]> Git Repo - linux.git/blob - drivers/scsi/mpi3mr/mpi3mr_app.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / scsi / mpi3mr / mpi3mr_app.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2023 Broadcom Inc.
6  *  (mailto: [email protected])
7  *
8  */
9
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13
14 /**
15  * mpi3mr_alloc_trace_buffer:   Allocate trace buffer
16  * @mrioc: Adapter instance reference
17  * @trace_size: Trace buffer size
18  *
19  * Allocate trace buffer
20  * Return: 0 on success, non-zero on failure.
21  */
22 static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size)
23 {
24         struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0];
25
26         diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
27             trace_size, &diag_buffer->dma_addr, GFP_KERNEL);
28         if (diag_buffer->addr) {
29                 dprint_init(mrioc, "trace diag buffer is allocated successfully\n");
30                 return 0;
31         }
32         return -1;
33 }
34
35 /**
36  * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers
37  * @mrioc: Adapter instance reference
38  *
39  * This functions checks whether the driver defined buffer sizes
40  * are greater than IOCFacts provided controller local buffer
41  * sizes and if the driver defined sizes are more then the
42  * driver allocates the specific buffer by reading driver page1
43  *
44  * Return: Nothing.
45  */
46 void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc)
47 {
48         struct diag_buffer_desc *diag_buffer;
49         struct mpi3_driver_page1 driver_pg1;
50         u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size,
51                 trace_size, fw_size;
52         u16 pg_sz = sizeof(driver_pg1);
53         int retval = 0;
54         bool retry = false;
55
56         if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr)
57                 return;
58
59         retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
60         if (retval) {
61                 ioc_warn(mrioc,
62                     "%s: driver page 1 read failed, allocating trace\n"
63                     "and firmware diag buffers of default size\n", __func__);
64                 trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ;
65                 trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ;
66                 trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ;
67
68         } else {
69                 trace_size = driver_pg1.host_diag_trace_max_size * 1024;
70                 trace_dec_size = driver_pg1.host_diag_trace_decrement_size
71                          * 1024;
72                 trace_min_size = driver_pg1.host_diag_trace_min_size * 1024;
73                 fw_size = driver_pg1.host_diag_fw_max_size * 1024;
74                 fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024;
75                 fw_min_size = driver_pg1.host_diag_fw_min_size * 1024;
76                 dprint_init(mrioc,
77                     "%s:trace diag buffer sizes read from driver\n"
78                     "page1: maximum size = %dKB, decrement size = %dKB\n"
79                     ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size,
80                     driver_pg1.host_diag_trace_decrement_size,
81                     driver_pg1.host_diag_trace_min_size);
82                 dprint_init(mrioc,
83                     "%s:firmware diag buffer sizes read from driver\n"
84                     "page1: maximum size = %dKB, decrement size = %dKB\n"
85                     ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size,
86                     driver_pg1.host_diag_fw_decrement_size,
87                     driver_pg1.host_diag_fw_min_size);
88                 if ((trace_size == 0) && (fw_size == 0))
89                         return;
90         }
91
92
93 retry_trace:
94         diag_buffer = &mrioc->diag_buffers[0];
95         diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE;
96         diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
97         if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >=
98                 trace_min_size)) {
99                 if (!retry)
100                         dprint_init(mrioc,
101                             "trying to allocate trace diag buffer of size = %dKB\n",
102                             trace_size / 1024);
103                 if (mpi3mr_alloc_trace_buffer(mrioc, trace_size)) {
104                         retry = true;
105                         trace_size -= trace_dec_size;
106                         dprint_init(mrioc, "trace diag buffer allocation failed\n"
107                         "retrying smaller size %dKB\n", trace_size / 1024);
108                         goto retry_trace;
109                 } else
110                         diag_buffer->size = trace_size;
111         }
112
113         retry = false;
114 retry_fw:
115
116         diag_buffer = &mrioc->diag_buffers[1];
117
118         diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW;
119         diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
120         if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) {
121                 diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
122                     fw_size, &diag_buffer->dma_addr, GFP_KERNEL);
123                 if (!retry)
124                         dprint_init(mrioc,
125                             "%s:trying to allocate firmware diag buffer of size = %dKB\n",
126                             __func__, fw_size / 1024);
127                 if (diag_buffer->addr) {
128                         dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n",
129                             __func__);
130                         diag_buffer->size = fw_size;
131                 } else {
132                         retry = true;
133                         fw_size -= fw_dec_size;
134                         dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n"
135                                         "retrying smaller size %dKB\n",
136                                         __func__, fw_size / 1024);
137                         goto retry_fw;
138                 }
139         }
140 }
141
142 /**
143  * mpi3mr_issue_diag_buf_post - Send diag buffer post req
144  * @mrioc: Adapter instance reference
145  * @diag_buffer: Diagnostic buffer descriptor
146  *
147  * Issue diagnostic buffer post MPI request through admin queue
148  * and wait for the completion of it or time out.
149  *
150  * Return: 0 on success, non-zero on failures.
151  */
152 int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc,
153         struct diag_buffer_desc *diag_buffer)
154 {
155         struct mpi3_diag_buffer_post_request diag_buf_post_req;
156         u8 prev_status;
157         int retval = 0;
158
159         memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req));
160         mutex_lock(&mrioc->init_cmds.mutex);
161         if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
162                 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
163                 mutex_unlock(&mrioc->init_cmds.mutex);
164                 return -1;
165         }
166         mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
167         mrioc->init_cmds.is_waiting = 1;
168         mrioc->init_cmds.callback = NULL;
169         diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
170         diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST;
171         diag_buf_post_req.type = diag_buffer->type;
172         diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr);
173         diag_buf_post_req.length = le32_to_cpu(diag_buffer->size);
174
175         dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__,
176             diag_buffer->type);
177         prev_status = diag_buffer->status;
178         diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
179         init_completion(&mrioc->init_cmds.done);
180         retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req,
181             sizeof(diag_buf_post_req), 1);
182         if (retval) {
183                 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
184                     __func__);
185                 goto out_unlock;
186         }
187         wait_for_completion_timeout(&mrioc->init_cmds.done,
188             (MPI3MR_INTADMCMD_TIMEOUT * HZ));
189         if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
190                 mrioc->init_cmds.is_waiting = 0;
191                 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
192                 mpi3mr_check_rh_fault_ioc(mrioc,
193                     MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT);
194                 retval = -1;
195                 goto out_unlock;
196         }
197         if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
198             != MPI3_IOCSTATUS_SUCCESS) {
199                 dprint_bsg_err(mrioc,
200                     "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
201                     __func__, diag_buffer->type,
202                     (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
203                     mrioc->init_cmds.ioc_loginfo);
204                 retval = -1;
205                 goto out_unlock;
206         }
207         dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n",
208             __func__, diag_buffer->type);
209
210 out_unlock:
211         if (retval)
212                 diag_buffer->status = prev_status;
213         mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
214         mutex_unlock(&mrioc->init_cmds.mutex);
215         return retval;
216 }
217
218 /**
219  * mpi3mr_post_diag_bufs - Post diag buffers to the controller
220  * @mrioc: Adapter instance reference
221  *
222  * This function calls helper function to post both trace and
223  * firmware buffers to the controller.
224  *
225  * Return: None
226  */
227 int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc)
228 {
229         u8 i;
230         struct diag_buffer_desc *diag_buffer;
231
232         for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
233                 diag_buffer = &mrioc->diag_buffers[i];
234                 if (!(diag_buffer->addr))
235                         continue;
236                 if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer))
237                         return -1;
238         }
239         return 0;
240 }
241
242 /**
243  * mpi3mr_issue_diag_buf_release - Send diag buffer release req
244  * @mrioc: Adapter instance reference
245  * @diag_buffer: Diagnostic buffer descriptor
246  *
247  * Issue diagnostic buffer manage MPI request with release
248  * action request through admin queue and wait for the
249  * completion of it or time out.
250  *
251  * Return: 0 on success, non-zero on failures.
252  */
253 int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc,
254         struct diag_buffer_desc *diag_buffer)
255 {
256         struct mpi3_diag_buffer_manage_request diag_buf_manage_req;
257         int retval = 0;
258
259         if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
260             (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
261                 return retval;
262
263         memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req));
264         mutex_lock(&mrioc->init_cmds.mutex);
265         if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
266                 dprint_reset(mrioc, "%s: command is in use\n", __func__);
267                 mutex_unlock(&mrioc->init_cmds.mutex);
268                 return -1;
269         }
270         mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
271         mrioc->init_cmds.is_waiting = 1;
272         mrioc->init_cmds.callback = NULL;
273         diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
274         diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE;
275         diag_buf_manage_req.type = diag_buffer->type;
276         diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE;
277
278
279         dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__,
280             diag_buffer->type);
281         init_completion(&mrioc->init_cmds.done);
282         retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req,
283             sizeof(diag_buf_manage_req), 1);
284         if (retval) {
285                 dprint_reset(mrioc, "%s: admin request post failed\n", __func__);
286                 mpi3mr_set_trigger_data_in_hdb(diag_buffer,
287                     MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
288                 goto out_unlock;
289         }
290         wait_for_completion_timeout(&mrioc->init_cmds.done,
291             (MPI3MR_INTADMCMD_TIMEOUT * HZ));
292         if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
293                 mrioc->init_cmds.is_waiting = 0;
294                 dprint_reset(mrioc, "%s: command timedout\n", __func__);
295                 mpi3mr_check_rh_fault_ioc(mrioc,
296                     MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT);
297                 retval = -1;
298                 goto out_unlock;
299         }
300         if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
301             != MPI3_IOCSTATUS_SUCCESS) {
302                 dprint_reset(mrioc,
303                     "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
304                     __func__, diag_buffer->type,
305                     (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
306                     mrioc->init_cmds.ioc_loginfo);
307                 retval = -1;
308                 goto out_unlock;
309         }
310         dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n",
311             __func__, diag_buffer->type);
312
313 out_unlock:
314         mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
315         mutex_unlock(&mrioc->init_cmds.mutex);
316         return retval;
317 }
318
319 /**
320  * mpi3mr_process_trigger - Generic HDB Trigger handler
321  * @mrioc: Adapter instance reference
322  * @trigger_type: Trigger type
323  * @trigger_data: Trigger data
324  * @trigger_flags: Trigger flags
325  *
326  * This function checks validity of HDB, triggers and based on
327  * trigger information, creates an event to be processed in the
328  * firmware event worker thread .
329  *
330  * This function should be called with trigger spinlock held
331  *
332  * Return: Nothing
333  */
334 static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type,
335         union mpi3mr_trigger_data *trigger_data, u8 trigger_flags)
336 {
337         struct trigger_event_data event_data;
338         struct diag_buffer_desc *trace_hdb = NULL;
339         struct diag_buffer_desc *fw_hdb = NULL;
340         u64 global_trigger;
341
342         trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
343             MPI3_DIAG_BUFFER_TYPE_TRACE);
344         if (trace_hdb &&
345             (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
346             (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
347                 trace_hdb =  NULL;
348
349         fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
350
351         if (fw_hdb &&
352             (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
353             (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
354                 fw_hdb = NULL;
355
356         if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active
357             && mrioc->trace_release_trigger_active) ||
358             (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) ||
359             ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
360              && (!mrioc->driver_pg2->num_triggers)))
361                 return;
362
363         memset(&event_data, 0, sizeof(event_data));
364         event_data.trigger_type = trigger_type;
365         memcpy(&event_data.trigger_specific_data, trigger_data,
366             sizeof(*trigger_data));
367         global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
368
369         if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) {
370                 event_data.snapdump = true;
371                 event_data.trace_hdb = trace_hdb;
372                 event_data.fw_hdb = fw_hdb;
373                 mrioc->snapdump_trigger_active = true;
374         } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) {
375                 if ((trace_hdb) && (global_trigger &
376                     MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) &&
377                     (!mrioc->trace_release_trigger_active)) {
378                         event_data.trace_hdb = trace_hdb;
379                         mrioc->trace_release_trigger_active = true;
380                 }
381                 if ((fw_hdb) && (global_trigger &
382                     MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) &&
383                     (!mrioc->fw_release_trigger_active)) {
384                         event_data.fw_hdb = fw_hdb;
385                         mrioc->fw_release_trigger_active = true;
386                 }
387         } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) {
388                 if ((trace_hdb) && (trigger_flags &
389                     MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) &&
390                     (!mrioc->trace_release_trigger_active)) {
391                         event_data.trace_hdb = trace_hdb;
392                         mrioc->trace_release_trigger_active = true;
393                 }
394                 if ((fw_hdb) && (trigger_flags &
395                     MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) &&
396                     (!mrioc->fw_release_trigger_active)) {
397                         event_data.fw_hdb = fw_hdb;
398                         mrioc->fw_release_trigger_active = true;
399                 }
400         }
401
402         if (event_data.trace_hdb || event_data.fw_hdb)
403                 mpi3mr_hdb_trigger_data_event(mrioc, &event_data);
404 }
405
406 /**
407  * mpi3mr_global_trigger - Global HDB trigger handler
408  * @mrioc: Adapter instance reference
409  * @trigger_data: Trigger data
410  *
411  * This function checks whether the given global trigger is
412  * enabled in the driver page 2 and if so calls generic trigger
413  * handler to queue event for HDB release.
414  *
415  * Return: Nothing
416  */
417 void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data)
418 {
419         unsigned long flags;
420         union mpi3mr_trigger_data trigger_specific_data;
421
422         spin_lock_irqsave(&mrioc->trigger_lock, flags);
423         if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) {
424                 memset(&trigger_specific_data, 0,
425                     sizeof(trigger_specific_data));
426                 trigger_specific_data.global = trigger_data;
427                 mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL,
428                     &trigger_specific_data, 0);
429         }
430         spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
431 }
432
433 /**
434  * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler
435  * @mrioc: Adapter instance reference
436  * @sensekey: Sense Key
437  * @asc: Additional Sense Code
438  * @ascq: Additional Sense Code Qualifier
439  *
440  * This function compares SCSI sense trigger values with driver
441  * page 2 values and calls generic trigger handler to release
442  * HDBs if match found
443  *
444  * Return: Nothing
445  */
446 void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc,
447         u8 ascq)
448 {
449         struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL;
450         u64 i = 0;
451         unsigned long flags;
452         u8 num_triggers, trigger_flags;
453
454         if (mrioc->scsisense_trigger_present) {
455                 spin_lock_irqsave(&mrioc->trigger_lock, flags);
456                 scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *)
457                         mrioc->driver_pg2->trigger;
458                 num_triggers = mrioc->driver_pg2->num_triggers;
459                 for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) {
460                         if (scsi_sense_trigger->type !=
461                             MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE)
462                                 continue;
463                         if (!(scsi_sense_trigger->sense_key ==
464                             MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL
465                               || scsi_sense_trigger->sense_key == sensekey))
466                                 continue;
467                         if (!(scsi_sense_trigger->asc ==
468                             MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL ||
469                             scsi_sense_trigger->asc == asc))
470                                 continue;
471                         if (!(scsi_sense_trigger->ascq ==
472                             MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL ||
473                             scsi_sense_trigger->ascq == ascq))
474                                 continue;
475                         trigger_flags = scsi_sense_trigger->flags;
476                         mpi3mr_process_trigger(mrioc,
477                             MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
478                             (union mpi3mr_trigger_data *)scsi_sense_trigger,
479                             trigger_flags);
480                         break;
481                 }
482                 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
483         }
484 }
485
486 /**
487  * mpi3mr_event_trigger - MPI event HDB trigger handler
488  * @mrioc: Adapter instance reference
489  * @event: MPI Event
490  *
491  * This function compares event trigger values with driver page
492  * 2 values and calls generic trigger handler to release
493  * HDBs if match found.
494  *
495  * Return: Nothing
496  */
497 void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event)
498 {
499         struct mpi3_driver2_trigger_event *event_trigger = NULL;
500         u64 i = 0;
501         unsigned long flags;
502         u8 num_triggers, trigger_flags;
503
504         if (mrioc->event_trigger_present) {
505                 spin_lock_irqsave(&mrioc->trigger_lock, flags);
506                 event_trigger = (struct mpi3_driver2_trigger_event *)
507                         mrioc->driver_pg2->trigger;
508                 num_triggers = mrioc->driver_pg2->num_triggers;
509
510                 for (i = 0; i < num_triggers; i++, event_trigger++) {
511                         if (event_trigger->type !=
512                             MPI3_DRIVER2_TRIGGER_TYPE_EVENT)
513                                 continue;
514                         if (event_trigger->event != event)
515                                 continue;
516                         trigger_flags = event_trigger->flags;
517                         mpi3mr_process_trigger(mrioc,
518                             MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
519                             (union mpi3mr_trigger_data *)event_trigger,
520                             trigger_flags);
521                         break;
522                 }
523                 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
524         }
525 }
526
527 /**
528  * mpi3mr_reply_trigger - MPI Reply HDB trigger handler
529  * @mrioc: Adapter instance reference
530  * @ioc_status: Masked value of IOC Status from MPI Reply
531  * @ioc_loginfo: IOC Log Info from MPI Reply
532  *
533  * This function compares IOC status and IOC log info trigger
534  * values with driver page 2 values and calls generic trigger
535  * handler to release HDBs if match found.
536  *
537  * Return: Nothing
538  */
539 void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status,
540         u32 ioc_loginfo)
541 {
542         struct mpi3_driver2_trigger_reply *reply_trigger = NULL;
543         u64 i = 0;
544         unsigned long flags;
545         u8 num_triggers, trigger_flags;
546
547         if (mrioc->reply_trigger_present) {
548                 spin_lock_irqsave(&mrioc->trigger_lock, flags);
549                 reply_trigger = (struct mpi3_driver2_trigger_reply *)
550                         mrioc->driver_pg2->trigger;
551                 num_triggers = mrioc->driver_pg2->num_triggers;
552                 for (i = 0; i < num_triggers; i++, reply_trigger++) {
553                         if (reply_trigger->type !=
554                             MPI3_DRIVER2_TRIGGER_TYPE_REPLY)
555                                 continue;
556                         if ((le16_to_cpu(reply_trigger->ioc_status) !=
557                              ioc_status)
558                             && (le16_to_cpu(reply_trigger->ioc_status) !=
559                             MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL))
560                                 continue;
561                         if ((le32_to_cpu(reply_trigger->ioc_log_info) !=
562                             (le32_to_cpu(reply_trigger->ioc_log_info_mask) &
563                              ioc_loginfo)))
564                                 continue;
565                         trigger_flags = reply_trigger->flags;
566                         mpi3mr_process_trigger(mrioc,
567                             MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
568                             (union mpi3mr_trigger_data *)reply_trigger,
569                             trigger_flags);
570                         break;
571                 }
572                 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
573         }
574 }
575
576 /**
577  * mpi3mr_get_num_trigger - Gets number of HDB triggers
578  * @mrioc: Adapter instance reference
579  * @num_triggers: Number of triggers
580  * @page_action: Page action
581  *
582  * This function reads number of triggers by reading driver page
583  * 2
584  *
585  * Return: 0 on success and proper error codes on failure
586  */
587 static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers,
588         u8 page_action)
589 {
590         struct mpi3_driver_page2 drvr_page2;
591         int retval = 0;
592
593         *num_triggers = 0;
594
595         retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2,
596             sizeof(struct mpi3_driver_page2), page_action);
597
598         if (retval) {
599                 dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
600                 return retval;
601         }
602         *num_triggers = drvr_page2.num_triggers;
603         return retval;
604 }
605
606 /**
607  * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG
608  * @mrioc: Adapter instance reference
609  * @page_action: Page action
610  *
611  * This function caches the driver page 2 in the driver's memory
612  * by reading driver page 2 from the controller for a given page
613  * type and updates the HDB trigger values
614  *
615  * Return: 0 on success and proper error codes on failure
616  */
617 int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action)
618 {
619         u16 pg_sz = sizeof(struct mpi3_driver_page2);
620         struct mpi3_driver_page2 *drvr_page2 = NULL;
621         u8 trigger_type, num_triggers;
622         int retval;
623         int i = 0;
624         unsigned long flags;
625
626         retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action);
627
628         if (retval)
629                 goto out;
630
631         pg_sz = offsetof(struct mpi3_driver_page2, trigger) +
632                 (num_triggers * sizeof(union mpi3_driver2_trigger_element));
633         drvr_page2 = kzalloc(pg_sz, GFP_KERNEL);
634         if (!drvr_page2) {
635                 retval = -ENOMEM;
636                 goto out;
637         }
638
639         retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action);
640         if (retval) {
641                 dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
642                 kfree(drvr_page2);
643                 goto out;
644         }
645         spin_lock_irqsave(&mrioc->trigger_lock, flags);
646         kfree(mrioc->driver_pg2);
647         mrioc->driver_pg2 = drvr_page2;
648         mrioc->reply_trigger_present = false;
649         mrioc->event_trigger_present = false;
650         mrioc->scsisense_trigger_present = false;
651
652         for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) {
653                 trigger_type = mrioc->driver_pg2->trigger[i].event.type;
654                 switch (trigger_type) {
655                 case MPI3_DRIVER2_TRIGGER_TYPE_REPLY:
656                         mrioc->reply_trigger_present = true;
657                         break;
658                 case MPI3_DRIVER2_TRIGGER_TYPE_EVENT:
659                         mrioc->event_trigger_present = true;
660                         break;
661                 case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE:
662                         mrioc->scsisense_trigger_present = true;
663                         break;
664                 default:
665                         break;
666                 }
667         }
668         spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
669 out:
670         return retval;
671 }
672
673 /**
674  * mpi3mr_release_diag_bufs - Release diag buffers
675  * @mrioc: Adapter instance reference
676  * @skip_rel_action: Skip release action and set buffer state
677  *
678  * This function calls helper function to release both trace and
679  * firmware buffers from the controller.
680  *
681  * Return: None
682  */
683 void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action)
684 {
685         u8 i;
686         struct diag_buffer_desc *diag_buffer;
687
688         for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
689                 diag_buffer = &mrioc->diag_buffers[i];
690                 if (!(diag_buffer->addr))
691                         continue;
692                 if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED)
693                         continue;
694                 if (!skip_rel_action)
695                         mpi3mr_issue_diag_buf_release(mrioc, diag_buffer);
696                 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
697                 atomic64_inc(&event_counter);
698         }
699 }
700
701 /**
702  * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and
703  * trigger data
704  *
705  * @hdb: HDB pointer
706  * @type: Trigger type
707  * @data: Trigger data
708  * @force: Trigger overwrite flag
709  * @trigger_data: Pointer to trigger data information
710  *
711  * Updates trigger type and trigger data based on parameter
712  * passed to this function
713  *
714  * Return: Nothing
715  */
716 void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb,
717         u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
718 {
719         if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN))
720                 return;
721         hdb->trigger_type = type;
722         if (!trigger_data)
723                 memset(&hdb->trigger_data, 0, sizeof(*trigger_data));
724         else
725                 memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data));
726 }
727
728 /**
729  * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type
730  * and trigger data for all HDB
731  *
732  * @mrioc: Adapter instance reference
733  * @type: Trigger type
734  * @data: Trigger data
735  * @force: Trigger overwrite flag
736  * @trigger_data: Pointer to trigger data information
737  *
738  * Updates trigger type and trigger data based on parameter
739  * passed to this function
740  *
741  * Return: Nothing
742  */
743 void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc,
744         u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
745 {
746         struct diag_buffer_desc *hdb = NULL;
747
748         hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE);
749         if (hdb)
750                 mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
751         hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
752         if (hdb)
753                 mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
754 }
755
756 /**
757  * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf
758  * @mrioc: Adapter instance reference
759  * @event_reply: event data
760  *
761  * Modifies the status of the applicable diag buffer descriptors
762  *
763  * Return: Nothing
764  */
765 void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc,
766         struct mpi3_event_notification_reply *event_reply)
767 {
768         struct mpi3_event_data_diag_buffer_status_change *evtdata;
769         struct diag_buffer_desc *diag_buffer;
770
771         evtdata = (struct mpi3_event_data_diag_buffer_status_change *)
772             event_reply->event_data;
773
774         diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type);
775         if (!diag_buffer)
776                 return;
777         if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
778             (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
779                 return;
780         switch (evtdata->reason_code) {
781         case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED:
782         {
783                 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
784                 mpi3mr_set_trigger_data_in_hdb(diag_buffer,
785                     MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
786                 atomic64_inc(&event_counter);
787                 break;
788         }
789         case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED:
790         {
791                 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
792                 break;
793         }
794         case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED:
795         {
796                 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED;
797                 break;
798         }
799         default:
800                 dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n",
801                     __func__, evtdata->reason_code);
802                 break;
803         }
804 }
805
806 /**
807  * mpi3mr_diag_buffer_for_type - returns buffer desc for type
808  * @mrioc: Adapter instance reference
809  * @buf_type: Diagnostic buffer type
810  *
811  * Identifies matching diag descriptor from mrioc for given diag
812  * buffer type.
813  *
814  * Return: diag buffer descriptor on success, NULL on failures.
815  */
816
817 struct diag_buffer_desc *
818 mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type)
819 {
820         u8 i;
821
822         for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
823                 if (mrioc->diag_buffers[i].type == buf_type)
824                         return &mrioc->diag_buffers[i];
825         }
826         return NULL;
827 }
828
829 /**
830  * mpi3mr_bsg_pel_abort - sends PEL abort request
831  * @mrioc: Adapter instance reference
832  *
833  * This function sends PEL abort request to the firmware through
834  * admin request queue.
835  *
836  * Return: 0 on success, -1 on failure
837  */
838 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
839 {
840         struct mpi3_pel_req_action_abort pel_abort_req;
841         struct mpi3_pel_reply *pel_reply;
842         int retval = 0;
843         u16 pe_log_status;
844
845         if (mrioc->reset_in_progress) {
846                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
847                 return -1;
848         }
849         if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
850                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
851                 return -1;
852         }
853
854         memset(&pel_abort_req, 0, sizeof(pel_abort_req));
855         mutex_lock(&mrioc->pel_abort_cmd.mutex);
856         if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
857                 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
858                 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
859                 return -1;
860         }
861         mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
862         mrioc->pel_abort_cmd.is_waiting = 1;
863         mrioc->pel_abort_cmd.callback = NULL;
864         pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
865         pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
866         pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
867         pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
868
869         mrioc->pel_abort_requested = 1;
870         init_completion(&mrioc->pel_abort_cmd.done);
871         retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
872             sizeof(pel_abort_req), 0);
873         if (retval) {
874                 retval = -1;
875                 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
876                     __func__);
877                 mrioc->pel_abort_requested = 0;
878                 goto out_unlock;
879         }
880
881         wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
882             (MPI3MR_INTADMCMD_TIMEOUT * HZ));
883         if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
884                 mrioc->pel_abort_cmd.is_waiting = 0;
885                 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
886                 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
887                         mpi3mr_soft_reset_handler(mrioc,
888                             MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
889                 retval = -1;
890                 goto out_unlock;
891         }
892         if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
893              != MPI3_IOCSTATUS_SUCCESS) {
894                 dprint_bsg_err(mrioc,
895                     "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
896                     __func__, (mrioc->pel_abort_cmd.ioc_status &
897                     MPI3_IOCSTATUS_STATUS_MASK),
898                     mrioc->pel_abort_cmd.ioc_loginfo);
899                 retval = -1;
900                 goto out_unlock;
901         }
902         if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
903                 pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
904                 pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
905                 if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
906                         dprint_bsg_err(mrioc,
907                             "%s: command failed, pel_status(0x%04x)\n",
908                             __func__, pe_log_status);
909                         retval = -1;
910                 }
911         }
912
913 out_unlock:
914         mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
915         mutex_unlock(&mrioc->pel_abort_cmd.mutex);
916         return retval;
917 }
918 /**
919  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
920  * @ioc_number: Adapter number
921  *
922  * This function returns the adapter instance pointer of given
923  * adapter number. If adapter number does not match with the
924  * driver's adapter list, driver returns NULL.
925  *
926  * Return: adapter instance reference
927  */
928 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
929 {
930         struct mpi3mr_ioc *mrioc = NULL;
931
932         spin_lock(&mrioc_list_lock);
933         list_for_each_entry(mrioc, &mrioc_list, list) {
934                 if (mrioc->id == ioc_number) {
935                         spin_unlock(&mrioc_list_lock);
936                         return mrioc;
937                 }
938         }
939         spin_unlock(&mrioc_list_lock);
940         return NULL;
941 }
942
943 /**
944  * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data
945  * @mrioc: Adapter instance reference
946  * @job: BSG Job pointer
947  *
948  * This function reads the controller trigger config page as
949  * defined by the input page type and refreshes the driver's
950  * local trigger information structures with the controller's
951  * config page data.
952  *
953  * Return: 0 on success and proper error codes on failure
954  */
955 static long
956 mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc,
957                                 struct bsg_job *job)
958 {
959         struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers;
960         uint32_t data_out_sz;
961         u8 page_action;
962         long rval = -EINVAL;
963
964         data_out_sz = job->request_payload.payload_len;
965
966         if (data_out_sz != sizeof(refresh_triggers)) {
967                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
968                     __func__);
969                 return rval;
970         }
971
972         if (mrioc->unrecoverable) {
973                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
974                     __func__);
975                 return -EFAULT;
976         }
977         if (mrioc->reset_in_progress) {
978                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
979                 return -EAGAIN;
980         }
981
982         sg_copy_to_buffer(job->request_payload.sg_list,
983             job->request_payload.sg_cnt,
984             &refresh_triggers, sizeof(refresh_triggers));
985
986         switch (refresh_triggers.page_type) {
987         case MPI3MR_HDB_REFRESH_TYPE_CURRENT:
988                 page_action = MPI3_CONFIG_ACTION_READ_CURRENT;
989                 break;
990         case MPI3MR_HDB_REFRESH_TYPE_DEFAULT:
991                 page_action = MPI3_CONFIG_ACTION_READ_DEFAULT;
992                 break;
993         case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT:
994                 page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT;
995                 break;
996         default:
997                 dprint_bsg_err(mrioc,
998                     "%s: unsupported refresh trigger, page_type %d\n",
999                     __func__, refresh_triggers.page_type);
1000                 return rval;
1001         }
1002         rval = mpi3mr_refresh_trigger(mrioc, page_action);
1003
1004         return rval;
1005 }
1006
1007 /**
1008  * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space
1009  * @mrioc: Adapter instance reference
1010  * @job: BSG Job pointer
1011  *
1012  * Return: 0 on success and proper error codes on failure
1013  */
1014 static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc,
1015                                   struct bsg_job *job)
1016 {
1017         struct mpi3mr_bsg_out_upload_hdb upload_hdb;
1018         struct diag_buffer_desc *diag_buffer;
1019         uint32_t data_out_size;
1020         uint32_t data_in_size;
1021
1022         data_out_size = job->request_payload.payload_len;
1023         data_in_size = job->reply_payload.payload_len;
1024
1025         if (data_out_size != sizeof(upload_hdb)) {
1026                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1027                     __func__);
1028                 return -EINVAL;
1029         }
1030
1031         sg_copy_to_buffer(job->request_payload.sg_list,
1032                           job->request_payload.sg_cnt,
1033                           &upload_hdb, sizeof(upload_hdb));
1034
1035         if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) {
1036                 dprint_bsg_err(mrioc, "%s: invalid length argument\n",
1037                     __func__);
1038                 return -EINVAL;
1039         }
1040         diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type);
1041         if ((!diag_buffer) || (!diag_buffer->addr)) {
1042                 dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1043                     __func__, upload_hdb.buf_type);
1044                 return -EINVAL;
1045         }
1046
1047         if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) &&
1048             (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) {
1049                 dprint_bsg_err(mrioc,
1050                     "%s: invalid buffer status %d for type %d\n",
1051                     __func__, diag_buffer->status, upload_hdb.buf_type);
1052                 return -EINVAL;
1053         }
1054
1055         if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) {
1056                 dprint_bsg_err(mrioc,
1057                     "%s: invalid start offset %d, length %d for type %d\n",
1058                     __func__, upload_hdb.start_offset, upload_hdb.length,
1059                     upload_hdb.buf_type);
1060                 return -EINVAL;
1061         }
1062         sg_copy_from_buffer(job->reply_payload.sg_list,
1063                             job->reply_payload.sg_cnt,
1064             (diag_buffer->addr + upload_hdb.start_offset),
1065             data_in_size);
1066         return 0;
1067 }
1068
1069 /**
1070  * mpi3mr_bsg_repost_hdb - Re-post HDB
1071  * @mrioc: Adapter instance reference
1072  * @job: BSG job pointer
1073  *
1074  * This function retrieves the HDB descriptor corresponding to a
1075  * given buffer type and if the HDB is in released status then
1076  * posts the HDB with the firmware.
1077  *
1078  * Return: 0 on success and proper error codes on failure
1079  */
1080 static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc,
1081                                   struct bsg_job *job)
1082 {
1083         struct mpi3mr_bsg_out_repost_hdb repost_hdb;
1084         struct diag_buffer_desc *diag_buffer;
1085         uint32_t data_out_sz;
1086
1087         data_out_sz = job->request_payload.payload_len;
1088
1089         if (data_out_sz != sizeof(repost_hdb)) {
1090                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1091                     __func__);
1092                 return -EINVAL;
1093         }
1094         if (mrioc->unrecoverable) {
1095                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1096                     __func__);
1097                 return -EFAULT;
1098         }
1099         if (mrioc->reset_in_progress) {
1100                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1101                 return -EAGAIN;
1102         }
1103
1104         sg_copy_to_buffer(job->request_payload.sg_list,
1105                           job->request_payload.sg_cnt,
1106                           &repost_hdb, sizeof(repost_hdb));
1107
1108         diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type);
1109         if ((!diag_buffer) || (!diag_buffer->addr)) {
1110                 dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1111                     __func__, repost_hdb.buf_type);
1112                 return -EINVAL;
1113         }
1114
1115         if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) {
1116                 dprint_bsg_err(mrioc,
1117                     "%s: invalid buffer status %d for type %d\n",
1118                     __func__, diag_buffer->status, repost_hdb.buf_type);
1119                 return -EINVAL;
1120         }
1121
1122         if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) {
1123                 dprint_bsg_err(mrioc, "%s: post failed for type %d\n",
1124                     __func__, repost_hdb.buf_type);
1125                 return -EFAULT;
1126         }
1127         mpi3mr_set_trigger_data_in_hdb(diag_buffer,
1128             MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * mpi3mr_bsg_query_hdb - Handler for query HDB command
1135  * @mrioc: Adapter instance reference
1136  * @job: BSG job pointer
1137  *
1138  * This function prepares and copies the host diagnostic buffer
1139  * entries to the user buffer.
1140  *
1141  * Return: 0 on success and proper error codes on failure
1142  */
1143 static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc,
1144                                  struct bsg_job *job)
1145 {
1146         long rval = 0;
1147         struct mpi3mr_bsg_in_hdb_status *hbd_status;
1148         struct mpi3mr_hdb_entry *hbd_status_entry;
1149         u32 length, min_length;
1150         u8 i;
1151         struct diag_buffer_desc *diag_buffer;
1152         uint32_t data_in_sz = 0;
1153
1154         data_in_sz = job->request_payload.payload_len;
1155
1156         length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) *
1157                     sizeof(*hbd_status_entry)));
1158         hbd_status = kmalloc(length, GFP_KERNEL);
1159         if (!hbd_status)
1160                 return -ENOMEM;
1161         hbd_status_entry = &hbd_status->entry[0];
1162
1163         hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB;
1164         for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
1165                 diag_buffer = &mrioc->diag_buffers[i];
1166                 hbd_status_entry->buf_type = diag_buffer->type;
1167                 hbd_status_entry->status = diag_buffer->status;
1168                 hbd_status_entry->trigger_type = diag_buffer->trigger_type;
1169                 memcpy(&hbd_status_entry->trigger_data,
1170                     &diag_buffer->trigger_data,
1171                     sizeof(hbd_status_entry->trigger_data));
1172                 hbd_status_entry->size = (diag_buffer->size / 1024);
1173                 hbd_status_entry++;
1174         }
1175         hbd_status->element_trigger_format =
1176                 MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA;
1177
1178         if (data_in_sz < 4) {
1179                 dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__);
1180                 rval = -EINVAL;
1181                 goto out;
1182         }
1183         min_length = min(data_in_sz, length);
1184         if (job->request_payload.payload_len >= min_length) {
1185                 sg_copy_from_buffer(job->request_payload.sg_list,
1186                                     job->request_payload.sg_cnt,
1187                                     hbd_status, min_length);
1188                 rval = 0;
1189         }
1190 out:
1191         kfree(hbd_status);
1192         return rval;
1193 }
1194
1195
1196 /**
1197  * mpi3mr_enable_logdata - Handler for log data enable
1198  * @mrioc: Adapter instance reference
1199  * @job: BSG job reference
1200  *
1201  * This function enables log data caching in the driver if not
1202  * already enabled and return the maximum number of log data
1203  * entries that can be cached in the driver.
1204  *
1205  * Return: 0 on success and proper error codes on failure
1206  */
1207 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
1208         struct bsg_job *job)
1209 {
1210         struct mpi3mr_logdata_enable logdata_enable;
1211
1212         if (!mrioc->logdata_buf) {
1213                 mrioc->logdata_entry_sz =
1214                     (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
1215                     + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
1216                 mrioc->logdata_buf_idx = 0;
1217                 mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
1218                     mrioc->logdata_entry_sz, GFP_KERNEL);
1219
1220                 if (!mrioc->logdata_buf)
1221                         return -ENOMEM;
1222         }
1223
1224         memset(&logdata_enable, 0, sizeof(logdata_enable));
1225         logdata_enable.max_entries =
1226             MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1227         if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
1228                 sg_copy_from_buffer(job->request_payload.sg_list,
1229                                     job->request_payload.sg_cnt,
1230                                     &logdata_enable, sizeof(logdata_enable));
1231                 return 0;
1232         }
1233
1234         return -EINVAL;
1235 }
1236 /**
1237  * mpi3mr_get_logdata - Handler for get log data
1238  * @mrioc: Adapter instance reference
1239  * @job: BSG job pointer
1240  * This function copies the log data entries to the user buffer
1241  * when log caching is enabled in the driver.
1242  *
1243  * Return: 0 on success and proper error codes on failure
1244  */
1245 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
1246         struct bsg_job *job)
1247 {
1248         u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
1249
1250         if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
1251                 return -EINVAL;
1252
1253         num_entries = job->request_payload.payload_len / entry_sz;
1254         if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
1255                 num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1256         sz = num_entries * entry_sz;
1257
1258         if (job->request_payload.payload_len >= sz) {
1259                 sg_copy_from_buffer(job->request_payload.sg_list,
1260                                     job->request_payload.sg_cnt,
1261                                     mrioc->logdata_buf, sz);
1262                 return 0;
1263         }
1264         return -EINVAL;
1265 }
1266
1267 /**
1268  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
1269  * @mrioc: Adapter instance reference
1270  * @job: BSG job pointer
1271  *
1272  * This function is the handler for PEL enable driver.
1273  * Validates the application given class and locale and if
1274  * requires aborts the existing PEL wait request and/or issues
1275  * new PEL wait request to the firmware and returns.
1276  *
1277  * Return: 0 on success and proper error codes on failure.
1278  */
1279 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
1280                                   struct bsg_job *job)
1281 {
1282         long rval = -EINVAL;
1283         struct mpi3mr_bsg_out_pel_enable pel_enable;
1284         u8 issue_pel_wait;
1285         u8 tmp_class;
1286         u16 tmp_locale;
1287
1288         if (job->request_payload.payload_len != sizeof(pel_enable)) {
1289                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1290                     __func__);
1291                 return rval;
1292         }
1293
1294         if (mrioc->unrecoverable) {
1295                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1296                                __func__);
1297                 return -EFAULT;
1298         }
1299
1300         if (mrioc->reset_in_progress) {
1301                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1302                 return -EAGAIN;
1303         }
1304
1305         if (mrioc->stop_bsgs) {
1306                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1307                 return -EAGAIN;
1308         }
1309
1310         sg_copy_to_buffer(job->request_payload.sg_list,
1311                           job->request_payload.sg_cnt,
1312                           &pel_enable, sizeof(pel_enable));
1313
1314         if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
1315                 dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
1316                         __func__, pel_enable.pel_class);
1317                 rval = 0;
1318                 goto out;
1319         }
1320         if (!mrioc->pel_enabled)
1321                 issue_pel_wait = 1;
1322         else {
1323                 if ((mrioc->pel_class <= pel_enable.pel_class) &&
1324                     !((mrioc->pel_locale & pel_enable.pel_locale) ^
1325                       pel_enable.pel_locale)) {
1326                         issue_pel_wait = 0;
1327                         rval = 0;
1328                 } else {
1329                         pel_enable.pel_locale |= mrioc->pel_locale;
1330
1331                         if (mrioc->pel_class < pel_enable.pel_class)
1332                                 pel_enable.pel_class = mrioc->pel_class;
1333
1334                         rval = mpi3mr_bsg_pel_abort(mrioc);
1335                         if (rval) {
1336                                 dprint_bsg_err(mrioc,
1337                                     "%s: pel_abort failed, status(%ld)\n",
1338                                     __func__, rval);
1339                                 goto out;
1340                         }
1341                         issue_pel_wait = 1;
1342                 }
1343         }
1344         if (issue_pel_wait) {
1345                 tmp_class = mrioc->pel_class;
1346                 tmp_locale = mrioc->pel_locale;
1347                 mrioc->pel_class = pel_enable.pel_class;
1348                 mrioc->pel_locale = pel_enable.pel_locale;
1349                 mrioc->pel_enabled = 1;
1350                 rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
1351                 if (rval) {
1352                         mrioc->pel_class = tmp_class;
1353                         mrioc->pel_locale = tmp_locale;
1354                         mrioc->pel_enabled = 0;
1355                         dprint_bsg_err(mrioc,
1356                             "%s: pel get sequence number failed, status(%ld)\n",
1357                             __func__, rval);
1358                 }
1359         }
1360
1361 out:
1362         return rval;
1363 }
1364 /**
1365  * mpi3mr_get_all_tgt_info - Get all target information
1366  * @mrioc: Adapter instance reference
1367  * @job: BSG job reference
1368  *
1369  * This function copies the driver managed target devices device
1370  * handle, persistent ID, bus ID and taret ID to the user
1371  * provided buffer for the specific controller. This function
1372  * also provides the number of devices managed by the driver for
1373  * the specific controller.
1374  *
1375  * Return: 0 on success and proper error codes on failure
1376  */
1377 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
1378         struct bsg_job *job)
1379 {
1380         u16 num_devices = 0, i = 0, size;
1381         unsigned long flags;
1382         struct mpi3mr_tgt_dev *tgtdev;
1383         struct mpi3mr_device_map_info *devmap_info = NULL;
1384         struct mpi3mr_all_tgt_info *alltgt_info = NULL;
1385         uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
1386
1387         if (job->request_payload.payload_len < sizeof(u32)) {
1388                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1389                     __func__);
1390                 return -EINVAL;
1391         }
1392
1393         spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1394         list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
1395                 num_devices++;
1396         spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1397
1398         if ((job->request_payload.payload_len <= sizeof(u64)) ||
1399                 list_empty(&mrioc->tgtdev_list)) {
1400                 sg_copy_from_buffer(job->request_payload.sg_list,
1401                                     job->request_payload.sg_cnt,
1402                                     &num_devices, sizeof(num_devices));
1403                 return 0;
1404         }
1405
1406         kern_entrylen = num_devices * sizeof(*devmap_info);
1407         size = sizeof(u64) + kern_entrylen;
1408         alltgt_info = kzalloc(size, GFP_KERNEL);
1409         if (!alltgt_info)
1410                 return -ENOMEM;
1411
1412         devmap_info = alltgt_info->dmi;
1413         memset((u8 *)devmap_info, 0xFF, kern_entrylen);
1414         spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1415         list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
1416                 if (i < num_devices) {
1417                         devmap_info[i].handle = tgtdev->dev_handle;
1418                         devmap_info[i].perst_id = tgtdev->perst_id;
1419                         if (tgtdev->host_exposed && tgtdev->starget) {
1420                                 devmap_info[i].target_id = tgtdev->starget->id;
1421                                 devmap_info[i].bus_id =
1422                                     tgtdev->starget->channel;
1423                         }
1424                         i++;
1425                 }
1426         }
1427         num_devices = i;
1428         spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1429
1430         alltgt_info->num_devices = num_devices;
1431
1432         usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
1433                 sizeof(*devmap_info);
1434         usr_entrylen *= sizeof(*devmap_info);
1435         min_entrylen = min(usr_entrylen, kern_entrylen);
1436
1437         sg_copy_from_buffer(job->request_payload.sg_list,
1438                             job->request_payload.sg_cnt,
1439                             alltgt_info, (min_entrylen + sizeof(u64)));
1440         kfree(alltgt_info);
1441         return 0;
1442 }
1443 /**
1444  * mpi3mr_get_change_count - Get topology change count
1445  * @mrioc: Adapter instance reference
1446  * @job: BSG job reference
1447  *
1448  * This function copies the toplogy change count provided by the
1449  * driver in events and cached in the driver to the user
1450  * provided buffer for the specific controller.
1451  *
1452  * Return: 0 on success and proper error codes on failure
1453  */
1454 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
1455         struct bsg_job *job)
1456 {
1457         struct mpi3mr_change_count chgcnt;
1458
1459         memset(&chgcnt, 0, sizeof(chgcnt));
1460         chgcnt.change_count = mrioc->change_count;
1461         if (job->request_payload.payload_len >= sizeof(chgcnt)) {
1462                 sg_copy_from_buffer(job->request_payload.sg_list,
1463                                     job->request_payload.sg_cnt,
1464                                     &chgcnt, sizeof(chgcnt));
1465                 return 0;
1466         }
1467         return -EINVAL;
1468 }
1469
1470 /**
1471  * mpi3mr_bsg_adp_reset - Issue controller reset
1472  * @mrioc: Adapter instance reference
1473  * @job: BSG job reference
1474  *
1475  * This function identifies the user provided reset type and
1476  * issues approporiate reset to the controller and wait for that
1477  * to complete and reinitialize the controller and then returns
1478  *
1479  * Return: 0 on success and proper error codes on failure
1480  */
1481 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
1482         struct bsg_job *job)
1483 {
1484         long rval = -EINVAL;
1485         u8 save_snapdump;
1486         struct mpi3mr_bsg_adp_reset adpreset;
1487
1488         if (job->request_payload.payload_len !=
1489                         sizeof(adpreset)) {
1490                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1491                     __func__);
1492                 goto out;
1493         }
1494
1495         if (mrioc->unrecoverable || mrioc->block_on_pci_err)
1496                 return -EINVAL;
1497
1498         sg_copy_to_buffer(job->request_payload.sg_list,
1499                           job->request_payload.sg_cnt,
1500                           &adpreset, sizeof(adpreset));
1501
1502         switch (adpreset.reset_type) {
1503         case MPI3MR_BSG_ADPRESET_SOFT:
1504                 save_snapdump = 0;
1505                 break;
1506         case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
1507                 save_snapdump = 1;
1508                 break;
1509         default:
1510                 dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
1511                     __func__, adpreset.reset_type);
1512                 goto out;
1513         }
1514
1515         rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
1516             save_snapdump);
1517
1518         if (rval)
1519                 dprint_bsg_err(mrioc,
1520                     "%s: reset handler returned error(%ld) for reset type %d\n",
1521                     __func__, rval, adpreset.reset_type);
1522 out:
1523         return rval;
1524 }
1525
1526 /**
1527  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
1528  * @mrioc: Adapter instance reference
1529  * @job: BSG job reference
1530  *
1531  * This function provides adapter information for the given
1532  * controller
1533  *
1534  * Return: 0 on success and proper error codes on failure
1535  */
1536 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
1537         struct bsg_job *job)
1538 {
1539         enum mpi3mr_iocstate ioc_state;
1540         struct mpi3mr_bsg_in_adpinfo adpinfo;
1541
1542         memset(&adpinfo, 0, sizeof(adpinfo));
1543         adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
1544         adpinfo.pci_dev_id = mrioc->pdev->device;
1545         adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
1546         adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
1547         adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
1548         adpinfo.pci_bus = mrioc->pdev->bus->number;
1549         adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
1550         adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
1551         adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
1552         adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
1553
1554         ioc_state = mpi3mr_get_iocstate(mrioc);
1555         if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1556                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1557         else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1558                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1559         else if (ioc_state == MRIOC_STATE_FAULT)
1560                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1561         else
1562                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1563
1564         memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
1565             sizeof(adpinfo.driver_info));
1566
1567         if (job->request_payload.payload_len >= sizeof(adpinfo)) {
1568                 sg_copy_from_buffer(job->request_payload.sg_list,
1569                                     job->request_payload.sg_cnt,
1570                                     &adpinfo, sizeof(adpinfo));
1571                 return 0;
1572         }
1573         return -EINVAL;
1574 }
1575
1576 /**
1577  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
1578  * @job: BSG job reference
1579  *
1580  * This function is the top level handler for driver commands,
1581  * this does basic validation of the buffer and identifies the
1582  * opcode and switches to correct sub handler.
1583  *
1584  * Return: 0 on success and proper error codes on failure
1585  */
1586 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
1587 {
1588         long rval = -EINVAL;
1589         struct mpi3mr_ioc *mrioc = NULL;
1590         struct mpi3mr_bsg_packet *bsg_req = NULL;
1591         struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
1592
1593         bsg_req = job->request;
1594         drvrcmd = &bsg_req->cmd.drvrcmd;
1595
1596         mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
1597         if (!mrioc)
1598                 return -ENODEV;
1599
1600         if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
1601                 rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
1602                 return rval;
1603         }
1604
1605         if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
1606                 return -ERESTARTSYS;
1607
1608         switch (drvrcmd->opcode) {
1609         case MPI3MR_DRVBSG_OPCODE_ADPRESET:
1610                 rval = mpi3mr_bsg_adp_reset(mrioc, job);
1611                 break;
1612         case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
1613                 rval = mpi3mr_get_all_tgt_info(mrioc, job);
1614                 break;
1615         case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
1616                 rval = mpi3mr_get_change_count(mrioc, job);
1617                 break;
1618         case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
1619                 rval = mpi3mr_enable_logdata(mrioc, job);
1620                 break;
1621         case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
1622                 rval = mpi3mr_get_logdata(mrioc, job);
1623                 break;
1624         case MPI3MR_DRVBSG_OPCODE_PELENABLE:
1625                 rval = mpi3mr_bsg_pel_enable(mrioc, job);
1626                 break;
1627         case MPI3MR_DRVBSG_OPCODE_QUERY_HDB:
1628                 rval = mpi3mr_bsg_query_hdb(mrioc, job);
1629                 break;
1630         case MPI3MR_DRVBSG_OPCODE_REPOST_HDB:
1631                 rval = mpi3mr_bsg_repost_hdb(mrioc, job);
1632                 break;
1633         case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB:
1634                 rval = mpi3mr_bsg_upload_hdb(mrioc, job);
1635                 break;
1636         case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS:
1637                 rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job);
1638                 break;
1639         case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
1640         default:
1641                 pr_err("%s: unsupported driver command opcode %d\n",
1642                     MPI3MR_DRIVER_NAME, drvrcmd->opcode);
1643                 break;
1644         }
1645         mutex_unlock(&mrioc->bsg_cmds.mutex);
1646         return rval;
1647 }
1648
1649 /**
1650  * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
1651  * @drv_bufs: DMA address of the buffers to be placed in sgl
1652  * @bufcnt: Number of DMA buffers
1653  *
1654  * This function returns total number of data SGEs required
1655  * including zero length SGEs and excluding management request
1656  * and response buffer for the given list of data buffer
1657  * descriptors
1658  *
1659  * Return: Number of SGE elements needed
1660  */
1661 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
1662                                               u8 bufcnt)
1663 {
1664         u16 i, sge_count = 0;
1665
1666         for (i = 0; i < bufcnt; i++, drv_bufs++) {
1667                 if (drv_bufs->data_dir == DMA_NONE ||
1668                     drv_bufs->kern_buf)
1669                         continue;
1670                 sge_count += drv_bufs->num_dma_desc;
1671                 if (!drv_bufs->num_dma_desc)
1672                         sge_count++;
1673         }
1674         return sge_count;
1675 }
1676
1677 /**
1678  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
1679  * @mrioc: Adapter instance reference
1680  * @mpi_req: MPI request
1681  * @sgl_offset: offset to start sgl in the MPI request
1682  * @drv_bufs: DMA address of the buffers to be placed in sgl
1683  * @bufcnt: Number of DMA buffers
1684  * @is_rmc: Does the buffer list has management command buffer
1685  * @is_rmr: Does the buffer list has management response buffer
1686  * @num_datasges: Number of data buffers in the list
1687  *
1688  * This function places the DMA address of the given buffers in
1689  * proper format as SGEs in the given MPI request.
1690  *
1691  * Return: 0 on success,-1 on failure
1692  */
1693 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
1694                                 u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
1695                                 u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
1696 {
1697         struct mpi3_request_header *mpi_header =
1698                 (struct mpi3_request_header *)mpi_req;
1699         u8 *sgl = (mpi_req + sgl_offset), count = 0;
1700         struct mpi3_mgmt_passthrough_request *rmgmt_req =
1701             (struct mpi3_mgmt_passthrough_request *)mpi_req;
1702         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1703         u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
1704         u16 available_sges, i, sges_needed;
1705         u32 sge_element_size = sizeof(struct mpi3_sge_common);
1706         bool chain_used = false;
1707
1708         sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
1709                 MPI3_SGE_FLAGS_DLAS_SYSTEM;
1710         sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
1711         sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
1712         last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
1713             MPI3_SGE_FLAGS_DLAS_SYSTEM;
1714
1715         sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
1716
1717         if (is_rmc) {
1718                 mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
1719                     sgl_flags_last, drv_buf_iter->kern_buf_len,
1720                     drv_buf_iter->kern_buf_dma);
1721                 sgl = (u8 *)drv_buf_iter->kern_buf +
1722                         drv_buf_iter->bsg_buf_len;
1723                 available_sges = (drv_buf_iter->kern_buf_len -
1724                     drv_buf_iter->bsg_buf_len) / sge_element_size;
1725
1726                 if (sges_needed > available_sges)
1727                         return -1;
1728
1729                 chain_used = true;
1730                 drv_buf_iter++;
1731                 count++;
1732                 if (is_rmr) {
1733                         mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
1734                             sgl_flags_last, drv_buf_iter->kern_buf_len,
1735                             drv_buf_iter->kern_buf_dma);
1736                         drv_buf_iter++;
1737                         count++;
1738                 } else
1739                         mpi3mr_build_zero_len_sge(
1740                             &rmgmt_req->response_sgl);
1741                 if (num_datasges) {
1742                         i = 0;
1743                         goto build_sges;
1744                 }
1745         } else {
1746                 if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
1747                         return -1;
1748                 available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
1749                 sge_element_size;
1750                 if (!available_sges)
1751                         return -1;
1752         }
1753         if (!num_datasges) {
1754                 mpi3mr_build_zero_len_sge(sgl);
1755                 return 0;
1756         }
1757         if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1758                 if ((sges_needed > 2) || (sges_needed > available_sges))
1759                         return -1;
1760                 for (; count < bufcnt; count++, drv_buf_iter++) {
1761                         if (drv_buf_iter->data_dir == DMA_NONE ||
1762                             !drv_buf_iter->num_dma_desc)
1763                                 continue;
1764                         mpi3mr_add_sg_single(sgl, sgl_flags_last,
1765                                              drv_buf_iter->dma_desc[0].size,
1766                                              drv_buf_iter->dma_desc[0].dma_addr);
1767                         sgl += sge_element_size;
1768                 }
1769                 return 0;
1770         }
1771         i = 0;
1772
1773 build_sges:
1774         for (; count < bufcnt; count++, drv_buf_iter++) {
1775                 if (drv_buf_iter->data_dir == DMA_NONE)
1776                         continue;
1777                 if (!drv_buf_iter->num_dma_desc) {
1778                         if (chain_used && !available_sges)
1779                                 return -1;
1780                         if (!chain_used && (available_sges == 1) &&
1781                             (sges_needed > 1))
1782                                 goto setup_chain;
1783                         flag = sgl_flag_eob;
1784                         if (num_datasges == 1)
1785                                 flag = sgl_flags_last;
1786                         mpi3mr_add_sg_single(sgl, flag, 0, 0);
1787                         sgl += sge_element_size;
1788                         sges_needed--;
1789                         available_sges--;
1790                         num_datasges--;
1791                         continue;
1792                 }
1793                 for (; i < drv_buf_iter->num_dma_desc; i++) {
1794                         if (chain_used && !available_sges)
1795                                 return -1;
1796                         if (!chain_used && (available_sges == 1) &&
1797                             (sges_needed > 1))
1798                                 goto setup_chain;
1799                         flag = sgl_flags;
1800                         if (i == (drv_buf_iter->num_dma_desc - 1)) {
1801                                 if (num_datasges == 1)
1802                                         flag = sgl_flags_last;
1803                                 else
1804                                         flag = sgl_flag_eob;
1805                         }
1806
1807                         mpi3mr_add_sg_single(sgl, flag,
1808                                              drv_buf_iter->dma_desc[i].size,
1809                                              drv_buf_iter->dma_desc[i].dma_addr);
1810                         sgl += sge_element_size;
1811                         available_sges--;
1812                         sges_needed--;
1813                 }
1814                 num_datasges--;
1815                 i = 0;
1816         }
1817         return 0;
1818
1819 setup_chain:
1820         available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1821         if (sges_needed > available_sges)
1822                 return -1;
1823         mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
1824                              (sges_needed * sge_element_size),
1825                              mrioc->ioctl_chain_sge.dma_addr);
1826         memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1827         sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
1828         chain_used = true;
1829         goto build_sges;
1830 }
1831
1832 /**
1833  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
1834  * @nvme_encap_request: NVMe encapsulated MPI request
1835  *
1836  * This function returns the type of the data format specified
1837  * in user provided NVMe command in NVMe encapsulated request.
1838  *
1839  * Return: Data format of the NVMe command (PRP/SGL etc)
1840  */
1841 static unsigned int mpi3mr_get_nvme_data_fmt(
1842         struct mpi3_nvme_encapsulated_request *nvme_encap_request)
1843 {
1844         u8 format = 0;
1845
1846         format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
1847         return format;
1848
1849 }
1850
1851 /**
1852  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
1853  *                                 encapsulated request
1854  * @mrioc: Adapter instance reference
1855  * @nvme_encap_request: NVMe encapsulated MPI request
1856  * @drv_bufs: DMA address of the buffers to be placed in sgl
1857  * @bufcnt: Number of DMA buffers
1858  *
1859  * This function places the DMA address of the given buffers in
1860  * proper format as SGEs in the given NVMe encapsulated request.
1861  *
1862  * Return: 0 on success, -1 on failure
1863  */
1864 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
1865         struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1866         struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1867 {
1868         struct mpi3mr_nvme_pt_sge *nvme_sgl;
1869         __le64 sgl_dma;
1870         u8 count;
1871         size_t length = 0;
1872         u16 available_sges = 0, i;
1873         u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
1874         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1875         u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1876                             mrioc->facts.sge_mod_shift) << 32);
1877         u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1878                           mrioc->facts.sge_mod_shift) << 32;
1879         u32 size;
1880
1881         nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
1882             ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
1883
1884         /*
1885          * Not all commands require a data transfer. If no data, just return
1886          * without constructing any sgl.
1887          */
1888         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1889                 if (drv_buf_iter->data_dir == DMA_NONE)
1890                         continue;
1891                 length = drv_buf_iter->kern_buf_len;
1892                 break;
1893         }
1894         if (!length || !drv_buf_iter->num_dma_desc)
1895                 return 0;
1896
1897         if (drv_buf_iter->num_dma_desc == 1) {
1898                 available_sges = 1;
1899                 goto build_sges;
1900         }
1901
1902         sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
1903         if (sgl_dma & sgemod_mask) {
1904                 dprint_bsg_err(mrioc,
1905                     "%s: SGL chain address collides with SGE modifier\n",
1906                     __func__);
1907                 return -1;
1908         }
1909
1910         sgl_dma &= ~sgemod_mask;
1911         sgl_dma |= sgemod_val;
1912
1913         memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1914         available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1915         if (available_sges < drv_buf_iter->num_dma_desc)
1916                 return -1;
1917         memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
1918         nvme_sgl->base_addr = sgl_dma;
1919         size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
1920         nvme_sgl->length = cpu_to_le32(size);
1921         nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
1922         nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
1923
1924 build_sges:
1925         for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
1926                 sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
1927                 if (sgl_dma & sgemod_mask) {
1928                         dprint_bsg_err(mrioc,
1929                                        "%s: SGL address collides with SGE modifier\n",
1930                                        __func__);
1931                 return -1;
1932                 }
1933
1934                 sgl_dma &= ~sgemod_mask;
1935                 sgl_dma |= sgemod_val;
1936
1937                 nvme_sgl->base_addr = sgl_dma;
1938                 nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
1939                 nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
1940                 nvme_sgl++;
1941                 available_sges--;
1942         }
1943
1944         return 0;
1945 }
1946
1947 /**
1948  * mpi3mr_build_nvme_prp - PRP constructor for NVME
1949  *                             encapsulated request
1950  * @mrioc: Adapter instance reference
1951  * @nvme_encap_request: NVMe encapsulated MPI request
1952  * @drv_bufs: DMA address of the buffers to be placed in SGL
1953  * @bufcnt: Number of DMA buffers
1954  *
1955  * This function places the DMA address of the given buffers in
1956  * proper format as PRP entries in the given NVMe encapsulated
1957  * request.
1958  *
1959  * Return: 0 on success, -1 on failure
1960  */
1961 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
1962         struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1963         struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1964 {
1965         int prp_size = MPI3MR_NVME_PRP_SIZE;
1966         __le64 *prp_entry, *prp1_entry, *prp2_entry;
1967         __le64 *prp_page;
1968         dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1969         u32 offset, entry_len, dev_pgsz;
1970         u32 page_mask_result, page_mask;
1971         size_t length = 0, desc_len;
1972         u8 count;
1973         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1974         u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1975                             mrioc->facts.sge_mod_shift) << 32);
1976         u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1977                           mrioc->facts.sge_mod_shift) << 32;
1978         u16 dev_handle = nvme_encap_request->dev_handle;
1979         struct mpi3mr_tgt_dev *tgtdev;
1980         u16 desc_count = 0;
1981
1982         tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1983         if (!tgtdev) {
1984                 dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
1985                         __func__, dev_handle);
1986                 return -1;
1987         }
1988
1989         if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
1990                 dprint_bsg_err(mrioc,
1991                     "%s: NVMe device page size is zero for handle 0x%04x\n",
1992                     __func__, dev_handle);
1993                 mpi3mr_tgtdev_put(tgtdev);
1994                 return -1;
1995         }
1996
1997         dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
1998         mpi3mr_tgtdev_put(tgtdev);
1999         page_mask = dev_pgsz - 1;
2000
2001         if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
2002                 dprint_bsg_err(mrioc,
2003                                "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
2004                                __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
2005                 return -1;
2006         }
2007
2008         if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
2009                 dprint_bsg_err(mrioc,
2010                                "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
2011                                __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
2012                 return -1;
2013         }
2014
2015         /*
2016          * Not all commands require a data transfer. If no data, just return
2017          * without constructing any PRP.
2018          */
2019         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2020                 if (drv_buf_iter->data_dir == DMA_NONE)
2021                         continue;
2022                 length = drv_buf_iter->kern_buf_len;
2023                 break;
2024         }
2025
2026         if (!length || !drv_buf_iter->num_dma_desc)
2027                 return 0;
2028
2029         for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
2030                 dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
2031                 if (dma_addr & page_mask) {
2032                         dprint_bsg_err(mrioc,
2033                                        "%s:dma_addr %pad is not aligned with page size 0x%x\n",
2034                                        __func__,  &dma_addr, dev_pgsz);
2035                         return -1;
2036                 }
2037         }
2038
2039         dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
2040         desc_len = drv_buf_iter->dma_desc[0].size;
2041
2042         mrioc->prp_sz = 0;
2043         mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
2044             dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
2045
2046         if (!mrioc->prp_list_virt)
2047                 return -1;
2048         mrioc->prp_sz = dev_pgsz;
2049
2050         /*
2051          * Set pointers to PRP1 and PRP2, which are in the NVMe command.
2052          * PRP1 is located at a 24 byte offset from the start of the NVMe
2053          * command.  Then set the current PRP entry pointer to PRP1.
2054          */
2055         prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2056             MPI3MR_NVME_CMD_PRP1_OFFSET);
2057         prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2058             MPI3MR_NVME_CMD_PRP2_OFFSET);
2059         prp_entry = prp1_entry;
2060         /*
2061          * For the PRP entries, use the specially allocated buffer of
2062          * contiguous memory.
2063          */
2064         prp_page = (__le64 *)mrioc->prp_list_virt;
2065         prp_page_dma = mrioc->prp_list_dma;
2066
2067         /*
2068          * Check if we are within 1 entry of a page boundary we don't
2069          * want our first entry to be a PRP List entry.
2070          */
2071         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2072         if (!page_mask_result) {
2073                 dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
2074                     __func__);
2075                 goto err_out;
2076         }
2077
2078         /*
2079          * Set PRP physical pointer, which initially points to the current PRP
2080          * DMA memory page.
2081          */
2082         prp_entry_dma = prp_page_dma;
2083
2084
2085         /* Loop while the length is not zero. */
2086         while (length) {
2087                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2088                 if (!page_mask_result && (length >  dev_pgsz)) {
2089                         dprint_bsg_err(mrioc,
2090                             "%s: single PRP page is not sufficient\n",
2091                             __func__);
2092                         goto err_out;
2093                 }
2094
2095                 /* Need to handle if entry will be part of a page. */
2096                 offset = dma_addr & page_mask;
2097                 entry_len = dev_pgsz - offset;
2098
2099                 if (prp_entry == prp1_entry) {
2100                         /*
2101                          * Must fill in the first PRP pointer (PRP1) before
2102                          * moving on.
2103                          */
2104                         *prp1_entry = cpu_to_le64(dma_addr);
2105                         if (*prp1_entry & sgemod_mask) {
2106                                 dprint_bsg_err(mrioc,
2107                                     "%s: PRP1 address collides with SGE modifier\n",
2108                                     __func__);
2109                                 goto err_out;
2110                         }
2111                         *prp1_entry &= ~sgemod_mask;
2112                         *prp1_entry |= sgemod_val;
2113
2114                         /*
2115                          * Now point to the second PRP entry within the
2116                          * command (PRP2).
2117                          */
2118                         prp_entry = prp2_entry;
2119                 } else if (prp_entry == prp2_entry) {
2120                         /*
2121                          * Should the PRP2 entry be a PRP List pointer or just
2122                          * a regular PRP pointer?  If there is more than one
2123                          * more page of data, must use a PRP List pointer.
2124                          */
2125                         if (length > dev_pgsz) {
2126                                 /*
2127                                  * PRP2 will contain a PRP List pointer because
2128                                  * more PRP's are needed with this command. The
2129                                  * list will start at the beginning of the
2130                                  * contiguous buffer.
2131                                  */
2132                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2133                                 if (*prp2_entry & sgemod_mask) {
2134                                         dprint_bsg_err(mrioc,
2135                                             "%s: PRP list address collides with SGE modifier\n",
2136                                             __func__);
2137                                         goto err_out;
2138                                 }
2139                                 *prp2_entry &= ~sgemod_mask;
2140                                 *prp2_entry |= sgemod_val;
2141
2142                                 /*
2143                                  * The next PRP Entry will be the start of the
2144                                  * first PRP List.
2145                                  */
2146                                 prp_entry = prp_page;
2147                                 continue;
2148                         } else {
2149                                 /*
2150                                  * After this, the PRP Entries are complete.
2151                                  * This command uses 2 PRP's and no PRP list.
2152                                  */
2153                                 *prp2_entry = cpu_to_le64(dma_addr);
2154                                 if (*prp2_entry & sgemod_mask) {
2155                                         dprint_bsg_err(mrioc,
2156                                             "%s: PRP2 collides with SGE modifier\n",
2157                                             __func__);
2158                                         goto err_out;
2159                                 }
2160                                 *prp2_entry &= ~sgemod_mask;
2161                                 *prp2_entry |= sgemod_val;
2162                         }
2163                 } else {
2164                         /*
2165                          * Put entry in list and bump the addresses.
2166                          *
2167                          * After PRP1 and PRP2 are filled in, this will fill in
2168                          * all remaining PRP entries in a PRP List, one per
2169                          * each time through the loop.
2170                          */
2171                         *prp_entry = cpu_to_le64(dma_addr);
2172                         if (*prp_entry & sgemod_mask) {
2173                                 dprint_bsg_err(mrioc,
2174                                     "%s: PRP address collides with SGE modifier\n",
2175                                     __func__);
2176                                 goto err_out;
2177                         }
2178                         *prp_entry &= ~sgemod_mask;
2179                         *prp_entry |= sgemod_val;
2180                         prp_entry++;
2181                         prp_entry_dma += prp_size;
2182                 }
2183
2184                 /* decrement length accounting for last partial page. */
2185                 if (entry_len >= length) {
2186                         length = 0;
2187                 } else {
2188                         if (entry_len <= desc_len) {
2189                                 dma_addr += entry_len;
2190                                 desc_len -= entry_len;
2191                         }
2192                         if (!desc_len) {
2193                                 if ((++desc_count) >=
2194                                    drv_buf_iter->num_dma_desc) {
2195                                         dprint_bsg_err(mrioc,
2196                                                        "%s: Invalid len %zd while building PRP\n",
2197                                                        __func__, length);
2198                                         goto err_out;
2199                                 }
2200                                 dma_addr =
2201                                     drv_buf_iter->dma_desc[desc_count].dma_addr;
2202                                 desc_len =
2203                                     drv_buf_iter->dma_desc[desc_count].size;
2204                         }
2205                         length -= entry_len;
2206                 }
2207         }
2208
2209         return 0;
2210 err_out:
2211         if (mrioc->prp_list_virt) {
2212                 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2213                     mrioc->prp_list_virt, mrioc->prp_list_dma);
2214                 mrioc->prp_list_virt = NULL;
2215         }
2216         return -1;
2217 }
2218
2219 /**
2220  * mpi3mr_map_data_buffer_dma - build dma descriptors for data
2221  *                              buffers
2222  * @mrioc: Adapter instance reference
2223  * @drv_buf: buffer map descriptor
2224  * @desc_count: Number of already consumed dma descriptors
2225  *
2226  * This function computes how many pre-allocated DMA descriptors
2227  * are required for the given data buffer and if those number of
2228  * descriptors are free, then setup the mapping of the scattered
2229  * DMA address to the given data buffer, if the data direction
2230  * of the buffer is DMA_TO_DEVICE then the actual data is copied to
2231  * the DMA buffers
2232  *
2233  * Return: 0 on success, -1 on failure
2234  */
2235 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
2236                                       struct mpi3mr_buf_map *drv_buf,
2237                                       u16 desc_count)
2238 {
2239         u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
2240         u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
2241
2242         if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
2243                 needed_desc++;
2244         if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
2245                 dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
2246                                __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
2247                 return -1;
2248         }
2249         drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
2250                                     GFP_KERNEL);
2251         if (!drv_buf->dma_desc)
2252                 return -1;
2253         for (i = 0; i < needed_desc; i++, desc_count++) {
2254                 drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
2255                 drv_buf->dma_desc[i].dma_addr =
2256                     mrioc->ioctl_sge[desc_count].dma_addr;
2257                 if (buf_len < mrioc->ioctl_sge[desc_count].size)
2258                         drv_buf->dma_desc[i].size = buf_len;
2259                 else
2260                         drv_buf->dma_desc[i].size =
2261                             mrioc->ioctl_sge[desc_count].size;
2262                 buf_len -= drv_buf->dma_desc[i].size;
2263                 memset(drv_buf->dma_desc[i].addr, 0,
2264                        mrioc->ioctl_sge[desc_count].size);
2265                 if (drv_buf->data_dir == DMA_TO_DEVICE) {
2266                         memcpy(drv_buf->dma_desc[i].addr,
2267                                drv_buf->bsg_buf + copied_len,
2268                                drv_buf->dma_desc[i].size);
2269                         copied_len += drv_buf->dma_desc[i].size;
2270                 }
2271         }
2272         drv_buf->num_dma_desc = needed_desc;
2273         return 0;
2274 }
2275 /**
2276  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
2277  * @job: BSG job reference
2278  *
2279  * This function is the top level handler for MPI Pass through
2280  * command, this does basic validation of the input data buffers,
2281  * identifies the given buffer types and MPI command, allocates
2282  * DMAable memory for user given buffers, construstcs SGL
2283  * properly and passes the command to the firmware.
2284  *
2285  * Once the MPI command is completed the driver copies the data
2286  * if any and reply, sense information to user provided buffers.
2287  * If the command is timed out then issues controller reset
2288  * prior to returning.
2289  *
2290  * Return: 0 on success and proper error codes on failure
2291  */
2292
2293 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
2294 {
2295         long rval = -EINVAL;
2296         struct mpi3mr_ioc *mrioc = NULL;
2297         u8 *mpi_req = NULL, *sense_buff_k = NULL;
2298         u8 mpi_msg_size = 0;
2299         struct mpi3mr_bsg_packet *bsg_req = NULL;
2300         struct mpi3mr_bsg_mptcmd *karg;
2301         struct mpi3mr_buf_entry *buf_entries = NULL;
2302         struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
2303         u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
2304         u8 din_cnt = 0, dout_cnt = 0;
2305         u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
2306         u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
2307         struct mpi3_request_header *mpi_header = NULL;
2308         struct mpi3_status_reply_descriptor *status_desc;
2309         struct mpi3_scsi_task_mgmt_request *tm_req;
2310         u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
2311         u16 dev_handle;
2312         struct mpi3mr_tgt_dev *tgtdev;
2313         struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
2314         struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
2315         u32 din_size = 0, dout_size = 0;
2316         u8 *din_buf = NULL, *dout_buf = NULL;
2317         u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
2318         u16 rmc_size  = 0, desc_count = 0;
2319
2320         bsg_req = job->request;
2321         karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
2322
2323         mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
2324         if (!mrioc)
2325                 return -ENODEV;
2326
2327         if (!mrioc->ioctl_sges_allocated) {
2328                 dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
2329                                __func__);
2330                 return -ENOMEM;
2331         }
2332
2333         if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
2334                 karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
2335
2336         mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
2337         if (!mpi_req)
2338                 return -ENOMEM;
2339         mpi_header = (struct mpi3_request_header *)mpi_req;
2340
2341         bufcnt = karg->buf_entry_list.num_of_entries;
2342         drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
2343         if (!drv_bufs) {
2344                 rval = -ENOMEM;
2345                 goto out;
2346         }
2347
2348         dout_buf = kzalloc(job->request_payload.payload_len,
2349                                       GFP_KERNEL);
2350         if (!dout_buf) {
2351                 rval = -ENOMEM;
2352                 goto out;
2353         }
2354
2355         din_buf = kzalloc(job->reply_payload.payload_len,
2356                                      GFP_KERNEL);
2357         if (!din_buf) {
2358                 rval = -ENOMEM;
2359                 goto out;
2360         }
2361
2362         sg_copy_to_buffer(job->request_payload.sg_list,
2363                           job->request_payload.sg_cnt,
2364                           dout_buf, job->request_payload.payload_len);
2365
2366         buf_entries = karg->buf_entry_list.buf_entry;
2367         sgl_din_iter = din_buf;
2368         sgl_dout_iter = dout_buf;
2369         drv_buf_iter = drv_bufs;
2370
2371         for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
2372
2373                 switch (buf_entries->buf_type) {
2374                 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
2375                         sgl_iter = sgl_dout_iter;
2376                         sgl_dout_iter += buf_entries->buf_len;
2377                         drv_buf_iter->data_dir = DMA_TO_DEVICE;
2378                         is_rmcb = 1;
2379                         if ((count != 0) || !buf_entries->buf_len)
2380                                 invalid_be = 1;
2381                         break;
2382                 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
2383                         sgl_iter = sgl_din_iter;
2384                         sgl_din_iter += buf_entries->buf_len;
2385                         drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2386                         is_rmrb = 1;
2387                         if (count != 1 || !is_rmcb || !buf_entries->buf_len)
2388                                 invalid_be = 1;
2389                         break;
2390                 case MPI3MR_BSG_BUFTYPE_DATA_IN:
2391                         sgl_iter = sgl_din_iter;
2392                         sgl_din_iter += buf_entries->buf_len;
2393                         drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2394                         din_cnt++;
2395                         din_size += buf_entries->buf_len;
2396                         if ((din_cnt > 1) && !is_rmcb)
2397                                 invalid_be = 1;
2398                         break;
2399                 case MPI3MR_BSG_BUFTYPE_DATA_OUT:
2400                         sgl_iter = sgl_dout_iter;
2401                         sgl_dout_iter += buf_entries->buf_len;
2402                         drv_buf_iter->data_dir = DMA_TO_DEVICE;
2403                         dout_cnt++;
2404                         dout_size += buf_entries->buf_len;
2405                         if ((dout_cnt > 1) && !is_rmcb)
2406                                 invalid_be = 1;
2407                         break;
2408                 case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
2409                         sgl_iter = sgl_din_iter;
2410                         sgl_din_iter += buf_entries->buf_len;
2411                         drv_buf_iter->data_dir = DMA_NONE;
2412                         mpirep_offset = count;
2413                         if (!buf_entries->buf_len)
2414                                 invalid_be = 1;
2415                         break;
2416                 case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
2417                         sgl_iter = sgl_din_iter;
2418                         sgl_din_iter += buf_entries->buf_len;
2419                         drv_buf_iter->data_dir = DMA_NONE;
2420                         erb_offset = count;
2421                         if (!buf_entries->buf_len)
2422                                 invalid_be = 1;
2423                         break;
2424                 case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
2425                         sgl_iter = sgl_dout_iter;
2426                         sgl_dout_iter += buf_entries->buf_len;
2427                         drv_buf_iter->data_dir = DMA_NONE;
2428                         mpi_msg_size = buf_entries->buf_len;
2429                         if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
2430                                         (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
2431                                 dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
2432                                         __func__);
2433                                 rval = -EINVAL;
2434                                 goto out;
2435                         }
2436                         memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
2437                         break;
2438                 default:
2439                         invalid_be = 1;
2440                         break;
2441                 }
2442                 if (invalid_be) {
2443                         dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
2444                                 __func__);
2445                         rval = -EINVAL;
2446                         goto out;
2447                 }
2448
2449                 if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
2450                         dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
2451                                        __func__);
2452                         rval = -EINVAL;
2453                         goto out;
2454                 }
2455                 if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
2456                         dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
2457                                        __func__);
2458                         rval = -EINVAL;
2459                         goto out;
2460                 }
2461
2462                 drv_buf_iter->bsg_buf = sgl_iter;
2463                 drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
2464         }
2465
2466         if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
2467                 dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
2468                                __func__, __LINE__, mpi_header->function, din_size,
2469                                dout_size);
2470                 rval = -EINVAL;
2471                 goto out;
2472         }
2473
2474         if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
2475                 dprint_bsg_err(mrioc,
2476                     "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
2477                     __func__, __LINE__, mpi_header->function, din_size);
2478                 rval = -EINVAL;
2479                 goto out;
2480         }
2481         if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
2482                 dprint_bsg_err(mrioc,
2483                     "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
2484                     __func__, __LINE__, mpi_header->function, dout_size);
2485                 rval = -EINVAL;
2486                 goto out;
2487         }
2488
2489         if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
2490                 if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
2491                     dout_size > MPI3MR_IOCTL_SGE_SIZE) {
2492                         dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
2493                                        __func__, __LINE__, din_cnt, dout_cnt, din_size,
2494                             dout_size);
2495                         rval = -EINVAL;
2496                         goto out;
2497                 }
2498         }
2499
2500         drv_buf_iter = drv_bufs;
2501         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2502                 if (drv_buf_iter->data_dir == DMA_NONE)
2503                         continue;
2504
2505                 drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
2506                 if (is_rmcb && !count) {
2507                         drv_buf_iter->kern_buf_len =
2508                             mrioc->ioctl_chain_sge.size;
2509                         drv_buf_iter->kern_buf =
2510                             mrioc->ioctl_chain_sge.addr;
2511                         drv_buf_iter->kern_buf_dma =
2512                             mrioc->ioctl_chain_sge.dma_addr;
2513                         drv_buf_iter->dma_desc = NULL;
2514                         drv_buf_iter->num_dma_desc = 0;
2515                         memset(drv_buf_iter->kern_buf, 0,
2516                                drv_buf_iter->kern_buf_len);
2517                         tmplen = min(drv_buf_iter->kern_buf_len,
2518                                      drv_buf_iter->bsg_buf_len);
2519                         rmc_size = tmplen;
2520                         memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
2521                 } else if (is_rmrb && (count == 1)) {
2522                         drv_buf_iter->kern_buf_len =
2523                             mrioc->ioctl_resp_sge.size;
2524                         drv_buf_iter->kern_buf =
2525                             mrioc->ioctl_resp_sge.addr;
2526                         drv_buf_iter->kern_buf_dma =
2527                             mrioc->ioctl_resp_sge.dma_addr;
2528                         drv_buf_iter->dma_desc = NULL;
2529                         drv_buf_iter->num_dma_desc = 0;
2530                         memset(drv_buf_iter->kern_buf, 0,
2531                                drv_buf_iter->kern_buf_len);
2532                         tmplen = min(drv_buf_iter->kern_buf_len,
2533                                      drv_buf_iter->bsg_buf_len);
2534                         drv_buf_iter->kern_buf_len = tmplen;
2535                         memset(drv_buf_iter->bsg_buf, 0,
2536                                drv_buf_iter->bsg_buf_len);
2537                 } else {
2538                         if (!drv_buf_iter->kern_buf_len)
2539                                 continue;
2540                         if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
2541                                 rval = -ENOMEM;
2542                                 dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
2543                                                __func__, __LINE__);
2544                         goto out;
2545                 }
2546                         desc_count += drv_buf_iter->num_dma_desc;
2547                 }
2548         }
2549
2550         if (erb_offset != 0xFF) {
2551                 sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
2552                 if (!sense_buff_k) {
2553                         rval = -ENOMEM;
2554                         goto out;
2555                 }
2556         }
2557
2558         if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
2559                 rval = -ERESTARTSYS;
2560                 goto out;
2561         }
2562         if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
2563                 rval = -EAGAIN;
2564                 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
2565                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2566                 goto out;
2567         }
2568         if (mrioc->unrecoverable) {
2569                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
2570                     __func__);
2571                 rval = -EFAULT;
2572                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2573                 goto out;
2574         }
2575         if (mrioc->reset_in_progress) {
2576                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
2577                 rval = -EAGAIN;
2578                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2579                 goto out;
2580         }
2581         if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
2582                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
2583                 rval = -EAGAIN;
2584                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2585                 goto out;
2586         }
2587
2588         if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
2589                 nvme_fmt = mpi3mr_get_nvme_data_fmt(
2590                         (struct mpi3_nvme_encapsulated_request *)mpi_req);
2591                 if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
2592                         if (mpi3mr_build_nvme_prp(mrioc,
2593                             (struct mpi3_nvme_encapsulated_request *)mpi_req,
2594                             drv_bufs, bufcnt)) {
2595                                 rval = -ENOMEM;
2596                                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2597                                 goto out;
2598                         }
2599                 } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
2600                         nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
2601                         if (mpi3mr_build_nvme_sgl(mrioc,
2602                             (struct mpi3_nvme_encapsulated_request *)mpi_req,
2603                             drv_bufs, bufcnt)) {
2604                                 rval = -EINVAL;
2605                                 mutex_unlock(&mrioc->bsg_cmds.mutex);
2606                                 goto out;
2607                         }
2608                 } else {
2609                         dprint_bsg_err(mrioc,
2610                             "%s:invalid NVMe command format\n", __func__);
2611                         rval = -EINVAL;
2612                         mutex_unlock(&mrioc->bsg_cmds.mutex);
2613                         goto out;
2614                 }
2615         } else {
2616                 if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
2617                                          drv_bufs, bufcnt, is_rmcb, is_rmrb,
2618                                          (dout_cnt + din_cnt))) {
2619                         dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
2620                         rval = -EAGAIN;
2621                         mutex_unlock(&mrioc->bsg_cmds.mutex);
2622                         goto out;
2623                 }
2624         }
2625
2626         if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
2627                 tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
2628                 if (tm_req->task_type !=
2629                     MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
2630                         dev_handle = tm_req->dev_handle;
2631                         block_io = 1;
2632                 }
2633         }
2634         if (block_io) {
2635                 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
2636                 if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
2637                         stgt_priv = (struct mpi3mr_stgt_priv_data *)
2638                             tgtdev->starget->hostdata;
2639                         atomic_inc(&stgt_priv->block_io);
2640                         mpi3mr_tgtdev_put(tgtdev);
2641                 }
2642         }
2643
2644         mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
2645         mrioc->bsg_cmds.is_waiting = 1;
2646         mrioc->bsg_cmds.callback = NULL;
2647         mrioc->bsg_cmds.is_sense = 0;
2648         mrioc->bsg_cmds.sensebuf = sense_buff_k;
2649         memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
2650         mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
2651         if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
2652                 dprint_bsg_info(mrioc,
2653                     "%s: posting bsg request to the controller\n", __func__);
2654                 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2655                     "bsg_mpi3_req");
2656                 if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
2657                         drv_buf_iter = &drv_bufs[0];
2658                         dprint_dump(drv_buf_iter->kern_buf,
2659                             rmc_size, "mpi3_mgmt_req");
2660                 }
2661         }
2662
2663         init_completion(&mrioc->bsg_cmds.done);
2664         rval = mpi3mr_admin_request_post(mrioc, mpi_req,
2665             MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
2666
2667
2668         if (rval) {
2669                 mrioc->bsg_cmds.is_waiting = 0;
2670                 dprint_bsg_err(mrioc,
2671                     "%s: posting bsg request is failed\n", __func__);
2672                 rval = -EAGAIN;
2673                 goto out_unlock;
2674         }
2675         wait_for_completion_timeout(&mrioc->bsg_cmds.done,
2676             (karg->timeout * HZ));
2677         if (block_io && stgt_priv)
2678                 atomic_dec(&stgt_priv->block_io);
2679         if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
2680                 mrioc->bsg_cmds.is_waiting = 0;
2681                 rval = -EAGAIN;
2682                 if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
2683                         goto out_unlock;
2684                 if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) &&
2685                     (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED))
2686                     || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) {
2687                         ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n",
2688                             __func__, karg->timeout);
2689                         if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) {
2690                                 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2691                             "bsg_mpi3_req");
2692                         if (mpi_header->function ==
2693                             MPI3_FUNCTION_MGMT_PASSTHROUGH) {
2694                                 drv_buf_iter = &drv_bufs[0];
2695                                 dprint_dump(drv_buf_iter->kern_buf,
2696                                     rmc_size, "mpi3_mgmt_req");
2697                                 }
2698                         }
2699                 }
2700                 if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
2701                         (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) {
2702                         dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n"
2703                                 "issuing target reset to (0x%04x)\n", __func__,
2704                                 karg->timeout, mpi_header->function_dependent);
2705                         mpi3mr_issue_tm(mrioc,
2706                             MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
2707                             mpi_header->function_dependent, 0,
2708                             MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
2709                             &mrioc->host_tm_cmds, &resp_code, NULL);
2710                 }
2711                 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
2712                     !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
2713                         mpi3mr_soft_reset_handler(mrioc,
2714                             MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
2715                 goto out_unlock;
2716         }
2717         dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
2718
2719         if (mrioc->prp_list_virt) {
2720                 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2721                     mrioc->prp_list_virt, mrioc->prp_list_dma);
2722                 mrioc->prp_list_virt = NULL;
2723         }
2724
2725         if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
2726              != MPI3_IOCSTATUS_SUCCESS) {
2727                 dprint_bsg_info(mrioc,
2728                     "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
2729                     __func__,
2730                     (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
2731                     mrioc->bsg_cmds.ioc_loginfo);
2732         }
2733
2734         if ((mpirep_offset != 0xFF) &&
2735             drv_bufs[mpirep_offset].bsg_buf_len) {
2736                 drv_buf_iter = &drv_bufs[mpirep_offset];
2737                 drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
2738                                            mrioc->reply_sz);
2739                 bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
2740
2741                 if (!bsg_reply_buf) {
2742                         rval = -ENOMEM;
2743                         goto out_unlock;
2744                 }
2745                 if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
2746                         bsg_reply_buf->mpi_reply_type =
2747                                 MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
2748                         memcpy(bsg_reply_buf->reply_buf,
2749                             mrioc->bsg_cmds.reply, mrioc->reply_sz);
2750                 } else {
2751                         bsg_reply_buf->mpi_reply_type =
2752                                 MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
2753                         status_desc = (struct mpi3_status_reply_descriptor *)
2754                             bsg_reply_buf->reply_buf;
2755                         status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
2756                         status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
2757                 }
2758                 tmplen = min(drv_buf_iter->kern_buf_len,
2759                         drv_buf_iter->bsg_buf_len);
2760                 memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
2761         }
2762
2763         if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
2764             mrioc->bsg_cmds.is_sense) {
2765                 drv_buf_iter = &drv_bufs[erb_offset];
2766                 tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
2767                 memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
2768         }
2769
2770         drv_buf_iter = drv_bufs;
2771         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2772                 if (drv_buf_iter->data_dir == DMA_NONE)
2773                         continue;
2774                 if ((count == 1) && is_rmrb) {
2775                         memcpy(drv_buf_iter->bsg_buf,
2776                             drv_buf_iter->kern_buf,
2777                             drv_buf_iter->kern_buf_len);
2778                 } else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
2779                         tmplen = 0;
2780                         for (desc_count = 0;
2781                             desc_count < drv_buf_iter->num_dma_desc;
2782                             desc_count++) {
2783                                 memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
2784                                        drv_buf_iter->dma_desc[desc_count].addr,
2785                                        drv_buf_iter->dma_desc[desc_count].size);
2786                                 tmplen +=
2787                                     drv_buf_iter->dma_desc[desc_count].size;
2788                 }
2789         }
2790         }
2791
2792 out_unlock:
2793         if (din_buf) {
2794                 job->reply_payload_rcv_len =
2795                         sg_copy_from_buffer(job->reply_payload.sg_list,
2796                                             job->reply_payload.sg_cnt,
2797                                             din_buf, job->reply_payload.payload_len);
2798         }
2799         mrioc->bsg_cmds.is_sense = 0;
2800         mrioc->bsg_cmds.sensebuf = NULL;
2801         mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
2802         mutex_unlock(&mrioc->bsg_cmds.mutex);
2803 out:
2804         kfree(sense_buff_k);
2805         kfree(dout_buf);
2806         kfree(din_buf);
2807         kfree(mpi_req);
2808         if (drv_bufs) {
2809                 drv_buf_iter = drv_bufs;
2810                 for (count = 0; count < bufcnt; count++, drv_buf_iter++)
2811                         kfree(drv_buf_iter->dma_desc);
2812                 kfree(drv_bufs);
2813         }
2814         kfree(bsg_reply_buf);
2815         return rval;
2816 }
2817
2818 /**
2819  * mpi3mr_app_save_logdata - Save Log Data events
2820  * @mrioc: Adapter instance reference
2821  * @event_data: event data associated with log data event
2822  * @event_data_size: event data size to copy
2823  *
2824  * If log data event caching is enabled by the applicatiobns,
2825  * then this function saves the log data in the circular queue
2826  * and Sends async signal SIGIO to indicate there is an async
2827  * event from the firmware to the event monitoring applications.
2828  *
2829  * Return:Nothing
2830  */
2831 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
2832         u16 event_data_size)
2833 {
2834         u32 index = mrioc->logdata_buf_idx, sz;
2835         struct mpi3mr_logdata_entry *entry;
2836
2837         if (!(mrioc->logdata_buf))
2838                 return;
2839
2840         entry = (struct mpi3mr_logdata_entry *)
2841                 (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
2842         entry->valid_entry = 1;
2843         sz = min(mrioc->logdata_entry_sz, event_data_size);
2844         memcpy(entry->data, event_data, sz);
2845         mrioc->logdata_buf_idx =
2846                 ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
2847         atomic64_inc(&event_counter);
2848 }
2849
2850 /**
2851  * mpi3mr_bsg_request - bsg request entry point
2852  * @job: BSG job reference
2853  *
2854  * This is driver's entry point for bsg requests
2855  *
2856  * Return: 0 on success and proper error codes on failure
2857  */
2858 static int mpi3mr_bsg_request(struct bsg_job *job)
2859 {
2860         long rval = -EINVAL;
2861         unsigned int reply_payload_rcv_len = 0;
2862
2863         struct mpi3mr_bsg_packet *bsg_req = job->request;
2864
2865         switch (bsg_req->cmd_type) {
2866         case MPI3MR_DRV_CMD:
2867                 rval = mpi3mr_bsg_process_drv_cmds(job);
2868                 break;
2869         case MPI3MR_MPT_CMD:
2870                 rval = mpi3mr_bsg_process_mpt_cmds(job);
2871                 break;
2872         default:
2873                 pr_err("%s: unsupported BSG command(0x%08x)\n",
2874                     MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
2875                 break;
2876         }
2877
2878         bsg_job_done(job, rval, reply_payload_rcv_len);
2879
2880         return 0;
2881 }
2882
2883 /**
2884  * mpi3mr_bsg_exit - de-registration from bsg layer
2885  * @mrioc: Adapter instance reference
2886  *
2887  * This will be called during driver unload and all
2888  * bsg resources allocated during load will be freed.
2889  *
2890  * Return:Nothing
2891  */
2892 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
2893 {
2894         struct device *bsg_dev = &mrioc->bsg_dev;
2895         if (!mrioc->bsg_queue)
2896                 return;
2897
2898         bsg_remove_queue(mrioc->bsg_queue);
2899         mrioc->bsg_queue = NULL;
2900
2901         device_del(bsg_dev);
2902         put_device(bsg_dev);
2903 }
2904
2905 /**
2906  * mpi3mr_bsg_node_release -release bsg device node
2907  * @dev: bsg device node
2908  *
2909  * decrements bsg dev parent reference count
2910  *
2911  * Return:Nothing
2912  */
2913 static void mpi3mr_bsg_node_release(struct device *dev)
2914 {
2915         put_device(dev->parent);
2916 }
2917
2918 /**
2919  * mpi3mr_bsg_init -  registration with bsg layer
2920  * @mrioc: Adapter instance reference
2921  *
2922  * This will be called during driver load and it will
2923  * register driver with bsg layer
2924  *
2925  * Return:Nothing
2926  */
2927 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
2928 {
2929         struct device *bsg_dev = &mrioc->bsg_dev;
2930         struct device *parent = &mrioc->shost->shost_gendev;
2931         struct queue_limits lim = {
2932                 .max_hw_sectors         = MPI3MR_MAX_APP_XFER_SECTORS,
2933                 .max_segments           = MPI3MR_MAX_APP_XFER_SEGMENTS,
2934         };
2935
2936         device_initialize(bsg_dev);
2937
2938         bsg_dev->parent = get_device(parent);
2939         bsg_dev->release = mpi3mr_bsg_node_release;
2940
2941         dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
2942
2943         if (device_add(bsg_dev)) {
2944                 ioc_err(mrioc, "%s: bsg device add failed\n",
2945                     dev_name(bsg_dev));
2946                 put_device(bsg_dev);
2947                 return;
2948         }
2949
2950         mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim,
2951                         mpi3mr_bsg_request, NULL, 0);
2952         if (IS_ERR(mrioc->bsg_queue)) {
2953                 ioc_err(mrioc, "%s: bsg registration failed\n",
2954                     dev_name(bsg_dev));
2955                 device_del(bsg_dev);
2956                 put_device(bsg_dev);
2957         }
2958 }
2959
2960 /**
2961  * version_fw_show - SysFS callback for firmware version read
2962  * @dev: class device
2963  * @attr: Device attributes
2964  * @buf: Buffer to copy
2965  *
2966  * Return: sysfs_emit() return after copying firmware version
2967  */
2968 static ssize_t
2969 version_fw_show(struct device *dev, struct device_attribute *attr,
2970         char *buf)
2971 {
2972         struct Scsi_Host *shost = class_to_shost(dev);
2973         struct mpi3mr_ioc *mrioc = shost_priv(shost);
2974         struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
2975
2976         return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
2977             fwver->gen_major, fwver->gen_minor, fwver->ph_major,
2978             fwver->ph_minor, fwver->cust_id, fwver->build_num);
2979 }
2980 static DEVICE_ATTR_RO(version_fw);
2981
2982 /**
2983  * fw_queue_depth_show - SysFS callback for firmware max cmds
2984  * @dev: class device
2985  * @attr: Device attributes
2986  * @buf: Buffer to copy
2987  *
2988  * Return: sysfs_emit() return after copying firmware max commands
2989  */
2990 static ssize_t
2991 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
2992                         char *buf)
2993 {
2994         struct Scsi_Host *shost = class_to_shost(dev);
2995         struct mpi3mr_ioc *mrioc = shost_priv(shost);
2996
2997         return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
2998 }
2999 static DEVICE_ATTR_RO(fw_queue_depth);
3000
3001 /**
3002  * op_req_q_count_show - SysFS callback for request queue count
3003  * @dev: class device
3004  * @attr: Device attributes
3005  * @buf: Buffer to copy
3006  *
3007  * Return: sysfs_emit() return after copying request queue count
3008  */
3009 static ssize_t
3010 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
3011                         char *buf)
3012 {
3013         struct Scsi_Host *shost = class_to_shost(dev);
3014         struct mpi3mr_ioc *mrioc = shost_priv(shost);
3015
3016         return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
3017 }
3018 static DEVICE_ATTR_RO(op_req_q_count);
3019
3020 /**
3021  * reply_queue_count_show - SysFS callback for reply queue count
3022  * @dev: class device
3023  * @attr: Device attributes
3024  * @buf: Buffer to copy
3025  *
3026  * Return: sysfs_emit() return after copying reply queue count
3027  */
3028 static ssize_t
3029 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
3030                         char *buf)
3031 {
3032         struct Scsi_Host *shost = class_to_shost(dev);
3033         struct mpi3mr_ioc *mrioc = shost_priv(shost);
3034
3035         return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
3036 }
3037
3038 static DEVICE_ATTR_RO(reply_queue_count);
3039
3040 /**
3041  * logging_level_show - Show controller debug level
3042  * @dev: class device
3043  * @attr: Device attributes
3044  * @buf: Buffer to copy
3045  *
3046  * A sysfs 'read/write' shost attribute, to show the current
3047  * debug log level used by the driver for the specific
3048  * controller.
3049  *
3050  * Return: sysfs_emit() return
3051  */
3052 static ssize_t
3053 logging_level_show(struct device *dev,
3054         struct device_attribute *attr, char *buf)
3055
3056 {
3057         struct Scsi_Host *shost = class_to_shost(dev);
3058         struct mpi3mr_ioc *mrioc = shost_priv(shost);
3059
3060         return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
3061 }
3062
3063 /**
3064  * logging_level_store- Change controller debug level
3065  * @dev: class device
3066  * @attr: Device attributes
3067  * @buf: Buffer to copy
3068  * @count: size of the buffer
3069  *
3070  * A sysfs 'read/write' shost attribute, to change the current
3071  * debug log level used by the driver for the specific
3072  * controller.
3073  *
3074  * Return: strlen() return
3075  */
3076 static ssize_t
3077 logging_level_store(struct device *dev,
3078         struct device_attribute *attr,
3079         const char *buf, size_t count)
3080 {
3081         struct Scsi_Host *shost = class_to_shost(dev);
3082         struct mpi3mr_ioc *mrioc = shost_priv(shost);
3083         int val = 0;
3084
3085         if (kstrtoint(buf, 0, &val) != 0)
3086                 return -EINVAL;
3087
3088         mrioc->logging_level = val;
3089         ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
3090         return strlen(buf);
3091 }
3092 static DEVICE_ATTR_RW(logging_level);
3093
3094 /**
3095  * adp_state_show() - SysFS callback for adapter state show
3096  * @dev: class device
3097  * @attr: Device attributes
3098  * @buf: Buffer to copy
3099  *
3100  * Return: sysfs_emit() return after copying adapter state
3101  */
3102 static ssize_t
3103 adp_state_show(struct device *dev, struct device_attribute *attr,
3104         char *buf)
3105 {
3106         struct Scsi_Host *shost = class_to_shost(dev);
3107         struct mpi3mr_ioc *mrioc = shost_priv(shost);
3108         enum mpi3mr_iocstate ioc_state;
3109         uint8_t adp_state;
3110
3111         ioc_state = mpi3mr_get_iocstate(mrioc);
3112         if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
3113                 adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
3114         else if (mrioc->reset_in_progress || mrioc->stop_bsgs ||
3115                  mrioc->block_on_pci_err)
3116                 adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
3117         else if (ioc_state == MRIOC_STATE_FAULT)
3118                 adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
3119         else
3120                 adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
3121
3122         return sysfs_emit(buf, "%u\n", adp_state);
3123 }
3124
3125 static DEVICE_ATTR_RO(adp_state);
3126
3127 static struct attribute *mpi3mr_host_attrs[] = {
3128         &dev_attr_version_fw.attr,
3129         &dev_attr_fw_queue_depth.attr,
3130         &dev_attr_op_req_q_count.attr,
3131         &dev_attr_reply_queue_count.attr,
3132         &dev_attr_logging_level.attr,
3133         &dev_attr_adp_state.attr,
3134         NULL,
3135 };
3136
3137 static const struct attribute_group mpi3mr_host_attr_group = {
3138         .attrs = mpi3mr_host_attrs
3139 };
3140
3141 const struct attribute_group *mpi3mr_host_groups[] = {
3142         &mpi3mr_host_attr_group,
3143         NULL,
3144 };
3145
3146
3147 /*
3148  * SCSI Device attributes under sysfs
3149  */
3150
3151 /**
3152  * sas_address_show - SysFS callback for dev SASaddress display
3153  * @dev: class device
3154  * @attr: Device attributes
3155  * @buf: Buffer to copy
3156  *
3157  * Return: sysfs_emit() return after copying SAS address of the
3158  * specific SAS/SATA end device.
3159  */
3160 static ssize_t
3161 sas_address_show(struct device *dev, struct device_attribute *attr,
3162                         char *buf)
3163 {
3164         struct scsi_device *sdev = to_scsi_device(dev);
3165         struct mpi3mr_sdev_priv_data *sdev_priv_data;
3166         struct mpi3mr_stgt_priv_data *tgt_priv_data;
3167         struct mpi3mr_tgt_dev *tgtdev;
3168
3169         sdev_priv_data = sdev->hostdata;
3170         if (!sdev_priv_data)
3171                 return 0;
3172
3173         tgt_priv_data = sdev_priv_data->tgt_priv_data;
3174         if (!tgt_priv_data)
3175                 return 0;
3176         tgtdev = tgt_priv_data->tgt_dev;
3177         if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
3178                 return 0;
3179         return sysfs_emit(buf, "0x%016llx\n",
3180             (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
3181 }
3182
3183 static DEVICE_ATTR_RO(sas_address);
3184
3185 /**
3186  * device_handle_show - SysFS callback for device handle display
3187  * @dev: class device
3188  * @attr: Device attributes
3189  * @buf: Buffer to copy
3190  *
3191  * Return: sysfs_emit() return after copying firmware internal
3192  * device handle of the specific device.
3193  */
3194 static ssize_t
3195 device_handle_show(struct device *dev, struct device_attribute *attr,
3196                         char *buf)
3197 {
3198         struct scsi_device *sdev = to_scsi_device(dev);
3199         struct mpi3mr_sdev_priv_data *sdev_priv_data;
3200         struct mpi3mr_stgt_priv_data *tgt_priv_data;
3201         struct mpi3mr_tgt_dev *tgtdev;
3202
3203         sdev_priv_data = sdev->hostdata;
3204         if (!sdev_priv_data)
3205                 return 0;
3206
3207         tgt_priv_data = sdev_priv_data->tgt_priv_data;
3208         if (!tgt_priv_data)
3209                 return 0;
3210         tgtdev = tgt_priv_data->tgt_dev;
3211         if (!tgtdev)
3212                 return 0;
3213         return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
3214 }
3215
3216 static DEVICE_ATTR_RO(device_handle);
3217
3218 /**
3219  * persistent_id_show - SysFS callback for persisten ID display
3220  * @dev: class device
3221  * @attr: Device attributes
3222  * @buf: Buffer to copy
3223  *
3224  * Return: sysfs_emit() return after copying persistent ID of the
3225  * of the specific device.
3226  */
3227 static ssize_t
3228 persistent_id_show(struct device *dev, struct device_attribute *attr,
3229                         char *buf)
3230 {
3231         struct scsi_device *sdev = to_scsi_device(dev);
3232         struct mpi3mr_sdev_priv_data *sdev_priv_data;
3233         struct mpi3mr_stgt_priv_data *tgt_priv_data;
3234         struct mpi3mr_tgt_dev *tgtdev;
3235
3236         sdev_priv_data = sdev->hostdata;
3237         if (!sdev_priv_data)
3238                 return 0;
3239
3240         tgt_priv_data = sdev_priv_data->tgt_priv_data;
3241         if (!tgt_priv_data)
3242                 return 0;
3243         tgtdev = tgt_priv_data->tgt_dev;
3244         if (!tgtdev)
3245                 return 0;
3246         return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
3247 }
3248 static DEVICE_ATTR_RO(persistent_id);
3249
3250 /**
3251  * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority
3252  * @dev: pointer to embedded device
3253  * @attr: sas_ncq_prio_supported attribute descriptor
3254  * @buf: the buffer returned
3255  *
3256  * A sysfs 'read-only' sdev attribute, only works with SATA devices
3257  */
3258 static ssize_t
3259 sas_ncq_prio_supported_show(struct device *dev,
3260                             struct device_attribute *attr, char *buf)
3261 {
3262         struct scsi_device *sdev = to_scsi_device(dev);
3263
3264         return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev));
3265 }
3266 static DEVICE_ATTR_RO(sas_ncq_prio_supported);
3267
3268 /**
3269  * sas_ncq_prio_enable_show - send prioritized io commands to device
3270  * @dev: pointer to embedded device
3271  * @attr: sas_ncq_prio_enable attribute descriptor
3272  * @buf: the buffer returned
3273  *
3274  * A sysfs 'read/write' sdev attribute, only works with SATA devices
3275  */
3276 static ssize_t
3277 sas_ncq_prio_enable_show(struct device *dev,
3278                                  struct device_attribute *attr, char *buf)
3279 {
3280         struct scsi_device *sdev = to_scsi_device(dev);
3281         struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3282
3283         if (!sdev_priv_data)
3284                 return 0;
3285
3286         return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable);
3287 }
3288
3289 static ssize_t
3290 sas_ncq_prio_enable_store(struct device *dev,
3291                                   struct device_attribute *attr,
3292                                   const char *buf, size_t count)
3293 {
3294         struct scsi_device *sdev = to_scsi_device(dev);
3295         struct mpi3mr_sdev_priv_data *sdev_priv_data =  sdev->hostdata;
3296         bool ncq_prio_enable = 0;
3297
3298         if (kstrtobool(buf, &ncq_prio_enable))
3299                 return -EINVAL;
3300
3301         if (!sas_ata_ncq_prio_supported(sdev))
3302                 return -EINVAL;
3303
3304         sdev_priv_data->ncq_prio_enable = ncq_prio_enable;
3305
3306         return strlen(buf);
3307 }
3308 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3309
3310 static struct attribute *mpi3mr_dev_attrs[] = {
3311         &dev_attr_sas_address.attr,
3312         &dev_attr_device_handle.attr,
3313         &dev_attr_persistent_id.attr,
3314         &dev_attr_sas_ncq_prio_supported.attr,
3315         &dev_attr_sas_ncq_prio_enable.attr,
3316         NULL,
3317 };
3318
3319 static const struct attribute_group mpi3mr_dev_attr_group = {
3320         .attrs = mpi3mr_dev_attrs
3321 };
3322
3323 const struct attribute_group *mpi3mr_dev_groups[] = {
3324         &mpi3mr_dev_attr_group,
3325         NULL,
3326 };
This page took 0.224835 seconds and 4 git commands to generate.