]> Git Repo - linux.git/blob - drivers/usb/core/hcd.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / usb / core / hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
74  *              associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
76  */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS              64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110  * Sharable chunks of root hub code.
111  */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL      bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER      bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119         0x12,       /*  __u8  bLength; */
120         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122
123         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
124         0x00,       /*  __u8  bDeviceSubClass; */
125         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127
128         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131
132         0x03,       /*  __u8  iManufacturer; */
133         0x02,       /*  __u8  iProduct; */
134         0x01,       /*  __u8  iSerialNumber; */
135         0x01        /*  __u8  bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140         0x12,       /*  __u8  bLength; */
141         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143
144         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
145         0x00,       /*  __u8  bDeviceSubClass; */
146         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148
149         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152
153         0x03,       /*  __u8  iManufacturer; */
154         0x02,       /*  __u8  iProduct; */
155         0x01,       /*  __u8  iSerialNumber; */
156         0x01        /*  __u8  bNumConfigurations; */
157 };
158
159 /* usb 2.0 root hub device descriptor */
160 static const u8 usb2_rh_dev_descriptor[18] = {
161         0x12,       /*  __u8  bLength; */
162         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
164
165         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
166         0x00,       /*  __u8  bDeviceSubClass; */
167         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
169
170         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173
174         0x03,       /*  __u8  iManufacturer; */
175         0x02,       /*  __u8  iProduct; */
176         0x01,       /*  __u8  iSerialNumber; */
177         0x01        /*  __u8  bNumConfigurations; */
178 };
179
180 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182 /* usb 1.1 root hub device descriptor */
183 static const u8 usb11_rh_dev_descriptor[18] = {
184         0x12,       /*  __u8  bLength; */
185         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
187
188         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
189         0x00,       /*  __u8  bDeviceSubClass; */
190         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
191         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
192
193         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
194         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
195         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
196
197         0x03,       /*  __u8  iManufacturer; */
198         0x02,       /*  __u8  iProduct; */
199         0x01,       /*  __u8  iSerialNumber; */
200         0x01        /*  __u8  bNumConfigurations; */
201 };
202
203
204 /*-------------------------------------------------------------------------*/
205
206 /* Configuration descriptors for our root hubs */
207
208 static const u8 fs_rh_config_descriptor[] = {
209
210         /* one configuration */
211         0x09,       /*  __u8  bLength; */
212         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213         0x19, 0x00, /*  __le16 wTotalLength; */
214         0x01,       /*  __u8  bNumInterfaces; (1) */
215         0x01,       /*  __u8  bConfigurationValue; */
216         0x00,       /*  __u8  iConfiguration; */
217         0xc0,       /*  __u8  bmAttributes;
218                                  Bit 7: must be set,
219                                      6: Self-powered,
220                                      5: Remote wakeup,
221                                      4..0: resvd */
222         0x00,       /*  __u8  MaxPower; */
223
224         /* USB 1.1:
225          * USB 2.0, single TT organization (mandatory):
226          *      one interface, protocol 0
227          *
228          * USB 2.0, multiple TT organization (optional):
229          *      two interfaces, protocols 1 (like single TT)
230          *      and 2 (multiple TT mode) ... config is
231          *      sometimes settable
232          *      NOT IMPLEMENTED
233          */
234
235         /* one interface */
236         0x09,       /*  __u8  if_bLength; */
237         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
238         0x00,       /*  __u8  if_bInterfaceNumber; */
239         0x00,       /*  __u8  if_bAlternateSetting; */
240         0x01,       /*  __u8  if_bNumEndpoints; */
241         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
242         0x00,       /*  __u8  if_bInterfaceSubClass; */
243         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
244         0x00,       /*  __u8  if_iInterface; */
245
246         /* one endpoint (status change endpoint) */
247         0x07,       /*  __u8  ep_bLength; */
248         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
250         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
251         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
253 };
254
255 static const u8 hs_rh_config_descriptor[] = {
256
257         /* one configuration */
258         0x09,       /*  __u8  bLength; */
259         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260         0x19, 0x00, /*  __le16 wTotalLength; */
261         0x01,       /*  __u8  bNumInterfaces; (1) */
262         0x01,       /*  __u8  bConfigurationValue; */
263         0x00,       /*  __u8  iConfiguration; */
264         0xc0,       /*  __u8  bmAttributes;
265                                  Bit 7: must be set,
266                                      6: Self-powered,
267                                      5: Remote wakeup,
268                                      4..0: resvd */
269         0x00,       /*  __u8  MaxPower; */
270
271         /* USB 1.1:
272          * USB 2.0, single TT organization (mandatory):
273          *      one interface, protocol 0
274          *
275          * USB 2.0, multiple TT organization (optional):
276          *      two interfaces, protocols 1 (like single TT)
277          *      and 2 (multiple TT mode) ... config is
278          *      sometimes settable
279          *      NOT IMPLEMENTED
280          */
281
282         /* one interface */
283         0x09,       /*  __u8  if_bLength; */
284         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285         0x00,       /*  __u8  if_bInterfaceNumber; */
286         0x00,       /*  __u8  if_bAlternateSetting; */
287         0x01,       /*  __u8  if_bNumEndpoints; */
288         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
289         0x00,       /*  __u8  if_bInterfaceSubClass; */
290         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
291         0x00,       /*  __u8  if_iInterface; */
292
293         /* one endpoint (status change endpoint) */
294         0x07,       /*  __u8  ep_bLength; */
295         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
297         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
298                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299                      * see hub.c:hub_configure() for details. */
300         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
302 };
303
304 static const u8 ss_rh_config_descriptor[] = {
305         /* one configuration */
306         0x09,       /*  __u8  bLength; */
307         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308         0x1f, 0x00, /*  __le16 wTotalLength; */
309         0x01,       /*  __u8  bNumInterfaces; (1) */
310         0x01,       /*  __u8  bConfigurationValue; */
311         0x00,       /*  __u8  iConfiguration; */
312         0xc0,       /*  __u8  bmAttributes;
313                                  Bit 7: must be set,
314                                      6: Self-powered,
315                                      5: Remote wakeup,
316                                      4..0: resvd */
317         0x00,       /*  __u8  MaxPower; */
318
319         /* one interface */
320         0x09,       /*  __u8  if_bLength; */
321         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322         0x00,       /*  __u8  if_bInterfaceNumber; */
323         0x00,       /*  __u8  if_bAlternateSetting; */
324         0x01,       /*  __u8  if_bNumEndpoints; */
325         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
326         0x00,       /*  __u8  if_bInterfaceSubClass; */
327         0x00,       /*  __u8  if_bInterfaceProtocol; */
328         0x00,       /*  __u8  if_iInterface; */
329
330         /* one endpoint (status change endpoint) */
331         0x07,       /*  __u8  ep_bLength; */
332         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
334         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
335                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336                      * see hub.c:hub_configure() for details. */
337         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
339
340         /* one SuperSpeed endpoint companion descriptor */
341         0x06,        /* __u8 ss_bLength */
342         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343                      /* Companion */
344         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
346         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347 };
348
349 /* authorized_default behaviour:
350  * -1 is authorized for all devices (leftover from wireless USB)
351  * 0 is unauthorized for all devices
352  * 1 is authorized for all devices
353  * 2 is authorized for internal devices
354  */
355 #define USB_AUTHORIZE_WIRED     -1
356 #define USB_AUTHORIZE_NONE      0
357 #define USB_AUTHORIZE_ALL       1
358 #define USB_AUTHORIZE_INTERNAL  2
359
360 static int authorized_default = CONFIG_USB_DEFAULT_AUTHORIZATION_MODE;
361 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362 MODULE_PARM_DESC(authorized_default,
363                 "Default USB device authorization: 0 is not authorized, 1 is authorized (default), 2 is authorized for internal devices, -1 is authorized (same as 1)");
364 /*-------------------------------------------------------------------------*/
365
366 /**
367  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
368  * @s: Null-terminated ASCII (actually ISO-8859-1) string
369  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
370  * @len: Length (in bytes; may be odd) of descriptor buffer.
371  *
372  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
373  * whichever is less.
374  *
375  * Note:
376  * USB String descriptors can contain at most 126 characters; input
377  * strings longer than that are truncated.
378  */
379 static unsigned
380 ascii2desc(char const *s, u8 *buf, unsigned len)
381 {
382         unsigned n, t = 2 + 2*strlen(s);
383
384         if (t > 254)
385                 t = 254;        /* Longest possible UTF string descriptor */
386         if (len > t)
387                 len = t;
388
389         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
390
391         n = len;
392         while (n--) {
393                 *buf++ = t;
394                 if (!n--)
395                         break;
396                 *buf++ = t >> 8;
397                 t = (unsigned char)*s++;
398         }
399         return len;
400 }
401
402 /**
403  * rh_string() - provides string descriptors for root hub
404  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
405  * @hcd: the host controller for this root hub
406  * @data: buffer for output packet
407  * @len: length of the provided buffer
408  *
409  * Produces either a manufacturer, product or serial number string for the
410  * virtual root hub device.
411  *
412  * Return: The number of bytes filled in: the length of the descriptor or
413  * of the provided buffer, whichever is less.
414  */
415 static unsigned
416 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
417 {
418         char buf[100];
419         char const *s;
420         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
421
422         /* language ids */
423         switch (id) {
424         case 0:
425                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
426                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
427                 if (len > 4)
428                         len = 4;
429                 memcpy(data, langids, len);
430                 return len;
431         case 1:
432                 /* Serial number */
433                 s = hcd->self.bus_name;
434                 break;
435         case 2:
436                 /* Product name */
437                 s = hcd->product_desc;
438                 break;
439         case 3:
440                 /* Manufacturer */
441                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
442                         init_utsname()->release, hcd->driver->description);
443                 s = buf;
444                 break;
445         default:
446                 /* Can't happen; caller guarantees it */
447                 return 0;
448         }
449
450         return ascii2desc(s, data, len);
451 }
452
453
454 /* Root hub control transfers execute synchronously */
455 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
456 {
457         struct usb_ctrlrequest *cmd;
458         u16             typeReq, wValue, wIndex, wLength;
459         u8              *ubuf = urb->transfer_buffer;
460         unsigned        len = 0;
461         int             status;
462         u8              patch_wakeup = 0;
463         u8              patch_protocol = 0;
464         u16             tbuf_size;
465         u8              *tbuf = NULL;
466         const u8        *bufp;
467
468         might_sleep();
469
470         spin_lock_irq(&hcd_root_hub_lock);
471         status = usb_hcd_link_urb_to_ep(hcd, urb);
472         spin_unlock_irq(&hcd_root_hub_lock);
473         if (status)
474                 return status;
475         urb->hcpriv = hcd;      /* Indicate it's queued */
476
477         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
478         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
479         wValue   = le16_to_cpu (cmd->wValue);
480         wIndex   = le16_to_cpu (cmd->wIndex);
481         wLength  = le16_to_cpu (cmd->wLength);
482
483         if (wLength > urb->transfer_buffer_length)
484                 goto error;
485
486         /*
487          * tbuf should be at least as big as the
488          * USB hub descriptor.
489          */
490         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
491         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
492         if (!tbuf) {
493                 status = -ENOMEM;
494                 goto err_alloc;
495         }
496
497         bufp = tbuf;
498
499
500         urb->actual_length = 0;
501         switch (typeReq) {
502
503         /* DEVICE REQUESTS */
504
505         /* The root hub's remote wakeup enable bit is implemented using
506          * driver model wakeup flags.  If this system supports wakeup
507          * through USB, userspace may change the default "allow wakeup"
508          * policy through sysfs or these calls.
509          *
510          * Most root hubs support wakeup from downstream devices, for
511          * runtime power management (disabling USB clocks and reducing
512          * VBUS power usage).  However, not all of them do so; silicon,
513          * board, and BIOS bugs here are not uncommon, so these can't
514          * be treated quite like external hubs.
515          *
516          * Likewise, not all root hubs will pass wakeup events upstream,
517          * to wake up the whole system.  So don't assume root hub and
518          * controller capabilities are identical.
519          */
520
521         case DeviceRequest | USB_REQ_GET_STATUS:
522                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
523                                         << USB_DEVICE_REMOTE_WAKEUP)
524                                 | (1 << USB_DEVICE_SELF_POWERED);
525                 tbuf[1] = 0;
526                 len = 2;
527                 break;
528         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
529                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
530                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
531                 else
532                         goto error;
533                 break;
534         case DeviceOutRequest | USB_REQ_SET_FEATURE:
535                 if (device_can_wakeup(&hcd->self.root_hub->dev)
536                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
537                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
538                 else
539                         goto error;
540                 break;
541         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
542                 tbuf[0] = 1;
543                 len = 1;
544                 fallthrough;
545         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
546                 break;
547         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
548                 switch (wValue & 0xff00) {
549                 case USB_DT_DEVICE << 8:
550                         switch (hcd->speed) {
551                         case HCD_USB32:
552                         case HCD_USB31:
553                                 bufp = usb31_rh_dev_descriptor;
554                                 break;
555                         case HCD_USB3:
556                                 bufp = usb3_rh_dev_descriptor;
557                                 break;
558                         case HCD_USB2:
559                                 bufp = usb2_rh_dev_descriptor;
560                                 break;
561                         case HCD_USB11:
562                                 bufp = usb11_rh_dev_descriptor;
563                                 break;
564                         default:
565                                 goto error;
566                         }
567                         len = 18;
568                         if (hcd->has_tt)
569                                 patch_protocol = 1;
570                         break;
571                 case USB_DT_CONFIG << 8:
572                         switch (hcd->speed) {
573                         case HCD_USB32:
574                         case HCD_USB31:
575                         case HCD_USB3:
576                                 bufp = ss_rh_config_descriptor;
577                                 len = sizeof ss_rh_config_descriptor;
578                                 break;
579                         case HCD_USB2:
580                                 bufp = hs_rh_config_descriptor;
581                                 len = sizeof hs_rh_config_descriptor;
582                                 break;
583                         case HCD_USB11:
584                                 bufp = fs_rh_config_descriptor;
585                                 len = sizeof fs_rh_config_descriptor;
586                                 break;
587                         default:
588                                 goto error;
589                         }
590                         if (device_can_wakeup(&hcd->self.root_hub->dev))
591                                 patch_wakeup = 1;
592                         break;
593                 case USB_DT_STRING << 8:
594                         if ((wValue & 0xff) < 4)
595                                 urb->actual_length = rh_string(wValue & 0xff,
596                                                 hcd, ubuf, wLength);
597                         else /* unsupported IDs --> "protocol stall" */
598                                 goto error;
599                         break;
600                 case USB_DT_BOS << 8:
601                         goto nongeneric;
602                 default:
603                         goto error;
604                 }
605                 break;
606         case DeviceRequest | USB_REQ_GET_INTERFACE:
607                 tbuf[0] = 0;
608                 len = 1;
609                 fallthrough;
610         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
611                 break;
612         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
613                 /* wValue == urb->dev->devaddr */
614                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
615                         wValue);
616                 break;
617
618         /* INTERFACE REQUESTS (no defined feature/status flags) */
619
620         /* ENDPOINT REQUESTS */
621
622         case EndpointRequest | USB_REQ_GET_STATUS:
623                 /* ENDPOINT_HALT flag */
624                 tbuf[0] = 0;
625                 tbuf[1] = 0;
626                 len = 2;
627                 fallthrough;
628         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
629         case EndpointOutRequest | USB_REQ_SET_FEATURE:
630                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
631                 break;
632
633         /* CLASS REQUESTS (and errors) */
634
635         default:
636 nongeneric:
637                 /* non-generic request */
638                 switch (typeReq) {
639                 case GetHubStatus:
640                         len = 4;
641                         break;
642                 case GetPortStatus:
643                         if (wValue == HUB_PORT_STATUS)
644                                 len = 4;
645                         else
646                                 /* other port status types return 8 bytes */
647                                 len = 8;
648                         break;
649                 case GetHubDescriptor:
650                         len = sizeof (struct usb_hub_descriptor);
651                         break;
652                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
653                         /* len is returned by hub_control */
654                         break;
655                 }
656                 status = hcd->driver->hub_control (hcd,
657                         typeReq, wValue, wIndex,
658                         tbuf, wLength);
659
660                 if (typeReq == GetHubDescriptor)
661                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
662                                 (struct usb_hub_descriptor *)tbuf);
663                 break;
664 error:
665                 /* "protocol stall" on error */
666                 status = -EPIPE;
667         }
668
669         if (status < 0) {
670                 len = 0;
671                 if (status != -EPIPE) {
672                         dev_dbg (hcd->self.controller,
673                                 "CTRL: TypeReq=0x%x val=0x%x "
674                                 "idx=0x%x len=%d ==> %d\n",
675                                 typeReq, wValue, wIndex,
676                                 wLength, status);
677                 }
678         } else if (status > 0) {
679                 /* hub_control may return the length of data copied. */
680                 len = status;
681                 status = 0;
682         }
683         if (len) {
684                 if (urb->transfer_buffer_length < len)
685                         len = urb->transfer_buffer_length;
686                 urb->actual_length = len;
687                 /* always USB_DIR_IN, toward host */
688                 memcpy (ubuf, bufp, len);
689
690                 /* report whether RH hardware supports remote wakeup */
691                 if (patch_wakeup &&
692                                 len > offsetof (struct usb_config_descriptor,
693                                                 bmAttributes))
694                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
695                                 |= USB_CONFIG_ATT_WAKEUP;
696
697                 /* report whether RH hardware has an integrated TT */
698                 if (patch_protocol &&
699                                 len > offsetof(struct usb_device_descriptor,
700                                                 bDeviceProtocol))
701                         ((struct usb_device_descriptor *) ubuf)->
702                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
703         }
704
705         kfree(tbuf);
706  err_alloc:
707
708         /* any errors get returned through the urb completion */
709         spin_lock_irq(&hcd_root_hub_lock);
710         usb_hcd_unlink_urb_from_ep(hcd, urb);
711         usb_hcd_giveback_urb(hcd, urb, status);
712         spin_unlock_irq(&hcd_root_hub_lock);
713         return 0;
714 }
715
716 /*-------------------------------------------------------------------------*/
717
718 /*
719  * Root Hub interrupt transfers are polled using a timer if the
720  * driver requests it; otherwise the driver is responsible for
721  * calling usb_hcd_poll_rh_status() when an event occurs.
722  *
723  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
724  */
725 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
726 {
727         struct urb      *urb;
728         int             length;
729         int             status;
730         unsigned long   flags;
731         char            buffer[6];      /* Any root hubs with > 31 ports? */
732
733         if (unlikely(!hcd->rh_pollable))
734                 return;
735         if (!hcd->uses_new_polling && !hcd->status_urb)
736                 return;
737
738         length = hcd->driver->hub_status_data(hcd, buffer);
739         if (length > 0) {
740
741                 /* try to complete the status urb */
742                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
743                 urb = hcd->status_urb;
744                 if (urb) {
745                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
746                         hcd->status_urb = NULL;
747                         if (urb->transfer_buffer_length >= length) {
748                                 status = 0;
749                         } else {
750                                 status = -EOVERFLOW;
751                                 length = urb->transfer_buffer_length;
752                         }
753                         urb->actual_length = length;
754                         memcpy(urb->transfer_buffer, buffer, length);
755
756                         usb_hcd_unlink_urb_from_ep(hcd, urb);
757                         usb_hcd_giveback_urb(hcd, urb, status);
758                 } else {
759                         length = 0;
760                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
761                 }
762                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
763         }
764
765         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
766          * exceed that limit if HZ is 100. The math is more clunky than
767          * maybe expected, this is to make sure that all timers for USB devices
768          * fire at the same time to give the CPU a break in between */
769         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
770                         (length == 0 && hcd->status_urb != NULL))
771                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
772 }
773 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
774
775 /* timer callback */
776 static void rh_timer_func (struct timer_list *t)
777 {
778         struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
779
780         usb_hcd_poll_rh_status(_hcd);
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
786 {
787         int             retval;
788         unsigned long   flags;
789         unsigned        len = 1 + (urb->dev->maxchild / 8);
790
791         spin_lock_irqsave (&hcd_root_hub_lock, flags);
792         if (hcd->status_urb || urb->transfer_buffer_length < len) {
793                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
794                 retval = -EINVAL;
795                 goto done;
796         }
797
798         retval = usb_hcd_link_urb_to_ep(hcd, urb);
799         if (retval)
800                 goto done;
801
802         hcd->status_urb = urb;
803         urb->hcpriv = hcd;      /* indicate it's queued */
804         if (!hcd->uses_new_polling)
805                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
806
807         /* If a status change has already occurred, report it ASAP */
808         else if (HCD_POLL_PENDING(hcd))
809                 mod_timer(&hcd->rh_timer, jiffies);
810         retval = 0;
811  done:
812         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
813         return retval;
814 }
815
816 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
817 {
818         if (usb_endpoint_xfer_int(&urb->ep->desc))
819                 return rh_queue_status (hcd, urb);
820         if (usb_endpoint_xfer_control(&urb->ep->desc))
821                 return rh_call_control (hcd, urb);
822         return -EINVAL;
823 }
824
825 /*-------------------------------------------------------------------------*/
826
827 /* Unlinks of root-hub control URBs are legal, but they don't do anything
828  * since these URBs always execute synchronously.
829  */
830 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
831 {
832         unsigned long   flags;
833         int             rc;
834
835         spin_lock_irqsave(&hcd_root_hub_lock, flags);
836         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
837         if (rc)
838                 goto done;
839
840         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
841                 ;       /* Do nothing */
842
843         } else {                                /* Status URB */
844                 if (!hcd->uses_new_polling)
845                         del_timer (&hcd->rh_timer);
846                 if (urb == hcd->status_urb) {
847                         hcd->status_urb = NULL;
848                         usb_hcd_unlink_urb_from_ep(hcd, urb);
849                         usb_hcd_giveback_urb(hcd, urb, status);
850                 }
851         }
852  done:
853         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
854         return rc;
855 }
856
857
858 /*-------------------------------------------------------------------------*/
859
860 /**
861  * usb_bus_init - shared initialization code
862  * @bus: the bus structure being initialized
863  *
864  * This code is used to initialize a usb_bus structure, memory for which is
865  * separately managed.
866  */
867 static void usb_bus_init (struct usb_bus *bus)
868 {
869         memset(&bus->devmap, 0, sizeof(bus->devmap));
870
871         bus->devnum_next = 1;
872
873         bus->root_hub = NULL;
874         bus->busnum = -1;
875         bus->bandwidth_allocated = 0;
876         bus->bandwidth_int_reqs  = 0;
877         bus->bandwidth_isoc_reqs = 0;
878         mutex_init(&bus->devnum_next_mutex);
879 }
880
881 /*-------------------------------------------------------------------------*/
882
883 /**
884  * usb_register_bus - registers the USB host controller with the usb core
885  * @bus: pointer to the bus to register
886  *
887  * Context: task context, might sleep.
888  *
889  * Assigns a bus number, and links the controller into usbcore data
890  * structures so that it can be seen by scanning the bus list.
891  *
892  * Return: 0 if successful. A negative error code otherwise.
893  */
894 static int usb_register_bus(struct usb_bus *bus)
895 {
896         int result = -E2BIG;
897         int busnum;
898
899         mutex_lock(&usb_bus_idr_lock);
900         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
901         if (busnum < 0) {
902                 pr_err("%s: failed to get bus number\n", usbcore_name);
903                 goto error_find_busnum;
904         }
905         bus->busnum = busnum;
906         mutex_unlock(&usb_bus_idr_lock);
907
908         usb_notify_add_bus(bus);
909
910         dev_info (bus->controller, "new USB bus registered, assigned bus "
911                   "number %d\n", bus->busnum);
912         return 0;
913
914 error_find_busnum:
915         mutex_unlock(&usb_bus_idr_lock);
916         return result;
917 }
918
919 /**
920  * usb_deregister_bus - deregisters the USB host controller
921  * @bus: pointer to the bus to deregister
922  *
923  * Context: task context, might sleep.
924  *
925  * Recycles the bus number, and unlinks the controller from usbcore data
926  * structures so that it won't be seen by scanning the bus list.
927  */
928 static void usb_deregister_bus (struct usb_bus *bus)
929 {
930         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
931
932         /*
933          * NOTE: make sure that all the devices are removed by the
934          * controller code, as well as having it call this when cleaning
935          * itself up
936          */
937         mutex_lock(&usb_bus_idr_lock);
938         idr_remove(&usb_bus_idr, bus->busnum);
939         mutex_unlock(&usb_bus_idr_lock);
940
941         usb_notify_remove_bus(bus);
942 }
943
944 /**
945  * register_root_hub - called by usb_add_hcd() to register a root hub
946  * @hcd: host controller for this root hub
947  *
948  * This function registers the root hub with the USB subsystem.  It sets up
949  * the device properly in the device tree and then calls usb_new_device()
950  * to register the usb device.  It also assigns the root hub's USB address
951  * (always 1).
952  *
953  * Return: 0 if successful. A negative error code otherwise.
954  */
955 static int register_root_hub(struct usb_hcd *hcd)
956 {
957         struct device *parent_dev = hcd->self.controller;
958         struct usb_device *usb_dev = hcd->self.root_hub;
959         struct usb_device_descriptor *descr;
960         const int devnum = 1;
961         int retval;
962
963         usb_dev->devnum = devnum;
964         usb_dev->bus->devnum_next = devnum + 1;
965         set_bit(devnum, usb_dev->bus->devmap);
966         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
967
968         mutex_lock(&usb_bus_idr_lock);
969
970         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
971         descr = usb_get_device_descriptor(usb_dev);
972         if (IS_ERR(descr)) {
973                 retval = PTR_ERR(descr);
974                 mutex_unlock(&usb_bus_idr_lock);
975                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
976                                 dev_name(&usb_dev->dev), retval);
977                 return retval;
978         }
979         usb_dev->descriptor = *descr;
980         kfree(descr);
981
982         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
983                 retval = usb_get_bos_descriptor(usb_dev);
984                 if (!retval) {
985                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
986                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
987                         mutex_unlock(&usb_bus_idr_lock);
988                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
989                                         dev_name(&usb_dev->dev), retval);
990                         return retval;
991                 }
992         }
993
994         retval = usb_new_device (usb_dev);
995         if (retval) {
996                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
997                                 dev_name(&usb_dev->dev), retval);
998         } else {
999                 spin_lock_irq (&hcd_root_hub_lock);
1000                 hcd->rh_registered = 1;
1001                 spin_unlock_irq (&hcd_root_hub_lock);
1002
1003                 /* Did the HC die before the root hub was registered? */
1004                 if (HCD_DEAD(hcd))
1005                         usb_hc_died (hcd);      /* This time clean up */
1006         }
1007         mutex_unlock(&usb_bus_idr_lock);
1008
1009         return retval;
1010 }
1011
1012 /*
1013  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1014  * @bus: the bus which the root hub belongs to
1015  * @portnum: the port which is being resumed
1016  *
1017  * HCDs should call this function when they know that a resume signal is
1018  * being sent to a root-hub port.  The root hub will be prevented from
1019  * going into autosuspend until usb_hcd_end_port_resume() is called.
1020  *
1021  * The bus's private lock must be held by the caller.
1022  */
1023 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1024 {
1025         unsigned bit = 1 << portnum;
1026
1027         if (!(bus->resuming_ports & bit)) {
1028                 bus->resuming_ports |= bit;
1029                 pm_runtime_get_noresume(&bus->root_hub->dev);
1030         }
1031 }
1032 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1033
1034 /*
1035  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1036  * @bus: the bus which the root hub belongs to
1037  * @portnum: the port which is being resumed
1038  *
1039  * HCDs should call this function when they know that a resume signal has
1040  * stopped being sent to a root-hub port.  The root hub will be allowed to
1041  * autosuspend again.
1042  *
1043  * The bus's private lock must be held by the caller.
1044  */
1045 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1046 {
1047         unsigned bit = 1 << portnum;
1048
1049         if (bus->resuming_ports & bit) {
1050                 bus->resuming_ports &= ~bit;
1051                 pm_runtime_put_noidle(&bus->root_hub->dev);
1052         }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1055
1056 /*-------------------------------------------------------------------------*/
1057
1058 /**
1059  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1060  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1061  * @is_input: true iff the transaction sends data to the host
1062  * @isoc: true for isochronous transactions, false for interrupt ones
1063  * @bytecount: how many bytes in the transaction.
1064  *
1065  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1066  *
1067  * Note:
1068  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1069  * scheduled in software, this function is only used for such scheduling.
1070  */
1071 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1072 {
1073         unsigned long   tmp;
1074
1075         switch (speed) {
1076         case USB_SPEED_LOW:     /* INTR only */
1077                 if (is_input) {
1078                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1079                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1080                 } else {
1081                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1082                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1083                 }
1084         case USB_SPEED_FULL:    /* ISOC or INTR */
1085                 if (isoc) {
1086                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1087                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1088                 } else {
1089                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1090                         return 9107L + BW_HOST_DELAY + tmp;
1091                 }
1092         case USB_SPEED_HIGH:    /* ISOC or INTR */
1093                 /* FIXME adjust for input vs output */
1094                 if (isoc)
1095                         tmp = HS_NSECS_ISO (bytecount);
1096                 else
1097                         tmp = HS_NSECS (bytecount);
1098                 return tmp;
1099         default:
1100                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1101                 return -1;
1102         }
1103 }
1104 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1105
1106
1107 /*-------------------------------------------------------------------------*/
1108
1109 /*
1110  * Generic HC operations.
1111  */
1112
1113 /*-------------------------------------------------------------------------*/
1114
1115 /**
1116  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1117  * @hcd: host controller to which @urb was submitted
1118  * @urb: URB being submitted
1119  *
1120  * Host controller drivers should call this routine in their enqueue()
1121  * method.  The HCD's private spinlock must be held and interrupts must
1122  * be disabled.  The actions carried out here are required for URB
1123  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1124  *
1125  * Return: 0 for no error, otherwise a negative error code (in which case
1126  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1127  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1128  * the private spinlock and returning.
1129  */
1130 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1131 {
1132         int             rc = 0;
1133
1134         spin_lock(&hcd_urb_list_lock);
1135
1136         /* Check that the URB isn't being killed */
1137         if (unlikely(atomic_read(&urb->reject))) {
1138                 rc = -EPERM;
1139                 goto done;
1140         }
1141
1142         if (unlikely(!urb->ep->enabled)) {
1143                 rc = -ENOENT;
1144                 goto done;
1145         }
1146
1147         if (unlikely(!urb->dev->can_submit)) {
1148                 rc = -EHOSTUNREACH;
1149                 goto done;
1150         }
1151
1152         /*
1153          * Check the host controller's state and add the URB to the
1154          * endpoint's queue.
1155          */
1156         if (HCD_RH_RUNNING(hcd)) {
1157                 urb->unlinked = 0;
1158                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1159         } else {
1160                 rc = -ESHUTDOWN;
1161                 goto done;
1162         }
1163  done:
1164         spin_unlock(&hcd_urb_list_lock);
1165         return rc;
1166 }
1167 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1168
1169 /**
1170  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1171  * @hcd: host controller to which @urb was submitted
1172  * @urb: URB being checked for unlinkability
1173  * @status: error code to store in @urb if the unlink succeeds
1174  *
1175  * Host controller drivers should call this routine in their dequeue()
1176  * method.  The HCD's private spinlock must be held and interrupts must
1177  * be disabled.  The actions carried out here are required for making
1178  * sure than an unlink is valid.
1179  *
1180  * Return: 0 for no error, otherwise a negative error code (in which case
1181  * the dequeue() method must fail).  The possible error codes are:
1182  *
1183  *      -EIDRM: @urb was not submitted or has already completed.
1184  *              The completion function may not have been called yet.
1185  *
1186  *      -EBUSY: @urb has already been unlinked.
1187  */
1188 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1189                 int status)
1190 {
1191         struct list_head        *tmp;
1192
1193         /* insist the urb is still queued */
1194         list_for_each(tmp, &urb->ep->urb_list) {
1195                 if (tmp == &urb->urb_list)
1196                         break;
1197         }
1198         if (tmp != &urb->urb_list)
1199                 return -EIDRM;
1200
1201         /* Any status except -EINPROGRESS means something already started to
1202          * unlink this URB from the hardware.  So there's no more work to do.
1203          */
1204         if (urb->unlinked)
1205                 return -EBUSY;
1206         urb->unlinked = status;
1207         return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1210
1211 /**
1212  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1213  * @hcd: host controller to which @urb was submitted
1214  * @urb: URB being unlinked
1215  *
1216  * Host controller drivers should call this routine before calling
1217  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1218  * interrupts must be disabled.  The actions carried out here are required
1219  * for URB completion.
1220  */
1221 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1222 {
1223         /* clear all state linking urb to this dev (and hcd) */
1224         spin_lock(&hcd_urb_list_lock);
1225         list_del_init(&urb->urb_list);
1226         spin_unlock(&hcd_urb_list_lock);
1227 }
1228 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1229
1230 /*
1231  * Some usb host controllers can only perform dma using a small SRAM area,
1232  * or have restrictions on addressable DRAM.
1233  * The usb core itself is however optimized for host controllers that can dma
1234  * using regular system memory - like pci devices doing bus mastering.
1235  *
1236  * To support host controllers with limited dma capabilities we provide dma
1237  * bounce buffers. This feature can be enabled by initializing
1238  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1239  *
1240  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1241  * data for dma using the genalloc API.
1242  *
1243  * So, to summarize...
1244  *
1245  * - We need "local" memory, canonical example being
1246  *   a small SRAM on a discrete controller being the
1247  *   only memory that the controller can read ...
1248  *   (a) "normal" kernel memory is no good, and
1249  *   (b) there's not enough to share
1250  *
1251  * - So we use that, even though the primary requirement
1252  *   is that the memory be "local" (hence addressable
1253  *   by that device), not "coherent".
1254  *
1255  */
1256
1257 static int hcd_alloc_coherent(struct usb_bus *bus,
1258                               gfp_t mem_flags, dma_addr_t *dma_handle,
1259                               void **vaddr_handle, size_t size,
1260                               enum dma_data_direction dir)
1261 {
1262         unsigned char *vaddr;
1263
1264         if (*vaddr_handle == NULL) {
1265                 WARN_ON_ONCE(1);
1266                 return -EFAULT;
1267         }
1268
1269         vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1270                                  mem_flags, dma_handle);
1271         if (!vaddr)
1272                 return -ENOMEM;
1273
1274         /*
1275          * Store the virtual address of the buffer at the end
1276          * of the allocated dma buffer. The size of the buffer
1277          * may be uneven so use unaligned functions instead
1278          * of just rounding up. It makes sense to optimize for
1279          * memory footprint over access speed since the amount
1280          * of memory available for dma may be limited.
1281          */
1282         put_unaligned((unsigned long)*vaddr_handle,
1283                       (unsigned long *)(vaddr + size));
1284
1285         if (dir == DMA_TO_DEVICE)
1286                 memcpy(vaddr, *vaddr_handle, size);
1287
1288         *vaddr_handle = vaddr;
1289         return 0;
1290 }
1291
1292 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1293                               void **vaddr_handle, size_t size,
1294                               enum dma_data_direction dir)
1295 {
1296         unsigned char *vaddr = *vaddr_handle;
1297
1298         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1299
1300         if (dir == DMA_FROM_DEVICE)
1301                 memcpy(vaddr, *vaddr_handle, size);
1302
1303         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1304
1305         *vaddr_handle = vaddr;
1306         *dma_handle = 0;
1307 }
1308
1309 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1310 {
1311         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1312             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1313                 dma_unmap_single(hcd->self.sysdev,
1314                                 urb->setup_dma,
1315                                 sizeof(struct usb_ctrlrequest),
1316                                 DMA_TO_DEVICE);
1317         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1318                 hcd_free_coherent(urb->dev->bus,
1319                                 &urb->setup_dma,
1320                                 (void **) &urb->setup_packet,
1321                                 sizeof(struct usb_ctrlrequest),
1322                                 DMA_TO_DEVICE);
1323
1324         /* Make it safe to call this routine more than once */
1325         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1328
1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330 {
1331         if (hcd->driver->unmap_urb_for_dma)
1332                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1333         else
1334                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1335 }
1336
1337 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1338 {
1339         enum dma_data_direction dir;
1340
1341         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1342
1343         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1344         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1345             (urb->transfer_flags & URB_DMA_MAP_SG))
1346                 dma_unmap_sg(hcd->self.sysdev,
1347                                 urb->sg,
1348                                 urb->num_sgs,
1349                                 dir);
1350         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1351                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1352                 dma_unmap_page(hcd->self.sysdev,
1353                                 urb->transfer_dma,
1354                                 urb->transfer_buffer_length,
1355                                 dir);
1356         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358                 dma_unmap_single(hcd->self.sysdev,
1359                                 urb->transfer_dma,
1360                                 urb->transfer_buffer_length,
1361                                 dir);
1362         else if (urb->transfer_flags & URB_MAP_LOCAL)
1363                 hcd_free_coherent(urb->dev->bus,
1364                                 &urb->transfer_dma,
1365                                 &urb->transfer_buffer,
1366                                 urb->transfer_buffer_length,
1367                                 dir);
1368
1369         /* Make it safe to call this routine more than once */
1370         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1371                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1372 }
1373 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1374
1375 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1376                            gfp_t mem_flags)
1377 {
1378         if (hcd->driver->map_urb_for_dma)
1379                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1380         else
1381                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1382 }
1383
1384 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1385                             gfp_t mem_flags)
1386 {
1387         enum dma_data_direction dir;
1388         int ret = 0;
1389
1390         /* Map the URB's buffers for DMA access.
1391          * Lower level HCD code should use *_dma exclusively,
1392          * unless it uses pio or talks to another transport,
1393          * or uses the provided scatter gather list for bulk.
1394          */
1395
1396         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1397                 if (hcd->self.uses_pio_for_control)
1398                         return ret;
1399                 if (hcd->localmem_pool) {
1400                         ret = hcd_alloc_coherent(
1401                                         urb->dev->bus, mem_flags,
1402                                         &urb->setup_dma,
1403                                         (void **)&urb->setup_packet,
1404                                         sizeof(struct usb_ctrlrequest),
1405                                         DMA_TO_DEVICE);
1406                         if (ret)
1407                                 return ret;
1408                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1409                 } else if (hcd_uses_dma(hcd)) {
1410                         if (object_is_on_stack(urb->setup_packet)) {
1411                                 WARN_ONCE(1, "setup packet is on stack\n");
1412                                 return -EAGAIN;
1413                         }
1414
1415                         urb->setup_dma = dma_map_single(
1416                                         hcd->self.sysdev,
1417                                         urb->setup_packet,
1418                                         sizeof(struct usb_ctrlrequest),
1419                                         DMA_TO_DEVICE);
1420                         if (dma_mapping_error(hcd->self.sysdev,
1421                                                 urb->setup_dma))
1422                                 return -EAGAIN;
1423                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1424                 }
1425         }
1426
1427         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1428         if (urb->transfer_buffer_length != 0
1429             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1430                 if (hcd->localmem_pool) {
1431                         ret = hcd_alloc_coherent(
1432                                         urb->dev->bus, mem_flags,
1433                                         &urb->transfer_dma,
1434                                         &urb->transfer_buffer,
1435                                         urb->transfer_buffer_length,
1436                                         dir);
1437                         if (ret == 0)
1438                                 urb->transfer_flags |= URB_MAP_LOCAL;
1439                 } else if (hcd_uses_dma(hcd)) {
1440                         if (urb->num_sgs) {
1441                                 int n;
1442
1443                                 /* We don't support sg for isoc transfers ! */
1444                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1445                                         WARN_ON(1);
1446                                         return -EINVAL;
1447                                 }
1448
1449                                 n = dma_map_sg(
1450                                                 hcd->self.sysdev,
1451                                                 urb->sg,
1452                                                 urb->num_sgs,
1453                                                 dir);
1454                                 if (!n)
1455                                         ret = -EAGAIN;
1456                                 else
1457                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1458                                 urb->num_mapped_sgs = n;
1459                                 if (n != urb->num_sgs)
1460                                         urb->transfer_flags |=
1461                                                         URB_DMA_SG_COMBINED;
1462                         } else if (urb->sg) {
1463                                 struct scatterlist *sg = urb->sg;
1464                                 urb->transfer_dma = dma_map_page(
1465                                                 hcd->self.sysdev,
1466                                                 sg_page(sg),
1467                                                 sg->offset,
1468                                                 urb->transfer_buffer_length,
1469                                                 dir);
1470                                 if (dma_mapping_error(hcd->self.sysdev,
1471                                                 urb->transfer_dma))
1472                                         ret = -EAGAIN;
1473                                 else
1474                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1475                         } else if (object_is_on_stack(urb->transfer_buffer)) {
1476                                 WARN_ONCE(1, "transfer buffer is on stack\n");
1477                                 ret = -EAGAIN;
1478                         } else {
1479                                 urb->transfer_dma = dma_map_single(
1480                                                 hcd->self.sysdev,
1481                                                 urb->transfer_buffer,
1482                                                 urb->transfer_buffer_length,
1483                                                 dir);
1484                                 if (dma_mapping_error(hcd->self.sysdev,
1485                                                 urb->transfer_dma))
1486                                         ret = -EAGAIN;
1487                                 else
1488                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1489                         }
1490                 }
1491                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1492                                 URB_SETUP_MAP_LOCAL)))
1493                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1494         }
1495         return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1498
1499 /*-------------------------------------------------------------------------*/
1500
1501 /* may be called in any context with a valid urb->dev usecount
1502  * caller surrenders "ownership" of urb
1503  * expects usb_submit_urb() to have sanity checked and conditioned all
1504  * inputs in the urb
1505  */
1506 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1507 {
1508         int                     status;
1509         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1510
1511         /* increment urb's reference count as part of giving it to the HCD
1512          * (which will control it).  HCD guarantees that it either returns
1513          * an error or calls giveback(), but not both.
1514          */
1515         usb_get_urb(urb);
1516         atomic_inc(&urb->use_count);
1517         atomic_inc(&urb->dev->urbnum);
1518         usbmon_urb_submit(&hcd->self, urb);
1519
1520         /* NOTE requirements on root-hub callers (usbfs and the hub
1521          * driver, for now):  URBs' urb->transfer_buffer must be
1522          * valid and usb_buffer_{sync,unmap}() not be needed, since
1523          * they could clobber root hub response data.  Also, control
1524          * URBs must be submitted in process context with interrupts
1525          * enabled.
1526          */
1527
1528         if (is_root_hub(urb->dev)) {
1529                 status = rh_urb_enqueue(hcd, urb);
1530         } else {
1531                 status = map_urb_for_dma(hcd, urb, mem_flags);
1532                 if (likely(status == 0)) {
1533                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1534                         if (unlikely(status))
1535                                 unmap_urb_for_dma(hcd, urb);
1536                 }
1537         }
1538
1539         if (unlikely(status)) {
1540                 usbmon_urb_submit_error(&hcd->self, urb, status);
1541                 urb->hcpriv = NULL;
1542                 INIT_LIST_HEAD(&urb->urb_list);
1543                 atomic_dec(&urb->use_count);
1544                 /*
1545                  * Order the write of urb->use_count above before the read
1546                  * of urb->reject below.  Pairs with the memory barriers in
1547                  * usb_kill_urb() and usb_poison_urb().
1548                  */
1549                 smp_mb__after_atomic();
1550
1551                 atomic_dec(&urb->dev->urbnum);
1552                 if (atomic_read(&urb->reject))
1553                         wake_up(&usb_kill_urb_queue);
1554                 usb_put_urb(urb);
1555         }
1556         return status;
1557 }
1558
1559 /*-------------------------------------------------------------------------*/
1560
1561 /* this makes the hcd giveback() the urb more quickly, by kicking it
1562  * off hardware queues (which may take a while) and returning it as
1563  * soon as practical.  we've already set up the urb's return status,
1564  * but we can't know if the callback completed already.
1565  */
1566 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1567 {
1568         int             value;
1569
1570         if (is_root_hub(urb->dev))
1571                 value = usb_rh_urb_dequeue(hcd, urb, status);
1572         else {
1573
1574                 /* The only reason an HCD might fail this call is if
1575                  * it has not yet fully queued the urb to begin with.
1576                  * Such failures should be harmless. */
1577                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1578         }
1579         return value;
1580 }
1581
1582 /*
1583  * called in any context
1584  *
1585  * caller guarantees urb won't be recycled till both unlink()
1586  * and the urb's completion function return
1587  */
1588 int usb_hcd_unlink_urb (struct urb *urb, int status)
1589 {
1590         struct usb_hcd          *hcd;
1591         struct usb_device       *udev = urb->dev;
1592         int                     retval = -EIDRM;
1593         unsigned long           flags;
1594
1595         /* Prevent the device and bus from going away while
1596          * the unlink is carried out.  If they are already gone
1597          * then urb->use_count must be 0, since disconnected
1598          * devices can't have any active URBs.
1599          */
1600         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1601         if (atomic_read(&urb->use_count) > 0) {
1602                 retval = 0;
1603                 usb_get_dev(udev);
1604         }
1605         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1606         if (retval == 0) {
1607                 hcd = bus_to_hcd(urb->dev->bus);
1608                 retval = unlink1(hcd, urb, status);
1609                 if (retval == 0)
1610                         retval = -EINPROGRESS;
1611                 else if (retval != -EIDRM && retval != -EBUSY)
1612                         dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1613                                         urb, retval);
1614                 usb_put_dev(udev);
1615         }
1616         return retval;
1617 }
1618
1619 /*-------------------------------------------------------------------------*/
1620
1621 static void __usb_hcd_giveback_urb(struct urb *urb)
1622 {
1623         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1624         struct usb_anchor *anchor = urb->anchor;
1625         int status = urb->unlinked;
1626         unsigned long flags;
1627
1628         urb->hcpriv = NULL;
1629         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1630             urb->actual_length < urb->transfer_buffer_length &&
1631             !status))
1632                 status = -EREMOTEIO;
1633
1634         unmap_urb_for_dma(hcd, urb);
1635         usbmon_urb_complete(&hcd->self, urb, status);
1636         usb_anchor_suspend_wakeups(anchor);
1637         usb_unanchor_urb(urb);
1638         if (likely(status == 0))
1639                 usb_led_activity(USB_LED_EVENT_HOST);
1640
1641         /* pass ownership to the completion handler */
1642         urb->status = status;
1643         /*
1644          * Only collect coverage in the softirq context and disable interrupts
1645          * to avoid scenarios with nested remote coverage collection sections
1646          * that KCOV does not support.
1647          * See the comment next to kcov_remote_start_usb_softirq() for details.
1648          */
1649         flags = kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650         urb->complete(urb);
1651         kcov_remote_stop_softirq(flags);
1652
1653         usb_anchor_resume_wakeups(anchor);
1654         atomic_dec(&urb->use_count);
1655         /*
1656          * Order the write of urb->use_count above before the read
1657          * of urb->reject below.  Pairs with the memory barriers in
1658          * usb_kill_urb() and usb_poison_urb().
1659          */
1660         smp_mb__after_atomic();
1661
1662         if (unlikely(atomic_read(&urb->reject)))
1663                 wake_up(&usb_kill_urb_queue);
1664         usb_put_urb(urb);
1665 }
1666
1667 static void usb_giveback_urb_bh(struct work_struct *work)
1668 {
1669         struct giveback_urb_bh *bh =
1670                 container_of(work, struct giveback_urb_bh, bh);
1671         struct list_head local_list;
1672
1673         spin_lock_irq(&bh->lock);
1674         bh->running = true;
1675         list_replace_init(&bh->head, &local_list);
1676         spin_unlock_irq(&bh->lock);
1677
1678         while (!list_empty(&local_list)) {
1679                 struct urb *urb;
1680
1681                 urb = list_entry(local_list.next, struct urb, urb_list);
1682                 list_del_init(&urb->urb_list);
1683                 bh->completing_ep = urb->ep;
1684                 __usb_hcd_giveback_urb(urb);
1685                 bh->completing_ep = NULL;
1686         }
1687
1688         /*
1689          * giveback new URBs next time to prevent this function
1690          * from not exiting for a long time.
1691          */
1692         spin_lock_irq(&bh->lock);
1693         if (!list_empty(&bh->head)) {
1694                 if (bh->high_prio)
1695                         queue_work(system_bh_highpri_wq, &bh->bh);
1696                 else
1697                         queue_work(system_bh_wq, &bh->bh);
1698         }
1699         bh->running = false;
1700         spin_unlock_irq(&bh->lock);
1701 }
1702
1703 /**
1704  * usb_hcd_giveback_urb - return URB from HCD to device driver
1705  * @hcd: host controller returning the URB
1706  * @urb: urb being returned to the USB device driver.
1707  * @status: completion status code for the URB.
1708  *
1709  * Context: atomic. The completion callback is invoked in caller's context.
1710  * For HCDs with HCD_BH flag set, the completion callback is invoked in BH
1711  * context (except for URBs submitted to the root hub which always complete in
1712  * caller's context).
1713  *
1714  * This hands the URB from HCD to its USB device driver, using its
1715  * completion function.  The HCD has freed all per-urb resources
1716  * (and is done using urb->hcpriv).  It also released all HCD locks;
1717  * the device driver won't cause problems if it frees, modifies,
1718  * or resubmits this URB.
1719  *
1720  * If @urb was unlinked, the value of @status will be overridden by
1721  * @urb->unlinked.  Erroneous short transfers are detected in case
1722  * the HCD hasn't checked for them.
1723  */
1724 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1725 {
1726         struct giveback_urb_bh *bh;
1727         bool running;
1728
1729         /* pass status to BH via unlinked */
1730         if (likely(!urb->unlinked))
1731                 urb->unlinked = status;
1732
1733         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1734                 __usb_hcd_giveback_urb(urb);
1735                 return;
1736         }
1737
1738         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1739                 bh = &hcd->high_prio_bh;
1740         else
1741                 bh = &hcd->low_prio_bh;
1742
1743         spin_lock(&bh->lock);
1744         list_add_tail(&urb->urb_list, &bh->head);
1745         running = bh->running;
1746         spin_unlock(&bh->lock);
1747
1748         if (running)
1749                 ;
1750         else if (bh->high_prio)
1751                 queue_work(system_bh_highpri_wq, &bh->bh);
1752         else
1753                 queue_work(system_bh_wq, &bh->bh);
1754 }
1755 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1756
1757 /*-------------------------------------------------------------------------*/
1758
1759 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1760  * queue to drain completely.  The caller must first insure that no more
1761  * URBs can be submitted for this endpoint.
1762  */
1763 void usb_hcd_flush_endpoint(struct usb_device *udev,
1764                 struct usb_host_endpoint *ep)
1765 {
1766         struct usb_hcd          *hcd;
1767         struct urb              *urb;
1768
1769         if (!ep)
1770                 return;
1771         might_sleep();
1772         hcd = bus_to_hcd(udev->bus);
1773
1774         /* No more submits can occur */
1775         spin_lock_irq(&hcd_urb_list_lock);
1776 rescan:
1777         list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1778                 int     is_in;
1779
1780                 if (urb->unlinked)
1781                         continue;
1782                 usb_get_urb (urb);
1783                 is_in = usb_urb_dir_in(urb);
1784                 spin_unlock(&hcd_urb_list_lock);
1785
1786                 /* kick hcd */
1787                 unlink1(hcd, urb, -ESHUTDOWN);
1788                 dev_dbg (hcd->self.controller,
1789                         "shutdown urb %pK ep%d%s-%s\n",
1790                         urb, usb_endpoint_num(&ep->desc),
1791                         is_in ? "in" : "out",
1792                         usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1793                 usb_put_urb (urb);
1794
1795                 /* list contents may have changed */
1796                 spin_lock(&hcd_urb_list_lock);
1797                 goto rescan;
1798         }
1799         spin_unlock_irq(&hcd_urb_list_lock);
1800
1801         /* Wait until the endpoint queue is completely empty */
1802         while (!list_empty (&ep->urb_list)) {
1803                 spin_lock_irq(&hcd_urb_list_lock);
1804
1805                 /* The list may have changed while we acquired the spinlock */
1806                 urb = NULL;
1807                 if (!list_empty (&ep->urb_list)) {
1808                         urb = list_entry (ep->urb_list.prev, struct urb,
1809                                         urb_list);
1810                         usb_get_urb (urb);
1811                 }
1812                 spin_unlock_irq(&hcd_urb_list_lock);
1813
1814                 if (urb) {
1815                         usb_kill_urb (urb);
1816                         usb_put_urb (urb);
1817                 }
1818         }
1819 }
1820
1821 /**
1822  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1823  *                              the bus bandwidth
1824  * @udev: target &usb_device
1825  * @new_config: new configuration to install
1826  * @cur_alt: the current alternate interface setting
1827  * @new_alt: alternate interface setting that is being installed
1828  *
1829  * To change configurations, pass in the new configuration in new_config,
1830  * and pass NULL for cur_alt and new_alt.
1831  *
1832  * To reset a device's configuration (put the device in the ADDRESSED state),
1833  * pass in NULL for new_config, cur_alt, and new_alt.
1834  *
1835  * To change alternate interface settings, pass in NULL for new_config,
1836  * pass in the current alternate interface setting in cur_alt,
1837  * and pass in the new alternate interface setting in new_alt.
1838  *
1839  * Return: An error if the requested bandwidth change exceeds the
1840  * bus bandwidth or host controller internal resources.
1841  */
1842 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1843                 struct usb_host_config *new_config,
1844                 struct usb_host_interface *cur_alt,
1845                 struct usb_host_interface *new_alt)
1846 {
1847         int num_intfs, i, j;
1848         struct usb_host_interface *alt = NULL;
1849         int ret = 0;
1850         struct usb_hcd *hcd;
1851         struct usb_host_endpoint *ep;
1852
1853         hcd = bus_to_hcd(udev->bus);
1854         if (!hcd->driver->check_bandwidth)
1855                 return 0;
1856
1857         /* Configuration is being removed - set configuration 0 */
1858         if (!new_config && !cur_alt) {
1859                 for (i = 1; i < 16; ++i) {
1860                         ep = udev->ep_out[i];
1861                         if (ep)
1862                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1863                         ep = udev->ep_in[i];
1864                         if (ep)
1865                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1866                 }
1867                 hcd->driver->check_bandwidth(hcd, udev);
1868                 return 0;
1869         }
1870         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1871          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1872          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1873          * ok to exclude it.
1874          */
1875         if (new_config) {
1876                 num_intfs = new_config->desc.bNumInterfaces;
1877                 /* Remove endpoints (except endpoint 0, which is always on the
1878                  * schedule) from the old config from the schedule
1879                  */
1880                 for (i = 1; i < 16; ++i) {
1881                         ep = udev->ep_out[i];
1882                         if (ep) {
1883                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1884                                 if (ret < 0)
1885                                         goto reset;
1886                         }
1887                         ep = udev->ep_in[i];
1888                         if (ep) {
1889                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1890                                 if (ret < 0)
1891                                         goto reset;
1892                         }
1893                 }
1894                 for (i = 0; i < num_intfs; ++i) {
1895                         struct usb_host_interface *first_alt;
1896                         int iface_num;
1897
1898                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1899                         iface_num = first_alt->desc.bInterfaceNumber;
1900                         /* Set up endpoints for alternate interface setting 0 */
1901                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1902                         if (!alt)
1903                                 /* No alt setting 0? Pick the first setting. */
1904                                 alt = first_alt;
1905
1906                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1907                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1908                                 if (ret < 0)
1909                                         goto reset;
1910                         }
1911                 }
1912         }
1913         if (cur_alt && new_alt) {
1914                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1915                                 cur_alt->desc.bInterfaceNumber);
1916
1917                 if (!iface)
1918                         return -EINVAL;
1919                 if (iface->resetting_device) {
1920                         /*
1921                          * The USB core just reset the device, so the xHCI host
1922                          * and the device will think alt setting 0 is installed.
1923                          * However, the USB core will pass in the alternate
1924                          * setting installed before the reset as cur_alt.  Dig
1925                          * out the alternate setting 0 structure, or the first
1926                          * alternate setting if a broken device doesn't have alt
1927                          * setting 0.
1928                          */
1929                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1930                         if (!cur_alt)
1931                                 cur_alt = &iface->altsetting[0];
1932                 }
1933
1934                 /* Drop all the endpoints in the current alt setting */
1935                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1936                         ret = hcd->driver->drop_endpoint(hcd, udev,
1937                                         &cur_alt->endpoint[i]);
1938                         if (ret < 0)
1939                                 goto reset;
1940                 }
1941                 /* Add all the endpoints in the new alt setting */
1942                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1943                         ret = hcd->driver->add_endpoint(hcd, udev,
1944                                         &new_alt->endpoint[i]);
1945                         if (ret < 0)
1946                                 goto reset;
1947                 }
1948         }
1949         ret = hcd->driver->check_bandwidth(hcd, udev);
1950 reset:
1951         if (ret < 0)
1952                 hcd->driver->reset_bandwidth(hcd, udev);
1953         return ret;
1954 }
1955
1956 /* Disables the endpoint: synchronizes with the hcd to make sure all
1957  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1958  * have been called previously.  Use for set_configuration, set_interface,
1959  * driver removal, physical disconnect.
1960  *
1961  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1962  * type, maxpacket size, toggle, halt status, and scheduling.
1963  */
1964 void usb_hcd_disable_endpoint(struct usb_device *udev,
1965                 struct usb_host_endpoint *ep)
1966 {
1967         struct usb_hcd          *hcd;
1968
1969         might_sleep();
1970         hcd = bus_to_hcd(udev->bus);
1971         if (hcd->driver->endpoint_disable)
1972                 hcd->driver->endpoint_disable(hcd, ep);
1973 }
1974
1975 /**
1976  * usb_hcd_reset_endpoint - reset host endpoint state
1977  * @udev: USB device.
1978  * @ep:   the endpoint to reset.
1979  *
1980  * Resets any host endpoint state such as the toggle bit, sequence
1981  * number and current window.
1982  */
1983 void usb_hcd_reset_endpoint(struct usb_device *udev,
1984                             struct usb_host_endpoint *ep)
1985 {
1986         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1987
1988         if (hcd->driver->endpoint_reset)
1989                 hcd->driver->endpoint_reset(hcd, ep);
1990         else {
1991                 int epnum = usb_endpoint_num(&ep->desc);
1992                 int is_out = usb_endpoint_dir_out(&ep->desc);
1993                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1994
1995                 usb_settoggle(udev, epnum, is_out, 0);
1996                 if (is_control)
1997                         usb_settoggle(udev, epnum, !is_out, 0);
1998         }
1999 }
2000
2001 /**
2002  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2003  * @interface:          alternate setting that includes all endpoints.
2004  * @eps:                array of endpoints that need streams.
2005  * @num_eps:            number of endpoints in the array.
2006  * @num_streams:        number of streams to allocate.
2007  * @mem_flags:          flags hcd should use to allocate memory.
2008  *
2009  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2010  * Drivers may queue multiple transfers to different stream IDs, which may
2011  * complete in a different order than they were queued.
2012  *
2013  * Return: On success, the number of allocated streams. On failure, a negative
2014  * error code.
2015  */
2016 int usb_alloc_streams(struct usb_interface *interface,
2017                 struct usb_host_endpoint **eps, unsigned int num_eps,
2018                 unsigned int num_streams, gfp_t mem_flags)
2019 {
2020         struct usb_hcd *hcd;
2021         struct usb_device *dev;
2022         int i, ret;
2023
2024         dev = interface_to_usbdev(interface);
2025         hcd = bus_to_hcd(dev->bus);
2026         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2027                 return -EINVAL;
2028         if (dev->speed < USB_SPEED_SUPER)
2029                 return -EINVAL;
2030         if (dev->state < USB_STATE_CONFIGURED)
2031                 return -ENODEV;
2032
2033         for (i = 0; i < num_eps; i++) {
2034                 /* Streams only apply to bulk endpoints. */
2035                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2036                         return -EINVAL;
2037                 /* Re-alloc is not allowed */
2038                 if (eps[i]->streams)
2039                         return -EINVAL;
2040         }
2041
2042         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2043                         num_streams, mem_flags);
2044         if (ret < 0)
2045                 return ret;
2046
2047         for (i = 0; i < num_eps; i++)
2048                 eps[i]->streams = ret;
2049
2050         return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2053
2054 /**
2055  * usb_free_streams - free bulk endpoint stream IDs.
2056  * @interface:  alternate setting that includes all endpoints.
2057  * @eps:        array of endpoints to remove streams from.
2058  * @num_eps:    number of endpoints in the array.
2059  * @mem_flags:  flags hcd should use to allocate memory.
2060  *
2061  * Reverts a group of bulk endpoints back to not using stream IDs.
2062  * Can fail if we are given bad arguments, or HCD is broken.
2063  *
2064  * Return: 0 on success. On failure, a negative error code.
2065  */
2066 int usb_free_streams(struct usb_interface *interface,
2067                 struct usb_host_endpoint **eps, unsigned int num_eps,
2068                 gfp_t mem_flags)
2069 {
2070         struct usb_hcd *hcd;
2071         struct usb_device *dev;
2072         int i, ret;
2073
2074         dev = interface_to_usbdev(interface);
2075         hcd = bus_to_hcd(dev->bus);
2076         if (dev->speed < USB_SPEED_SUPER)
2077                 return -EINVAL;
2078
2079         /* Double-free is not allowed */
2080         for (i = 0; i < num_eps; i++)
2081                 if (!eps[i] || !eps[i]->streams)
2082                         return -EINVAL;
2083
2084         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2085         if (ret < 0)
2086                 return ret;
2087
2088         for (i = 0; i < num_eps; i++)
2089                 eps[i]->streams = 0;
2090
2091         return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(usb_free_streams);
2094
2095 /* Protect against drivers that try to unlink URBs after the device
2096  * is gone, by waiting until all unlinks for @udev are finished.
2097  * Since we don't currently track URBs by device, simply wait until
2098  * nothing is running in the locked region of usb_hcd_unlink_urb().
2099  */
2100 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2101 {
2102         spin_lock_irq(&hcd_urb_unlink_lock);
2103         spin_unlock_irq(&hcd_urb_unlink_lock);
2104 }
2105
2106 /*-------------------------------------------------------------------------*/
2107
2108 /* called in any context */
2109 int usb_hcd_get_frame_number (struct usb_device *udev)
2110 {
2111         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2112
2113         if (!HCD_RH_RUNNING(hcd))
2114                 return -ESHUTDOWN;
2115         return hcd->driver->get_frame_number (hcd);
2116 }
2117
2118 /*-------------------------------------------------------------------------*/
2119 #ifdef CONFIG_USB_HCD_TEST_MODE
2120
2121 static void usb_ehset_completion(struct urb *urb)
2122 {
2123         struct completion  *done = urb->context;
2124
2125         complete(done);
2126 }
2127 /*
2128  * Allocate and initialize a control URB. This request will be used by the
2129  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2130  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2131  * Return NULL if failed.
2132  */
2133 static struct urb *request_single_step_set_feature_urb(
2134         struct usb_device       *udev,
2135         void                    *dr,
2136         void                    *buf,
2137         struct completion       *done)
2138 {
2139         struct urb *urb;
2140         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2141
2142         urb = usb_alloc_urb(0, GFP_KERNEL);
2143         if (!urb)
2144                 return NULL;
2145
2146         urb->pipe = usb_rcvctrlpipe(udev, 0);
2147
2148         urb->ep = &udev->ep0;
2149         urb->dev = udev;
2150         urb->setup_packet = (void *)dr;
2151         urb->transfer_buffer = buf;
2152         urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2153         urb->complete = usb_ehset_completion;
2154         urb->status = -EINPROGRESS;
2155         urb->actual_length = 0;
2156         urb->transfer_flags = URB_DIR_IN;
2157         usb_get_urb(urb);
2158         atomic_inc(&urb->use_count);
2159         atomic_inc(&urb->dev->urbnum);
2160         if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2161                 usb_put_urb(urb);
2162                 usb_free_urb(urb);
2163                 return NULL;
2164         }
2165
2166         urb->context = done;
2167         return urb;
2168 }
2169
2170 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2171 {
2172         int retval = -ENOMEM;
2173         struct usb_ctrlrequest *dr;
2174         struct urb *urb;
2175         struct usb_device *udev;
2176         struct usb_device_descriptor *buf;
2177         DECLARE_COMPLETION_ONSTACK(done);
2178
2179         /* Obtain udev of the rhub's child port */
2180         udev = usb_hub_find_child(hcd->self.root_hub, port);
2181         if (!udev) {
2182                 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2183                 return -ENODEV;
2184         }
2185         buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2186         if (!buf)
2187                 return -ENOMEM;
2188
2189         dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2190         if (!dr) {
2191                 kfree(buf);
2192                 return -ENOMEM;
2193         }
2194
2195         /* Fill Setup packet for GetDescriptor */
2196         dr->bRequestType = USB_DIR_IN;
2197         dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2198         dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2199         dr->wIndex = 0;
2200         dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2201         urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2202         if (!urb)
2203                 goto cleanup;
2204
2205         /* Submit just the SETUP stage */
2206         retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2207         if (retval)
2208                 goto out1;
2209         if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2210                 usb_kill_urb(urb);
2211                 retval = -ETIMEDOUT;
2212                 dev_err(hcd->self.controller,
2213                         "%s SETUP stage timed out on ep0\n", __func__);
2214                 goto out1;
2215         }
2216         msleep(15 * 1000);
2217
2218         /* Complete remaining DATA and STATUS stages using the same URB */
2219         urb->status = -EINPROGRESS;
2220         usb_get_urb(urb);
2221         atomic_inc(&urb->use_count);
2222         atomic_inc(&urb->dev->urbnum);
2223         retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2224         if (!retval && !wait_for_completion_timeout(&done,
2225                                                 msecs_to_jiffies(2000))) {
2226                 usb_kill_urb(urb);
2227                 retval = -ETIMEDOUT;
2228                 dev_err(hcd->self.controller,
2229                         "%s IN stage timed out on ep0\n", __func__);
2230         }
2231 out1:
2232         usb_free_urb(urb);
2233 cleanup:
2234         kfree(dr);
2235         kfree(buf);
2236         return retval;
2237 }
2238 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2239 #endif /* CONFIG_USB_HCD_TEST_MODE */
2240
2241 /*-------------------------------------------------------------------------*/
2242
2243 #ifdef  CONFIG_PM
2244
2245 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2246 {
2247         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2248         int             status;
2249         int             old_state = hcd->state;
2250
2251         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2252                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2253                         rhdev->do_remote_wakeup);
2254         if (HCD_DEAD(hcd)) {
2255                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2256                 return 0;
2257         }
2258
2259         if (!hcd->driver->bus_suspend) {
2260                 status = -ENOENT;
2261         } else {
2262                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2263                 hcd->state = HC_STATE_QUIESCING;
2264                 status = hcd->driver->bus_suspend(hcd);
2265         }
2266         if (status == 0) {
2267                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2268                 hcd->state = HC_STATE_SUSPENDED;
2269
2270                 if (!PMSG_IS_AUTO(msg))
2271                         usb_phy_roothub_suspend(hcd->self.sysdev,
2272                                                 hcd->phy_roothub);
2273
2274                 /* Did we race with a root-hub wakeup event? */
2275                 if (rhdev->do_remote_wakeup) {
2276                         char    buffer[6];
2277
2278                         status = hcd->driver->hub_status_data(hcd, buffer);
2279                         if (status != 0) {
2280                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2281                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2282                                 status = -EBUSY;
2283                         }
2284                 }
2285         } else {
2286                 spin_lock_irq(&hcd_root_hub_lock);
2287                 if (!HCD_DEAD(hcd)) {
2288                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2289                         hcd->state = old_state;
2290                 }
2291                 spin_unlock_irq(&hcd_root_hub_lock);
2292                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2293                                 "suspend", status);
2294         }
2295         return status;
2296 }
2297
2298 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2299 {
2300         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2301         int             status;
2302         int             old_state = hcd->state;
2303
2304         dev_dbg(&rhdev->dev, "usb %sresume\n",
2305                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2306         if (HCD_DEAD(hcd)) {
2307                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2308                 return 0;
2309         }
2310
2311         if (!PMSG_IS_AUTO(msg)) {
2312                 status = usb_phy_roothub_resume(hcd->self.sysdev,
2313                                                 hcd->phy_roothub);
2314                 if (status)
2315                         return status;
2316         }
2317
2318         if (!hcd->driver->bus_resume)
2319                 return -ENOENT;
2320         if (HCD_RH_RUNNING(hcd))
2321                 return 0;
2322
2323         hcd->state = HC_STATE_RESUMING;
2324         status = hcd->driver->bus_resume(hcd);
2325         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2326         if (status == 0)
2327                 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2328
2329         if (status == 0) {
2330                 struct usb_device *udev;
2331                 int port1;
2332
2333                 spin_lock_irq(&hcd_root_hub_lock);
2334                 if (!HCD_DEAD(hcd)) {
2335                         usb_set_device_state(rhdev, rhdev->actconfig
2336                                         ? USB_STATE_CONFIGURED
2337                                         : USB_STATE_ADDRESS);
2338                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2339                         hcd->state = HC_STATE_RUNNING;
2340                 }
2341                 spin_unlock_irq(&hcd_root_hub_lock);
2342
2343                 /*
2344                  * Check whether any of the enabled ports on the root hub are
2345                  * unsuspended.  If they are then a TRSMRCY delay is needed
2346                  * (this is what the USB-2 spec calls a "global resume").
2347                  * Otherwise we can skip the delay.
2348                  */
2349                 usb_hub_for_each_child(rhdev, port1, udev) {
2350                         if (udev->state != USB_STATE_NOTATTACHED &&
2351                                         !udev->port_is_suspended) {
2352                                 usleep_range(10000, 11000);     /* TRSMRCY */
2353                                 break;
2354                         }
2355                 }
2356         } else {
2357                 hcd->state = old_state;
2358                 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2359                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2360                                 "resume", status);
2361                 if (status != -ESHUTDOWN)
2362                         usb_hc_died(hcd);
2363         }
2364         return status;
2365 }
2366
2367 /* Workqueue routine for root-hub remote wakeup */
2368 static void hcd_resume_work(struct work_struct *work)
2369 {
2370         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2371         struct usb_device *udev = hcd->self.root_hub;
2372
2373         usb_remote_wakeup(udev);
2374 }
2375
2376 /**
2377  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2378  * @hcd: host controller for this root hub
2379  *
2380  * The USB host controller calls this function when its root hub is
2381  * suspended (with the remote wakeup feature enabled) and a remote
2382  * wakeup request is received.  The routine submits a workqueue request
2383  * to resume the root hub (that is, manage its downstream ports again).
2384  */
2385 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2386 {
2387         unsigned long flags;
2388
2389         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2390         if (hcd->rh_registered) {
2391                 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2392                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2393                 queue_work(pm_wq, &hcd->wakeup_work);
2394         }
2395         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2396 }
2397 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2398
2399 #endif  /* CONFIG_PM */
2400
2401 /*-------------------------------------------------------------------------*/
2402
2403 #ifdef  CONFIG_USB_OTG
2404
2405 /**
2406  * usb_bus_start_enum - start immediate enumeration (for OTG)
2407  * @bus: the bus (must use hcd framework)
2408  * @port_num: 1-based number of port; usually bus->otg_port
2409  * Context: atomic
2410  *
2411  * Starts enumeration, with an immediate reset followed later by
2412  * hub_wq identifying and possibly configuring the device.
2413  * This is needed by OTG controller drivers, where it helps meet
2414  * HNP protocol timing requirements for starting a port reset.
2415  *
2416  * Return: 0 if successful.
2417  */
2418 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2419 {
2420         struct usb_hcd          *hcd;
2421         int                     status = -EOPNOTSUPP;
2422
2423         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2424          * boards with root hubs hooked up to internal devices (instead of
2425          * just the OTG port) may need more attention to resetting...
2426          */
2427         hcd = bus_to_hcd(bus);
2428         if (port_num && hcd->driver->start_port_reset)
2429                 status = hcd->driver->start_port_reset(hcd, port_num);
2430
2431         /* allocate hub_wq shortly after (first) root port reset finishes;
2432          * it may issue others, until at least 50 msecs have passed.
2433          */
2434         if (status == 0)
2435                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2436         return status;
2437 }
2438 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2439
2440 #endif
2441
2442 /*-------------------------------------------------------------------------*/
2443
2444 /**
2445  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2446  * @irq: the IRQ being raised
2447  * @__hcd: pointer to the HCD whose IRQ is being signaled
2448  *
2449  * If the controller isn't HALTed, calls the driver's irq handler.
2450  * Checks whether the controller is now dead.
2451  *
2452  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2453  */
2454 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2455 {
2456         struct usb_hcd          *hcd = __hcd;
2457         irqreturn_t             rc;
2458
2459         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2460                 rc = IRQ_NONE;
2461         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2462                 rc = IRQ_NONE;
2463         else
2464                 rc = IRQ_HANDLED;
2465
2466         return rc;
2467 }
2468 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2469
2470 /*-------------------------------------------------------------------------*/
2471
2472 /* Workqueue routine for when the root-hub has died. */
2473 static void hcd_died_work(struct work_struct *work)
2474 {
2475         struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2476         static char *env[] = {
2477                 "ERROR=DEAD",
2478                 NULL
2479         };
2480
2481         /* Notify user space that the host controller has died */
2482         kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2483 }
2484
2485 /**
2486  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2487  * @hcd: pointer to the HCD representing the controller
2488  *
2489  * This is called by bus glue to report a USB host controller that died
2490  * while operations may still have been pending.  It's called automatically
2491  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2492  *
2493  * Only call this function with the primary HCD.
2494  */
2495 void usb_hc_died (struct usb_hcd *hcd)
2496 {
2497         unsigned long flags;
2498
2499         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2500
2501         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2502         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2503         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2504         if (hcd->rh_registered) {
2505                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2506
2507                 /* make hub_wq clean up old urbs and devices */
2508                 usb_set_device_state (hcd->self.root_hub,
2509                                 USB_STATE_NOTATTACHED);
2510                 usb_kick_hub_wq(hcd->self.root_hub);
2511         }
2512         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2513                 hcd = hcd->shared_hcd;
2514                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2515                 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2516                 if (hcd->rh_registered) {
2517                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2518
2519                         /* make hub_wq clean up old urbs and devices */
2520                         usb_set_device_state(hcd->self.root_hub,
2521                                         USB_STATE_NOTATTACHED);
2522                         usb_kick_hub_wq(hcd->self.root_hub);
2523                 }
2524         }
2525
2526         /* Handle the case where this function gets called with a shared HCD */
2527         if (usb_hcd_is_primary_hcd(hcd))
2528                 schedule_work(&hcd->died_work);
2529         else
2530                 schedule_work(&hcd->primary_hcd->died_work);
2531
2532         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2533         /* Make sure that the other roothub is also deallocated. */
2534 }
2535 EXPORT_SYMBOL_GPL (usb_hc_died);
2536
2537 /*-------------------------------------------------------------------------*/
2538
2539 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2540 {
2541
2542         spin_lock_init(&bh->lock);
2543         INIT_LIST_HEAD(&bh->head);
2544         INIT_WORK(&bh->bh, usb_giveback_urb_bh);
2545 }
2546
2547 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2548                 struct device *sysdev, struct device *dev, const char *bus_name,
2549                 struct usb_hcd *primary_hcd)
2550 {
2551         struct usb_hcd *hcd;
2552
2553         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2554         if (!hcd)
2555                 return NULL;
2556         if (primary_hcd == NULL) {
2557                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2558                                 GFP_KERNEL);
2559                 if (!hcd->address0_mutex) {
2560                         kfree(hcd);
2561                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2562                         return NULL;
2563                 }
2564                 mutex_init(hcd->address0_mutex);
2565                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2566                                 GFP_KERNEL);
2567                 if (!hcd->bandwidth_mutex) {
2568                         kfree(hcd->address0_mutex);
2569                         kfree(hcd);
2570                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2571                         return NULL;
2572                 }
2573                 mutex_init(hcd->bandwidth_mutex);
2574                 dev_set_drvdata(dev, hcd);
2575         } else {
2576                 mutex_lock(&usb_port_peer_mutex);
2577                 hcd->address0_mutex = primary_hcd->address0_mutex;
2578                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2579                 hcd->primary_hcd = primary_hcd;
2580                 primary_hcd->primary_hcd = primary_hcd;
2581                 hcd->shared_hcd = primary_hcd;
2582                 primary_hcd->shared_hcd = hcd;
2583                 mutex_unlock(&usb_port_peer_mutex);
2584         }
2585
2586         kref_init(&hcd->kref);
2587
2588         usb_bus_init(&hcd->self);
2589         hcd->self.controller = dev;
2590         hcd->self.sysdev = sysdev;
2591         hcd->self.bus_name = bus_name;
2592
2593         timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2594 #ifdef CONFIG_PM
2595         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2596 #endif
2597
2598         INIT_WORK(&hcd->died_work, hcd_died_work);
2599
2600         hcd->driver = driver;
2601         hcd->speed = driver->flags & HCD_MASK;
2602         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2603                         "USB Host Controller";
2604         return hcd;
2605 }
2606 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2607
2608 /**
2609  * usb_create_shared_hcd - create and initialize an HCD structure
2610  * @driver: HC driver that will use this hcd
2611  * @dev: device for this HC, stored in hcd->self.controller
2612  * @bus_name: value to store in hcd->self.bus_name
2613  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2614  *              PCI device.  Only allocate certain resources for the primary HCD
2615  *
2616  * Context: task context, might sleep.
2617  *
2618  * Allocate a struct usb_hcd, with extra space at the end for the
2619  * HC driver's private data.  Initialize the generic members of the
2620  * hcd structure.
2621  *
2622  * Return: On success, a pointer to the created and initialized HCD structure.
2623  * On failure (e.g. if memory is unavailable), %NULL.
2624  */
2625 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2626                 struct device *dev, const char *bus_name,
2627                 struct usb_hcd *primary_hcd)
2628 {
2629         return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2630 }
2631 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2632
2633 /**
2634  * usb_create_hcd - create and initialize an HCD structure
2635  * @driver: HC driver that will use this hcd
2636  * @dev: device for this HC, stored in hcd->self.controller
2637  * @bus_name: value to store in hcd->self.bus_name
2638  *
2639  * Context: task context, might sleep.
2640  *
2641  * Allocate a struct usb_hcd, with extra space at the end for the
2642  * HC driver's private data.  Initialize the generic members of the
2643  * hcd structure.
2644  *
2645  * Return: On success, a pointer to the created and initialized HCD
2646  * structure. On failure (e.g. if memory is unavailable), %NULL.
2647  */
2648 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2649                 struct device *dev, const char *bus_name)
2650 {
2651         return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2652 }
2653 EXPORT_SYMBOL_GPL(usb_create_hcd);
2654
2655 /*
2656  * Roothubs that share one PCI device must also share the bandwidth mutex.
2657  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2658  * deallocated.
2659  *
2660  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2661  * freed.  When hcd_release() is called for either hcd in a peer set,
2662  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2663  */
2664 static void hcd_release(struct kref *kref)
2665 {
2666         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2667
2668         mutex_lock(&usb_port_peer_mutex);
2669         if (hcd->shared_hcd) {
2670                 struct usb_hcd *peer = hcd->shared_hcd;
2671
2672                 peer->shared_hcd = NULL;
2673                 peer->primary_hcd = NULL;
2674         } else {
2675                 kfree(hcd->address0_mutex);
2676                 kfree(hcd->bandwidth_mutex);
2677         }
2678         mutex_unlock(&usb_port_peer_mutex);
2679         kfree(hcd);
2680 }
2681
2682 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2683 {
2684         if (hcd)
2685                 kref_get (&hcd->kref);
2686         return hcd;
2687 }
2688 EXPORT_SYMBOL_GPL(usb_get_hcd);
2689
2690 void usb_put_hcd (struct usb_hcd *hcd)
2691 {
2692         if (hcd)
2693                 kref_put (&hcd->kref, hcd_release);
2694 }
2695 EXPORT_SYMBOL_GPL(usb_put_hcd);
2696
2697 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2698 {
2699         if (!hcd->primary_hcd)
2700                 return 1;
2701         return hcd == hcd->primary_hcd;
2702 }
2703 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2704
2705 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2706 {
2707         if (!hcd->driver->find_raw_port_number)
2708                 return port1;
2709
2710         return hcd->driver->find_raw_port_number(hcd, port1);
2711 }
2712
2713 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2714                 unsigned int irqnum, unsigned long irqflags)
2715 {
2716         int retval;
2717
2718         if (hcd->driver->irq) {
2719
2720                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2721                                 hcd->driver->description, hcd->self.busnum);
2722                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2723                                 hcd->irq_descr, hcd);
2724                 if (retval != 0) {
2725                         dev_err(hcd->self.controller,
2726                                         "request interrupt %d failed\n",
2727                                         irqnum);
2728                         return retval;
2729                 }
2730                 hcd->irq = irqnum;
2731                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2732                                 (hcd->driver->flags & HCD_MEMORY) ?
2733                                         "io mem" : "io port",
2734                                 (unsigned long long)hcd->rsrc_start);
2735         } else {
2736                 hcd->irq = 0;
2737                 if (hcd->rsrc_start)
2738                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2739                                         (hcd->driver->flags & HCD_MEMORY) ?
2740                                                 "io mem" : "io port",
2741                                         (unsigned long long)hcd->rsrc_start);
2742         }
2743         return 0;
2744 }
2745
2746 /*
2747  * Before we free this root hub, flush in-flight peering attempts
2748  * and disable peer lookups
2749  */
2750 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2751 {
2752         struct usb_device *rhdev;
2753
2754         mutex_lock(&usb_port_peer_mutex);
2755         rhdev = hcd->self.root_hub;
2756         hcd->self.root_hub = NULL;
2757         mutex_unlock(&usb_port_peer_mutex);
2758         usb_put_dev(rhdev);
2759 }
2760
2761 /**
2762  * usb_stop_hcd - Halt the HCD
2763  * @hcd: the usb_hcd that has to be halted
2764  *
2765  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2766  */
2767 static void usb_stop_hcd(struct usb_hcd *hcd)
2768 {
2769         hcd->rh_pollable = 0;
2770         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2771         del_timer_sync(&hcd->rh_timer);
2772
2773         hcd->driver->stop(hcd);
2774         hcd->state = HC_STATE_HALT;
2775
2776         /* In case the HCD restarted the timer, stop it again. */
2777         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2778         del_timer_sync(&hcd->rh_timer);
2779 }
2780
2781 /**
2782  * usb_add_hcd - finish generic HCD structure initialization and register
2783  * @hcd: the usb_hcd structure to initialize
2784  * @irqnum: Interrupt line to allocate
2785  * @irqflags: Interrupt type flags
2786  *
2787  * Finish the remaining parts of generic HCD initialization: allocate the
2788  * buffers of consistent memory, register the bus, request the IRQ line,
2789  * and call the driver's reset() and start() routines.
2790  */
2791 int usb_add_hcd(struct usb_hcd *hcd,
2792                 unsigned int irqnum, unsigned long irqflags)
2793 {
2794         int retval;
2795         struct usb_device *rhdev;
2796         struct usb_hcd *shared_hcd;
2797
2798         if (!hcd->skip_phy_initialization) {
2799                 if (usb_hcd_is_primary_hcd(hcd)) {
2800                         hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2801                         if (IS_ERR(hcd->phy_roothub))
2802                                 return PTR_ERR(hcd->phy_roothub);
2803                 } else {
2804                         hcd->phy_roothub = usb_phy_roothub_alloc_usb3_phy(hcd->self.sysdev);
2805                         if (IS_ERR(hcd->phy_roothub))
2806                                 return PTR_ERR(hcd->phy_roothub);
2807                 }
2808
2809                 retval = usb_phy_roothub_init(hcd->phy_roothub);
2810                 if (retval)
2811                         return retval;
2812
2813                 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2814                                                   PHY_MODE_USB_HOST_SS);
2815                 if (retval)
2816                         retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2817                                                           PHY_MODE_USB_HOST);
2818                 if (retval)
2819                         goto err_usb_phy_roothub_power_on;
2820
2821                 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2822                 if (retval)
2823                         goto err_usb_phy_roothub_power_on;
2824         }
2825
2826         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2827
2828         switch (authorized_default) {
2829         case USB_AUTHORIZE_NONE:
2830                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2831                 break;
2832
2833         case USB_AUTHORIZE_INTERNAL:
2834                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2835                 break;
2836
2837         case USB_AUTHORIZE_ALL:
2838         case USB_AUTHORIZE_WIRED:
2839         default:
2840                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2841                 break;
2842         }
2843
2844         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2845
2846         /* per default all interfaces are authorized */
2847         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2848
2849         /* HC is in reset state, but accessible.  Now do the one-time init,
2850          * bottom up so that hcds can customize the root hubs before hub_wq
2851          * starts talking to them.  (Note, bus id is assigned early too.)
2852          */
2853         retval = hcd_buffer_create(hcd);
2854         if (retval != 0) {
2855                 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2856                 goto err_create_buf;
2857         }
2858
2859         retval = usb_register_bus(&hcd->self);
2860         if (retval < 0)
2861                 goto err_register_bus;
2862
2863         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2864         if (rhdev == NULL) {
2865                 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2866                 retval = -ENOMEM;
2867                 goto err_allocate_root_hub;
2868         }
2869         mutex_lock(&usb_port_peer_mutex);
2870         hcd->self.root_hub = rhdev;
2871         mutex_unlock(&usb_port_peer_mutex);
2872
2873         rhdev->rx_lanes = 1;
2874         rhdev->tx_lanes = 1;
2875         rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2876
2877         switch (hcd->speed) {
2878         case HCD_USB11:
2879                 rhdev->speed = USB_SPEED_FULL;
2880                 break;
2881         case HCD_USB2:
2882                 rhdev->speed = USB_SPEED_HIGH;
2883                 break;
2884         case HCD_USB3:
2885                 rhdev->speed = USB_SPEED_SUPER;
2886                 break;
2887         case HCD_USB32:
2888                 rhdev->rx_lanes = 2;
2889                 rhdev->tx_lanes = 2;
2890                 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2891                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2892                 break;
2893         case HCD_USB31:
2894                 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2895                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2896                 break;
2897         default:
2898                 retval = -EINVAL;
2899                 goto err_set_rh_speed;
2900         }
2901
2902         /* wakeup flag init defaults to "everything works" for root hubs,
2903          * but drivers can override it in reset() if needed, along with
2904          * recording the overall controller's system wakeup capability.
2905          */
2906         device_set_wakeup_capable(&rhdev->dev, 1);
2907
2908         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2909          * registered.  But since the controller can die at any time,
2910          * let's initialize the flag before touching the hardware.
2911          */
2912         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2913
2914         /* "reset" is misnamed; its role is now one-time init. the controller
2915          * should already have been reset (and boot firmware kicked off etc).
2916          */
2917         if (hcd->driver->reset) {
2918                 retval = hcd->driver->reset(hcd);
2919                 if (retval < 0) {
2920                         dev_err(hcd->self.controller, "can't setup: %d\n",
2921                                         retval);
2922                         goto err_hcd_driver_setup;
2923                 }
2924         }
2925         hcd->rh_pollable = 1;
2926
2927         retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2928         if (retval)
2929                 goto err_hcd_driver_setup;
2930
2931         /* NOTE: root hub and controller capabilities may not be the same */
2932         if (device_can_wakeup(hcd->self.controller)
2933                         && device_can_wakeup(&hcd->self.root_hub->dev))
2934                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2935
2936         /* initialize BHs */
2937         init_giveback_urb_bh(&hcd->high_prio_bh);
2938         hcd->high_prio_bh.high_prio = true;
2939         init_giveback_urb_bh(&hcd->low_prio_bh);
2940
2941         /* enable irqs just before we start the controller,
2942          * if the BIOS provides legacy PCI irqs.
2943          */
2944         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2945                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2946                 if (retval)
2947                         goto err_request_irq;
2948         }
2949
2950         hcd->state = HC_STATE_RUNNING;
2951         retval = hcd->driver->start(hcd);
2952         if (retval < 0) {
2953                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2954                 goto err_hcd_driver_start;
2955         }
2956
2957         /* starting here, usbcore will pay attention to the shared HCD roothub */
2958         shared_hcd = hcd->shared_hcd;
2959         if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2960                 retval = register_root_hub(shared_hcd);
2961                 if (retval != 0)
2962                         goto err_register_root_hub;
2963
2964                 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2965                         usb_hcd_poll_rh_status(shared_hcd);
2966         }
2967
2968         /* starting here, usbcore will pay attention to this root hub */
2969         if (!HCD_DEFER_RH_REGISTER(hcd)) {
2970                 retval = register_root_hub(hcd);
2971                 if (retval != 0)
2972                         goto err_register_root_hub;
2973
2974                 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2975                         usb_hcd_poll_rh_status(hcd);
2976         }
2977
2978         return retval;
2979
2980 err_register_root_hub:
2981         usb_stop_hcd(hcd);
2982 err_hcd_driver_start:
2983         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2984                 free_irq(irqnum, hcd);
2985 err_request_irq:
2986 err_hcd_driver_setup:
2987 err_set_rh_speed:
2988         usb_put_invalidate_rhdev(hcd);
2989 err_allocate_root_hub:
2990         usb_deregister_bus(&hcd->self);
2991 err_register_bus:
2992         hcd_buffer_destroy(hcd);
2993 err_create_buf:
2994         usb_phy_roothub_power_off(hcd->phy_roothub);
2995 err_usb_phy_roothub_power_on:
2996         usb_phy_roothub_exit(hcd->phy_roothub);
2997
2998         return retval;
2999 }
3000 EXPORT_SYMBOL_GPL(usb_add_hcd);
3001
3002 /**
3003  * usb_remove_hcd - shutdown processing for generic HCDs
3004  * @hcd: the usb_hcd structure to remove
3005  *
3006  * Context: task context, might sleep.
3007  *
3008  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3009  * invoking the HCD's stop() method.
3010  */
3011 void usb_remove_hcd(struct usb_hcd *hcd)
3012 {
3013         struct usb_device *rhdev;
3014         bool rh_registered;
3015
3016         if (!hcd) {
3017                 pr_debug("%s: hcd is NULL\n", __func__);
3018                 return;
3019         }
3020         rhdev = hcd->self.root_hub;
3021
3022         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3023
3024         usb_get_dev(rhdev);
3025         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3026         if (HC_IS_RUNNING (hcd->state))
3027                 hcd->state = HC_STATE_QUIESCING;
3028
3029         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3030         spin_lock_irq (&hcd_root_hub_lock);
3031         rh_registered = hcd->rh_registered;
3032         hcd->rh_registered = 0;
3033         spin_unlock_irq (&hcd_root_hub_lock);
3034
3035 #ifdef CONFIG_PM
3036         cancel_work_sync(&hcd->wakeup_work);
3037 #endif
3038         cancel_work_sync(&hcd->died_work);
3039
3040         mutex_lock(&usb_bus_idr_lock);
3041         if (rh_registered)
3042                 usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
3043         mutex_unlock(&usb_bus_idr_lock);
3044
3045         /*
3046          * flush_work() isn't needed here because:
3047          * - driver's disconnect() called from usb_disconnect() should
3048          *   make sure its URBs are completed during the disconnect()
3049          *   callback
3050          *
3051          * - it is too late to run complete() here since driver may have
3052          *   been removed already now
3053          */
3054
3055         /* Prevent any more root-hub status calls from the timer.
3056          * The HCD might still restart the timer (if a port status change
3057          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3058          * the hub_status_data() callback.
3059          */
3060         usb_stop_hcd(hcd);
3061
3062         if (usb_hcd_is_primary_hcd(hcd)) {
3063                 if (hcd->irq > 0)
3064                         free_irq(hcd->irq, hcd);
3065         }
3066
3067         usb_deregister_bus(&hcd->self);
3068         hcd_buffer_destroy(hcd);
3069
3070         usb_phy_roothub_power_off(hcd->phy_roothub);
3071         usb_phy_roothub_exit(hcd->phy_roothub);
3072
3073         usb_put_invalidate_rhdev(hcd);
3074         hcd->flags = 0;
3075 }
3076 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3077
3078 void
3079 usb_hcd_platform_shutdown(struct platform_device *dev)
3080 {
3081         struct usb_hcd *hcd = platform_get_drvdata(dev);
3082
3083         /* No need for pm_runtime_put(), we're shutting down */
3084         pm_runtime_get_sync(&dev->dev);
3085
3086         if (hcd->driver->shutdown)
3087                 hcd->driver->shutdown(hcd);
3088 }
3089 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3090
3091 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3092                             dma_addr_t dma, size_t size)
3093 {
3094         int err;
3095         void *local_mem;
3096
3097         hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3098                                                   dev_to_node(hcd->self.sysdev),
3099                                                   dev_name(hcd->self.sysdev));
3100         if (IS_ERR(hcd->localmem_pool))
3101                 return PTR_ERR(hcd->localmem_pool);
3102
3103         /*
3104          * if a physical SRAM address was passed, map it, otherwise
3105          * allocate system memory as a buffer.
3106          */
3107         if (phys_addr)
3108                 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3109                                           size, MEMREMAP_WC);
3110         else
3111                 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3112                                              GFP_KERNEL,
3113                                              DMA_ATTR_WRITE_COMBINE);
3114
3115         if (IS_ERR_OR_NULL(local_mem)) {
3116                 if (!local_mem)
3117                         return -ENOMEM;
3118
3119                 return PTR_ERR(local_mem);
3120         }
3121
3122         /*
3123          * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3124          * It's not backed by system memory and thus there's no kernel mapping
3125          * for it.
3126          */
3127         err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3128                                 dma, size, dev_to_node(hcd->self.sysdev));
3129         if (err < 0) {
3130                 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3131                         err);
3132                 return err;
3133         }
3134
3135         return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3138
3139 /*-------------------------------------------------------------------------*/
3140
3141 #if IS_ENABLED(CONFIG_USB_MON)
3142
3143 const struct usb_mon_operations *mon_ops;
3144
3145 /*
3146  * The registration is unlocked.
3147  * We do it this way because we do not want to lock in hot paths.
3148  *
3149  * Notice that the code is minimally error-proof. Because usbmon needs
3150  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3151  */
3152
3153 int usb_mon_register(const struct usb_mon_operations *ops)
3154 {
3155
3156         if (mon_ops)
3157                 return -EBUSY;
3158
3159         mon_ops = ops;
3160         mb();
3161         return 0;
3162 }
3163 EXPORT_SYMBOL_GPL (usb_mon_register);
3164
3165 void usb_mon_deregister (void)
3166 {
3167
3168         if (mon_ops == NULL) {
3169                 printk(KERN_ERR "USB: monitor was not registered\n");
3170                 return;
3171         }
3172         mon_ops = NULL;
3173         mb();
3174 }
3175 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3176
3177 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.211933 seconds and 4 git commands to generate.