1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for Broadcom MPI3 Storage Controllers
5 * Copyright (C) 2017-2023 Broadcom Inc.
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
15 * mpi3mr_alloc_trace_buffer: Allocate trace buffer
16 * @mrioc: Adapter instance reference
17 * @trace_size: Trace buffer size
19 * Allocate trace buffer
20 * Return: 0 on success, non-zero on failure.
22 static int mpi3mr_alloc_trace_buffer(struct mpi3mr_ioc *mrioc, u32 trace_size)
24 struct diag_buffer_desc *diag_buffer = &mrioc->diag_buffers[0];
26 diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
27 trace_size, &diag_buffer->dma_addr, GFP_KERNEL);
28 if (diag_buffer->addr) {
29 dprint_init(mrioc, "trace diag buffer is allocated successfully\n");
36 * mpi3mr_alloc_diag_bufs - Allocate memory for diag buffers
37 * @mrioc: Adapter instance reference
39 * This functions checks whether the driver defined buffer sizes
40 * are greater than IOCFacts provided controller local buffer
41 * sizes and if the driver defined sizes are more then the
42 * driver allocates the specific buffer by reading driver page1
46 void mpi3mr_alloc_diag_bufs(struct mpi3mr_ioc *mrioc)
48 struct diag_buffer_desc *diag_buffer;
49 struct mpi3_driver_page1 driver_pg1;
50 u32 trace_dec_size, trace_min_size, fw_dec_size, fw_min_size,
52 u16 pg_sz = sizeof(driver_pg1);
56 if (mrioc->diag_buffers[0].addr || mrioc->diag_buffers[1].addr)
59 retval = mpi3mr_cfg_get_driver_pg1(mrioc, &driver_pg1, pg_sz);
62 "%s: driver page 1 read failed, allocating trace\n"
63 "and firmware diag buffers of default size\n", __func__);
64 trace_size = fw_size = MPI3MR_DEFAULT_HDB_MAX_SZ;
65 trace_dec_size = fw_dec_size = MPI3MR_DEFAULT_HDB_DEC_SZ;
66 trace_min_size = fw_min_size = MPI3MR_DEFAULT_HDB_MIN_SZ;
69 trace_size = driver_pg1.host_diag_trace_max_size * 1024;
70 trace_dec_size = driver_pg1.host_diag_trace_decrement_size
72 trace_min_size = driver_pg1.host_diag_trace_min_size * 1024;
73 fw_size = driver_pg1.host_diag_fw_max_size * 1024;
74 fw_dec_size = driver_pg1.host_diag_fw_decrement_size * 1024;
75 fw_min_size = driver_pg1.host_diag_fw_min_size * 1024;
77 "%s:trace diag buffer sizes read from driver\n"
78 "page1: maximum size = %dKB, decrement size = %dKB\n"
79 ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_trace_max_size,
80 driver_pg1.host_diag_trace_decrement_size,
81 driver_pg1.host_diag_trace_min_size);
83 "%s:firmware diag buffer sizes read from driver\n"
84 "page1: maximum size = %dKB, decrement size = %dKB\n"
85 ", minimum size = %dKB\n", __func__, driver_pg1.host_diag_fw_max_size,
86 driver_pg1.host_diag_fw_decrement_size,
87 driver_pg1.host_diag_fw_min_size);
88 if ((trace_size == 0) && (fw_size == 0))
94 diag_buffer = &mrioc->diag_buffers[0];
95 diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_TRACE;
96 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
97 if ((mrioc->facts.diag_trace_sz < trace_size) && (trace_size >=
101 "trying to allocate trace diag buffer of size = %dKB\n",
103 if (mpi3mr_alloc_trace_buffer(mrioc, trace_size)) {
105 trace_size -= trace_dec_size;
106 dprint_init(mrioc, "trace diag buffer allocation failed\n"
107 "retrying smaller size %dKB\n", trace_size / 1024);
110 diag_buffer->size = trace_size;
116 diag_buffer = &mrioc->diag_buffers[1];
118 diag_buffer->type = MPI3_DIAG_BUFFER_TYPE_FW;
119 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_NOT_ALLOCATED;
120 if ((mrioc->facts.diag_fw_sz < fw_size) && (fw_size >= fw_min_size)) {
121 diag_buffer->addr = dma_alloc_coherent(&mrioc->pdev->dev,
122 fw_size, &diag_buffer->dma_addr, GFP_KERNEL);
125 "%s:trying to allocate firmware diag buffer of size = %dKB\n",
126 __func__, fw_size / 1024);
127 if (diag_buffer->addr) {
128 dprint_init(mrioc, "%s:firmware diag buffer allocated successfully\n",
130 diag_buffer->size = fw_size;
133 fw_size -= fw_dec_size;
134 dprint_init(mrioc, "%s:trace diag buffer allocation failed,\n"
135 "retrying smaller size %dKB\n",
136 __func__, fw_size / 1024);
143 * mpi3mr_issue_diag_buf_post - Send diag buffer post req
144 * @mrioc: Adapter instance reference
145 * @diag_buffer: Diagnostic buffer descriptor
147 * Issue diagnostic buffer post MPI request through admin queue
148 * and wait for the completion of it or time out.
150 * Return: 0 on success, non-zero on failures.
152 int mpi3mr_issue_diag_buf_post(struct mpi3mr_ioc *mrioc,
153 struct diag_buffer_desc *diag_buffer)
155 struct mpi3_diag_buffer_post_request diag_buf_post_req;
159 memset(&diag_buf_post_req, 0, sizeof(diag_buf_post_req));
160 mutex_lock(&mrioc->init_cmds.mutex);
161 if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
162 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
163 mutex_unlock(&mrioc->init_cmds.mutex);
166 mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
167 mrioc->init_cmds.is_waiting = 1;
168 mrioc->init_cmds.callback = NULL;
169 diag_buf_post_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
170 diag_buf_post_req.function = MPI3_FUNCTION_DIAG_BUFFER_POST;
171 diag_buf_post_req.type = diag_buffer->type;
172 diag_buf_post_req.address = le64_to_cpu(diag_buffer->dma_addr);
173 diag_buf_post_req.length = le32_to_cpu(diag_buffer->size);
175 dprint_bsg_info(mrioc, "%s: posting diag buffer type %d\n", __func__,
177 prev_status = diag_buffer->status;
178 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
179 init_completion(&mrioc->init_cmds.done);
180 retval = mpi3mr_admin_request_post(mrioc, &diag_buf_post_req,
181 sizeof(diag_buf_post_req), 1);
183 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
187 wait_for_completion_timeout(&mrioc->init_cmds.done,
188 (MPI3MR_INTADMCMD_TIMEOUT * HZ));
189 if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
190 mrioc->init_cmds.is_waiting = 0;
191 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
192 mpi3mr_check_rh_fault_ioc(mrioc,
193 MPI3MR_RESET_FROM_DIAG_BUFFER_POST_TIMEOUT);
197 if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
198 != MPI3_IOCSTATUS_SUCCESS) {
199 dprint_bsg_err(mrioc,
200 "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
201 __func__, diag_buffer->type,
202 (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
203 mrioc->init_cmds.ioc_loginfo);
207 dprint_bsg_info(mrioc, "%s: diag buffer type %d posted successfully\n",
208 __func__, diag_buffer->type);
212 diag_buffer->status = prev_status;
213 mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
214 mutex_unlock(&mrioc->init_cmds.mutex);
219 * mpi3mr_post_diag_bufs - Post diag buffers to the controller
220 * @mrioc: Adapter instance reference
222 * This function calls helper function to post both trace and
223 * firmware buffers to the controller.
227 int mpi3mr_post_diag_bufs(struct mpi3mr_ioc *mrioc)
230 struct diag_buffer_desc *diag_buffer;
232 for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
233 diag_buffer = &mrioc->diag_buffers[i];
234 if (!(diag_buffer->addr))
236 if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer))
243 * mpi3mr_issue_diag_buf_release - Send diag buffer release req
244 * @mrioc: Adapter instance reference
245 * @diag_buffer: Diagnostic buffer descriptor
247 * Issue diagnostic buffer manage MPI request with release
248 * action request through admin queue and wait for the
249 * completion of it or time out.
251 * Return: 0 on success, non-zero on failures.
253 int mpi3mr_issue_diag_buf_release(struct mpi3mr_ioc *mrioc,
254 struct diag_buffer_desc *diag_buffer)
256 struct mpi3_diag_buffer_manage_request diag_buf_manage_req;
259 if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
260 (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
263 memset(&diag_buf_manage_req, 0, sizeof(diag_buf_manage_req));
264 mutex_lock(&mrioc->init_cmds.mutex);
265 if (mrioc->init_cmds.state & MPI3MR_CMD_PENDING) {
266 dprint_reset(mrioc, "%s: command is in use\n", __func__);
267 mutex_unlock(&mrioc->init_cmds.mutex);
270 mrioc->init_cmds.state = MPI3MR_CMD_PENDING;
271 mrioc->init_cmds.is_waiting = 1;
272 mrioc->init_cmds.callback = NULL;
273 diag_buf_manage_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_INITCMDS);
274 diag_buf_manage_req.function = MPI3_FUNCTION_DIAG_BUFFER_MANAGE;
275 diag_buf_manage_req.type = diag_buffer->type;
276 diag_buf_manage_req.action = MPI3_DIAG_BUFFER_ACTION_RELEASE;
279 dprint_reset(mrioc, "%s: releasing diag buffer type %d\n", __func__,
281 init_completion(&mrioc->init_cmds.done);
282 retval = mpi3mr_admin_request_post(mrioc, &diag_buf_manage_req,
283 sizeof(diag_buf_manage_req), 1);
285 dprint_reset(mrioc, "%s: admin request post failed\n", __func__);
286 mpi3mr_set_trigger_data_in_hdb(diag_buffer,
287 MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
290 wait_for_completion_timeout(&mrioc->init_cmds.done,
291 (MPI3MR_INTADMCMD_TIMEOUT * HZ));
292 if (!(mrioc->init_cmds.state & MPI3MR_CMD_COMPLETE)) {
293 mrioc->init_cmds.is_waiting = 0;
294 dprint_reset(mrioc, "%s: command timedout\n", __func__);
295 mpi3mr_check_rh_fault_ioc(mrioc,
296 MPI3MR_RESET_FROM_DIAG_BUFFER_RELEASE_TIMEOUT);
300 if ((mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
301 != MPI3_IOCSTATUS_SUCCESS) {
303 "%s: command failed, buffer_type (%d) ioc_status(0x%04x) log_info(0x%08x)\n",
304 __func__, diag_buffer->type,
305 (mrioc->init_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
306 mrioc->init_cmds.ioc_loginfo);
310 dprint_reset(mrioc, "%s: diag buffer type %d released successfully\n",
311 __func__, diag_buffer->type);
314 mrioc->init_cmds.state = MPI3MR_CMD_NOTUSED;
315 mutex_unlock(&mrioc->init_cmds.mutex);
320 * mpi3mr_process_trigger - Generic HDB Trigger handler
321 * @mrioc: Adapter instance reference
322 * @trigger_type: Trigger type
323 * @trigger_data: Trigger data
324 * @trigger_flags: Trigger flags
326 * This function checks validity of HDB, triggers and based on
327 * trigger information, creates an event to be processed in the
328 * firmware event worker thread .
330 * This function should be called with trigger spinlock held
334 static void mpi3mr_process_trigger(struct mpi3mr_ioc *mrioc, u8 trigger_type,
335 union mpi3mr_trigger_data *trigger_data, u8 trigger_flags)
337 struct trigger_event_data event_data;
338 struct diag_buffer_desc *trace_hdb = NULL;
339 struct diag_buffer_desc *fw_hdb = NULL;
342 trace_hdb = mpi3mr_diag_buffer_for_type(mrioc,
343 MPI3_DIAG_BUFFER_TYPE_TRACE);
345 (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
346 (trace_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
349 fw_hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
352 (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
353 (fw_hdb->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
356 if (mrioc->snapdump_trigger_active || (mrioc->fw_release_trigger_active
357 && mrioc->trace_release_trigger_active) ||
358 (!trace_hdb && !fw_hdb) || (!mrioc->driver_pg2) ||
359 ((trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT)
360 && (!mrioc->driver_pg2->num_triggers)))
363 memset(&event_data, 0, sizeof(event_data));
364 event_data.trigger_type = trigger_type;
365 memcpy(&event_data.trigger_specific_data, trigger_data,
366 sizeof(*trigger_data));
367 global_trigger = le64_to_cpu(mrioc->driver_pg2->global_trigger);
369 if (global_trigger & MPI3_DRIVER2_GLOBALTRIGGER_SNAPDUMP_ENABLED) {
370 event_data.snapdump = true;
371 event_data.trace_hdb = trace_hdb;
372 event_data.fw_hdb = fw_hdb;
373 mrioc->snapdump_trigger_active = true;
374 } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_GLOBAL) {
375 if ((trace_hdb) && (global_trigger &
376 MPI3_DRIVER2_GLOBALTRIGGER_DIAG_TRACE_RELEASE) &&
377 (!mrioc->trace_release_trigger_active)) {
378 event_data.trace_hdb = trace_hdb;
379 mrioc->trace_release_trigger_active = true;
381 if ((fw_hdb) && (global_trigger &
382 MPI3_DRIVER2_GLOBALTRIGGER_DIAG_FW_RELEASE) &&
383 (!mrioc->fw_release_trigger_active)) {
384 event_data.fw_hdb = fw_hdb;
385 mrioc->fw_release_trigger_active = true;
387 } else if (trigger_type == MPI3MR_HDB_TRIGGER_TYPE_ELEMENT) {
388 if ((trace_hdb) && (trigger_flags &
389 MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_TRACE_RELEASE) &&
390 (!mrioc->trace_release_trigger_active)) {
391 event_data.trace_hdb = trace_hdb;
392 mrioc->trace_release_trigger_active = true;
394 if ((fw_hdb) && (trigger_flags &
395 MPI3_DRIVER2_TRIGGER_FLAGS_DIAG_FW_RELEASE) &&
396 (!mrioc->fw_release_trigger_active)) {
397 event_data.fw_hdb = fw_hdb;
398 mrioc->fw_release_trigger_active = true;
402 if (event_data.trace_hdb || event_data.fw_hdb)
403 mpi3mr_hdb_trigger_data_event(mrioc, &event_data);
407 * mpi3mr_global_trigger - Global HDB trigger handler
408 * @mrioc: Adapter instance reference
409 * @trigger_data: Trigger data
411 * This function checks whether the given global trigger is
412 * enabled in the driver page 2 and if so calls generic trigger
413 * handler to queue event for HDB release.
417 void mpi3mr_global_trigger(struct mpi3mr_ioc *mrioc, u64 trigger_data)
420 union mpi3mr_trigger_data trigger_specific_data;
422 spin_lock_irqsave(&mrioc->trigger_lock, flags);
423 if (le64_to_cpu(mrioc->driver_pg2->global_trigger) & trigger_data) {
424 memset(&trigger_specific_data, 0,
425 sizeof(trigger_specific_data));
426 trigger_specific_data.global = trigger_data;
427 mpi3mr_process_trigger(mrioc, MPI3MR_HDB_TRIGGER_TYPE_GLOBAL,
428 &trigger_specific_data, 0);
430 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
434 * mpi3mr_scsisense_trigger - SCSI sense HDB trigger handler
435 * @mrioc: Adapter instance reference
436 * @sensekey: Sense Key
437 * @asc: Additional Sense Code
438 * @ascq: Additional Sense Code Qualifier
440 * This function compares SCSI sense trigger values with driver
441 * page 2 values and calls generic trigger handler to release
442 * HDBs if match found
446 void mpi3mr_scsisense_trigger(struct mpi3mr_ioc *mrioc, u8 sensekey, u8 asc,
449 struct mpi3_driver2_trigger_scsi_sense *scsi_sense_trigger = NULL;
452 u8 num_triggers, trigger_flags;
454 if (mrioc->scsisense_trigger_present) {
455 spin_lock_irqsave(&mrioc->trigger_lock, flags);
456 scsi_sense_trigger = (struct mpi3_driver2_trigger_scsi_sense *)
457 mrioc->driver_pg2->trigger;
458 num_triggers = mrioc->driver_pg2->num_triggers;
459 for (i = 0; i < num_triggers; i++, scsi_sense_trigger++) {
460 if (scsi_sense_trigger->type !=
461 MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE)
463 if (!(scsi_sense_trigger->sense_key ==
464 MPI3_DRIVER2_TRIGGER_SCSI_SENSE_SENSE_KEY_MATCH_ALL
465 || scsi_sense_trigger->sense_key == sensekey))
467 if (!(scsi_sense_trigger->asc ==
468 MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASC_MATCH_ALL ||
469 scsi_sense_trigger->asc == asc))
471 if (!(scsi_sense_trigger->ascq ==
472 MPI3_DRIVER2_TRIGGER_SCSI_SENSE_ASCQ_MATCH_ALL ||
473 scsi_sense_trigger->ascq == ascq))
475 trigger_flags = scsi_sense_trigger->flags;
476 mpi3mr_process_trigger(mrioc,
477 MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
478 (union mpi3mr_trigger_data *)scsi_sense_trigger,
482 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
487 * mpi3mr_event_trigger - MPI event HDB trigger handler
488 * @mrioc: Adapter instance reference
491 * This function compares event trigger values with driver page
492 * 2 values and calls generic trigger handler to release
493 * HDBs if match found.
497 void mpi3mr_event_trigger(struct mpi3mr_ioc *mrioc, u8 event)
499 struct mpi3_driver2_trigger_event *event_trigger = NULL;
502 u8 num_triggers, trigger_flags;
504 if (mrioc->event_trigger_present) {
505 spin_lock_irqsave(&mrioc->trigger_lock, flags);
506 event_trigger = (struct mpi3_driver2_trigger_event *)
507 mrioc->driver_pg2->trigger;
508 num_triggers = mrioc->driver_pg2->num_triggers;
510 for (i = 0; i < num_triggers; i++, event_trigger++) {
511 if (event_trigger->type !=
512 MPI3_DRIVER2_TRIGGER_TYPE_EVENT)
514 if (event_trigger->event != event)
516 trigger_flags = event_trigger->flags;
517 mpi3mr_process_trigger(mrioc,
518 MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
519 (union mpi3mr_trigger_data *)event_trigger,
523 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
528 * mpi3mr_reply_trigger - MPI Reply HDB trigger handler
529 * @mrioc: Adapter instance reference
530 * @ioc_status: Masked value of IOC Status from MPI Reply
531 * @ioc_loginfo: IOC Log Info from MPI Reply
533 * This function compares IOC status and IOC log info trigger
534 * values with driver page 2 values and calls generic trigger
535 * handler to release HDBs if match found.
539 void mpi3mr_reply_trigger(struct mpi3mr_ioc *mrioc, u16 ioc_status,
542 struct mpi3_driver2_trigger_reply *reply_trigger = NULL;
545 u8 num_triggers, trigger_flags;
547 if (mrioc->reply_trigger_present) {
548 spin_lock_irqsave(&mrioc->trigger_lock, flags);
549 reply_trigger = (struct mpi3_driver2_trigger_reply *)
550 mrioc->driver_pg2->trigger;
551 num_triggers = mrioc->driver_pg2->num_triggers;
552 for (i = 0; i < num_triggers; i++, reply_trigger++) {
553 if (reply_trigger->type !=
554 MPI3_DRIVER2_TRIGGER_TYPE_REPLY)
556 if ((le16_to_cpu(reply_trigger->ioc_status) !=
558 && (le16_to_cpu(reply_trigger->ioc_status) !=
559 MPI3_DRIVER2_TRIGGER_REPLY_IOCSTATUS_MATCH_ALL))
561 if ((le32_to_cpu(reply_trigger->ioc_log_info) !=
562 (le32_to_cpu(reply_trigger->ioc_log_info_mask) &
565 trigger_flags = reply_trigger->flags;
566 mpi3mr_process_trigger(mrioc,
567 MPI3MR_HDB_TRIGGER_TYPE_ELEMENT,
568 (union mpi3mr_trigger_data *)reply_trigger,
572 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
577 * mpi3mr_get_num_trigger - Gets number of HDB triggers
578 * @mrioc: Adapter instance reference
579 * @num_triggers: Number of triggers
580 * @page_action: Page action
582 * This function reads number of triggers by reading driver page
585 * Return: 0 on success and proper error codes on failure
587 static int mpi3mr_get_num_trigger(struct mpi3mr_ioc *mrioc, u8 *num_triggers,
590 struct mpi3_driver_page2 drvr_page2;
595 retval = mpi3mr_cfg_get_driver_pg2(mrioc, &drvr_page2,
596 sizeof(struct mpi3_driver_page2), page_action);
599 dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
602 *num_triggers = drvr_page2.num_triggers;
607 * mpi3mr_refresh_trigger - Handler for Refresh trigger BSG
608 * @mrioc: Adapter instance reference
609 * @page_action: Page action
611 * This function caches the driver page 2 in the driver's memory
612 * by reading driver page 2 from the controller for a given page
613 * type and updates the HDB trigger values
615 * Return: 0 on success and proper error codes on failure
617 int mpi3mr_refresh_trigger(struct mpi3mr_ioc *mrioc, u8 page_action)
619 u16 pg_sz = sizeof(struct mpi3_driver_page2);
620 struct mpi3_driver_page2 *drvr_page2 = NULL;
621 u8 trigger_type, num_triggers;
626 retval = mpi3mr_get_num_trigger(mrioc, &num_triggers, page_action);
631 pg_sz = offsetof(struct mpi3_driver_page2, trigger) +
632 (num_triggers * sizeof(union mpi3_driver2_trigger_element));
633 drvr_page2 = kzalloc(pg_sz, GFP_KERNEL);
639 retval = mpi3mr_cfg_get_driver_pg2(mrioc, drvr_page2, pg_sz, page_action);
641 dprint_init(mrioc, "%s: driver page 2 read failed\n", __func__);
645 spin_lock_irqsave(&mrioc->trigger_lock, flags);
646 kfree(mrioc->driver_pg2);
647 mrioc->driver_pg2 = drvr_page2;
648 mrioc->reply_trigger_present = false;
649 mrioc->event_trigger_present = false;
650 mrioc->scsisense_trigger_present = false;
652 for (i = 0; (i < mrioc->driver_pg2->num_triggers); i++) {
653 trigger_type = mrioc->driver_pg2->trigger[i].event.type;
654 switch (trigger_type) {
655 case MPI3_DRIVER2_TRIGGER_TYPE_REPLY:
656 mrioc->reply_trigger_present = true;
658 case MPI3_DRIVER2_TRIGGER_TYPE_EVENT:
659 mrioc->event_trigger_present = true;
661 case MPI3_DRIVER2_TRIGGER_TYPE_SCSI_SENSE:
662 mrioc->scsisense_trigger_present = true;
668 spin_unlock_irqrestore(&mrioc->trigger_lock, flags);
674 * mpi3mr_release_diag_bufs - Release diag buffers
675 * @mrioc: Adapter instance reference
676 * @skip_rel_action: Skip release action and set buffer state
678 * This function calls helper function to release both trace and
679 * firmware buffers from the controller.
683 void mpi3mr_release_diag_bufs(struct mpi3mr_ioc *mrioc, u8 skip_rel_action)
686 struct diag_buffer_desc *diag_buffer;
688 for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
689 diag_buffer = &mrioc->diag_buffers[i];
690 if (!(diag_buffer->addr))
692 if (diag_buffer->status == MPI3MR_HDB_BUFSTATUS_RELEASED)
694 if (!skip_rel_action)
695 mpi3mr_issue_diag_buf_release(mrioc, diag_buffer);
696 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
697 atomic64_inc(&event_counter);
702 * mpi3mr_set_trigger_data_in_hdb - Updates HDB trigger type and
706 * @type: Trigger type
707 * @data: Trigger data
708 * @force: Trigger overwrite flag
709 * @trigger_data: Pointer to trigger data information
711 * Updates trigger type and trigger data based on parameter
712 * passed to this function
716 void mpi3mr_set_trigger_data_in_hdb(struct diag_buffer_desc *hdb,
717 u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
719 if ((!force) && (hdb->trigger_type != MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN))
721 hdb->trigger_type = type;
723 memset(&hdb->trigger_data, 0, sizeof(*trigger_data));
725 memcpy(&hdb->trigger_data, trigger_data, sizeof(*trigger_data));
729 * mpi3mr_set_trigger_data_in_all_hdb - Updates HDB trigger type
730 * and trigger data for all HDB
732 * @mrioc: Adapter instance reference
733 * @type: Trigger type
734 * @data: Trigger data
735 * @force: Trigger overwrite flag
736 * @trigger_data: Pointer to trigger data information
738 * Updates trigger type and trigger data based on parameter
739 * passed to this function
743 void mpi3mr_set_trigger_data_in_all_hdb(struct mpi3mr_ioc *mrioc,
744 u8 type, union mpi3mr_trigger_data *trigger_data, bool force)
746 struct diag_buffer_desc *hdb = NULL;
748 hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_TRACE);
750 mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
751 hdb = mpi3mr_diag_buffer_for_type(mrioc, MPI3_DIAG_BUFFER_TYPE_FW);
753 mpi3mr_set_trigger_data_in_hdb(hdb, type, trigger_data, force);
757 * mpi3mr_hdbstatuschg_evt_th - HDB status change evt tophalf
758 * @mrioc: Adapter instance reference
759 * @event_reply: event data
761 * Modifies the status of the applicable diag buffer descriptors
765 void mpi3mr_hdbstatuschg_evt_th(struct mpi3mr_ioc *mrioc,
766 struct mpi3_event_notification_reply *event_reply)
768 struct mpi3_event_data_diag_buffer_status_change *evtdata;
769 struct diag_buffer_desc *diag_buffer;
771 evtdata = (struct mpi3_event_data_diag_buffer_status_change *)
772 event_reply->event_data;
774 diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, evtdata->type);
777 if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED) &&
778 (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED))
780 switch (evtdata->reason_code) {
781 case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RELEASED:
783 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_RELEASED;
784 mpi3mr_set_trigger_data_in_hdb(diag_buffer,
785 MPI3MR_HDB_TRIGGER_TYPE_FW_RELEASED, NULL, 0);
786 atomic64_inc(&event_counter);
789 case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_RESUMED:
791 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_UNPAUSED;
794 case MPI3_EVENT_DIAG_BUFFER_STATUS_CHANGE_RC_PAUSED:
796 diag_buffer->status = MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED;
800 dprint_event_th(mrioc, "%s: unknown reason_code(%d)\n",
801 __func__, evtdata->reason_code);
807 * mpi3mr_diag_buffer_for_type - returns buffer desc for type
808 * @mrioc: Adapter instance reference
809 * @buf_type: Diagnostic buffer type
811 * Identifies matching diag descriptor from mrioc for given diag
814 * Return: diag buffer descriptor on success, NULL on failures.
817 struct diag_buffer_desc *
818 mpi3mr_diag_buffer_for_type(struct mpi3mr_ioc *mrioc, u8 buf_type)
822 for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
823 if (mrioc->diag_buffers[i].type == buf_type)
824 return &mrioc->diag_buffers[i];
830 * mpi3mr_bsg_pel_abort - sends PEL abort request
831 * @mrioc: Adapter instance reference
833 * This function sends PEL abort request to the firmware through
834 * admin request queue.
836 * Return: 0 on success, -1 on failure
838 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
840 struct mpi3_pel_req_action_abort pel_abort_req;
841 struct mpi3_pel_reply *pel_reply;
845 if (mrioc->reset_in_progress) {
846 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
849 if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
850 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
854 memset(&pel_abort_req, 0, sizeof(pel_abort_req));
855 mutex_lock(&mrioc->pel_abort_cmd.mutex);
856 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
857 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
858 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
861 mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
862 mrioc->pel_abort_cmd.is_waiting = 1;
863 mrioc->pel_abort_cmd.callback = NULL;
864 pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
865 pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
866 pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
867 pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
869 mrioc->pel_abort_requested = 1;
870 init_completion(&mrioc->pel_abort_cmd.done);
871 retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
872 sizeof(pel_abort_req), 0);
875 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
877 mrioc->pel_abort_requested = 0;
881 wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
882 (MPI3MR_INTADMCMD_TIMEOUT * HZ));
883 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
884 mrioc->pel_abort_cmd.is_waiting = 0;
885 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
886 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
887 mpi3mr_soft_reset_handler(mrioc,
888 MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
892 if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
893 != MPI3_IOCSTATUS_SUCCESS) {
894 dprint_bsg_err(mrioc,
895 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
896 __func__, (mrioc->pel_abort_cmd.ioc_status &
897 MPI3_IOCSTATUS_STATUS_MASK),
898 mrioc->pel_abort_cmd.ioc_loginfo);
902 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
903 pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
904 pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
905 if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
906 dprint_bsg_err(mrioc,
907 "%s: command failed, pel_status(0x%04x)\n",
908 __func__, pe_log_status);
914 mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
915 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
919 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
920 * @ioc_number: Adapter number
922 * This function returns the adapter instance pointer of given
923 * adapter number. If adapter number does not match with the
924 * driver's adapter list, driver returns NULL.
926 * Return: adapter instance reference
928 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
930 struct mpi3mr_ioc *mrioc = NULL;
932 spin_lock(&mrioc_list_lock);
933 list_for_each_entry(mrioc, &mrioc_list, list) {
934 if (mrioc->id == ioc_number) {
935 spin_unlock(&mrioc_list_lock);
939 spin_unlock(&mrioc_list_lock);
944 * mpi3mr_bsg_refresh_hdb_triggers - Refresh HDB trigger data
945 * @mrioc: Adapter instance reference
946 * @job: BSG Job pointer
948 * This function reads the controller trigger config page as
949 * defined by the input page type and refreshes the driver's
950 * local trigger information structures with the controller's
953 * Return: 0 on success and proper error codes on failure
956 mpi3mr_bsg_refresh_hdb_triggers(struct mpi3mr_ioc *mrioc,
959 struct mpi3mr_bsg_out_refresh_hdb_triggers refresh_triggers;
960 uint32_t data_out_sz;
964 data_out_sz = job->request_payload.payload_len;
966 if (data_out_sz != sizeof(refresh_triggers)) {
967 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
972 if (mrioc->unrecoverable) {
973 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
977 if (mrioc->reset_in_progress) {
978 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
982 sg_copy_to_buffer(job->request_payload.sg_list,
983 job->request_payload.sg_cnt,
984 &refresh_triggers, sizeof(refresh_triggers));
986 switch (refresh_triggers.page_type) {
987 case MPI3MR_HDB_REFRESH_TYPE_CURRENT:
988 page_action = MPI3_CONFIG_ACTION_READ_CURRENT;
990 case MPI3MR_HDB_REFRESH_TYPE_DEFAULT:
991 page_action = MPI3_CONFIG_ACTION_READ_DEFAULT;
993 case MPI3MR_HDB_HDB_REFRESH_TYPE_PERSISTENT:
994 page_action = MPI3_CONFIG_ACTION_READ_PERSISTENT;
997 dprint_bsg_err(mrioc,
998 "%s: unsupported refresh trigger, page_type %d\n",
999 __func__, refresh_triggers.page_type);
1002 rval = mpi3mr_refresh_trigger(mrioc, page_action);
1008 * mpi3mr_bsg_upload_hdb - Upload a specific HDB to user space
1009 * @mrioc: Adapter instance reference
1010 * @job: BSG Job pointer
1012 * Return: 0 on success and proper error codes on failure
1014 static long mpi3mr_bsg_upload_hdb(struct mpi3mr_ioc *mrioc,
1015 struct bsg_job *job)
1017 struct mpi3mr_bsg_out_upload_hdb upload_hdb;
1018 struct diag_buffer_desc *diag_buffer;
1019 uint32_t data_out_size;
1020 uint32_t data_in_size;
1022 data_out_size = job->request_payload.payload_len;
1023 data_in_size = job->reply_payload.payload_len;
1025 if (data_out_size != sizeof(upload_hdb)) {
1026 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1031 sg_copy_to_buffer(job->request_payload.sg_list,
1032 job->request_payload.sg_cnt,
1033 &upload_hdb, sizeof(upload_hdb));
1035 if ((!upload_hdb.length) || (data_in_size != upload_hdb.length)) {
1036 dprint_bsg_err(mrioc, "%s: invalid length argument\n",
1040 diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, upload_hdb.buf_type);
1041 if ((!diag_buffer) || (!diag_buffer->addr)) {
1042 dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1043 __func__, upload_hdb.buf_type);
1047 if ((diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) &&
1048 (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_POSTED_PAUSED)) {
1049 dprint_bsg_err(mrioc,
1050 "%s: invalid buffer status %d for type %d\n",
1051 __func__, diag_buffer->status, upload_hdb.buf_type);
1055 if ((upload_hdb.start_offset + upload_hdb.length) > diag_buffer->size) {
1056 dprint_bsg_err(mrioc,
1057 "%s: invalid start offset %d, length %d for type %d\n",
1058 __func__, upload_hdb.start_offset, upload_hdb.length,
1059 upload_hdb.buf_type);
1062 sg_copy_from_buffer(job->reply_payload.sg_list,
1063 job->reply_payload.sg_cnt,
1064 (diag_buffer->addr + upload_hdb.start_offset),
1070 * mpi3mr_bsg_repost_hdb - Re-post HDB
1071 * @mrioc: Adapter instance reference
1072 * @job: BSG job pointer
1074 * This function retrieves the HDB descriptor corresponding to a
1075 * given buffer type and if the HDB is in released status then
1076 * posts the HDB with the firmware.
1078 * Return: 0 on success and proper error codes on failure
1080 static long mpi3mr_bsg_repost_hdb(struct mpi3mr_ioc *mrioc,
1081 struct bsg_job *job)
1083 struct mpi3mr_bsg_out_repost_hdb repost_hdb;
1084 struct diag_buffer_desc *diag_buffer;
1085 uint32_t data_out_sz;
1087 data_out_sz = job->request_payload.payload_len;
1089 if (data_out_sz != sizeof(repost_hdb)) {
1090 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1094 if (mrioc->unrecoverable) {
1095 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1099 if (mrioc->reset_in_progress) {
1100 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1104 sg_copy_to_buffer(job->request_payload.sg_list,
1105 job->request_payload.sg_cnt,
1106 &repost_hdb, sizeof(repost_hdb));
1108 diag_buffer = mpi3mr_diag_buffer_for_type(mrioc, repost_hdb.buf_type);
1109 if ((!diag_buffer) || (!diag_buffer->addr)) {
1110 dprint_bsg_err(mrioc, "%s: invalid buffer type %d\n",
1111 __func__, repost_hdb.buf_type);
1115 if (diag_buffer->status != MPI3MR_HDB_BUFSTATUS_RELEASED) {
1116 dprint_bsg_err(mrioc,
1117 "%s: invalid buffer status %d for type %d\n",
1118 __func__, diag_buffer->status, repost_hdb.buf_type);
1122 if (mpi3mr_issue_diag_buf_post(mrioc, diag_buffer)) {
1123 dprint_bsg_err(mrioc, "%s: post failed for type %d\n",
1124 __func__, repost_hdb.buf_type);
1127 mpi3mr_set_trigger_data_in_hdb(diag_buffer,
1128 MPI3MR_HDB_TRIGGER_TYPE_UNKNOWN, NULL, 1);
1134 * mpi3mr_bsg_query_hdb - Handler for query HDB command
1135 * @mrioc: Adapter instance reference
1136 * @job: BSG job pointer
1138 * This function prepares and copies the host diagnostic buffer
1139 * entries to the user buffer.
1141 * Return: 0 on success and proper error codes on failure
1143 static long mpi3mr_bsg_query_hdb(struct mpi3mr_ioc *mrioc,
1144 struct bsg_job *job)
1147 struct mpi3mr_bsg_in_hdb_status *hbd_status;
1148 struct mpi3mr_hdb_entry *hbd_status_entry;
1149 u32 length, min_length;
1151 struct diag_buffer_desc *diag_buffer;
1152 uint32_t data_in_sz = 0;
1154 data_in_sz = job->request_payload.payload_len;
1156 length = (sizeof(*hbd_status) + ((MPI3MR_MAX_NUM_HDB - 1) *
1157 sizeof(*hbd_status_entry)));
1158 hbd_status = kmalloc(length, GFP_KERNEL);
1161 hbd_status_entry = &hbd_status->entry[0];
1163 hbd_status->num_hdb_types = MPI3MR_MAX_NUM_HDB;
1164 for (i = 0; i < MPI3MR_MAX_NUM_HDB; i++) {
1165 diag_buffer = &mrioc->diag_buffers[i];
1166 hbd_status_entry->buf_type = diag_buffer->type;
1167 hbd_status_entry->status = diag_buffer->status;
1168 hbd_status_entry->trigger_type = diag_buffer->trigger_type;
1169 memcpy(&hbd_status_entry->trigger_data,
1170 &diag_buffer->trigger_data,
1171 sizeof(hbd_status_entry->trigger_data));
1172 hbd_status_entry->size = (diag_buffer->size / 1024);
1175 hbd_status->element_trigger_format =
1176 MPI3MR_HDB_QUERY_ELEMENT_TRIGGER_FORMAT_DATA;
1178 if (data_in_sz < 4) {
1179 dprint_bsg_err(mrioc, "%s: invalid size passed\n", __func__);
1183 min_length = min(data_in_sz, length);
1184 if (job->request_payload.payload_len >= min_length) {
1185 sg_copy_from_buffer(job->request_payload.sg_list,
1186 job->request_payload.sg_cnt,
1187 hbd_status, min_length);
1197 * mpi3mr_enable_logdata - Handler for log data enable
1198 * @mrioc: Adapter instance reference
1199 * @job: BSG job reference
1201 * This function enables log data caching in the driver if not
1202 * already enabled and return the maximum number of log data
1203 * entries that can be cached in the driver.
1205 * Return: 0 on success and proper error codes on failure
1207 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
1208 struct bsg_job *job)
1210 struct mpi3mr_logdata_enable logdata_enable;
1212 if (!mrioc->logdata_buf) {
1213 mrioc->logdata_entry_sz =
1214 (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
1215 + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
1216 mrioc->logdata_buf_idx = 0;
1217 mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
1218 mrioc->logdata_entry_sz, GFP_KERNEL);
1220 if (!mrioc->logdata_buf)
1224 memset(&logdata_enable, 0, sizeof(logdata_enable));
1225 logdata_enable.max_entries =
1226 MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1227 if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
1228 sg_copy_from_buffer(job->request_payload.sg_list,
1229 job->request_payload.sg_cnt,
1230 &logdata_enable, sizeof(logdata_enable));
1237 * mpi3mr_get_logdata - Handler for get log data
1238 * @mrioc: Adapter instance reference
1239 * @job: BSG job pointer
1240 * This function copies the log data entries to the user buffer
1241 * when log caching is enabled in the driver.
1243 * Return: 0 on success and proper error codes on failure
1245 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
1246 struct bsg_job *job)
1248 u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
1250 if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
1253 num_entries = job->request_payload.payload_len / entry_sz;
1254 if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
1255 num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
1256 sz = num_entries * entry_sz;
1258 if (job->request_payload.payload_len >= sz) {
1259 sg_copy_from_buffer(job->request_payload.sg_list,
1260 job->request_payload.sg_cnt,
1261 mrioc->logdata_buf, sz);
1268 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
1269 * @mrioc: Adapter instance reference
1270 * @job: BSG job pointer
1272 * This function is the handler for PEL enable driver.
1273 * Validates the application given class and locale and if
1274 * requires aborts the existing PEL wait request and/or issues
1275 * new PEL wait request to the firmware and returns.
1277 * Return: 0 on success and proper error codes on failure.
1279 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
1280 struct bsg_job *job)
1282 long rval = -EINVAL;
1283 struct mpi3mr_bsg_out_pel_enable pel_enable;
1288 if (job->request_payload.payload_len != sizeof(pel_enable)) {
1289 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1294 if (mrioc->unrecoverable) {
1295 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1300 if (mrioc->reset_in_progress) {
1301 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1305 if (mrioc->stop_bsgs) {
1306 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1310 sg_copy_to_buffer(job->request_payload.sg_list,
1311 job->request_payload.sg_cnt,
1312 &pel_enable, sizeof(pel_enable));
1314 if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
1315 dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
1316 __func__, pel_enable.pel_class);
1320 if (!mrioc->pel_enabled)
1323 if ((mrioc->pel_class <= pel_enable.pel_class) &&
1324 !((mrioc->pel_locale & pel_enable.pel_locale) ^
1325 pel_enable.pel_locale)) {
1329 pel_enable.pel_locale |= mrioc->pel_locale;
1331 if (mrioc->pel_class < pel_enable.pel_class)
1332 pel_enable.pel_class = mrioc->pel_class;
1334 rval = mpi3mr_bsg_pel_abort(mrioc);
1336 dprint_bsg_err(mrioc,
1337 "%s: pel_abort failed, status(%ld)\n",
1344 if (issue_pel_wait) {
1345 tmp_class = mrioc->pel_class;
1346 tmp_locale = mrioc->pel_locale;
1347 mrioc->pel_class = pel_enable.pel_class;
1348 mrioc->pel_locale = pel_enable.pel_locale;
1349 mrioc->pel_enabled = 1;
1350 rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
1352 mrioc->pel_class = tmp_class;
1353 mrioc->pel_locale = tmp_locale;
1354 mrioc->pel_enabled = 0;
1355 dprint_bsg_err(mrioc,
1356 "%s: pel get sequence number failed, status(%ld)\n",
1365 * mpi3mr_get_all_tgt_info - Get all target information
1366 * @mrioc: Adapter instance reference
1367 * @job: BSG job reference
1369 * This function copies the driver managed target devices device
1370 * handle, persistent ID, bus ID and taret ID to the user
1371 * provided buffer for the specific controller. This function
1372 * also provides the number of devices managed by the driver for
1373 * the specific controller.
1375 * Return: 0 on success and proper error codes on failure
1377 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
1378 struct bsg_job *job)
1380 u16 num_devices = 0, i = 0, size;
1381 unsigned long flags;
1382 struct mpi3mr_tgt_dev *tgtdev;
1383 struct mpi3mr_device_map_info *devmap_info = NULL;
1384 struct mpi3mr_all_tgt_info *alltgt_info = NULL;
1385 uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
1387 if (job->request_payload.payload_len < sizeof(u32)) {
1388 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1393 spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1394 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
1396 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1398 if ((job->request_payload.payload_len <= sizeof(u64)) ||
1399 list_empty(&mrioc->tgtdev_list)) {
1400 sg_copy_from_buffer(job->request_payload.sg_list,
1401 job->request_payload.sg_cnt,
1402 &num_devices, sizeof(num_devices));
1406 kern_entrylen = num_devices * sizeof(*devmap_info);
1407 size = sizeof(u64) + kern_entrylen;
1408 alltgt_info = kzalloc(size, GFP_KERNEL);
1412 devmap_info = alltgt_info->dmi;
1413 memset((u8 *)devmap_info, 0xFF, kern_entrylen);
1414 spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
1415 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
1416 if (i < num_devices) {
1417 devmap_info[i].handle = tgtdev->dev_handle;
1418 devmap_info[i].perst_id = tgtdev->perst_id;
1419 if (tgtdev->host_exposed && tgtdev->starget) {
1420 devmap_info[i].target_id = tgtdev->starget->id;
1421 devmap_info[i].bus_id =
1422 tgtdev->starget->channel;
1428 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
1430 alltgt_info->num_devices = num_devices;
1432 usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
1433 sizeof(*devmap_info);
1434 usr_entrylen *= sizeof(*devmap_info);
1435 min_entrylen = min(usr_entrylen, kern_entrylen);
1437 sg_copy_from_buffer(job->request_payload.sg_list,
1438 job->request_payload.sg_cnt,
1439 alltgt_info, (min_entrylen + sizeof(u64)));
1444 * mpi3mr_get_change_count - Get topology change count
1445 * @mrioc: Adapter instance reference
1446 * @job: BSG job reference
1448 * This function copies the toplogy change count provided by the
1449 * driver in events and cached in the driver to the user
1450 * provided buffer for the specific controller.
1452 * Return: 0 on success and proper error codes on failure
1454 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
1455 struct bsg_job *job)
1457 struct mpi3mr_change_count chgcnt;
1459 memset(&chgcnt, 0, sizeof(chgcnt));
1460 chgcnt.change_count = mrioc->change_count;
1461 if (job->request_payload.payload_len >= sizeof(chgcnt)) {
1462 sg_copy_from_buffer(job->request_payload.sg_list,
1463 job->request_payload.sg_cnt,
1464 &chgcnt, sizeof(chgcnt));
1471 * mpi3mr_bsg_adp_reset - Issue controller reset
1472 * @mrioc: Adapter instance reference
1473 * @job: BSG job reference
1475 * This function identifies the user provided reset type and
1476 * issues approporiate reset to the controller and wait for that
1477 * to complete and reinitialize the controller and then returns
1479 * Return: 0 on success and proper error codes on failure
1481 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
1482 struct bsg_job *job)
1484 long rval = -EINVAL;
1486 struct mpi3mr_bsg_adp_reset adpreset;
1488 if (job->request_payload.payload_len !=
1490 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
1495 if (mrioc->unrecoverable || mrioc->block_on_pci_err)
1498 sg_copy_to_buffer(job->request_payload.sg_list,
1499 job->request_payload.sg_cnt,
1500 &adpreset, sizeof(adpreset));
1502 switch (adpreset.reset_type) {
1503 case MPI3MR_BSG_ADPRESET_SOFT:
1506 case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
1510 dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
1511 __func__, adpreset.reset_type);
1515 rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
1519 dprint_bsg_err(mrioc,
1520 "%s: reset handler returned error(%ld) for reset type %d\n",
1521 __func__, rval, adpreset.reset_type);
1527 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
1528 * @mrioc: Adapter instance reference
1529 * @job: BSG job reference
1531 * This function provides adapter information for the given
1534 * Return: 0 on success and proper error codes on failure
1536 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
1537 struct bsg_job *job)
1539 enum mpi3mr_iocstate ioc_state;
1540 struct mpi3mr_bsg_in_adpinfo adpinfo;
1542 memset(&adpinfo, 0, sizeof(adpinfo));
1543 adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
1544 adpinfo.pci_dev_id = mrioc->pdev->device;
1545 adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
1546 adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
1547 adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
1548 adpinfo.pci_bus = mrioc->pdev->bus->number;
1549 adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
1550 adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
1551 adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
1552 adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
1554 ioc_state = mpi3mr_get_iocstate(mrioc);
1555 if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1556 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1557 else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1558 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1559 else if (ioc_state == MRIOC_STATE_FAULT)
1560 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1562 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1564 memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
1565 sizeof(adpinfo.driver_info));
1567 if (job->request_payload.payload_len >= sizeof(adpinfo)) {
1568 sg_copy_from_buffer(job->request_payload.sg_list,
1569 job->request_payload.sg_cnt,
1570 &adpinfo, sizeof(adpinfo));
1577 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
1578 * @job: BSG job reference
1580 * This function is the top level handler for driver commands,
1581 * this does basic validation of the buffer and identifies the
1582 * opcode and switches to correct sub handler.
1584 * Return: 0 on success and proper error codes on failure
1586 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
1588 long rval = -EINVAL;
1589 struct mpi3mr_ioc *mrioc = NULL;
1590 struct mpi3mr_bsg_packet *bsg_req = NULL;
1591 struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
1593 bsg_req = job->request;
1594 drvrcmd = &bsg_req->cmd.drvrcmd;
1596 mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
1600 if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
1601 rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
1605 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
1606 return -ERESTARTSYS;
1608 switch (drvrcmd->opcode) {
1609 case MPI3MR_DRVBSG_OPCODE_ADPRESET:
1610 rval = mpi3mr_bsg_adp_reset(mrioc, job);
1612 case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
1613 rval = mpi3mr_get_all_tgt_info(mrioc, job);
1615 case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
1616 rval = mpi3mr_get_change_count(mrioc, job);
1618 case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
1619 rval = mpi3mr_enable_logdata(mrioc, job);
1621 case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
1622 rval = mpi3mr_get_logdata(mrioc, job);
1624 case MPI3MR_DRVBSG_OPCODE_PELENABLE:
1625 rval = mpi3mr_bsg_pel_enable(mrioc, job);
1627 case MPI3MR_DRVBSG_OPCODE_QUERY_HDB:
1628 rval = mpi3mr_bsg_query_hdb(mrioc, job);
1630 case MPI3MR_DRVBSG_OPCODE_REPOST_HDB:
1631 rval = mpi3mr_bsg_repost_hdb(mrioc, job);
1633 case MPI3MR_DRVBSG_OPCODE_UPLOAD_HDB:
1634 rval = mpi3mr_bsg_upload_hdb(mrioc, job);
1636 case MPI3MR_DRVBSG_OPCODE_REFRESH_HDB_TRIGGERS:
1637 rval = mpi3mr_bsg_refresh_hdb_triggers(mrioc, job);
1639 case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
1641 pr_err("%s: unsupported driver command opcode %d\n",
1642 MPI3MR_DRIVER_NAME, drvrcmd->opcode);
1645 mutex_unlock(&mrioc->bsg_cmds.mutex);
1650 * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
1651 * @drv_bufs: DMA address of the buffers to be placed in sgl
1652 * @bufcnt: Number of DMA buffers
1654 * This function returns total number of data SGEs required
1655 * including zero length SGEs and excluding management request
1656 * and response buffer for the given list of data buffer
1659 * Return: Number of SGE elements needed
1661 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
1664 u16 i, sge_count = 0;
1666 for (i = 0; i < bufcnt; i++, drv_bufs++) {
1667 if (drv_bufs->data_dir == DMA_NONE ||
1670 sge_count += drv_bufs->num_dma_desc;
1671 if (!drv_bufs->num_dma_desc)
1678 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
1679 * @mrioc: Adapter instance reference
1680 * @mpi_req: MPI request
1681 * @sgl_offset: offset to start sgl in the MPI request
1682 * @drv_bufs: DMA address of the buffers to be placed in sgl
1683 * @bufcnt: Number of DMA buffers
1684 * @is_rmc: Does the buffer list has management command buffer
1685 * @is_rmr: Does the buffer list has management response buffer
1686 * @num_datasges: Number of data buffers in the list
1688 * This function places the DMA address of the given buffers in
1689 * proper format as SGEs in the given MPI request.
1691 * Return: 0 on success,-1 on failure
1693 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
1694 u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
1695 u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
1697 struct mpi3_request_header *mpi_header =
1698 (struct mpi3_request_header *)mpi_req;
1699 u8 *sgl = (mpi_req + sgl_offset), count = 0;
1700 struct mpi3_mgmt_passthrough_request *rmgmt_req =
1701 (struct mpi3_mgmt_passthrough_request *)mpi_req;
1702 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1703 u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
1704 u16 available_sges, i, sges_needed;
1705 u32 sge_element_size = sizeof(struct mpi3_sge_common);
1706 bool chain_used = false;
1708 sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
1709 MPI3_SGE_FLAGS_DLAS_SYSTEM;
1710 sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
1711 sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
1712 last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
1713 MPI3_SGE_FLAGS_DLAS_SYSTEM;
1715 sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
1718 mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
1719 sgl_flags_last, drv_buf_iter->kern_buf_len,
1720 drv_buf_iter->kern_buf_dma);
1721 sgl = (u8 *)drv_buf_iter->kern_buf +
1722 drv_buf_iter->bsg_buf_len;
1723 available_sges = (drv_buf_iter->kern_buf_len -
1724 drv_buf_iter->bsg_buf_len) / sge_element_size;
1726 if (sges_needed > available_sges)
1733 mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
1734 sgl_flags_last, drv_buf_iter->kern_buf_len,
1735 drv_buf_iter->kern_buf_dma);
1739 mpi3mr_build_zero_len_sge(
1740 &rmgmt_req->response_sgl);
1746 if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
1748 available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
1750 if (!available_sges)
1753 if (!num_datasges) {
1754 mpi3mr_build_zero_len_sge(sgl);
1757 if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1758 if ((sges_needed > 2) || (sges_needed > available_sges))
1760 for (; count < bufcnt; count++, drv_buf_iter++) {
1761 if (drv_buf_iter->data_dir == DMA_NONE ||
1762 !drv_buf_iter->num_dma_desc)
1764 mpi3mr_add_sg_single(sgl, sgl_flags_last,
1765 drv_buf_iter->dma_desc[0].size,
1766 drv_buf_iter->dma_desc[0].dma_addr);
1767 sgl += sge_element_size;
1774 for (; count < bufcnt; count++, drv_buf_iter++) {
1775 if (drv_buf_iter->data_dir == DMA_NONE)
1777 if (!drv_buf_iter->num_dma_desc) {
1778 if (chain_used && !available_sges)
1780 if (!chain_used && (available_sges == 1) &&
1783 flag = sgl_flag_eob;
1784 if (num_datasges == 1)
1785 flag = sgl_flags_last;
1786 mpi3mr_add_sg_single(sgl, flag, 0, 0);
1787 sgl += sge_element_size;
1793 for (; i < drv_buf_iter->num_dma_desc; i++) {
1794 if (chain_used && !available_sges)
1796 if (!chain_used && (available_sges == 1) &&
1800 if (i == (drv_buf_iter->num_dma_desc - 1)) {
1801 if (num_datasges == 1)
1802 flag = sgl_flags_last;
1804 flag = sgl_flag_eob;
1807 mpi3mr_add_sg_single(sgl, flag,
1808 drv_buf_iter->dma_desc[i].size,
1809 drv_buf_iter->dma_desc[i].dma_addr);
1810 sgl += sge_element_size;
1820 available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1821 if (sges_needed > available_sges)
1823 mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
1824 (sges_needed * sge_element_size),
1825 mrioc->ioctl_chain_sge.dma_addr);
1826 memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1827 sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
1833 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
1834 * @nvme_encap_request: NVMe encapsulated MPI request
1836 * This function returns the type of the data format specified
1837 * in user provided NVMe command in NVMe encapsulated request.
1839 * Return: Data format of the NVMe command (PRP/SGL etc)
1841 static unsigned int mpi3mr_get_nvme_data_fmt(
1842 struct mpi3_nvme_encapsulated_request *nvme_encap_request)
1846 format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
1852 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
1853 * encapsulated request
1854 * @mrioc: Adapter instance reference
1855 * @nvme_encap_request: NVMe encapsulated MPI request
1856 * @drv_bufs: DMA address of the buffers to be placed in sgl
1857 * @bufcnt: Number of DMA buffers
1859 * This function places the DMA address of the given buffers in
1860 * proper format as SGEs in the given NVMe encapsulated request.
1862 * Return: 0 on success, -1 on failure
1864 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
1865 struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1866 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1868 struct mpi3mr_nvme_pt_sge *nvme_sgl;
1872 u16 available_sges = 0, i;
1873 u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
1874 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1875 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1876 mrioc->facts.sge_mod_shift) << 32);
1877 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1878 mrioc->facts.sge_mod_shift) << 32;
1881 nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
1882 ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
1885 * Not all commands require a data transfer. If no data, just return
1886 * without constructing any sgl.
1888 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1889 if (drv_buf_iter->data_dir == DMA_NONE)
1891 length = drv_buf_iter->kern_buf_len;
1894 if (!length || !drv_buf_iter->num_dma_desc)
1897 if (drv_buf_iter->num_dma_desc == 1) {
1902 sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
1903 if (sgl_dma & sgemod_mask) {
1904 dprint_bsg_err(mrioc,
1905 "%s: SGL chain address collides with SGE modifier\n",
1910 sgl_dma &= ~sgemod_mask;
1911 sgl_dma |= sgemod_val;
1913 memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
1914 available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
1915 if (available_sges < drv_buf_iter->num_dma_desc)
1917 memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
1918 nvme_sgl->base_addr = sgl_dma;
1919 size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
1920 nvme_sgl->length = cpu_to_le32(size);
1921 nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
1922 nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
1925 for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
1926 sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
1927 if (sgl_dma & sgemod_mask) {
1928 dprint_bsg_err(mrioc,
1929 "%s: SGL address collides with SGE modifier\n",
1934 sgl_dma &= ~sgemod_mask;
1935 sgl_dma |= sgemod_val;
1937 nvme_sgl->base_addr = sgl_dma;
1938 nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
1939 nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
1948 * mpi3mr_build_nvme_prp - PRP constructor for NVME
1949 * encapsulated request
1950 * @mrioc: Adapter instance reference
1951 * @nvme_encap_request: NVMe encapsulated MPI request
1952 * @drv_bufs: DMA address of the buffers to be placed in SGL
1953 * @bufcnt: Number of DMA buffers
1955 * This function places the DMA address of the given buffers in
1956 * proper format as PRP entries in the given NVMe encapsulated
1959 * Return: 0 on success, -1 on failure
1961 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
1962 struct mpi3_nvme_encapsulated_request *nvme_encap_request,
1963 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
1965 int prp_size = MPI3MR_NVME_PRP_SIZE;
1966 __le64 *prp_entry, *prp1_entry, *prp2_entry;
1968 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
1969 u32 offset, entry_len, dev_pgsz;
1970 u32 page_mask_result, page_mask;
1971 size_t length = 0, desc_len;
1973 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
1974 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
1975 mrioc->facts.sge_mod_shift) << 32);
1976 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
1977 mrioc->facts.sge_mod_shift) << 32;
1978 u16 dev_handle = nvme_encap_request->dev_handle;
1979 struct mpi3mr_tgt_dev *tgtdev;
1982 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1984 dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
1985 __func__, dev_handle);
1989 if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
1990 dprint_bsg_err(mrioc,
1991 "%s: NVMe device page size is zero for handle 0x%04x\n",
1992 __func__, dev_handle);
1993 mpi3mr_tgtdev_put(tgtdev);
1997 dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
1998 mpi3mr_tgtdev_put(tgtdev);
1999 page_mask = dev_pgsz - 1;
2001 if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
2002 dprint_bsg_err(mrioc,
2003 "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
2004 __func__, dev_pgsz, MPI3MR_IOCTL_SGE_SIZE, dev_handle);
2008 if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
2009 dprint_bsg_err(mrioc,
2010 "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
2011 __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
2016 * Not all commands require a data transfer. If no data, just return
2017 * without constructing any PRP.
2019 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2020 if (drv_buf_iter->data_dir == DMA_NONE)
2022 length = drv_buf_iter->kern_buf_len;
2026 if (!length || !drv_buf_iter->num_dma_desc)
2029 for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
2030 dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
2031 if (dma_addr & page_mask) {
2032 dprint_bsg_err(mrioc,
2033 "%s:dma_addr %pad is not aligned with page size 0x%x\n",
2034 __func__, &dma_addr, dev_pgsz);
2039 dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
2040 desc_len = drv_buf_iter->dma_desc[0].size;
2043 mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
2044 dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
2046 if (!mrioc->prp_list_virt)
2048 mrioc->prp_sz = dev_pgsz;
2051 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
2052 * PRP1 is located at a 24 byte offset from the start of the NVMe
2053 * command. Then set the current PRP entry pointer to PRP1.
2055 prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2056 MPI3MR_NVME_CMD_PRP1_OFFSET);
2057 prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
2058 MPI3MR_NVME_CMD_PRP2_OFFSET);
2059 prp_entry = prp1_entry;
2061 * For the PRP entries, use the specially allocated buffer of
2062 * contiguous memory.
2064 prp_page = (__le64 *)mrioc->prp_list_virt;
2065 prp_page_dma = mrioc->prp_list_dma;
2068 * Check if we are within 1 entry of a page boundary we don't
2069 * want our first entry to be a PRP List entry.
2071 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2072 if (!page_mask_result) {
2073 dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
2079 * Set PRP physical pointer, which initially points to the current PRP
2082 prp_entry_dma = prp_page_dma;
2085 /* Loop while the length is not zero. */
2087 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2088 if (!page_mask_result && (length > dev_pgsz)) {
2089 dprint_bsg_err(mrioc,
2090 "%s: single PRP page is not sufficient\n",
2095 /* Need to handle if entry will be part of a page. */
2096 offset = dma_addr & page_mask;
2097 entry_len = dev_pgsz - offset;
2099 if (prp_entry == prp1_entry) {
2101 * Must fill in the first PRP pointer (PRP1) before
2104 *prp1_entry = cpu_to_le64(dma_addr);
2105 if (*prp1_entry & sgemod_mask) {
2106 dprint_bsg_err(mrioc,
2107 "%s: PRP1 address collides with SGE modifier\n",
2111 *prp1_entry &= ~sgemod_mask;
2112 *prp1_entry |= sgemod_val;
2115 * Now point to the second PRP entry within the
2118 prp_entry = prp2_entry;
2119 } else if (prp_entry == prp2_entry) {
2121 * Should the PRP2 entry be a PRP List pointer or just
2122 * a regular PRP pointer? If there is more than one
2123 * more page of data, must use a PRP List pointer.
2125 if (length > dev_pgsz) {
2127 * PRP2 will contain a PRP List pointer because
2128 * more PRP's are needed with this command. The
2129 * list will start at the beginning of the
2130 * contiguous buffer.
2132 *prp2_entry = cpu_to_le64(prp_entry_dma);
2133 if (*prp2_entry & sgemod_mask) {
2134 dprint_bsg_err(mrioc,
2135 "%s: PRP list address collides with SGE modifier\n",
2139 *prp2_entry &= ~sgemod_mask;
2140 *prp2_entry |= sgemod_val;
2143 * The next PRP Entry will be the start of the
2146 prp_entry = prp_page;
2150 * After this, the PRP Entries are complete.
2151 * This command uses 2 PRP's and no PRP list.
2153 *prp2_entry = cpu_to_le64(dma_addr);
2154 if (*prp2_entry & sgemod_mask) {
2155 dprint_bsg_err(mrioc,
2156 "%s: PRP2 collides with SGE modifier\n",
2160 *prp2_entry &= ~sgemod_mask;
2161 *prp2_entry |= sgemod_val;
2165 * Put entry in list and bump the addresses.
2167 * After PRP1 and PRP2 are filled in, this will fill in
2168 * all remaining PRP entries in a PRP List, one per
2169 * each time through the loop.
2171 *prp_entry = cpu_to_le64(dma_addr);
2172 if (*prp_entry & sgemod_mask) {
2173 dprint_bsg_err(mrioc,
2174 "%s: PRP address collides with SGE modifier\n",
2178 *prp_entry &= ~sgemod_mask;
2179 *prp_entry |= sgemod_val;
2181 prp_entry_dma += prp_size;
2184 /* decrement length accounting for last partial page. */
2185 if (entry_len >= length) {
2188 if (entry_len <= desc_len) {
2189 dma_addr += entry_len;
2190 desc_len -= entry_len;
2193 if ((++desc_count) >=
2194 drv_buf_iter->num_dma_desc) {
2195 dprint_bsg_err(mrioc,
2196 "%s: Invalid len %zd while building PRP\n",
2201 drv_buf_iter->dma_desc[desc_count].dma_addr;
2203 drv_buf_iter->dma_desc[desc_count].size;
2205 length -= entry_len;
2211 if (mrioc->prp_list_virt) {
2212 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2213 mrioc->prp_list_virt, mrioc->prp_list_dma);
2214 mrioc->prp_list_virt = NULL;
2220 * mpi3mr_map_data_buffer_dma - build dma descriptors for data
2222 * @mrioc: Adapter instance reference
2223 * @drv_buf: buffer map descriptor
2224 * @desc_count: Number of already consumed dma descriptors
2226 * This function computes how many pre-allocated DMA descriptors
2227 * are required for the given data buffer and if those number of
2228 * descriptors are free, then setup the mapping of the scattered
2229 * DMA address to the given data buffer, if the data direction
2230 * of the buffer is DMA_TO_DEVICE then the actual data is copied to
2233 * Return: 0 on success, -1 on failure
2235 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
2236 struct mpi3mr_buf_map *drv_buf,
2239 u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
2240 u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
2242 if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
2244 if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
2245 dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
2246 __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
2249 drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
2251 if (!drv_buf->dma_desc)
2253 for (i = 0; i < needed_desc; i++, desc_count++) {
2254 drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
2255 drv_buf->dma_desc[i].dma_addr =
2256 mrioc->ioctl_sge[desc_count].dma_addr;
2257 if (buf_len < mrioc->ioctl_sge[desc_count].size)
2258 drv_buf->dma_desc[i].size = buf_len;
2260 drv_buf->dma_desc[i].size =
2261 mrioc->ioctl_sge[desc_count].size;
2262 buf_len -= drv_buf->dma_desc[i].size;
2263 memset(drv_buf->dma_desc[i].addr, 0,
2264 mrioc->ioctl_sge[desc_count].size);
2265 if (drv_buf->data_dir == DMA_TO_DEVICE) {
2266 memcpy(drv_buf->dma_desc[i].addr,
2267 drv_buf->bsg_buf + copied_len,
2268 drv_buf->dma_desc[i].size);
2269 copied_len += drv_buf->dma_desc[i].size;
2272 drv_buf->num_dma_desc = needed_desc;
2276 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
2277 * @job: BSG job reference
2279 * This function is the top level handler for MPI Pass through
2280 * command, this does basic validation of the input data buffers,
2281 * identifies the given buffer types and MPI command, allocates
2282 * DMAable memory for user given buffers, construstcs SGL
2283 * properly and passes the command to the firmware.
2285 * Once the MPI command is completed the driver copies the data
2286 * if any and reply, sense information to user provided buffers.
2287 * If the command is timed out then issues controller reset
2288 * prior to returning.
2290 * Return: 0 on success and proper error codes on failure
2293 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
2295 long rval = -EINVAL;
2296 struct mpi3mr_ioc *mrioc = NULL;
2297 u8 *mpi_req = NULL, *sense_buff_k = NULL;
2298 u8 mpi_msg_size = 0;
2299 struct mpi3mr_bsg_packet *bsg_req = NULL;
2300 struct mpi3mr_bsg_mptcmd *karg;
2301 struct mpi3mr_buf_entry *buf_entries = NULL;
2302 struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
2303 u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
2304 u8 din_cnt = 0, dout_cnt = 0;
2305 u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
2306 u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
2307 struct mpi3_request_header *mpi_header = NULL;
2308 struct mpi3_status_reply_descriptor *status_desc;
2309 struct mpi3_scsi_task_mgmt_request *tm_req;
2310 u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
2312 struct mpi3mr_tgt_dev *tgtdev;
2313 struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
2314 struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
2315 u32 din_size = 0, dout_size = 0;
2316 u8 *din_buf = NULL, *dout_buf = NULL;
2317 u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
2318 u16 rmc_size = 0, desc_count = 0;
2320 bsg_req = job->request;
2321 karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
2323 mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
2327 if (!mrioc->ioctl_sges_allocated) {
2328 dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
2333 if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
2334 karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
2336 mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
2339 mpi_header = (struct mpi3_request_header *)mpi_req;
2341 bufcnt = karg->buf_entry_list.num_of_entries;
2342 drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
2348 dout_buf = kzalloc(job->request_payload.payload_len,
2355 din_buf = kzalloc(job->reply_payload.payload_len,
2362 sg_copy_to_buffer(job->request_payload.sg_list,
2363 job->request_payload.sg_cnt,
2364 dout_buf, job->request_payload.payload_len);
2366 buf_entries = karg->buf_entry_list.buf_entry;
2367 sgl_din_iter = din_buf;
2368 sgl_dout_iter = dout_buf;
2369 drv_buf_iter = drv_bufs;
2371 for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
2373 switch (buf_entries->buf_type) {
2374 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
2375 sgl_iter = sgl_dout_iter;
2376 sgl_dout_iter += buf_entries->buf_len;
2377 drv_buf_iter->data_dir = DMA_TO_DEVICE;
2379 if ((count != 0) || !buf_entries->buf_len)
2382 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
2383 sgl_iter = sgl_din_iter;
2384 sgl_din_iter += buf_entries->buf_len;
2385 drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2387 if (count != 1 || !is_rmcb || !buf_entries->buf_len)
2390 case MPI3MR_BSG_BUFTYPE_DATA_IN:
2391 sgl_iter = sgl_din_iter;
2392 sgl_din_iter += buf_entries->buf_len;
2393 drv_buf_iter->data_dir = DMA_FROM_DEVICE;
2395 din_size += buf_entries->buf_len;
2396 if ((din_cnt > 1) && !is_rmcb)
2399 case MPI3MR_BSG_BUFTYPE_DATA_OUT:
2400 sgl_iter = sgl_dout_iter;
2401 sgl_dout_iter += buf_entries->buf_len;
2402 drv_buf_iter->data_dir = DMA_TO_DEVICE;
2404 dout_size += buf_entries->buf_len;
2405 if ((dout_cnt > 1) && !is_rmcb)
2408 case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
2409 sgl_iter = sgl_din_iter;
2410 sgl_din_iter += buf_entries->buf_len;
2411 drv_buf_iter->data_dir = DMA_NONE;
2412 mpirep_offset = count;
2413 if (!buf_entries->buf_len)
2416 case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
2417 sgl_iter = sgl_din_iter;
2418 sgl_din_iter += buf_entries->buf_len;
2419 drv_buf_iter->data_dir = DMA_NONE;
2421 if (!buf_entries->buf_len)
2424 case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
2425 sgl_iter = sgl_dout_iter;
2426 sgl_dout_iter += buf_entries->buf_len;
2427 drv_buf_iter->data_dir = DMA_NONE;
2428 mpi_msg_size = buf_entries->buf_len;
2429 if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
2430 (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
2431 dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
2436 memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
2443 dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
2449 if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
2450 dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
2455 if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
2456 dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
2462 drv_buf_iter->bsg_buf = sgl_iter;
2463 drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
2466 if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
2467 dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
2468 __func__, __LINE__, mpi_header->function, din_size,
2474 if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
2475 dprint_bsg_err(mrioc,
2476 "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
2477 __func__, __LINE__, mpi_header->function, din_size);
2481 if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
2482 dprint_bsg_err(mrioc,
2483 "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
2484 __func__, __LINE__, mpi_header->function, dout_size);
2489 if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
2490 if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
2491 dout_size > MPI3MR_IOCTL_SGE_SIZE) {
2492 dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
2493 __func__, __LINE__, din_cnt, dout_cnt, din_size,
2500 drv_buf_iter = drv_bufs;
2501 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2502 if (drv_buf_iter->data_dir == DMA_NONE)
2505 drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
2506 if (is_rmcb && !count) {
2507 drv_buf_iter->kern_buf_len =
2508 mrioc->ioctl_chain_sge.size;
2509 drv_buf_iter->kern_buf =
2510 mrioc->ioctl_chain_sge.addr;
2511 drv_buf_iter->kern_buf_dma =
2512 mrioc->ioctl_chain_sge.dma_addr;
2513 drv_buf_iter->dma_desc = NULL;
2514 drv_buf_iter->num_dma_desc = 0;
2515 memset(drv_buf_iter->kern_buf, 0,
2516 drv_buf_iter->kern_buf_len);
2517 tmplen = min(drv_buf_iter->kern_buf_len,
2518 drv_buf_iter->bsg_buf_len);
2520 memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
2521 } else if (is_rmrb && (count == 1)) {
2522 drv_buf_iter->kern_buf_len =
2523 mrioc->ioctl_resp_sge.size;
2524 drv_buf_iter->kern_buf =
2525 mrioc->ioctl_resp_sge.addr;
2526 drv_buf_iter->kern_buf_dma =
2527 mrioc->ioctl_resp_sge.dma_addr;
2528 drv_buf_iter->dma_desc = NULL;
2529 drv_buf_iter->num_dma_desc = 0;
2530 memset(drv_buf_iter->kern_buf, 0,
2531 drv_buf_iter->kern_buf_len);
2532 tmplen = min(drv_buf_iter->kern_buf_len,
2533 drv_buf_iter->bsg_buf_len);
2534 drv_buf_iter->kern_buf_len = tmplen;
2535 memset(drv_buf_iter->bsg_buf, 0,
2536 drv_buf_iter->bsg_buf_len);
2538 if (!drv_buf_iter->kern_buf_len)
2540 if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
2542 dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
2543 __func__, __LINE__);
2546 desc_count += drv_buf_iter->num_dma_desc;
2550 if (erb_offset != 0xFF) {
2551 sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
2552 if (!sense_buff_k) {
2558 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
2559 rval = -ERESTARTSYS;
2562 if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
2564 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
2565 mutex_unlock(&mrioc->bsg_cmds.mutex);
2568 if (mrioc->unrecoverable) {
2569 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
2572 mutex_unlock(&mrioc->bsg_cmds.mutex);
2575 if (mrioc->reset_in_progress) {
2576 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
2578 mutex_unlock(&mrioc->bsg_cmds.mutex);
2581 if (mrioc->stop_bsgs || mrioc->block_on_pci_err) {
2582 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
2584 mutex_unlock(&mrioc->bsg_cmds.mutex);
2588 if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
2589 nvme_fmt = mpi3mr_get_nvme_data_fmt(
2590 (struct mpi3_nvme_encapsulated_request *)mpi_req);
2591 if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
2592 if (mpi3mr_build_nvme_prp(mrioc,
2593 (struct mpi3_nvme_encapsulated_request *)mpi_req,
2594 drv_bufs, bufcnt)) {
2596 mutex_unlock(&mrioc->bsg_cmds.mutex);
2599 } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
2600 nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
2601 if (mpi3mr_build_nvme_sgl(mrioc,
2602 (struct mpi3_nvme_encapsulated_request *)mpi_req,
2603 drv_bufs, bufcnt)) {
2605 mutex_unlock(&mrioc->bsg_cmds.mutex);
2609 dprint_bsg_err(mrioc,
2610 "%s:invalid NVMe command format\n", __func__);
2612 mutex_unlock(&mrioc->bsg_cmds.mutex);
2616 if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
2617 drv_bufs, bufcnt, is_rmcb, is_rmrb,
2618 (dout_cnt + din_cnt))) {
2619 dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
2621 mutex_unlock(&mrioc->bsg_cmds.mutex);
2626 if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
2627 tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
2628 if (tm_req->task_type !=
2629 MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
2630 dev_handle = tm_req->dev_handle;
2635 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
2636 if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
2637 stgt_priv = (struct mpi3mr_stgt_priv_data *)
2638 tgtdev->starget->hostdata;
2639 atomic_inc(&stgt_priv->block_io);
2640 mpi3mr_tgtdev_put(tgtdev);
2644 mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
2645 mrioc->bsg_cmds.is_waiting = 1;
2646 mrioc->bsg_cmds.callback = NULL;
2647 mrioc->bsg_cmds.is_sense = 0;
2648 mrioc->bsg_cmds.sensebuf = sense_buff_k;
2649 memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
2650 mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
2651 if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
2652 dprint_bsg_info(mrioc,
2653 "%s: posting bsg request to the controller\n", __func__);
2654 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2656 if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
2657 drv_buf_iter = &drv_bufs[0];
2658 dprint_dump(drv_buf_iter->kern_buf,
2659 rmc_size, "mpi3_mgmt_req");
2663 init_completion(&mrioc->bsg_cmds.done);
2664 rval = mpi3mr_admin_request_post(mrioc, mpi_req,
2665 MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
2669 mrioc->bsg_cmds.is_waiting = 0;
2670 dprint_bsg_err(mrioc,
2671 "%s: posting bsg request is failed\n", __func__);
2675 wait_for_completion_timeout(&mrioc->bsg_cmds.done,
2676 (karg->timeout * HZ));
2677 if (block_io && stgt_priv)
2678 atomic_dec(&stgt_priv->block_io);
2679 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
2680 mrioc->bsg_cmds.is_waiting = 0;
2682 if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
2684 if (((mpi_header->function != MPI3_FUNCTION_SCSI_IO) &&
2685 (mpi_header->function != MPI3_FUNCTION_NVME_ENCAPSULATED))
2686 || (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR)) {
2687 ioc_info(mrioc, "%s: bsg request timedout after %d seconds\n",
2688 __func__, karg->timeout);
2689 if (!(mrioc->logging_level & MPI3_DEBUG_BSG_INFO)) {
2690 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
2692 if (mpi_header->function ==
2693 MPI3_FUNCTION_MGMT_PASSTHROUGH) {
2694 drv_buf_iter = &drv_bufs[0];
2695 dprint_dump(drv_buf_iter->kern_buf,
2696 rmc_size, "mpi3_mgmt_req");
2700 if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
2701 (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO)) {
2702 dprint_bsg_err(mrioc, "%s: bsg request timedout after %d seconds,\n"
2703 "issuing target reset to (0x%04x)\n", __func__,
2704 karg->timeout, mpi_header->function_dependent);
2705 mpi3mr_issue_tm(mrioc,
2706 MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
2707 mpi_header->function_dependent, 0,
2708 MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
2709 &mrioc->host_tm_cmds, &resp_code, NULL);
2711 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
2712 !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
2713 mpi3mr_soft_reset_handler(mrioc,
2714 MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
2717 dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
2719 if (mrioc->prp_list_virt) {
2720 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
2721 mrioc->prp_list_virt, mrioc->prp_list_dma);
2722 mrioc->prp_list_virt = NULL;
2725 if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
2726 != MPI3_IOCSTATUS_SUCCESS) {
2727 dprint_bsg_info(mrioc,
2728 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
2730 (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
2731 mrioc->bsg_cmds.ioc_loginfo);
2734 if ((mpirep_offset != 0xFF) &&
2735 drv_bufs[mpirep_offset].bsg_buf_len) {
2736 drv_buf_iter = &drv_bufs[mpirep_offset];
2737 drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
2739 bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
2741 if (!bsg_reply_buf) {
2745 if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
2746 bsg_reply_buf->mpi_reply_type =
2747 MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
2748 memcpy(bsg_reply_buf->reply_buf,
2749 mrioc->bsg_cmds.reply, mrioc->reply_sz);
2751 bsg_reply_buf->mpi_reply_type =
2752 MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
2753 status_desc = (struct mpi3_status_reply_descriptor *)
2754 bsg_reply_buf->reply_buf;
2755 status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
2756 status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
2758 tmplen = min(drv_buf_iter->kern_buf_len,
2759 drv_buf_iter->bsg_buf_len);
2760 memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
2763 if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
2764 mrioc->bsg_cmds.is_sense) {
2765 drv_buf_iter = &drv_bufs[erb_offset];
2766 tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
2767 memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
2770 drv_buf_iter = drv_bufs;
2771 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
2772 if (drv_buf_iter->data_dir == DMA_NONE)
2774 if ((count == 1) && is_rmrb) {
2775 memcpy(drv_buf_iter->bsg_buf,
2776 drv_buf_iter->kern_buf,
2777 drv_buf_iter->kern_buf_len);
2778 } else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
2780 for (desc_count = 0;
2781 desc_count < drv_buf_iter->num_dma_desc;
2783 memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
2784 drv_buf_iter->dma_desc[desc_count].addr,
2785 drv_buf_iter->dma_desc[desc_count].size);
2787 drv_buf_iter->dma_desc[desc_count].size;
2794 job->reply_payload_rcv_len =
2795 sg_copy_from_buffer(job->reply_payload.sg_list,
2796 job->reply_payload.sg_cnt,
2797 din_buf, job->reply_payload.payload_len);
2799 mrioc->bsg_cmds.is_sense = 0;
2800 mrioc->bsg_cmds.sensebuf = NULL;
2801 mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
2802 mutex_unlock(&mrioc->bsg_cmds.mutex);
2804 kfree(sense_buff_k);
2809 drv_buf_iter = drv_bufs;
2810 for (count = 0; count < bufcnt; count++, drv_buf_iter++)
2811 kfree(drv_buf_iter->dma_desc);
2814 kfree(bsg_reply_buf);
2819 * mpi3mr_app_save_logdata - Save Log Data events
2820 * @mrioc: Adapter instance reference
2821 * @event_data: event data associated with log data event
2822 * @event_data_size: event data size to copy
2824 * If log data event caching is enabled by the applicatiobns,
2825 * then this function saves the log data in the circular queue
2826 * and Sends async signal SIGIO to indicate there is an async
2827 * event from the firmware to the event monitoring applications.
2831 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
2832 u16 event_data_size)
2834 u32 index = mrioc->logdata_buf_idx, sz;
2835 struct mpi3mr_logdata_entry *entry;
2837 if (!(mrioc->logdata_buf))
2840 entry = (struct mpi3mr_logdata_entry *)
2841 (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
2842 entry->valid_entry = 1;
2843 sz = min(mrioc->logdata_entry_sz, event_data_size);
2844 memcpy(entry->data, event_data, sz);
2845 mrioc->logdata_buf_idx =
2846 ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
2847 atomic64_inc(&event_counter);
2851 * mpi3mr_bsg_request - bsg request entry point
2852 * @job: BSG job reference
2854 * This is driver's entry point for bsg requests
2856 * Return: 0 on success and proper error codes on failure
2858 static int mpi3mr_bsg_request(struct bsg_job *job)
2860 long rval = -EINVAL;
2861 unsigned int reply_payload_rcv_len = 0;
2863 struct mpi3mr_bsg_packet *bsg_req = job->request;
2865 switch (bsg_req->cmd_type) {
2866 case MPI3MR_DRV_CMD:
2867 rval = mpi3mr_bsg_process_drv_cmds(job);
2869 case MPI3MR_MPT_CMD:
2870 rval = mpi3mr_bsg_process_mpt_cmds(job);
2873 pr_err("%s: unsupported BSG command(0x%08x)\n",
2874 MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
2878 bsg_job_done(job, rval, reply_payload_rcv_len);
2884 * mpi3mr_bsg_exit - de-registration from bsg layer
2885 * @mrioc: Adapter instance reference
2887 * This will be called during driver unload and all
2888 * bsg resources allocated during load will be freed.
2892 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
2894 struct device *bsg_dev = &mrioc->bsg_dev;
2895 if (!mrioc->bsg_queue)
2898 bsg_remove_queue(mrioc->bsg_queue);
2899 mrioc->bsg_queue = NULL;
2901 device_del(bsg_dev);
2902 put_device(bsg_dev);
2906 * mpi3mr_bsg_node_release -release bsg device node
2907 * @dev: bsg device node
2909 * decrements bsg dev parent reference count
2913 static void mpi3mr_bsg_node_release(struct device *dev)
2915 put_device(dev->parent);
2919 * mpi3mr_bsg_init - registration with bsg layer
2920 * @mrioc: Adapter instance reference
2922 * This will be called during driver load and it will
2923 * register driver with bsg layer
2927 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
2929 struct device *bsg_dev = &mrioc->bsg_dev;
2930 struct device *parent = &mrioc->shost->shost_gendev;
2931 struct queue_limits lim = {
2932 .max_hw_sectors = MPI3MR_MAX_APP_XFER_SECTORS,
2933 .max_segments = MPI3MR_MAX_APP_XFER_SEGMENTS,
2936 device_initialize(bsg_dev);
2938 bsg_dev->parent = get_device(parent);
2939 bsg_dev->release = mpi3mr_bsg_node_release;
2941 dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
2943 if (device_add(bsg_dev)) {
2944 ioc_err(mrioc, "%s: bsg device add failed\n",
2946 put_device(bsg_dev);
2950 mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev), &lim,
2951 mpi3mr_bsg_request, NULL, 0);
2952 if (IS_ERR(mrioc->bsg_queue)) {
2953 ioc_err(mrioc, "%s: bsg registration failed\n",
2955 device_del(bsg_dev);
2956 put_device(bsg_dev);
2961 * version_fw_show - SysFS callback for firmware version read
2962 * @dev: class device
2963 * @attr: Device attributes
2964 * @buf: Buffer to copy
2966 * Return: sysfs_emit() return after copying firmware version
2969 version_fw_show(struct device *dev, struct device_attribute *attr,
2972 struct Scsi_Host *shost = class_to_shost(dev);
2973 struct mpi3mr_ioc *mrioc = shost_priv(shost);
2974 struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
2976 return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
2977 fwver->gen_major, fwver->gen_minor, fwver->ph_major,
2978 fwver->ph_minor, fwver->cust_id, fwver->build_num);
2980 static DEVICE_ATTR_RO(version_fw);
2983 * fw_queue_depth_show - SysFS callback for firmware max cmds
2984 * @dev: class device
2985 * @attr: Device attributes
2986 * @buf: Buffer to copy
2988 * Return: sysfs_emit() return after copying firmware max commands
2991 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
2994 struct Scsi_Host *shost = class_to_shost(dev);
2995 struct mpi3mr_ioc *mrioc = shost_priv(shost);
2997 return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
2999 static DEVICE_ATTR_RO(fw_queue_depth);
3002 * op_req_q_count_show - SysFS callback for request queue count
3003 * @dev: class device
3004 * @attr: Device attributes
3005 * @buf: Buffer to copy
3007 * Return: sysfs_emit() return after copying request queue count
3010 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
3013 struct Scsi_Host *shost = class_to_shost(dev);
3014 struct mpi3mr_ioc *mrioc = shost_priv(shost);
3016 return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
3018 static DEVICE_ATTR_RO(op_req_q_count);
3021 * reply_queue_count_show - SysFS callback for reply queue count
3022 * @dev: class device
3023 * @attr: Device attributes
3024 * @buf: Buffer to copy
3026 * Return: sysfs_emit() return after copying reply queue count
3029 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
3032 struct Scsi_Host *shost = class_to_shost(dev);
3033 struct mpi3mr_ioc *mrioc = shost_priv(shost);
3035 return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
3038 static DEVICE_ATTR_RO(reply_queue_count);
3041 * logging_level_show - Show controller debug level
3042 * @dev: class device
3043 * @attr: Device attributes
3044 * @buf: Buffer to copy
3046 * A sysfs 'read/write' shost attribute, to show the current
3047 * debug log level used by the driver for the specific
3050 * Return: sysfs_emit() return
3053 logging_level_show(struct device *dev,
3054 struct device_attribute *attr, char *buf)
3057 struct Scsi_Host *shost = class_to_shost(dev);
3058 struct mpi3mr_ioc *mrioc = shost_priv(shost);
3060 return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
3064 * logging_level_store- Change controller debug level
3065 * @dev: class device
3066 * @attr: Device attributes
3067 * @buf: Buffer to copy
3068 * @count: size of the buffer
3070 * A sysfs 'read/write' shost attribute, to change the current
3071 * debug log level used by the driver for the specific
3074 * Return: strlen() return
3077 logging_level_store(struct device *dev,
3078 struct device_attribute *attr,
3079 const char *buf, size_t count)
3081 struct Scsi_Host *shost = class_to_shost(dev);
3082 struct mpi3mr_ioc *mrioc = shost_priv(shost);
3085 if (kstrtoint(buf, 0, &val) != 0)
3088 mrioc->logging_level = val;
3089 ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
3092 static DEVICE_ATTR_RW(logging_level);
3095 * adp_state_show() - SysFS callback for adapter state show
3096 * @dev: class device
3097 * @attr: Device attributes
3098 * @buf: Buffer to copy
3100 * Return: sysfs_emit() return after copying adapter state
3103 adp_state_show(struct device *dev, struct device_attribute *attr,
3106 struct Scsi_Host *shost = class_to_shost(dev);
3107 struct mpi3mr_ioc *mrioc = shost_priv(shost);
3108 enum mpi3mr_iocstate ioc_state;
3111 ioc_state = mpi3mr_get_iocstate(mrioc);
3112 if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
3113 adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
3114 else if (mrioc->reset_in_progress || mrioc->stop_bsgs ||
3115 mrioc->block_on_pci_err)
3116 adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
3117 else if (ioc_state == MRIOC_STATE_FAULT)
3118 adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
3120 adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
3122 return sysfs_emit(buf, "%u\n", adp_state);
3125 static DEVICE_ATTR_RO(adp_state);
3127 static struct attribute *mpi3mr_host_attrs[] = {
3128 &dev_attr_version_fw.attr,
3129 &dev_attr_fw_queue_depth.attr,
3130 &dev_attr_op_req_q_count.attr,
3131 &dev_attr_reply_queue_count.attr,
3132 &dev_attr_logging_level.attr,
3133 &dev_attr_adp_state.attr,
3137 static const struct attribute_group mpi3mr_host_attr_group = {
3138 .attrs = mpi3mr_host_attrs
3141 const struct attribute_group *mpi3mr_host_groups[] = {
3142 &mpi3mr_host_attr_group,
3148 * SCSI Device attributes under sysfs
3152 * sas_address_show - SysFS callback for dev SASaddress display
3153 * @dev: class device
3154 * @attr: Device attributes
3155 * @buf: Buffer to copy
3157 * Return: sysfs_emit() return after copying SAS address of the
3158 * specific SAS/SATA end device.
3161 sas_address_show(struct device *dev, struct device_attribute *attr,
3164 struct scsi_device *sdev = to_scsi_device(dev);
3165 struct mpi3mr_sdev_priv_data *sdev_priv_data;
3166 struct mpi3mr_stgt_priv_data *tgt_priv_data;
3167 struct mpi3mr_tgt_dev *tgtdev;
3169 sdev_priv_data = sdev->hostdata;
3170 if (!sdev_priv_data)
3173 tgt_priv_data = sdev_priv_data->tgt_priv_data;
3176 tgtdev = tgt_priv_data->tgt_dev;
3177 if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
3179 return sysfs_emit(buf, "0x%016llx\n",
3180 (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
3183 static DEVICE_ATTR_RO(sas_address);
3186 * device_handle_show - SysFS callback for device handle display
3187 * @dev: class device
3188 * @attr: Device attributes
3189 * @buf: Buffer to copy
3191 * Return: sysfs_emit() return after copying firmware internal
3192 * device handle of the specific device.
3195 device_handle_show(struct device *dev, struct device_attribute *attr,
3198 struct scsi_device *sdev = to_scsi_device(dev);
3199 struct mpi3mr_sdev_priv_data *sdev_priv_data;
3200 struct mpi3mr_stgt_priv_data *tgt_priv_data;
3201 struct mpi3mr_tgt_dev *tgtdev;
3203 sdev_priv_data = sdev->hostdata;
3204 if (!sdev_priv_data)
3207 tgt_priv_data = sdev_priv_data->tgt_priv_data;
3210 tgtdev = tgt_priv_data->tgt_dev;
3213 return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
3216 static DEVICE_ATTR_RO(device_handle);
3219 * persistent_id_show - SysFS callback for persisten ID display
3220 * @dev: class device
3221 * @attr: Device attributes
3222 * @buf: Buffer to copy
3224 * Return: sysfs_emit() return after copying persistent ID of the
3225 * of the specific device.
3228 persistent_id_show(struct device *dev, struct device_attribute *attr,
3231 struct scsi_device *sdev = to_scsi_device(dev);
3232 struct mpi3mr_sdev_priv_data *sdev_priv_data;
3233 struct mpi3mr_stgt_priv_data *tgt_priv_data;
3234 struct mpi3mr_tgt_dev *tgtdev;
3236 sdev_priv_data = sdev->hostdata;
3237 if (!sdev_priv_data)
3240 tgt_priv_data = sdev_priv_data->tgt_priv_data;
3243 tgtdev = tgt_priv_data->tgt_dev;
3246 return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
3248 static DEVICE_ATTR_RO(persistent_id);
3251 * sas_ncq_prio_supported_show - Indicate if device supports NCQ priority
3252 * @dev: pointer to embedded device
3253 * @attr: sas_ncq_prio_supported attribute descriptor
3254 * @buf: the buffer returned
3256 * A sysfs 'read-only' sdev attribute, only works with SATA devices
3259 sas_ncq_prio_supported_show(struct device *dev,
3260 struct device_attribute *attr, char *buf)
3262 struct scsi_device *sdev = to_scsi_device(dev);
3264 return sysfs_emit(buf, "%d\n", sas_ata_ncq_prio_supported(sdev));
3266 static DEVICE_ATTR_RO(sas_ncq_prio_supported);
3269 * sas_ncq_prio_enable_show - send prioritized io commands to device
3270 * @dev: pointer to embedded device
3271 * @attr: sas_ncq_prio_enable attribute descriptor
3272 * @buf: the buffer returned
3274 * A sysfs 'read/write' sdev attribute, only works with SATA devices
3277 sas_ncq_prio_enable_show(struct device *dev,
3278 struct device_attribute *attr, char *buf)
3280 struct scsi_device *sdev = to_scsi_device(dev);
3281 struct mpi3mr_sdev_priv_data *sdev_priv_data = sdev->hostdata;
3283 if (!sdev_priv_data)
3286 return sysfs_emit(buf, "%d\n", sdev_priv_data->ncq_prio_enable);
3290 sas_ncq_prio_enable_store(struct device *dev,
3291 struct device_attribute *attr,
3292 const char *buf, size_t count)
3294 struct scsi_device *sdev = to_scsi_device(dev);
3295 struct mpi3mr_sdev_priv_data *sdev_priv_data = sdev->hostdata;
3296 bool ncq_prio_enable = 0;
3298 if (kstrtobool(buf, &ncq_prio_enable))
3301 if (!sas_ata_ncq_prio_supported(sdev))
3304 sdev_priv_data->ncq_prio_enable = ncq_prio_enable;
3308 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3310 static struct attribute *mpi3mr_dev_attrs[] = {
3311 &dev_attr_sas_address.attr,
3312 &dev_attr_device_handle.attr,
3313 &dev_attr_persistent_id.attr,
3314 &dev_attr_sas_ncq_prio_supported.attr,
3315 &dev_attr_sas_ncq_prio_enable.attr,
3319 static const struct attribute_group mpi3mr_dev_attr_group = {
3320 .attrs = mpi3mr_dev_attrs
3323 const struct attribute_group *mpi3mr_dev_groups[] = {
3324 &mpi3mr_dev_attr_group,