]> Git Repo - linux.git/blob - drivers/thermal/tegra/soctherm.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / thermal / tegra / soctherm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *      Mikko Perttunen <[email protected]>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0                          0
40 #define SENSOR_CONFIG0_STOP                     BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
42 #define SENSOR_CONFIG0_OVER                     BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT               8
46
47 #define SENSOR_CONFIG1                          4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
54 #define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
55
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60
61 #define SENSOR_STATUS0                          0xc
62 #define SENSOR_STATUS0_VALID_MASK               BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK             0xffff
64
65 #define SENSOR_STATUS1                          0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK                0xffff
68
69 #define READBACK_VALUE_MASK                     0xff00
70 #define READBACK_VALUE_SHIFT                    8
71 #define READBACK_ADD_HALF                       BIT(7)
72 #define READBACK_NEGATE                         BIT(0)
73
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
87
88 #define THERMCTL_LVL0_UP_STATS                  0x10
89 #define THERMCTL_LVL0_DN_STATS                  0x14
90
91 #define THERMCTL_INTR_STATUS                    0x84
92
93 #define TH_INTR_MD0_MASK                        BIT(25)
94 #define TH_INTR_MU0_MASK                        BIT(24)
95 #define TH_INTR_GD0_MASK                        BIT(17)
96 #define TH_INTR_GU0_MASK                        BIT(16)
97 #define TH_INTR_CD0_MASK                        BIT(9)
98 #define TH_INTR_CU0_MASK                        BIT(8)
99 #define TH_INTR_PD0_MASK                        BIT(1)
100 #define TH_INTR_PU0_MASK                        BIT(0)
101 #define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL                      0x94
104 #define STATS_CTL_CLR_DN                        0x8
105 #define STATS_CTL_EN_DN                         0x4
106 #define STATS_CTL_CLR_UP                        0x2
107 #define STATS_CTL_EN_UP                         0x1
108
109 #define OC1_CFG                                 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
116
117 #define OC1_CNT_THRESHOLD                       0x314
118 #define OC1_THROTTLE_PERIOD                     0x318
119 #define OC1_ALARM_COUNT                         0x31c
120 #define OC1_FILTER                              0x320
121 #define OC1_STATS                               0x3a8
122
123 #define OC_INTR_STATUS                          0x39c
124 #define OC_INTR_ENABLE                          0x3a0
125 #define OC_INTR_DISABLE                         0x3a4
126 #define OC_STATS_CTL                            0x3c4
127 #define OC_STATS_CTL_CLR_ALL                    0x2
128 #define OC_STATS_CTL_EN_ALL                     0x1
129
130 #define OC_INTR_OC1_MASK                        BIT(0)
131 #define OC_INTR_OC2_MASK                        BIT(1)
132 #define OC_INTR_OC3_MASK                        BIT(2)
133 #define OC_INTR_OC4_MASK                        BIT(3)
134 #define OC_INTR_OC5_MASK                        BIT(4)
135
136 #define THROT_GLOBAL_CFG                        0x400
137 #define THROT_GLOBAL_ENB_MASK                   BIT(0)
138
139 #define CPU_PSKIP_STATUS                        0x418
140 #define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
144
145 #define THROT_PRIORITY_LOCK                     0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
147
148 #define THROT_STATUS                            0x428
149 #define THROT_STATUS_BREACH_MASK                BIT(12)
150 #define THROT_STATUS_STATE_MASK                 (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK               BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU               0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161 #define THROT_VECT_NONE                         0x0 /* 3'b000 */
162 #define THROT_VECT_LOW                          0x1 /* 3'b001 */
163 #define THROT_VECT_MED                          0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH                         0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU               0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK              0xff
170
171 #define THROT_PRIORITY_LITE                     0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK           0xff
173
174 #define THROT_DELAY_LITE                        0x448
175 #define THROT_DELAY_LITE_DELAY_MASK             0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER                 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER               0x024
183
184 #define CCROC_GLOBAL_CFG                        0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU              0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU              0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
200                                  (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206  * level        vector
207  * NONE         3'b000
208  * LOW          3'b001
209  * MED          3'b011
210  * HIGH         3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET                    0x30
216 #define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
217                                         (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
219                                         (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
223                                         (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
225                                         (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET                    0x14
228 #define ALARM_CFG(throt)                (OC1_CFG + \
229                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
232                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
235                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
238                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt)             (OC1_FILTER + \
241                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt)              (OC1_STATS + \
244                                         (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET                      0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249                                                 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251                                                 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE          0x20
255 #define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED       0
258 #define OC_THROTTLE_MODE_BRIEF          2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264         THROTTLE_LIGHT = 0,
265         THROTTLE_HEAVY,
266         THROTTLE_OC1,
267         THROTTLE_OC2,
268         THROTTLE_OC3,
269         THROTTLE_OC4,
270         THROTTLE_OC5, /* OC5 is reserved */
271         THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275         TEGRA_SOC_OC_IRQ_1,
276         TEGRA_SOC_OC_IRQ_2,
277         TEGRA_SOC_OC_IRQ_3,
278         TEGRA_SOC_OC_IRQ_4,
279         TEGRA_SOC_OC_IRQ_5,
280         TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284         THROTTLE_DEV_CPU = 0,
285         THROTTLE_DEV_GPU,
286         THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290         [THROTTLE_LIGHT] = "light",
291         [THROTTLE_HEAVY] = "heavy",
292         [THROTTLE_OC1]   = "oc1",
293         [THROTTLE_OC2]   = "oc2",
294         [THROTTLE_OC3]   = "oc3",
295         [THROTTLE_OC4]   = "oc4",
296         [THROTTLE_OC5]   = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301         void __iomem *reg;
302         struct device *dev;
303         struct tegra_soctherm *ts;
304         struct thermal_zone_device *tz;
305         const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309         u32 active_low;
310         u32 throt_period;
311         u32 alarm_cnt_thresh;
312         u32 alarm_filter;
313         u32 mode;
314         bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318         const char *name;
319         unsigned int id;
320         u8 priority;
321         u8 cpu_throt_level;
322         u32 cpu_throt_depth;
323         u32 gpu_throt_level;
324         struct soctherm_oc_cfg oc_cfg;
325         struct thermal_cooling_device *cdev;
326         bool init;
327 };
328
329 struct tegra_soctherm {
330         struct reset_control *reset;
331         struct clk *clock_tsensor;
332         struct clk *clock_soctherm;
333         void __iomem *regs;
334         void __iomem *clk_regs;
335         void __iomem *ccroc_regs;
336
337         int thermal_irq;
338         int edp_irq;
339
340         u32 *calib;
341         struct thermal_zone_device **thermctl_tzs;
342         struct tegra_soctherm_soc *soc;
343
344         struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346         struct dentry *debugfs_dir;
347
348         struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352         struct mutex            irq_lock; /* serialize OC IRQs */
353         struct irq_chip         irq_chip;
354         struct irq_domain       *domain;
355         int                     irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @value: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370         writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382         return readl(ts->ccroc_regs + reg);
383 }
384
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387         const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388         void __iomem *base = tegra->regs + sensor->base;
389         unsigned int val;
390
391         val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392         writel(val, base + SENSOR_CONFIG0);
393
394         val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395         val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396         val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397         val |= SENSOR_CONFIG1_TEMP_ENABLE;
398         writel(val, base + SENSOR_CONFIG1);
399
400         writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413         int t;
414
415         t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416         if (val & READBACK_ADD_HALF)
417                 t += 500;
418         if (val & READBACK_NEGATE)
419                 t *= -1;
420
421         return t;
422 }
423
424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
427         u32 val;
428
429         val = readl(zone->reg);
430         val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431         *out_temp = translate_temp(val);
432
433         return 0;
434 }
435
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @dev: struct device * of the SOC_THERM instance
439  * @trip_temp: the trip temperature to check
440  *
441  * Checks and enforces the permitted temperature range that SOC_THERM
442  * HW can support This is
443  * done while taking care of precision.
444  *
445  * Return: The precision adjusted capped temperature in millicelsius.
446  */
447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449         int temp;
450
451         temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452         if (temp != trip_temp)
453                 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454                         trip_temp, temp);
455         return temp;
456 }
457
458 /**
459  * thermtrip_program() - Configures the hardware to shut down the
460  * system if a given sensor group reaches a given temperature
461  * @dev: ptr to the struct device for the SOC_THERM IP block
462  * @sg: pointer to the sensor group to set the thermtrip temperature for
463  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464  *
465  * Sets the thermal trip threshold of the given sensor group to be the
466  * @trip_temp.  If this threshold is crossed, the hardware will shut
467  * down.
468  *
469  * Note that, although @trip_temp is specified in millicelsius, the
470  * hardware is programmed in degrees Celsius.
471  *
472  * Return: 0 upon success, or %-EINVAL upon failure.
473  */
474 static int thermtrip_program(struct device *dev,
475                              const struct tegra_tsensor_group *sg,
476                              int trip_temp)
477 {
478         struct tegra_soctherm *ts = dev_get_drvdata(dev);
479         int temp;
480         u32 r;
481
482         if (!sg || !sg->thermtrip_threshold_mask)
483                 return -EINVAL;
484
485         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488         r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489         r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490         r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491         writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493         return 0;
494 }
495
496 /**
497  * throttrip_program() - Configures the hardware to throttle the
498  * pulse if a given sensor group reaches a given temperature
499  * @dev: ptr to the struct device for the SOC_THERM IP block
500  * @sg: pointer to the sensor group to set the thermtrip temperature for
501  * @stc: pointer to the throttle need to be triggered
502  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503  *
504  * Sets the thermal trip threshold and throttle event of the given sensor
505  * group. If this threshold is crossed, the hardware will trigger the
506  * throttle.
507  *
508  * Note that, although @trip_temp is specified in millicelsius, the
509  * hardware is programmed in degrees Celsius.
510  *
511  * Return: 0 upon success, or %-EINVAL upon failure.
512  */
513 static int throttrip_program(struct device *dev,
514                              const struct tegra_tsensor_group *sg,
515                              struct soctherm_throt_cfg *stc,
516                              int trip_temp)
517 {
518         struct tegra_soctherm *ts = dev_get_drvdata(dev);
519         int temp, cpu_throt, gpu_throt;
520         unsigned int throt;
521         u32 r, reg_off;
522
523         if (!sg || !stc || !stc->init)
524                 return -EINVAL;
525
526         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528         /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529         throt = stc->id;
530         reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532         if (throt == THROTTLE_LIGHT) {
533                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535         } else {
536                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538                 if (throt != THROTTLE_HEAVY)
539                         dev_warn(dev,
540                                  "invalid throt id %d - assuming HEAVY",
541                                  throt);
542         }
543
544         r = readl(ts->regs + reg_off);
545         r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546         r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550         writel(r, ts->regs + reg_off);
551
552         return 0;
553 }
554
555 static struct soctherm_throt_cfg *
556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558         unsigned int i;
559
560         for (i = 0; ts->throt_cfgs[i].name; i++)
561                 if (!strcmp(ts->throt_cfgs[i].name, name))
562                         return &ts->throt_cfgs[i];
563
564         return NULL;
565 }
566
567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569         int i, temp = min_low_temp;
570         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572         if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573                 return temp;
574
575         if (tt) {
576                 for (i = 0; i < ts->soc->num_ttgs; i++) {
577                         if (tt[i].id == id)
578                                 return tt[i].temp;
579                 }
580         }
581
582         return temp;
583 }
584
585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz,
586                                         const struct thermal_trip *trip, int temp)
587 {
588         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
589         struct tegra_soctherm *ts = zone->ts;
590         const struct tegra_tsensor_group *sg = zone->sg;
591         struct device *dev = zone->dev;
592
593         if (!tz)
594                 return -EINVAL;
595
596         if (trip->type == THERMAL_TRIP_CRITICAL) {
597                 /*
598                  * If thermtrips property is set in DT,
599                  * doesn't need to program critical type trip to HW,
600                  * if not, program critical trip to HW.
601                  */
602                 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
603                         return thermtrip_program(dev, sg, temp);
604                 else
605                         return 0;
606
607         } else if (trip->type == THERMAL_TRIP_HOT) {
608                 int i;
609
610                 for (i = 0; i < THROTTLE_SIZE; i++) {
611                         struct thermal_cooling_device *cdev;
612                         struct soctherm_throt_cfg *stc;
613
614                         if (!ts->throt_cfgs[i].init)
615                                 continue;
616
617                         cdev = ts->throt_cfgs[i].cdev;
618                         if (thermal_trip_is_bound_to_cdev(tz, trip, cdev))
619                                 stc = find_throttle_cfg_by_name(ts, cdev->type);
620                         else
621                                 continue;
622
623                         return throttrip_program(dev, sg, stc, temp);
624                 }
625         }
626
627         return 0;
628 }
629
630 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
631 {
632         u32 r;
633
634         /* multiple zones could be handling and setting trips at once */
635         mutex_lock(&zn->ts->thermctl_lock);
636         r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
637         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
638         writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
639         mutex_unlock(&zn->ts->thermctl_lock);
640 }
641
642 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
643 {
644         u32 r;
645
646         /* multiple zones could be handling and setting trips at once */
647         mutex_lock(&zn->ts->thermctl_lock);
648         r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
649         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
650         writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
651         mutex_unlock(&zn->ts->thermctl_lock);
652 }
653
654 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
655 {
656         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
657         u32 r;
658
659         thermal_irq_disable(zone);
660
661         r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
662         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
663         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
664
665         lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
666         hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
667         dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
668
669         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
670         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
671         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
672         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
673
674         thermal_irq_enable(zone);
675
676         return 0;
677 }
678
679 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
680         .get_temp = tegra_thermctl_get_temp,
681         .set_trip_temp = tegra_thermctl_set_trip_temp,
682         .set_trips = tegra_thermctl_set_trips,
683 };
684
685 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp)
686 {
687         int i, ret;
688         struct thermal_trip trip;
689
690         for (i = 0; i < thermal_zone_get_num_trips(tz); i++) {
691
692                 ret = thermal_zone_get_trip(tz, i, &trip);
693                 if (ret)
694                         return -EINVAL;
695
696                 if (trip.type == THERMAL_TRIP_HOT) {
697                         *trip_id = i;
698                         return 0;
699                 }
700         }
701
702         return -EINVAL;
703 }
704
705 /**
706  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
707  * @dev: struct device * of the SOC_THERM instance
708  * @sg: pointer to the sensor group to set the thermtrip temperature for
709  * @tz: struct thermal_zone_device *
710  *
711  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
712  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
713  * type trip_temp
714  * from thermal zone.
715  * After they have been configured, THERMTRIP or THROTTLE will take
716  * action when the configured SoC thermal sensor group reaches a
717  * certain temperature.
718  *
719  * Return: 0 upon success, or a negative error code on failure.
720  * "Success" does not mean that trips was enabled; it could also
721  * mean that no node was found in DT.
722  * THERMTRIP has been enabled successfully when a message similar to
723  * this one appears on the serial console:
724  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
725  * THROTTLE has been enabled successfully when a message similar to
726  * this one appears on the serial console:
727  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
728  */
729 static int tegra_soctherm_set_hwtrips(struct device *dev,
730                                       const struct tegra_tsensor_group *sg,
731                                       struct thermal_zone_device *tz)
732 {
733         struct tegra_soctherm *ts = dev_get_drvdata(dev);
734         struct soctherm_throt_cfg *stc;
735         int i, trip, temperature, ret;
736
737         /* Get thermtrips. If missing, try to get critical trips. */
738         temperature = tsensor_group_thermtrip_get(ts, sg->id);
739         if (min_low_temp == temperature)
740                 if (thermal_zone_get_crit_temp(tz, &temperature))
741                         temperature = max_high_temp;
742
743         ret = thermtrip_program(dev, sg, temperature);
744         if (ret) {
745                 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
746                 return ret;
747         }
748
749         dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
750                  sg->name, temperature);
751
752         ret = get_hot_temp(tz, &trip, &temperature);
753         if (ret) {
754                 dev_info(dev, "throttrip: %s: missing hot temperature\n",
755                          sg->name);
756                 return 0;
757         }
758
759         for (i = 0; i < THROTTLE_OC1; i++) {
760                 struct thermal_cooling_device *cdev;
761
762                 if (!ts->throt_cfgs[i].init)
763                         continue;
764
765                 cdev = ts->throt_cfgs[i].cdev;
766                 if (get_thermal_instance(tz, cdev, trip))
767                         stc = find_throttle_cfg_by_name(ts, cdev->type);
768                 else
769                         continue;
770
771                 ret = throttrip_program(dev, sg, stc, temperature);
772                 if (ret) {
773                         dev_err(dev, "throttrip: %s: error during enable\n",
774                                 sg->name);
775                         return ret;
776                 }
777
778                 dev_info(dev,
779                          "throttrip: will throttle when %s reaches %d mC\n",
780                          sg->name, temperature);
781                 break;
782         }
783
784         if (i == THROTTLE_SIZE)
785                 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
786                          sg->name);
787
788         return 0;
789 }
790
791 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
792 {
793         struct tegra_soctherm *ts = dev_id;
794         u32 r;
795
796         /* Case for no lock:
797          * Although interrupts are enabled in set_trips, there is still no need
798          * to lock here because the interrupts are disabled before programming
799          * new trip points. Hence there cant be a interrupt on the same sensor.
800          * An interrupt can however occur on a sensor while trips are being
801          * programmed on a different one. This beign a LEVEL interrupt won't
802          * cause a new interrupt but this is taken care of by the re-reading of
803          * the STATUS register in the thread function.
804          */
805         r = readl(ts->regs + THERMCTL_INTR_STATUS);
806         writel(r, ts->regs + THERMCTL_INTR_DISABLE);
807
808         return IRQ_WAKE_THREAD;
809 }
810
811 /**
812  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
813  * @irq:       The interrupt number being requested; not used
814  * @dev_id:    Opaque pointer to tegra_soctherm;
815  *
816  * Clears the interrupt status register if there are expected
817  * interrupt bits set.
818  * The interrupt(s) are then handled by updating the corresponding
819  * thermal zones.
820  *
821  * An error is logged if any unexpected interrupt bits are set.
822  *
823  * Disabled interrupts are re-enabled.
824  *
825  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
826  * is needed.
827  */
828 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
829 {
830         struct tegra_soctherm *ts = dev_id;
831         struct thermal_zone_device *tz;
832         u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
833
834         st = readl(ts->regs + THERMCTL_INTR_STATUS);
835
836         /* deliberately clear expected interrupts handled in SW */
837         cp |= st & TH_INTR_CD0_MASK;
838         cp |= st & TH_INTR_CU0_MASK;
839
840         gp |= st & TH_INTR_GD0_MASK;
841         gp |= st & TH_INTR_GU0_MASK;
842
843         pl |= st & TH_INTR_PD0_MASK;
844         pl |= st & TH_INTR_PU0_MASK;
845
846         me |= st & TH_INTR_MD0_MASK;
847         me |= st & TH_INTR_MU0_MASK;
848
849         ex |= cp | gp | pl | me;
850         if (ex) {
851                 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
852                 st &= ~ex;
853
854                 if (cp) {
855                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
856                         thermal_zone_device_update(tz,
857                                                    THERMAL_EVENT_UNSPECIFIED);
858                 }
859
860                 if (gp) {
861                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
862                         thermal_zone_device_update(tz,
863                                                    THERMAL_EVENT_UNSPECIFIED);
864                 }
865
866                 if (pl) {
867                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
868                         thermal_zone_device_update(tz,
869                                                    THERMAL_EVENT_UNSPECIFIED);
870                 }
871
872                 if (me) {
873                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
874                         thermal_zone_device_update(tz,
875                                                    THERMAL_EVENT_UNSPECIFIED);
876                 }
877         }
878
879         /* deliberately ignore expected interrupts NOT handled in SW */
880         ex |= TH_INTR_IGNORE_MASK;
881         st &= ~ex;
882
883         if (st) {
884                 /* Whine about any other unexpected INTR bits still set */
885                 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
886                 writel(st, ts->regs + THERMCTL_INTR_STATUS);
887         }
888
889         return IRQ_HANDLED;
890 }
891
892 /**
893  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
894  * @ts:         pointer to a struct tegra_soctherm
895  * @alarm:              The soctherm throttle id
896  * @enable:             Flag indicating enable the soctherm over-current
897  *                      interrupt or disable it
898  *
899  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
900  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
901  */
902 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
903                                     enum soctherm_throttle_id alarm,
904                                     bool enable)
905 {
906         u32 r;
907
908         if (!enable)
909                 return;
910
911         r = readl(ts->regs + OC_INTR_ENABLE);
912         switch (alarm) {
913         case THROTTLE_OC1:
914                 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
915                 break;
916         case THROTTLE_OC2:
917                 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
918                 break;
919         case THROTTLE_OC3:
920                 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
921                 break;
922         case THROTTLE_OC4:
923                 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
924                 break;
925         default:
926                 r = 0;
927                 break;
928         }
929         writel(r, ts->regs + OC_INTR_ENABLE);
930 }
931
932 /**
933  * soctherm_handle_alarm() - Handles soctherm alarms
934  * @alarm:              The soctherm throttle id
935  *
936  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
937  * a warning or informative message.
938  *
939  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
940  */
941 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
942 {
943         int rv = -EINVAL;
944
945         switch (alarm) {
946         case THROTTLE_OC1:
947                 pr_debug("soctherm: Successfully handled OC1 alarm\n");
948                 rv = 0;
949                 break;
950
951         case THROTTLE_OC2:
952                 pr_debug("soctherm: Successfully handled OC2 alarm\n");
953                 rv = 0;
954                 break;
955
956         case THROTTLE_OC3:
957                 pr_debug("soctherm: Successfully handled OC3 alarm\n");
958                 rv = 0;
959                 break;
960
961         case THROTTLE_OC4:
962                 pr_debug("soctherm: Successfully handled OC4 alarm\n");
963                 rv = 0;
964                 break;
965
966         default:
967                 break;
968         }
969
970         if (rv)
971                 pr_err("soctherm: ERROR in handling %s alarm\n",
972                        throt_names[alarm]);
973
974         return rv;
975 }
976
977 /**
978  * soctherm_edp_isr_thread() - log an over-current interrupt request
979  * @irq:        OC irq number. Currently not being used. See description
980  * @arg:        a void pointer for callback, currently not being used
981  *
982  * Over-current events are handled in hardware. This function is called to log
983  * and handle any OC events that happened. Additionally, it checks every
984  * over-current interrupt registers for registers are set but
985  * was not expected (i.e. any discrepancy in interrupt status) by the function,
986  * the discrepancy will logged.
987  *
988  * Return: %IRQ_HANDLED
989  */
990 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
991 {
992         struct tegra_soctherm *ts = arg;
993         u32 st, ex, oc1, oc2, oc3, oc4;
994
995         st = readl(ts->regs + OC_INTR_STATUS);
996
997         /* deliberately clear expected interrupts handled in SW */
998         oc1 = st & OC_INTR_OC1_MASK;
999         oc2 = st & OC_INTR_OC2_MASK;
1000         oc3 = st & OC_INTR_OC3_MASK;
1001         oc4 = st & OC_INTR_OC4_MASK;
1002         ex = oc1 | oc2 | oc3 | oc4;
1003
1004         pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1005         if (ex) {
1006                 writel(st, ts->regs + OC_INTR_STATUS);
1007                 st &= ~ex;
1008
1009                 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1010                         soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1011
1012                 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1013                         soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1014
1015                 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1016                         soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1017
1018                 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1019                         soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1020
1021                 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1022                         handle_nested_irq(
1023                                 irq_find_mapping(soc_irq_cdata.domain, 0));
1024
1025                 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1026                         handle_nested_irq(
1027                                 irq_find_mapping(soc_irq_cdata.domain, 1));
1028
1029                 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1030                         handle_nested_irq(
1031                                 irq_find_mapping(soc_irq_cdata.domain, 2));
1032
1033                 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1034                         handle_nested_irq(
1035                                 irq_find_mapping(soc_irq_cdata.domain, 3));
1036         }
1037
1038         if (st) {
1039                 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1040                 writel(st, ts->regs + OC_INTR_STATUS);
1041         }
1042
1043         return IRQ_HANDLED;
1044 }
1045
1046 /**
1047  * soctherm_edp_isr() - Disables any active interrupts
1048  * @irq:        The interrupt request number
1049  * @arg:        Opaque pointer to an argument
1050  *
1051  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1052  * masking any asserted interrupts. Doing this prevents the same interrupts
1053  * from triggering this isr repeatedly. The thread woken by this isr will
1054  * handle asserted interrupts and subsequently unmask/re-enable them.
1055  *
1056  * The OC_INTR_DISABLE register indicates which OC interrupts
1057  * have been disabled.
1058  *
1059  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1060  */
1061 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1062 {
1063         struct tegra_soctherm *ts = arg;
1064         u32 r;
1065
1066         if (!ts)
1067                 return IRQ_NONE;
1068
1069         r = readl(ts->regs + OC_INTR_STATUS);
1070         writel(r, ts->regs + OC_INTR_DISABLE);
1071
1072         return IRQ_WAKE_THREAD;
1073 }
1074
1075 /**
1076  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1077  * @data:       Interrupt request data
1078  *
1079  * Looks up the chip data from @data and locks the mutex associated with
1080  * a particular over-current interrupt request.
1081  */
1082 static void soctherm_oc_irq_lock(struct irq_data *data)
1083 {
1084         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1085
1086         mutex_lock(&d->irq_lock);
1087 }
1088
1089 /**
1090  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1091  * @data:               Interrupt request data
1092  *
1093  * Looks up the interrupt request data @data and unlocks the mutex associated
1094  * with a particular over-current interrupt request.
1095  */
1096 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1097 {
1098         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1099
1100         mutex_unlock(&d->irq_lock);
1101 }
1102
1103 /**
1104  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1105  * @data:       irq_data structure of the chip
1106  *
1107  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1108  * to respond to over-current interrupts.
1109  *
1110  */
1111 static void soctherm_oc_irq_enable(struct irq_data *data)
1112 {
1113         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1114
1115         d->irq_enable |= BIT(data->hwirq);
1116 }
1117
1118 /**
1119  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1120  * @data:       The interrupt request information
1121  *
1122  * Clears the interrupt request enable bit of the overcurrent
1123  * interrupt request chip data.
1124  *
1125  * Return: Nothing is returned (void)
1126  */
1127 static void soctherm_oc_irq_disable(struct irq_data *data)
1128 {
1129         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1130
1131         d->irq_enable &= ~BIT(data->hwirq);
1132 }
1133
1134 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1135 {
1136         return 0;
1137 }
1138
1139 /**
1140  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1141  * @h:          Interrupt request domain
1142  * @virq:       Virtual interrupt request number
1143  * @hw:         Hardware interrupt request number
1144  *
1145  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1146  * interrupt request is called, the irq_domain takes the request's virtual
1147  * request number (much like a virtual memory address) and maps it to a
1148  * physical hardware request number.
1149  *
1150  * When a mapping doesn't already exist for a virtual request number, the
1151  * irq_domain calls this function to associate the virtual request number with
1152  * a hardware request number.
1153  *
1154  * Return: 0
1155  */
1156 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1157                 irq_hw_number_t hw)
1158 {
1159         struct soctherm_oc_irq_chip_data *data = h->host_data;
1160
1161         irq_set_chip_data(virq, data);
1162         irq_set_chip(virq, &data->irq_chip);
1163         irq_set_nested_thread(virq, 1);
1164         return 0;
1165 }
1166
1167 /**
1168  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1169  * @d:      Interrupt request domain
1170  * @ctrlr:      Controller device tree node
1171  * @intspec:    Array of u32s from DTs "interrupt" property
1172  * @intsize:    Number of values inside the intspec array
1173  * @out_hwirq:  HW IRQ value associated with this interrupt
1174  * @out_type:   The IRQ SENSE type for this interrupt.
1175  *
1176  * This Device Tree IRQ specifier translation function will translate a
1177  * specific "interrupt" as defined by 2 DT values where the cell values map
1178  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1179  * number, this function will subtract 1 from the value listed in DT.
1180  *
1181  * Return: 0
1182  */
1183 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1184         struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1185         irq_hw_number_t *out_hwirq, unsigned int *out_type)
1186 {
1187         if (WARN_ON(intsize < 2))
1188                 return -EINVAL;
1189
1190         /*
1191          * The HW value is 1 index less than the DT IRQ values.
1192          * i.e. OC4 goes to HW index 3.
1193          */
1194         *out_hwirq = intspec[0] - 1;
1195         *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1196         return 0;
1197 }
1198
1199 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1200         .map    = soctherm_oc_irq_map,
1201         .xlate  = soctherm_irq_domain_xlate_twocell,
1202 };
1203
1204 /**
1205  * soctherm_oc_int_init() - Initial enabling of the over
1206  * current interrupts
1207  * @np: The devicetree node for soctherm
1208  * @num_irqs:   The number of new interrupt requests
1209  *
1210  * Sets the over current interrupt request chip data
1211  *
1212  * Return: 0 on success or if overcurrent interrupts are not enabled,
1213  * -ENOMEM (out of memory), or irq_base if the function failed to
1214  * allocate the irqs
1215  */
1216 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1217 {
1218         if (!num_irqs) {
1219                 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1220                 return 0;
1221         }
1222
1223         mutex_init(&soc_irq_cdata.irq_lock);
1224         soc_irq_cdata.irq_enable = 0;
1225
1226         soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1227         soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1228         soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1229                 soctherm_oc_irq_sync_unlock;
1230         soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1231         soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1232         soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1233         soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1234
1235         soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1236                                                      &soctherm_oc_domain_ops,
1237                                                      &soc_irq_cdata);
1238
1239         if (!soc_irq_cdata.domain) {
1240                 pr_err("%s: Failed to create IRQ domain\n", __func__);
1241                 return -ENOMEM;
1242         }
1243
1244         pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1245         return 0;
1246 }
1247
1248 #ifdef CONFIG_DEBUG_FS
1249 static int regs_show(struct seq_file *s, void *data)
1250 {
1251         struct platform_device *pdev = s->private;
1252         struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1253         const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1254         const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1255         u32 r, state;
1256         int i, level;
1257
1258         seq_puts(s, "-----TSENSE (convert HW)-----\n");
1259
1260         for (i = 0; i < ts->soc->num_tsensors; i++) {
1261                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1262                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1263
1264                 seq_printf(s, "%s: ", tsensors[i].name);
1265                 seq_printf(s, "En(%d) ", state);
1266
1267                 if (!state) {
1268                         seq_puts(s, "\n");
1269                         continue;
1270                 }
1271
1272                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1273                 seq_printf(s, "tiddq(%d) ", state);
1274                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1275                 seq_printf(s, "ten_count(%d) ", state);
1276                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1277                 seq_printf(s, "tsample(%d) ", state + 1);
1278
1279                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1280                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1281                 seq_printf(s, "Temp(%d/", state);
1282                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1283                 seq_printf(s, "%d) ", translate_temp(state));
1284
1285                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1286                 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1287                 seq_printf(s, "Capture(%d/", state);
1288                 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1289                 seq_printf(s, "%d) ", state);
1290
1291                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1292                 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1293                 seq_printf(s, "Stop(%d) ", state);
1294                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1295                 seq_printf(s, "Tall(%d) ", state);
1296                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1297                 seq_printf(s, "Over(%d/", state);
1298                 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1299                 seq_printf(s, "%d/", state);
1300                 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1301                 seq_printf(s, "%d) ", state);
1302
1303                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1304                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1305                 seq_printf(s, "Therm_A/B(%d/", state);
1306                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1307                 seq_printf(s, "%d)\n", (s16)state);
1308         }
1309
1310         r = readl(ts->regs + SENSOR_PDIV);
1311         seq_printf(s, "PDIV: 0x%x\n", r);
1312
1313         r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1314         seq_printf(s, "HOTSPOT: 0x%x\n", r);
1315
1316         seq_puts(s, "\n");
1317         seq_puts(s, "-----SOC_THERM-----\n");
1318
1319         r = readl(ts->regs + SENSOR_TEMP1);
1320         state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1321         seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1322         state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1323         seq_printf(s, " GPU(%d) ", translate_temp(state));
1324         r = readl(ts->regs + SENSOR_TEMP2);
1325         state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1326         seq_printf(s, " PLLX(%d) ", translate_temp(state));
1327         state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1328         seq_printf(s, " MEM(%d)\n", translate_temp(state));
1329
1330         for (i = 0; i < ts->soc->num_ttgs; i++) {
1331                 seq_printf(s, "%s:\n", ttgs[i]->name);
1332                 for (level = 0; level < 4; level++) {
1333                         s32 v;
1334                         u32 mask;
1335                         u16 off = ttgs[i]->thermctl_lvl0_offset;
1336
1337                         r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1338
1339                         mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1340                         state = REG_GET_MASK(r, mask);
1341                         v = sign_extend32(state, ts->soc->bptt - 1);
1342                         v *= ts->soc->thresh_grain;
1343                         seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1344
1345                         mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1346                         state = REG_GET_MASK(r, mask);
1347                         v = sign_extend32(state, ts->soc->bptt - 1);
1348                         v *= ts->soc->thresh_grain;
1349                         seq_printf(s, "%d ) ", v);
1350
1351                         mask = THERMCTL_LVL0_CPU0_EN_MASK;
1352                         state = REG_GET_MASK(r, mask);
1353                         seq_printf(s, "En(%d) ", state);
1354
1355                         mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1356                         state = REG_GET_MASK(r, mask);
1357                         seq_puts(s, "CPU Throt");
1358                         if (!state)
1359                                 seq_printf(s, "(%s) ", "none");
1360                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1361                                 seq_printf(s, "(%s) ", "L");
1362                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1363                                 seq_printf(s, "(%s) ", "H");
1364                         else
1365                                 seq_printf(s, "(%s) ", "H+L");
1366
1367                         mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1368                         state = REG_GET_MASK(r, mask);
1369                         seq_puts(s, "GPU Throt");
1370                         if (!state)
1371                                 seq_printf(s, "(%s) ", "none");
1372                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1373                                 seq_printf(s, "(%s) ", "L");
1374                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1375                                 seq_printf(s, "(%s) ", "H");
1376                         else
1377                                 seq_printf(s, "(%s) ", "H+L");
1378
1379                         mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1380                         state = REG_GET_MASK(r, mask);
1381                         seq_printf(s, "Status(%s)\n",
1382                                    state == 0 ? "LO" :
1383                                    state == 1 ? "In" :
1384                                    state == 2 ? "Res" : "HI");
1385                 }
1386         }
1387
1388         r = readl(ts->regs + THERMCTL_STATS_CTL);
1389         seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1390                    r & STATS_CTL_EN_UP ? "En" : "--",
1391                    r & STATS_CTL_EN_DN ? "En" : "--");
1392
1393         for (level = 0; level < 4; level++) {
1394                 u16 off;
1395
1396                 off = THERMCTL_LVL0_UP_STATS;
1397                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1398                 seq_printf(s, "  Level_%d Up(%d) ", level, r);
1399
1400                 off = THERMCTL_LVL0_DN_STATS;
1401                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1402                 seq_printf(s, "Dn(%d)\n", r);
1403         }
1404
1405         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1406         state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1407         seq_printf(s, "Thermtrip Any En(%d)\n", state);
1408         for (i = 0; i < ts->soc->num_ttgs; i++) {
1409                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1410                 seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1411                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1412                 state *= ts->soc->thresh_grain;
1413                 seq_printf(s, "Thresh(%d)\n", state);
1414         }
1415
1416         r = readl(ts->regs + THROT_GLOBAL_CFG);
1417         seq_puts(s, "\n");
1418         seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1419
1420         seq_puts(s, "---------------------------------------------------\n");
1421         r = readl(ts->regs + THROT_STATUS);
1422         state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1423         seq_printf(s, "THROT STATUS: breach(%d) ", state);
1424         state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1425         seq_printf(s, "state(%d) ", state);
1426         state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1427         seq_printf(s, "enabled(%d)\n", state);
1428
1429         r = readl(ts->regs + CPU_PSKIP_STATUS);
1430         if (ts->soc->use_ccroc) {
1431                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1432                 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1433         } else {
1434                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1435                 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1436                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1437                 seq_printf(s, "N(%d) ", state);
1438                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1439                 seq_printf(s, "enabled(%d)\n", state);
1440         }
1441
1442         return 0;
1443 }
1444
1445 DEFINE_SHOW_ATTRIBUTE(regs);
1446
1447 static void soctherm_debug_init(struct platform_device *pdev)
1448 {
1449         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1450         struct dentry *root;
1451
1452         root = debugfs_create_dir("soctherm", NULL);
1453
1454         tegra->debugfs_dir = root;
1455
1456         debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1457 }
1458 #else
1459 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1460 #endif
1461
1462 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1463 {
1464         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1465         int err;
1466
1467         if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1468                 return -EINVAL;
1469
1470         reset_control_assert(tegra->reset);
1471
1472         if (enable) {
1473                 err = clk_prepare_enable(tegra->clock_soctherm);
1474                 if (err) {
1475                         reset_control_deassert(tegra->reset);
1476                         return err;
1477                 }
1478
1479                 err = clk_prepare_enable(tegra->clock_tsensor);
1480                 if (err) {
1481                         clk_disable_unprepare(tegra->clock_soctherm);
1482                         reset_control_deassert(tegra->reset);
1483                         return err;
1484                 }
1485         } else {
1486                 clk_disable_unprepare(tegra->clock_tsensor);
1487                 clk_disable_unprepare(tegra->clock_soctherm);
1488         }
1489
1490         reset_control_deassert(tegra->reset);
1491
1492         return 0;
1493 }
1494
1495 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1496                                     unsigned long *max_state)
1497 {
1498         *max_state = 1;
1499         return 0;
1500 }
1501
1502 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1503                                     unsigned long *cur_state)
1504 {
1505         struct tegra_soctherm *ts = cdev->devdata;
1506         u32 r;
1507
1508         r = readl(ts->regs + THROT_STATUS);
1509         if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1510                 *cur_state = 1;
1511         else
1512                 *cur_state = 0;
1513
1514         return 0;
1515 }
1516
1517 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1518                                 unsigned long cur_state)
1519 {
1520         return 0;
1521 }
1522
1523 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1524         .get_max_state = throt_get_cdev_max_state,
1525         .get_cur_state = throt_get_cdev_cur_state,
1526         .set_cur_state = throt_set_cdev_state,
1527 };
1528
1529 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1530 {
1531         struct device *dev = &pdev->dev;
1532         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1533         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1534         const int max_num_prop = ts->soc->num_ttgs * 2;
1535         u32 *tlb;
1536         int i, j, n, ret;
1537
1538         if (!tt)
1539                 return -ENOMEM;
1540
1541         n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1542         if (n <= 0) {
1543                 dev_info(dev,
1544                          "missing thermtrips, will use critical trips as shut down temp\n");
1545                 return n;
1546         }
1547
1548         n = min(max_num_prop, n);
1549
1550         tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1551         if (!tlb)
1552                 return -ENOMEM;
1553         ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1554                                          tlb, n);
1555         if (ret) {
1556                 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1557                 return ret;
1558         }
1559
1560         i = 0;
1561         for (j = 0; j < n; j = j + 2) {
1562                 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1563                         continue;
1564
1565                 tt[i].id = tlb[j];
1566                 tt[i].temp = tlb[j + 1];
1567                 i++;
1568         }
1569
1570         return 0;
1571 }
1572
1573 static void soctherm_oc_cfg_parse(struct device *dev,
1574                                 struct device_node *np_oc,
1575                                 struct soctherm_throt_cfg *stc)
1576 {
1577         u32 val;
1578
1579         if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1580                 stc->oc_cfg.active_low = 1;
1581         else
1582                 stc->oc_cfg.active_low = 0;
1583
1584         if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1585                 stc->oc_cfg.intr_en = 1;
1586                 stc->oc_cfg.alarm_cnt_thresh = val;
1587         }
1588
1589         if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1590                 stc->oc_cfg.throt_period = val;
1591
1592         if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1593                 stc->oc_cfg.alarm_filter = val;
1594
1595         /* BRIEF throttling by default, do not support STICKY */
1596         stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1597 }
1598
1599 static int soctherm_throt_cfg_parse(struct device *dev,
1600                                     struct device_node *np,
1601                                     struct soctherm_throt_cfg *stc)
1602 {
1603         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1604         int ret;
1605         u32 val;
1606
1607         ret = of_property_read_u32(np, "nvidia,priority", &val);
1608         if (ret) {
1609                 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1610                 return -EINVAL;
1611         }
1612         stc->priority = val;
1613
1614         ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1615                                    "nvidia,cpu-throt-level" :
1616                                    "nvidia,cpu-throt-percent", &val);
1617         if (!ret) {
1618                 if (ts->soc->use_ccroc &&
1619                     val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1620                         stc->cpu_throt_level = val;
1621                 else if (!ts->soc->use_ccroc && val <= 100)
1622                         stc->cpu_throt_depth = val;
1623                 else
1624                         goto err;
1625         } else {
1626                 goto err;
1627         }
1628
1629         ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1630         if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1631                 stc->gpu_throt_level = val;
1632         else
1633                 goto err;
1634
1635         return 0;
1636
1637 err:
1638         dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1639                 stc->name);
1640         return -EINVAL;
1641 }
1642
1643 /**
1644  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1645  * and register them as cooling devices.
1646  * @pdev: Pointer to platform_device struct
1647  */
1648 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1649 {
1650         struct device *dev = &pdev->dev;
1651         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1652         struct device_node *np_stc, *np_stcc;
1653         const char *name;
1654         int i;
1655
1656         for (i = 0; i < THROTTLE_SIZE; i++) {
1657                 ts->throt_cfgs[i].name = throt_names[i];
1658                 ts->throt_cfgs[i].id = i;
1659                 ts->throt_cfgs[i].init = false;
1660         }
1661
1662         np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1663         if (!np_stc) {
1664                 dev_info(dev,
1665                          "throttle-cfg: no throttle-cfgs - not enabling\n");
1666                 return;
1667         }
1668
1669         for_each_child_of_node(np_stc, np_stcc) {
1670                 struct soctherm_throt_cfg *stc;
1671                 struct thermal_cooling_device *tcd;
1672                 int err;
1673
1674                 name = np_stcc->name;
1675                 stc = find_throttle_cfg_by_name(ts, name);
1676                 if (!stc) {
1677                         dev_err(dev,
1678                                 "throttle-cfg: could not find %s\n", name);
1679                         continue;
1680                 }
1681
1682                 if (stc->init) {
1683                         dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1684                         of_node_put(np_stcc);
1685                         break;
1686                 }
1687
1688                 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1689                 if (err)
1690                         continue;
1691
1692                 if (stc->id >= THROTTLE_OC1) {
1693                         soctherm_oc_cfg_parse(dev, np_stcc, stc);
1694                         stc->init = true;
1695                 } else {
1696
1697                         tcd = thermal_of_cooling_device_register(np_stcc,
1698                                                          (char *)name, ts,
1699                                                          &throt_cooling_ops);
1700                         if (IS_ERR_OR_NULL(tcd)) {
1701                                 dev_err(dev,
1702                                         "throttle-cfg: %s: failed to register cooling device\n",
1703                                         name);
1704                                 continue;
1705                         }
1706                         stc->cdev = tcd;
1707                         stc->init = true;
1708                 }
1709
1710         }
1711
1712         of_node_put(np_stc);
1713 }
1714
1715 /**
1716  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1717  * @ts: pointer to a struct tegra_soctherm
1718  * @level: describing the level LOW/MED/HIGH of throttling
1719  *
1720  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1721  * the M/N values desired for each level. This function does this.
1722  *
1723  * This function pre-programs the CCROC NV_THERM levels in terms of
1724  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1725  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1726  */
1727 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1728 {
1729         u8 depth, dividend;
1730         u32 r;
1731
1732         switch (level) {
1733         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1734                 depth = 50;
1735                 break;
1736         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1737                 depth = 75;
1738                 break;
1739         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1740                 depth = 80;
1741                 break;
1742         case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1743                 return;
1744         default:
1745                 return;
1746         }
1747
1748         dividend = THROT_DEPTH_DIVIDEND(depth);
1749
1750         /* setup PSKIP in ccroc nv_therm registers */
1751         r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1752         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1753         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1754         ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1755
1756         r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1757         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1758         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1759         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1760         ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1761 }
1762
1763 /**
1764  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1765  * @ts: pointer to a struct tegra_soctherm
1766  * @throt: the LIGHT/HEAVY of throttle event id
1767  *
1768  * Pulse skippers are used to throttle clock frequencies.  This
1769  * function programs the pulse skippers based on @throt and platform
1770  * data.  This function is used on SoCs which have CPU-local pulse
1771  * skipper control, such as T13x. It programs soctherm's interface to
1772  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1773  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1774  */
1775 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1776                                          enum soctherm_throttle_id throt)
1777 {
1778         u32 r, throt_vect;
1779
1780         /* Denver:CCROC NV_THERM interface N:3 Mapping */
1781         switch (ts->throt_cfgs[throt].cpu_throt_level) {
1782         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1783                 throt_vect = THROT_VECT_LOW;
1784                 break;
1785         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1786                 throt_vect = THROT_VECT_MED;
1787                 break;
1788         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1789                 throt_vect = THROT_VECT_HIGH;
1790                 break;
1791         default:
1792                 throt_vect = THROT_VECT_NONE;
1793                 break;
1794         }
1795
1796         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1797         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1798         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1799         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1800         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1801
1802         /* bypass sequencer in soc_therm as it is programmed in ccroc */
1803         r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1804         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1805 }
1806
1807 /**
1808  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1809  * @ts: pointer to a struct tegra_soctherm
1810  * @throt: the LIGHT/HEAVY of throttle event id
1811  *
1812  * Pulse skippers are used to throttle clock frequencies.  This
1813  * function programs the pulse skippers based on @throt and platform
1814  * data.  This function is used for CPUs that have "remote" pulse
1815  * skipper control, e.g., the CPU pulse skipper is controlled by the
1816  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1817  * complex.)
1818  */
1819 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1820                                enum soctherm_throttle_id throt)
1821 {
1822         u32 r;
1823         int depth;
1824         u8 dividend;
1825
1826         depth = ts->throt_cfgs[throt].cpu_throt_depth;
1827         dividend = THROT_DEPTH_DIVIDEND(depth);
1828
1829         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1830         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1831         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1832         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1833         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1834
1835         r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1836         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1837         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1838         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1839 }
1840
1841 /**
1842  * throttlectl_gpu_level_select() - selects throttling level for GPU
1843  * @ts: pointer to a struct tegra_soctherm
1844  * @throt: the LIGHT/HEAVY of throttle event id
1845  *
1846  * This function programs soctherm's interface to GK20a NV_THERM to select
1847  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1848  *
1849  * Return: boolean true if HW was programmed
1850  */
1851 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1852                                          enum soctherm_throttle_id throt)
1853 {
1854         u32 r, level, throt_vect;
1855
1856         level = ts->throt_cfgs[throt].gpu_throt_level;
1857         throt_vect = THROT_LEVEL_TO_DEPTH(level);
1858         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1859         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1860         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1861         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1862 }
1863
1864 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1865                                       enum soctherm_throttle_id throt)
1866 {
1867         u32 r;
1868         struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1869
1870         if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1871                 return -EINVAL;
1872
1873         r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1874         r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1875         r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1876         r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1877         writel(r, ts->regs + ALARM_CFG(throt));
1878         writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1879         writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1880         writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1881         soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1882
1883         return 0;
1884 }
1885
1886 /**
1887  * soctherm_throttle_program() - programs pulse skippers' configuration
1888  * @ts: pointer to a struct tegra_soctherm
1889  * @throt: the LIGHT/HEAVY of the throttle event id.
1890  *
1891  * Pulse skippers are used to throttle clock frequencies.
1892  * This function programs the pulse skippers.
1893  */
1894 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1895                                       enum soctherm_throttle_id throt)
1896 {
1897         u32 r;
1898         struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1899
1900         if (!stc.init)
1901                 return;
1902
1903         if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1904                 return;
1905
1906         /* Setup PSKIP parameters */
1907         if (ts->soc->use_ccroc)
1908                 throttlectl_cpu_level_select(ts, throt);
1909         else
1910                 throttlectl_cpu_mn(ts, throt);
1911
1912         throttlectl_gpu_level_select(ts, throt);
1913
1914         r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1915         writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1916
1917         r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1918         writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1919
1920         r = readl(ts->regs + THROT_PRIORITY_LOCK);
1921         r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1922         if (r >= stc.priority)
1923                 return;
1924         r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1925                          stc.priority);
1926         writel(r, ts->regs + THROT_PRIORITY_LOCK);
1927 }
1928
1929 static void tegra_soctherm_throttle(struct device *dev)
1930 {
1931         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1932         u32 v;
1933         int i;
1934
1935         /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1936         if (ts->soc->use_ccroc) {
1937                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1938                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1939                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1940         }
1941
1942         /* Thermal HW throttle programming */
1943         for (i = 0; i < THROTTLE_SIZE; i++)
1944                 soctherm_throttle_program(ts, i);
1945
1946         v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1947         if (ts->soc->use_ccroc) {
1948                 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1949
1950                 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1951                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1952                 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1953         } else {
1954                 writel(v, ts->regs + THROT_GLOBAL_CFG);
1955
1956                 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1957                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1958                 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1959         }
1960
1961         /* initialize stats collection */
1962         v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1963             STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1964         writel(v, ts->regs + THERMCTL_STATS_CTL);
1965 }
1966
1967 static int soctherm_interrupts_init(struct platform_device *pdev,
1968                                     struct tegra_soctherm *tegra)
1969 {
1970         struct device_node *np = pdev->dev.of_node;
1971         int ret;
1972
1973         ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1974         if (ret < 0) {
1975                 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1976                 return ret;
1977         }
1978
1979         tegra->thermal_irq = platform_get_irq(pdev, 0);
1980         if (tegra->thermal_irq < 0) {
1981                 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1982                 return 0;
1983         }
1984
1985         tegra->edp_irq = platform_get_irq(pdev, 1);
1986         if (tegra->edp_irq < 0) {
1987                 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1988                 return 0;
1989         }
1990
1991         ret = devm_request_threaded_irq(&pdev->dev,
1992                                         tegra->thermal_irq,
1993                                         soctherm_thermal_isr,
1994                                         soctherm_thermal_isr_thread,
1995                                         IRQF_ONESHOT,
1996                                         dev_name(&pdev->dev),
1997                                         tegra);
1998         if (ret < 0) {
1999                 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2000                 return ret;
2001         }
2002
2003         ret = devm_request_threaded_irq(&pdev->dev,
2004                                         tegra->edp_irq,
2005                                         soctherm_edp_isr,
2006                                         soctherm_edp_isr_thread,
2007                                         IRQF_ONESHOT,
2008                                         "soctherm_edp",
2009                                         tegra);
2010         if (ret < 0) {
2011                 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2012                 return ret;
2013         }
2014
2015         return 0;
2016 }
2017
2018 static void soctherm_init(struct platform_device *pdev)
2019 {
2020         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2021         const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2022         int i;
2023         u32 pdiv, hotspot;
2024
2025         /* Initialize raw sensors */
2026         for (i = 0; i < tegra->soc->num_tsensors; ++i)
2027                 enable_tsensor(tegra, i);
2028
2029         /* program pdiv and hotspot offsets per THERM */
2030         pdiv = readl(tegra->regs + SENSOR_PDIV);
2031         hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2032         for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2033                 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2034                                     ttgs[i]->pdiv);
2035                 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2036                 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2037                         continue;
2038                 hotspot =  REG_SET_MASK(hotspot,
2039                                         ttgs[i]->pllx_hotspot_mask,
2040                                         ttgs[i]->pllx_hotspot_diff);
2041         }
2042         writel(pdiv, tegra->regs + SENSOR_PDIV);
2043         writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2044
2045         /* Configure hw throttle */
2046         tegra_soctherm_throttle(&pdev->dev);
2047 }
2048
2049 static const struct of_device_id tegra_soctherm_of_match[] = {
2050 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2051         {
2052                 .compatible = "nvidia,tegra124-soctherm",
2053                 .data = &tegra124_soctherm,
2054         },
2055 #endif
2056 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2057         {
2058                 .compatible = "nvidia,tegra132-soctherm",
2059                 .data = &tegra132_soctherm,
2060         },
2061 #endif
2062 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2063         {
2064                 .compatible = "nvidia,tegra210-soctherm",
2065                 .data = &tegra210_soctherm,
2066         },
2067 #endif
2068         { },
2069 };
2070 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2071
2072 static int tegra_soctherm_probe(struct platform_device *pdev)
2073 {
2074         const struct of_device_id *match;
2075         struct tegra_soctherm *tegra;
2076         struct thermal_zone_device *z;
2077         struct tsensor_shared_calib shared_calib;
2078         struct tegra_soctherm_soc *soc;
2079         unsigned int i;
2080         int err;
2081
2082         match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2083         if (!match)
2084                 return -ENODEV;
2085
2086         soc = (struct tegra_soctherm_soc *)match->data;
2087         if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2088                 return -EINVAL;
2089
2090         tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2091         if (!tegra)
2092                 return -ENOMEM;
2093
2094         mutex_init(&tegra->thermctl_lock);
2095         dev_set_drvdata(&pdev->dev, tegra);
2096
2097         tegra->soc = soc;
2098
2099         tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2100         if (IS_ERR(tegra->regs)) {
2101                 dev_err(&pdev->dev, "can't get soctherm registers");
2102                 return PTR_ERR(tegra->regs);
2103         }
2104
2105         if (!tegra->soc->use_ccroc) {
2106                 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2107                 if (IS_ERR(tegra->clk_regs)) {
2108                         dev_err(&pdev->dev, "can't get car clk registers");
2109                         return PTR_ERR(tegra->clk_regs);
2110                 }
2111         } else {
2112                 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2113                 if (IS_ERR(tegra->ccroc_regs)) {
2114                         dev_err(&pdev->dev, "can't get ccroc registers");
2115                         return PTR_ERR(tegra->ccroc_regs);
2116                 }
2117         }
2118
2119         tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2120         if (IS_ERR(tegra->reset)) {
2121                 dev_err(&pdev->dev, "can't get soctherm reset\n");
2122                 return PTR_ERR(tegra->reset);
2123         }
2124
2125         tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2126         if (IS_ERR(tegra->clock_tsensor)) {
2127                 dev_err(&pdev->dev, "can't get tsensor clock\n");
2128                 return PTR_ERR(tegra->clock_tsensor);
2129         }
2130
2131         tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2132         if (IS_ERR(tegra->clock_soctherm)) {
2133                 dev_err(&pdev->dev, "can't get soctherm clock\n");
2134                 return PTR_ERR(tegra->clock_soctherm);
2135         }
2136
2137         tegra->calib = devm_kcalloc(&pdev->dev,
2138                                     soc->num_tsensors, sizeof(u32),
2139                                     GFP_KERNEL);
2140         if (!tegra->calib)
2141                 return -ENOMEM;
2142
2143         /* calculate shared calibration data */
2144         err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2145         if (err)
2146                 return err;
2147
2148         /* calculate tsensor calibration data */
2149         for (i = 0; i < soc->num_tsensors; ++i) {
2150                 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2151                                                &shared_calib,
2152                                                &tegra->calib[i]);
2153                 if (err)
2154                         return err;
2155         }
2156
2157         tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2158                                            soc->num_ttgs, sizeof(z),
2159                                            GFP_KERNEL);
2160         if (!tegra->thermctl_tzs)
2161                 return -ENOMEM;
2162
2163         err = soctherm_clk_enable(pdev, true);
2164         if (err)
2165                 return err;
2166
2167         soctherm_thermtrips_parse(pdev);
2168
2169         soctherm_init_hw_throt_cdev(pdev);
2170
2171         soctherm_init(pdev);
2172
2173         for (i = 0; i < soc->num_ttgs; ++i) {
2174                 struct tegra_thermctl_zone *zone =
2175                         devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2176                 if (!zone) {
2177                         err = -ENOMEM;
2178                         goto disable_clocks;
2179                 }
2180
2181                 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2182                 zone->dev = &pdev->dev;
2183                 zone->sg = soc->ttgs[i];
2184                 zone->ts = tegra;
2185
2186                 z = devm_thermal_of_zone_register(&pdev->dev,
2187                                                   soc->ttgs[i]->id, zone,
2188                                                   &tegra_of_thermal_ops);
2189                 if (IS_ERR(z)) {
2190                         err = PTR_ERR(z);
2191                         dev_err(&pdev->dev, "failed to register sensor: %d\n",
2192                                 err);
2193                         goto disable_clocks;
2194                 }
2195
2196                 zone->tz = z;
2197                 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2198
2199                 /* Configure hw trip points */
2200                 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2201                 if (err)
2202                         goto disable_clocks;
2203         }
2204
2205         err = soctherm_interrupts_init(pdev, tegra);
2206
2207         soctherm_debug_init(pdev);
2208
2209         return 0;
2210
2211 disable_clocks:
2212         soctherm_clk_enable(pdev, false);
2213
2214         return err;
2215 }
2216
2217 static void tegra_soctherm_remove(struct platform_device *pdev)
2218 {
2219         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2220
2221         debugfs_remove_recursive(tegra->debugfs_dir);
2222
2223         soctherm_clk_enable(pdev, false);
2224 }
2225
2226 static int __maybe_unused soctherm_suspend(struct device *dev)
2227 {
2228         struct platform_device *pdev = to_platform_device(dev);
2229
2230         soctherm_clk_enable(pdev, false);
2231
2232         return 0;
2233 }
2234
2235 static int __maybe_unused soctherm_resume(struct device *dev)
2236 {
2237         struct platform_device *pdev = to_platform_device(dev);
2238         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2239         struct tegra_soctherm_soc *soc = tegra->soc;
2240         int err, i;
2241
2242         err = soctherm_clk_enable(pdev, true);
2243         if (err) {
2244                 dev_err(&pdev->dev,
2245                         "Resume failed: enable clocks failed\n");
2246                 return err;
2247         }
2248
2249         soctherm_init(pdev);
2250
2251         for (i = 0; i < soc->num_ttgs; ++i) {
2252                 struct thermal_zone_device *tz;
2253
2254                 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2255                 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2256                 if (err) {
2257                         dev_err(&pdev->dev,
2258                                 "Resume failed: set hwtrips failed\n");
2259                         return err;
2260                 }
2261         }
2262
2263         return 0;
2264 }
2265
2266 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2267
2268 static struct platform_driver tegra_soctherm_driver = {
2269         .probe = tegra_soctherm_probe,
2270         .remove_new = tegra_soctherm_remove,
2271         .driver = {
2272                 .name = "tegra_soctherm",
2273                 .pm = &tegra_soctherm_pm,
2274                 .of_match_table = tegra_soctherm_of_match,
2275         },
2276 };
2277 module_platform_driver(tegra_soctherm_driver);
2278
2279 MODULE_AUTHOR("Mikko Perttunen <[email protected]>");
2280 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2281 MODULE_LICENSE("GPL v2");
This page took 0.164812 seconds and 4 git commands to generate.