all generations are matched.
665 * NULL on failure. Return a kernfs node with reference counter incremented
667 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
670 struct kernfs_node *kn;
671 ino_t ino = kernfs_id_ino(id);
672 u32 gen = kernfs_id_gen(id);
674 spin_lock(&kernfs_idr_lock);
676 kn = idr_find(&root->ino_idr, (u32)ino);
680 if (sizeof(ino_t) >= sizeof(u64)) {
681 /* we looked up with the low 32bits, compare the whole */
682 if (kernfs_ino(kn) != ino)
685 /* 0 matches all generations */
686 if (unlikely(gen && kernfs_gen(kn) != gen))
691 * ACTIVATED is protected with kernfs_mutex but it was clear when
692 * @kn was added to idr and we just wanna see it set. No need to
695 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
696 !atomic_inc_not_zero(&kn->count)))
699 spin_unlock(&kernfs_idr_lock);
702 spin_unlock(&kernfs_idr_lock);
707 * kernfs_add_one - add kernfs_node to parent without warning
708 * @kn: kernfs_node to be added
710 * The caller must already have initialized @kn->parent. This
711 * function increments nlink of the parent's inode if @kn is a
712 * directory and link into the children list of the parent.
715 * 0 on success, -EEXIST if entry with the given name already
718 int kernfs_add_one(struct kernfs_node *kn)
720 struct kernfs_node *parent = kn->parent;
721 struct kernfs_iattrs *ps_iattr;
725 down_write(&kernfs_rwsem);
728 has_ns = kernfs_ns_enabled(parent);
729 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
730 has_ns ? "required" : "invalid", parent->name, kn->name))
733 if (kernfs_type(parent) != KERNFS_DIR)
737 if (parent->flags & KERNFS_EMPTY_DIR)
740 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
743 kn->hash = kernfs_name_hash(kn->name, kn->ns);
745 ret = kernfs_link_sibling(kn);
749 /* Update timestamps on the parent */
750 ps_iattr = parent->iattr;
752 ktime_get_real_ts64(&ps_iattr->ia_ctime);
753 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
756 up_write(&kernfs_rwsem);
759 * Activate the new node unless CREATE_DEACTIVATED is requested.
760 * If not activated here, the kernfs user is responsible for
761 * activating the node with kernfs_activate(). A node which hasn't
762 * been activated is not visible to userland and its removal won't
763 * trigger deactivation.
765 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
770 up_write(&kernfs_rwsem);
775 * kernfs_find_ns - find kernfs_node with the given name
776 * @parent: kernfs_node to search under
777 * @name: name to look for
778 * @ns: the namespace tag to use
780 * Look for kernfs_node with name @name under @parent. Returns pointer to
781 * the found kernfs_node on success, %NULL on failure.
783 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
784 const unsigned char *name,
787 struct rb_node *node = parent->dir.children.rb_node;
788 bool has_ns = kernfs_ns_enabled(parent);
791 lockdep_assert_held(&kernfs_rwsem);
793 if (has_ns != (bool)ns) {
794 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
795 has_ns ? "required" : "invalid", parent->name, name);
799 hash = kernfs_name_hash(name, ns);
801 struct kernfs_node *kn;
805 result = kernfs_name_compare(hash, name, ns, kn);
807 node = node->rb_left;
809 node = node->rb_right;
816 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
817 const unsigned char *path,
823 lockdep_assert_held_read(&kernfs_rwsem);
825 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
826 spin_lock_irq(&kernfs_rename_lock);
828 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
830 if (len >= sizeof(kernfs_pr_cont_buf)) {
831 spin_unlock_irq(&kernfs_rename_lock);
835 p = kernfs_pr_cont_buf;
837 while ((name = strsep(&p, "/")) && parent) {
840 parent = kernfs_find_ns(parent, name, ns);
843 spin_unlock_irq(&kernfs_rename_lock);
849 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
850 * @parent: kernfs_node to search under
851 * @name: name to look for
852 * @ns: the namespace tag to use
854 * Look for kernfs_node with name @name under @parent and get a reference
855 * if found. This function may sleep and returns pointer to the found
856 * kernfs_node on success, %NULL on failure.
858 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
859 const char *name, const void *ns)
861 struct kernfs_node *kn;
863 down_read(&kernfs_rwsem);
864 kn = kernfs_find_ns(parent, name, ns);
866 up_read(&kernfs_rwsem);
870 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
873 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
874 * @parent: kernfs_node to search under
875 * @path: path to look for
876 * @ns: the namespace tag to use
878 * Look for kernfs_node with path @path under @parent and get a reference
879 * if found. This function may sleep and returns pointer to the found
880 * kernfs_node on success, %NULL on failure.
882 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
883 const char *path, const void *ns)
885 struct kernfs_node *kn;
887 down_read(&kernfs_rwsem);
888 kn = kernfs_walk_ns(parent, path, ns);
890 up_read(&kernfs_rwsem);
896 * kernfs_create_root - create a new kernfs hierarchy
897 * @scops: optional syscall operations for the hierarchy
898 * @flags: KERNFS_ROOT_* flags
899 * @priv: opaque data associated with the new directory
901 * Returns the root of the new hierarchy on success, ERR_PTR() value on
904 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
905 unsigned int flags, void *priv)
907 struct kernfs_root *root;
908 struct kernfs_node *kn;
910 root = kzalloc(sizeof(*root), GFP_KERNEL);
912 return ERR_PTR(-ENOMEM);
914 idr_init(&root->ino_idr);
915 INIT_LIST_HEAD(&root->supers);
918 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
919 * High bits generation. The starting value for both ino and
920 * genenration is 1. Initialize upper 32bit allocation
923 if (sizeof(ino_t) >= sizeof(u64))
924 root->id_highbits = 0;
926 root->id_highbits = 1;
928 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
929 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
932 idr_destroy(&root->ino_idr);
934 return ERR_PTR(-ENOMEM);
940 root->syscall_ops = scops;
943 init_waitqueue_head(&root->deactivate_waitq);
945 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
952 * kernfs_destroy_root - destroy a kernfs hierarchy
953 * @root: root of the hierarchy to destroy
955 * Destroy the hierarchy anchored at @root by removing all existing
956 * directories and destroying @root.
958 void kernfs_destroy_root(struct kernfs_root *root)
960 kernfs_remove(root->kn); /* will also free @root */
964 * kernfs_create_dir_ns - create a directory
965 * @parent: parent in which to create a new directory
966 * @name: name of the new directory
967 * @mode: mode of the new directory
968 * @uid: uid of the new directory
969 * @gid: gid of the new directory
970 * @priv: opaque data associated with the new directory
971 * @ns: optional namespace tag of the directory
973 * Returns the created node on success, ERR_PTR() value on failure.
975 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
976 const char *name, umode_t mode,
977 kuid_t uid, kgid_t gid,
978 void *priv, const void *ns)
980 struct kernfs_node *kn;
984 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
985 uid, gid, KERNFS_DIR);
987 return ERR_PTR(-ENOMEM);
989 kn->dir.root = parent->dir.root;
994 rc = kernfs_add_one(kn);
1003 * kernfs_create_empty_dir - create an always empty directory
1004 * @parent: parent in which to create a new directory
1005 * @name: name of the new directory
1007 * Returns the created node on success, ERR_PTR() value on failure.
1009 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1012 struct kernfs_node *kn;
1016 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1017 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1019 return ERR_PTR(-ENOMEM);
1021 kn->flags |= KERNFS_EMPTY_DIR;
1022 kn->dir.root = parent->dir.root;
1027 rc = kernfs_add_one(kn);
1035 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1037 struct kernfs_node *kn;
1039 if (flags & LOOKUP_RCU)
1042 /* Negative hashed dentry? */
1043 if (d_really_is_negative(dentry)) {
1044 struct kernfs_node *parent;
1046 /* If the kernfs parent node has changed discard and
1047 * proceed to ->lookup.
1049 down_read(&kernfs_rwsem);
1050 spin_lock(&dentry->d_lock);
1051 parent = kernfs_dentry_node(dentry->d_parent);
1053 if (kernfs_dir_changed(parent, dentry)) {
1054 spin_unlock(&dentry->d_lock);
1055 up_read(&kernfs_rwsem);
1059 spin_unlock(&dentry->d_lock);
1060 up_read(&kernfs_rwsem);
1062 /* The kernfs parent node hasn't changed, leave the
1063 * dentry negative and return success.
1068 kn = kernfs_dentry_node(dentry);
1069 down_read(&kernfs_rwsem);
1071 /* The kernfs node has been deactivated */
1072 if (!kernfs_active(kn))
1075 /* The kernfs node has been moved? */
1076 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1079 /* The kernfs node has been renamed */
1080 if (strcmp(dentry->d_name.name, kn->name) != 0)
1083 /* The kernfs node has been moved to a different namespace */
1084 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1085 kernfs_info(dentry->d_sb)->ns != kn->ns)
1088 up_read(&kernfs_rwsem);
1091 up_read(&kernfs_rwsem);
1095 const struct dentry_operations kernfs_dops = {
1096 .d_revalidate = kernfs_dop_revalidate,
1099 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1100 struct dentry *dentry,
1103 struct kernfs_node *parent = dir->i_private;
1104 struct kernfs_node *kn;
1105 struct inode *inode = NULL;
1106 const void *ns = NULL;
1108 down_read(&kernfs_rwsem);
1109 if (kernfs_ns_enabled(parent))
1110 ns = kernfs_info(dir->i_sb)->ns;
1112 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1113 /* attach dentry and inode */
1115 /* Inactive nodes are invisible to the VFS so don't
1116 * create a negative.
1118 if (!kernfs_active(kn)) {
1119 up_read(&kernfs_rwsem);
1122 inode = kernfs_get_inode(dir->i_sb, kn);
1124 inode = ERR_PTR(-ENOMEM);
1127 * Needed for negative dentry validation.
1128 * The negative dentry can be created in kernfs_iop_lookup()
1129 * or transforms from positive dentry in dentry_unlink_inode()
1130 * called from vfs_rmdir().
1133 kernfs_set_rev(parent, dentry);
1134 up_read(&kernfs_rwsem);
1136 /* instantiate and hash (possibly negative) dentry */
1137 return d_splice_alias(inode, dentry);
1140 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1141 struct inode *dir, struct dentry *dentry,
1144 struct kernfs_node *parent = dir->i_private;
1145 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1148 if (!scops || !scops->mkdir)
1151 if (!kernfs_get_active(parent))
1154 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1156 kernfs_put_active(parent);
1160 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1162 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1163 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1166 if (!scops || !scops->rmdir)
1169 if (!kernfs_get_active(kn))
1172 ret = scops->rmdir(kn);
1174 kernfs_put_active(kn);
1178 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1179 struct inode *old_dir, struct dentry *old_dentry,
1180 struct inode *new_dir, struct dentry *new_dentry,
1183 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1184 struct kernfs_node *new_parent = new_dir->i_private;
1185 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1191 if (!scops || !scops->rename)
1194 if (!kernfs_get_active(kn))
1197 if (!kernfs_get_active(new_parent)) {
1198 kernfs_put_active(kn);
1202 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1204 kernfs_put_active(new_parent);
1205 kernfs_put_active(kn);
1209 const struct inode_operations kernfs_dir_iops = {
1210 .lookup = kernfs_iop_lookup,
1211 .permission = kernfs_iop_permission,
1212 .setattr = kernfs_iop_setattr,
1213 .getattr = kernfs_iop_getattr,
1214 .listxattr = kernfs_iop_listxattr,
1216 .mkdir = kernfs_iop_mkdir,
1217 .rmdir = kernfs_iop_rmdir,
1218 .rename = kernfs_iop_rename,
1221 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1223 struct kernfs_node *last;
1226 struct rb_node *rbn;
1230 if (kernfs_type(pos) != KERNFS_DIR)
1233 rbn = rb_first(&pos->dir.children);
1237 pos = rb_to_kn(rbn);
1244 * kernfs_next_descendant_post - find the next descendant for post-order walk
1245 * @pos: the current position (%NULL to initiate traversal)
1246 * @root: kernfs_node whose descendants to walk
1248 * Find the next descendant to visit for post-order traversal of @root's
1249 * descendants. @root is included in the iteration and the last node to be
1252 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1253 struct kernfs_node *root)
1255 struct rb_node *rbn;
1257 lockdep_assert_held_write(&kernfs_rwsem);
1259 /* if first iteration, visit leftmost descendant which may be root */
1261 return kernfs_leftmost_descendant(root);
1263 /* if we visited @root, we're done */
1267 /* if there's an unvisited sibling, visit its leftmost descendant */
1268 rbn = rb_next(&pos->rb);
1270 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1272 /* no sibling left, visit parent */
1277 * kernfs_activate - activate a node which started deactivated
1278 * @kn: kernfs_node whose subtree is to be activated
1280 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1281 * needs to be explicitly activated. A node which hasn't been activated
1282 * isn't visible to userland and deactivation is skipped during its
1283 * removal. This is useful to construct atomic init sequences where
1284 * creation of multiple nodes should either succeed or fail atomically.
1286 * The caller is responsible for ensuring that this function is not called
1287 * after kernfs_remove*() is invoked on @kn.
1289 void kernfs_activate(struct kernfs_node *kn)
1291 struct kernfs_node *pos;
1293 down_write(&kernfs_rwsem);
1296 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1297 if (pos->flags & KERNFS_ACTIVATED)
1300 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1301 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1303 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1304 pos->flags |= KERNFS_ACTIVATED;
1307 up_write(&kernfs_rwsem);
1310 static void __kernfs_remove(struct kernfs_node *kn)
1312 struct kernfs_node *pos;
1314 lockdep_assert_held_write(&kernfs_rwsem);
1317 * Short-circuit if non-root @kn has already finished removal.
1318 * This is for kernfs_remove_self() which plays with active ref
1321 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1324 pr_debug("kernfs %s: removing\n", kn->name);
1326 /* prevent any new usage under @kn by deactivating all nodes */
1328 while ((pos = kernfs_next_descendant_post(pos, kn)))
1329 if (kernfs_active(pos))
1330 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1332 /* deactivate and unlink the subtree node-by-node */
1334 pos = kernfs_leftmost_descendant(kn);
1337 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1338 * base ref could have been put by someone else by the time
1339 * the function returns. Make sure it doesn't go away
1345 * Drain iff @kn was activated. This avoids draining and
1346 * its lockdep annotations for nodes which have never been
1347 * activated and allows embedding kernfs_remove() in create
1348 * error paths without worrying about draining.
1350 if (kn->flags & KERNFS_ACTIVATED)
1353 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1356 * kernfs_unlink_sibling() succeeds once per node. Use it
1357 * to decide who's responsible for cleanups.
1359 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1360 struct kernfs_iattrs *ps_iattr =
1361 pos->parent ? pos->parent->iattr : NULL;
1363 /* update timestamps on the parent */
1365 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1366 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1373 } while (pos != kn);
1377 * kernfs_remove - remove a kernfs_node recursively
1378 * @kn: the kernfs_node to remove
1380 * Remove @kn along with all its subdirectories and files.
1382 void kernfs_remove(struct kernfs_node *kn)
1384 down_write(&kernfs_rwsem);
1385 __kernfs_remove(kn);
1386 up_write(&kernfs_rwsem);
1390 * kernfs_break_active_protection - break out of active protection
1391 * @kn: the self kernfs_node
1393 * The caller must be running off of a kernfs operation which is invoked
1394 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1395 * this function must also be matched with an invocation of
1396 * kernfs_unbreak_active_protection().
1398 * This function releases the active reference of @kn the caller is
1399 * holding. Once this function is called, @kn may be removed at any point
1400 * and the caller is solely responsible for ensuring that the objects it
1401 * dereferences are accessible.
1403 void kernfs_break_active_protection(struct kernfs_node *kn)
1406 * Take out ourself out of the active ref dependency chain. If
1407 * we're called without an active ref, lockdep will complain.
1409 kernfs_put_active(kn);
1413 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1414 * @kn: the self kernfs_node
1416 * If kernfs_break_active_protection() was called, this function must be
1417 * invoked before finishing the kernfs operation. Note that while this
1418 * function restores the active reference, it doesn't and can't actually
1419 * restore the active protection - @kn may already or be in the process of
1420 * being removed. Once kernfs_break_active_protection() is invoked, that
1421 * protection is irreversibly gone for the kernfs operation instance.
1423 * While this function may be called at any point after
1424 * kernfs_break_active_protection() is invoked, its most useful location
1425 * would be right before the enclosing kernfs operation returns.
1427 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1430 * @kn->active could be in any state; however, the increment we do
1431 * here will be undone as soon as the enclosing kernfs operation
1432 * finishes and this temporary bump can't break anything. If @kn
1433 * is alive, nothing changes. If @kn is being deactivated, the
1434 * soon-to-follow put will either finish deactivation or restore
1435 * deactivated state. If @kn is already removed, the temporary
1436 * bump is guaranteed to be gone before @kn is released.
1438 atomic_inc(&kn->active);
1439 if (kernfs_lockdep(kn))
1440 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1444 * kernfs_remove_self - remove a kernfs_node from its own method
1445 * @kn: the self kernfs_node to remove
1447 * The caller must be running off of a kernfs operation which is invoked
1448 * with an active reference - e.g. one of kernfs_ops. This can be used to
1449 * implement a file operation which deletes itself.
1451 * For example, the "delete" file for a sysfs device directory can be
1452 * implemented by invoking kernfs_remove_self() on the "delete" file
1453 * itself. This function breaks the circular dependency of trying to
1454 * deactivate self while holding an active ref itself. It isn't necessary
1455 * to modify the usual removal path to use kernfs_remove_self(). The
1456 * "delete" implementation can simply invoke kernfs_remove_self() on self
1457 * before proceeding with the usual removal path. kernfs will ignore later
1458 * kernfs_remove() on self.
1460 * kernfs_remove_self() can be called multiple times concurrently on the
1461 * same kernfs_node. Only the first one actually performs removal and
1462 * returns %true. All others will wait until the kernfs operation which
1463 * won self-removal finishes and return %false. Note that the losers wait
1464 * for the completion of not only the winning kernfs_remove_self() but also
1465 * the whole kernfs_ops which won the arbitration. This can be used to
1466 * guarantee, for example, all concurrent writes to a "delete" file to
1467 * finish only after the whole operation is complete.
1469 bool kernfs_remove_self(struct kernfs_node *kn)
1473 down_write(&kernfs_rwsem);
1474 kernfs_break_active_protection(kn);
1477 * SUICIDAL is used to arbitrate among competing invocations. Only
1478 * the first one will actually perform removal. When the removal
1479 * is complete, SUICIDED is set and the active ref is restored
1480 * while kernfs_rwsem for held exclusive. The ones which lost
1481 * arbitration waits for SUICIDED && drained which can happen only
1482 * after the enclosing kernfs operation which executed the winning
1483 * instance of kernfs_remove_self() finished.
1485 if (!(kn->flags & KERNFS_SUICIDAL)) {
1486 kn->flags |= KERNFS_SUICIDAL;
1487 __kernfs_remove(kn);
1488 kn->flags |= KERNFS_SUICIDED;
1491 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1495 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1497 if ((kn->flags & KERNFS_SUICIDED) &&
1498 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1501 up_write(&kernfs_rwsem);
1503 down_write(&kernfs_rwsem);
1505 finish_wait(waitq, &wait);
1506 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1511 * This must be done while kernfs_rwsem held exclusive; otherwise,
1512 * waiting for SUICIDED && deactivated could finish prematurely.
1514 kernfs_unbreak_active_protection(kn);
1516 up_write(&kernfs_rwsem);
1521 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1522 * @parent: parent of the target
1523 * @name: name of the kernfs_node to remove
1524 * @ns: namespace tag of the kernfs_node to remove
1526 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1527 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1529 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1532 struct kernfs_node *kn;
1535 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1540 down_write(&kernfs_rwsem);
1542 kn = kernfs_find_ns(parent, name, ns);
1544 __kernfs_remove(kn);
1546 up_write(&kernfs_rwsem);
1555 * kernfs_rename_ns - move and rename a kernfs_node
1557 * @new_parent: new parent to put @sd under
1558 * @new_name: new name
1559 * @new_ns: new namespace tag
1561 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1562 const char *new_name, const void *new_ns)
1564 struct kernfs_node *old_parent;
1565 const char *old_name = NULL;
1568 /* can't move or rename root */
1572 down_write(&kernfs_rwsem);
1575 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1576 (new_parent->flags & KERNFS_EMPTY_DIR))
1580 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1581 (strcmp(kn->name, new_name) == 0))
1582 goto out; /* nothing to rename */
1585 if (kernfs_find_ns(new_parent, new_name, new_ns))
1588 /* rename kernfs_node */
1589 if (strcmp(kn->name, new_name) != 0) {
1591 new_name = kstrdup_const(new_name, GFP_KERNEL);
1599 * Move to the appropriate place in the appropriate directories rbtree.
1601 kernfs_unlink_sibling(kn);
1602 kernfs_get(new_parent);
1604 /* rename_lock protects ->parent and ->name accessors */
1605 spin_lock_irq(&kernfs_rename_lock);
1607 old_parent = kn->parent;
1608 kn->parent = new_parent;
1612 old_name = kn->name;
1613 kn->name = new_name;
1616 spin_unlock_irq(&kernfs_rename_lock);
1618 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1619 kernfs_link_sibling(kn);
1621 kernfs_put(old_parent);
1622 kfree_const(old_name);
1626 up_write(&kernfs_rwsem);
1630 /* Relationship between mode and the DT_xxx types */
1631 static inline unsigned char dt_type(struct kernfs_node *kn)
1633 return (kn->mode >> 12) & 15;
1636 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1638 kernfs_put(filp->private_data);
1642 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1643 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1646 int valid = kernfs_active(pos) &&
1647 pos->parent == parent && hash == pos->hash;
1652 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1653 struct rb_node *node = parent->dir.children.rb_node;
1655 pos = rb_to_kn(node);
1657 if (hash < pos->hash)
1658 node = node->rb_left;
1659 else if (hash > pos->hash)
1660 node = node->rb_right;
1665 /* Skip over entries which are dying/dead or in the wrong namespace */
1666 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1667 struct rb_node *node = rb_next(&pos->rb);
1671 pos = rb_to_kn(node);
1676 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1677 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1679 pos = kernfs_dir_pos(ns, parent, ino, pos);
1682 struct rb_node *node = rb_next(&pos->rb);
1686 pos = rb_to_kn(node);
1687 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1692 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1694 struct dentry *dentry = file->f_path.dentry;
1695 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1696 struct kernfs_node *pos = file->private_data;
1697 const void *ns = NULL;
1699 if (!dir_emit_dots(file, ctx))
1701 down_read(&kernfs_rwsem);
1703 if (kernfs_ns_enabled(parent))
1704 ns = kernfs_info(dentry->d_sb)->ns;
1706 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1708 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1709 const char *name = pos->name;
1710 unsigned int type = dt_type(pos);
1711 int len = strlen(name);
1712 ino_t ino = kernfs_ino(pos);
1714 ctx->pos = pos->hash;
1715 file->private_data = pos;
1718 up_read(&kernfs_rwsem);
1719 if (!dir_emit(ctx, name, len, ino, type))
1721 down_read(&kernfs_rwsem);
1723 up_read(&kernfs_rwsem);
1724 file->private_data = NULL;
1729 const struct file_operations kernfs_dir_fops = {
1730 .read = generic_read_dir,
1731 .iterate_shared = kernfs_fop_readdir,
1732 .release = kernfs_dir_fop_release,
1733 .llseek = generic_file_llseek,