]> Git Repo - linux.git/blob - drivers/md/raid1.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <[email protected]>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <[email protected]>
14  * Various fixes by Neil Brown <[email protected]>
15  *
16  * Changes by Peter T. Breuer <[email protected]> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS         \
41         ((1L << MD_HAS_JOURNAL) |       \
42          (1L << MD_JOURNAL_CLEAN) |     \
43          (1L << MD_HAS_PPL) |           \
44          (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55                      START, LAST, static inline, raid1_rb);
56
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58                                 struct serial_info *si, int idx)
59 {
60         unsigned long flags;
61         int ret = 0;
62         sector_t lo = r1_bio->sector;
63         sector_t hi = lo + r1_bio->sectors;
64         struct serial_in_rdev *serial = &rdev->serial[idx];
65
66         spin_lock_irqsave(&serial->serial_lock, flags);
67         /* collision happened */
68         if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69                 ret = -EBUSY;
70         else {
71                 si->start = lo;
72                 si->last = hi;
73                 raid1_rb_insert(si, &serial->serial_rb);
74         }
75         spin_unlock_irqrestore(&serial->serial_lock, flags);
76
77         return ret;
78 }
79
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82         struct mddev *mddev = rdev->mddev;
83         struct serial_info *si;
84         int idx = sector_to_idx(r1_bio->sector);
85         struct serial_in_rdev *serial = &rdev->serial[idx];
86
87         if (WARN_ON(!mddev->serial_info_pool))
88                 return;
89         si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90         wait_event(serial->serial_io_wait,
91                    check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96         struct serial_info *si;
97         unsigned long flags;
98         int found = 0;
99         struct mddev *mddev = rdev->mddev;
100         int idx = sector_to_idx(lo);
101         struct serial_in_rdev *serial = &rdev->serial[idx];
102
103         spin_lock_irqsave(&serial->serial_lock, flags);
104         for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105              si; si = raid1_rb_iter_next(si, lo, hi)) {
106                 if (si->start == lo && si->last == hi) {
107                         raid1_rb_remove(si, &serial->serial_rb);
108                         mempool_free(si, mddev->serial_info_pool);
109                         found = 1;
110                         break;
111                 }
112         }
113         if (!found)
114                 WARN(1, "The write IO is not recorded for serialization\n");
115         spin_unlock_irqrestore(&serial->serial_lock, flags);
116         wake_up(&serial->serial_io_wait);
117 }
118
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125         return get_resync_pages(bio)->raid_bio;
126 }
127
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130         struct pool_info *pi = data;
131         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132
133         /* allocate a r1bio with room for raid_disks entries in the bios array */
134         return kzalloc(size, gfp_flags);
135 }
136
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146         struct pool_info *pi = data;
147         struct r1bio *r1_bio;
148         struct bio *bio;
149         int need_pages;
150         int j;
151         struct resync_pages *rps;
152
153         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154         if (!r1_bio)
155                 return NULL;
156
157         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158                             gfp_flags);
159         if (!rps)
160                 goto out_free_r1bio;
161
162         /*
163          * Allocate bios : 1 for reading, n-1 for writing
164          */
165         for (j = pi->raid_disks ; j-- ; ) {
166                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167                 if (!bio)
168                         goto out_free_bio;
169                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170                 r1_bio->bios[j] = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them to
174          * the first bio.
175          * If this is a user-requested check/repair, allocate
176          * RESYNC_PAGES for each bio.
177          */
178         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179                 need_pages = pi->raid_disks;
180         else
181                 need_pages = 1;
182         for (j = 0; j < pi->raid_disks; j++) {
183                 struct resync_pages *rp = &rps[j];
184
185                 bio = r1_bio->bios[j];
186
187                 if (j < need_pages) {
188                         if (resync_alloc_pages(rp, gfp_flags))
189                                 goto out_free_pages;
190                 } else {
191                         memcpy(rp, &rps[0], sizeof(*rp));
192                         resync_get_all_pages(rp);
193                 }
194
195                 rp->raid_bio = r1_bio;
196                 bio->bi_private = rp;
197         }
198
199         r1_bio->master_bio = NULL;
200
201         return r1_bio;
202
203 out_free_pages:
204         while (--j >= 0)
205                 resync_free_pages(&rps[j]);
206
207 out_free_bio:
208         while (++j < pi->raid_disks) {
209                 bio_uninit(r1_bio->bios[j]);
210                 kfree(r1_bio->bios[j]);
211         }
212         kfree(rps);
213
214 out_free_r1bio:
215         rbio_pool_free(r1_bio, data);
216         return NULL;
217 }
218
219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221         struct pool_info *pi = data;
222         int i;
223         struct r1bio *r1bio = __r1_bio;
224         struct resync_pages *rp = NULL;
225
226         for (i = pi->raid_disks; i--; ) {
227                 rp = get_resync_pages(r1bio->bios[i]);
228                 resync_free_pages(rp);
229                 bio_uninit(r1bio->bios[i]);
230                 kfree(r1bio->bios[i]);
231         }
232
233         /* resync pages array stored in the 1st bio's .bi_private */
234         kfree(rp);
235
236         rbio_pool_free(r1bio, data);
237 }
238
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241         int i;
242
243         for (i = 0; i < conf->raid_disks * 2; i++) {
244                 struct bio **bio = r1_bio->bios + i;
245                 if (!BIO_SPECIAL(*bio))
246                         bio_put(*bio);
247                 *bio = NULL;
248         }
249 }
250
251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253         struct r1conf *conf = r1_bio->mddev->private;
254
255         put_all_bios(conf, r1_bio);
256         mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258
259 static void put_buf(struct r1bio *r1_bio)
260 {
261         struct r1conf *conf = r1_bio->mddev->private;
262         sector_t sect = r1_bio->sector;
263         int i;
264
265         for (i = 0; i < conf->raid_disks * 2; i++) {
266                 struct bio *bio = r1_bio->bios[i];
267                 if (bio->bi_end_io)
268                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269         }
270
271         mempool_free(r1_bio, &conf->r1buf_pool);
272
273         lower_barrier(conf, sect);
274 }
275
276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278         unsigned long flags;
279         struct mddev *mddev = r1_bio->mddev;
280         struct r1conf *conf = mddev->private;
281         int idx;
282
283         idx = sector_to_idx(r1_bio->sector);
284         spin_lock_irqsave(&conf->device_lock, flags);
285         list_add(&r1_bio->retry_list, &conf->retry_list);
286         atomic_inc(&conf->nr_queued[idx]);
287         spin_unlock_irqrestore(&conf->device_lock, flags);
288
289         wake_up(&conf->wait_barrier);
290         md_wakeup_thread(mddev->thread);
291 }
292
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300         struct bio *bio = r1_bio->master_bio;
301
302         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303                 bio->bi_status = BLK_STS_IOERR;
304
305         bio_endio(bio);
306 }
307
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310         struct bio *bio = r1_bio->master_bio;
311         struct r1conf *conf = r1_bio->mddev->private;
312         sector_t sector = r1_bio->sector;
313
314         /* if nobody has done the final endio yet, do it now */
315         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
318                          (unsigned long long) bio->bi_iter.bi_sector,
319                          (unsigned long long) bio_end_sector(bio) - 1);
320
321                 call_bio_endio(r1_bio);
322         }
323
324         free_r1bio(r1_bio);
325         /*
326          * Wake up any possible resync thread that waits for the device
327          * to go idle.  All I/Os, even write-behind writes, are done.
328          */
329         allow_barrier(conf, sector);
330 }
331
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337         struct r1conf *conf = r1_bio->mddev->private;
338
339         conf->mirrors[disk].head_position =
340                 r1_bio->sector + (r1_bio->sectors);
341 }
342
343 /*
344  * Find the disk number which triggered given bio
345  */
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348         int mirror;
349         struct r1conf *conf = r1_bio->mddev->private;
350         int raid_disks = conf->raid_disks;
351
352         for (mirror = 0; mirror < raid_disks * 2; mirror++)
353                 if (r1_bio->bios[mirror] == bio)
354                         break;
355
356         BUG_ON(mirror == raid_disks * 2);
357         update_head_pos(mirror, r1_bio);
358
359         return mirror;
360 }
361
362 static void raid1_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_status;
365         struct r1bio *r1_bio = bio->bi_private;
366         struct r1conf *conf = r1_bio->mddev->private;
367         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368
369         /*
370          * this branch is our 'one mirror IO has finished' event handler:
371          */
372         update_head_pos(r1_bio->read_disk, r1_bio);
373
374         if (uptodate)
375                 set_bit(R1BIO_Uptodate, &r1_bio->state);
376         else if (test_bit(FailFast, &rdev->flags) &&
377                  test_bit(R1BIO_FailFast, &r1_bio->state))
378                 /* This was a fail-fast read so we definitely
379                  * want to retry */
380                 ;
381         else {
382                 /* If all other devices have failed, we want to return
383                  * the error upwards rather than fail the last device.
384                  * Here we redefine "uptodate" to mean "Don't want to retry"
385                  */
386                 unsigned long flags;
387                 spin_lock_irqsave(&conf->device_lock, flags);
388                 if (r1_bio->mddev->degraded == conf->raid_disks ||
389                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390                      test_bit(In_sync, &rdev->flags)))
391                         uptodate = 1;
392                 spin_unlock_irqrestore(&conf->device_lock, flags);
393         }
394
395         if (uptodate) {
396                 raid_end_bio_io(r1_bio);
397                 rdev_dec_pending(rdev, conf->mddev);
398         } else {
399                 /*
400                  * oops, read error:
401                  */
402                 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403                                    mdname(conf->mddev),
404                                    rdev->bdev,
405                                    (unsigned long long)r1_bio->sector);
406                 set_bit(R1BIO_ReadError, &r1_bio->state);
407                 reschedule_retry(r1_bio);
408                 /* don't drop the reference on read_disk yet */
409         }
410 }
411
412 static void close_write(struct r1bio *r1_bio)
413 {
414         /* it really is the end of this request */
415         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416                 bio_free_pages(r1_bio->behind_master_bio);
417                 bio_put(r1_bio->behind_master_bio);
418                 r1_bio->behind_master_bio = NULL;
419         }
420         /* clear the bitmap if all writes complete successfully */
421         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422                            r1_bio->sectors,
423                            !test_bit(R1BIO_Degraded, &r1_bio->state),
424                            test_bit(R1BIO_BehindIO, &r1_bio->state));
425         md_write_end(r1_bio->mddev);
426 }
427
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430         if (!atomic_dec_and_test(&r1_bio->remaining))
431                 return;
432
433         if (test_bit(R1BIO_WriteError, &r1_bio->state))
434                 reschedule_retry(r1_bio);
435         else {
436                 close_write(r1_bio);
437                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438                         reschedule_retry(r1_bio);
439                 else
440                         raid_end_bio_io(r1_bio);
441         }
442 }
443
444 static void raid1_end_write_request(struct bio *bio)
445 {
446         struct r1bio *r1_bio = bio->bi_private;
447         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448         struct r1conf *conf = r1_bio->mddev->private;
449         struct bio *to_put = NULL;
450         int mirror = find_bio_disk(r1_bio, bio);
451         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452         bool discard_error;
453         sector_t lo = r1_bio->sector;
454         sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458         /*
459          * 'one mirror IO has finished' event handler:
460          */
461         if (bio->bi_status && !discard_error) {
462                 set_bit(WriteErrorSeen, &rdev->flags);
463                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464                         set_bit(MD_RECOVERY_NEEDED, &
465                                 conf->mddev->recovery);
466
467                 if (test_bit(FailFast, &rdev->flags) &&
468                     (bio->bi_opf & MD_FAILFAST) &&
469                     /* We never try FailFast to WriteMostly devices */
470                     !test_bit(WriteMostly, &rdev->flags)) {
471                         md_error(r1_bio->mddev, rdev);
472                 }
473
474                 /*
475                  * When the device is faulty, it is not necessary to
476                  * handle write error.
477                  */
478                 if (!test_bit(Faulty, &rdev->flags))
479                         set_bit(R1BIO_WriteError, &r1_bio->state);
480                 else {
481                         /* Fail the request */
482                         set_bit(R1BIO_Degraded, &r1_bio->state);
483                         /* Finished with this branch */
484                         r1_bio->bios[mirror] = NULL;
485                         to_put = bio;
486                 }
487         } else {
488                 /*
489                  * Set R1BIO_Uptodate in our master bio, so that we
490                  * will return a good error code for to the higher
491                  * levels even if IO on some other mirrored buffer
492                  * fails.
493                  *
494                  * The 'master' represents the composite IO operation
495                  * to user-side. So if something waits for IO, then it
496                  * will wait for the 'master' bio.
497                  */
498                 r1_bio->bios[mirror] = NULL;
499                 to_put = bio;
500                 /*
501                  * Do not set R1BIO_Uptodate if the current device is
502                  * rebuilding or Faulty. This is because we cannot use
503                  * such device for properly reading the data back (we could
504                  * potentially use it, if the current write would have felt
505                  * before rdev->recovery_offset, but for simplicity we don't
506                  * check this here.
507                  */
508                 if (test_bit(In_sync, &rdev->flags) &&
509                     !test_bit(Faulty, &rdev->flags))
510                         set_bit(R1BIO_Uptodate, &r1_bio->state);
511
512                 /* Maybe we can clear some bad blocks. */
513                 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514                     !discard_error) {
515                         r1_bio->bios[mirror] = IO_MADE_GOOD;
516                         set_bit(R1BIO_MadeGood, &r1_bio->state);
517                 }
518         }
519
520         if (behind) {
521                 if (test_bit(CollisionCheck, &rdev->flags))
522                         remove_serial(rdev, lo, hi);
523                 if (test_bit(WriteMostly, &rdev->flags))
524                         atomic_dec(&r1_bio->behind_remaining);
525
526                 /*
527                  * In behind mode, we ACK the master bio once the I/O
528                  * has safely reached all non-writemostly
529                  * disks. Setting the Returned bit ensures that this
530                  * gets done only once -- we don't ever want to return
531                  * -EIO here, instead we'll wait
532                  */
533                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535                         /* Maybe we can return now */
536                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537                                 struct bio *mbio = r1_bio->master_bio;
538                                 pr_debug("raid1: behind end write sectors"
539                                          " %llu-%llu\n",
540                                          (unsigned long long) mbio->bi_iter.bi_sector,
541                                          (unsigned long long) bio_end_sector(mbio) - 1);
542                                 call_bio_endio(r1_bio);
543                         }
544                 }
545         } else if (rdev->mddev->serialize_policy)
546                 remove_serial(rdev, lo, hi);
547         if (r1_bio->bios[mirror] == NULL)
548                 rdev_dec_pending(rdev, conf->mddev);
549
550         /*
551          * Let's see if all mirrored write operations have finished
552          * already.
553          */
554         r1_bio_write_done(r1_bio);
555
556         if (to_put)
557                 bio_put(to_put);
558 }
559
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561                                           sector_t sectors)
562 {
563         sector_t len;
564
565         WARN_ON(sectors == 0);
566         /*
567          * len is the number of sectors from start_sector to end of the
568          * barrier unit which start_sector belongs to.
569          */
570         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571               start_sector;
572
573         if (len > sectors)
574                 len = sectors;
575
576         return len;
577 }
578
579 static void update_read_sectors(struct r1conf *conf, int disk,
580                                 sector_t this_sector, int len)
581 {
582         struct raid1_info *info = &conf->mirrors[disk];
583
584         atomic_inc(&info->rdev->nr_pending);
585         if (info->next_seq_sect != this_sector)
586                 info->seq_start = this_sector;
587         info->next_seq_sect = this_sector + len;
588 }
589
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591                              int *max_sectors)
592 {
593         sector_t this_sector = r1_bio->sector;
594         int len = r1_bio->sectors;
595         int disk;
596
597         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598                 struct md_rdev *rdev;
599                 int read_len;
600
601                 if (r1_bio->bios[disk] == IO_BLOCKED)
602                         continue;
603
604                 rdev = conf->mirrors[disk].rdev;
605                 if (!rdev || test_bit(Faulty, &rdev->flags))
606                         continue;
607
608                 /* choose the first disk even if it has some bad blocks. */
609                 read_len = raid1_check_read_range(rdev, this_sector, &len);
610                 if (read_len > 0) {
611                         update_read_sectors(conf, disk, this_sector, read_len);
612                         *max_sectors = read_len;
613                         return disk;
614                 }
615         }
616
617         return -1;
618 }
619
620 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
621                           int *max_sectors)
622 {
623         sector_t this_sector = r1_bio->sector;
624         int best_disk = -1;
625         int best_len = 0;
626         int disk;
627
628         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
629                 struct md_rdev *rdev;
630                 int len;
631                 int read_len;
632
633                 if (r1_bio->bios[disk] == IO_BLOCKED)
634                         continue;
635
636                 rdev = conf->mirrors[disk].rdev;
637                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
638                     test_bit(WriteMostly, &rdev->flags))
639                         continue;
640
641                 /* keep track of the disk with the most readable sectors. */
642                 len = r1_bio->sectors;
643                 read_len = raid1_check_read_range(rdev, this_sector, &len);
644                 if (read_len > best_len) {
645                         best_disk = disk;
646                         best_len = read_len;
647                 }
648         }
649
650         if (best_disk != -1) {
651                 *max_sectors = best_len;
652                 update_read_sectors(conf, best_disk, this_sector, best_len);
653         }
654
655         return best_disk;
656 }
657
658 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
659                             int *max_sectors)
660 {
661         sector_t this_sector = r1_bio->sector;
662         int bb_disk = -1;
663         int bb_read_len = 0;
664         int disk;
665
666         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
667                 struct md_rdev *rdev;
668                 int len;
669                 int read_len;
670
671                 if (r1_bio->bios[disk] == IO_BLOCKED)
672                         continue;
673
674                 rdev = conf->mirrors[disk].rdev;
675                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
676                     !test_bit(WriteMostly, &rdev->flags))
677                         continue;
678
679                 /* there are no bad blocks, we can use this disk */
680                 len = r1_bio->sectors;
681                 read_len = raid1_check_read_range(rdev, this_sector, &len);
682                 if (read_len == r1_bio->sectors) {
683                         *max_sectors = read_len;
684                         update_read_sectors(conf, disk, this_sector, read_len);
685                         return disk;
686                 }
687
688                 /*
689                  * there are partial bad blocks, choose the rdev with largest
690                  * read length.
691                  */
692                 if (read_len > bb_read_len) {
693                         bb_disk = disk;
694                         bb_read_len = read_len;
695                 }
696         }
697
698         if (bb_disk != -1) {
699                 *max_sectors = bb_read_len;
700                 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
701         }
702
703         return bb_disk;
704 }
705
706 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
707 {
708         /* TODO: address issues with this check and concurrency. */
709         return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
710                conf->mirrors[disk].head_position == r1_bio->sector;
711 }
712
713 /*
714  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
715  * disk. If yes, choose the idle disk.
716  */
717 static bool should_choose_next(struct r1conf *conf, int disk)
718 {
719         struct raid1_info *mirror = &conf->mirrors[disk];
720         int opt_iosize;
721
722         if (!test_bit(Nonrot, &mirror->rdev->flags))
723                 return false;
724
725         opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
726         return opt_iosize > 0 && mirror->seq_start != MaxSector &&
727                mirror->next_seq_sect > opt_iosize &&
728                mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
729 }
730
731 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
732 {
733         if (!rdev || test_bit(Faulty, &rdev->flags))
734                 return false;
735
736         /* still in recovery */
737         if (!test_bit(In_sync, &rdev->flags) &&
738             rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
739                 return false;
740
741         /* don't read from slow disk unless have to */
742         if (test_bit(WriteMostly, &rdev->flags))
743                 return false;
744
745         /* don't split IO for bad blocks unless have to */
746         if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
747                 return false;
748
749         return true;
750 }
751
752 struct read_balance_ctl {
753         sector_t closest_dist;
754         int closest_dist_disk;
755         int min_pending;
756         int min_pending_disk;
757         int sequential_disk;
758         int readable_disks;
759 };
760
761 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
762 {
763         int disk;
764         struct read_balance_ctl ctl = {
765                 .closest_dist_disk      = -1,
766                 .closest_dist           = MaxSector,
767                 .min_pending_disk       = -1,
768                 .min_pending            = UINT_MAX,
769                 .sequential_disk        = -1,
770         };
771
772         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
773                 struct md_rdev *rdev;
774                 sector_t dist;
775                 unsigned int pending;
776
777                 if (r1_bio->bios[disk] == IO_BLOCKED)
778                         continue;
779
780                 rdev = conf->mirrors[disk].rdev;
781                 if (!rdev_readable(rdev, r1_bio))
782                         continue;
783
784                 /* At least two disks to choose from so failfast is OK */
785                 if (ctl.readable_disks++ == 1)
786                         set_bit(R1BIO_FailFast, &r1_bio->state);
787
788                 pending = atomic_read(&rdev->nr_pending);
789                 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
790
791                 /* Don't change to another disk for sequential reads */
792                 if (is_sequential(conf, disk, r1_bio)) {
793                         if (!should_choose_next(conf, disk))
794                                 return disk;
795
796                         /*
797                          * Add 'pending' to avoid choosing this disk if
798                          * there is other idle disk.
799                          */
800                         pending++;
801                         /*
802                          * If there is no other idle disk, this disk
803                          * will be chosen.
804                          */
805                         ctl.sequential_disk = disk;
806                 }
807
808                 if (ctl.min_pending > pending) {
809                         ctl.min_pending = pending;
810                         ctl.min_pending_disk = disk;
811                 }
812
813                 if (ctl.closest_dist > dist) {
814                         ctl.closest_dist = dist;
815                         ctl.closest_dist_disk = disk;
816                 }
817         }
818
819         /*
820          * sequential IO size exceeds optimal iosize, however, there is no other
821          * idle disk, so choose the sequential disk.
822          */
823         if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
824                 return ctl.sequential_disk;
825
826         /*
827          * If all disks are rotational, choose the closest disk. If any disk is
828          * non-rotational, choose the disk with less pending request even the
829          * disk is rotational, which might/might not be optimal for raids with
830          * mixed ratation/non-rotational disks depending on workload.
831          */
832         if (ctl.min_pending_disk != -1 &&
833             (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
834                 return ctl.min_pending_disk;
835         else
836                 return ctl.closest_dist_disk;
837 }
838
839 /*
840  * This routine returns the disk from which the requested read should be done.
841  *
842  * 1) If resync is in progress, find the first usable disk and use it even if it
843  * has some bad blocks.
844  *
845  * 2) Now that there is no resync, loop through all disks and skipping slow
846  * disks and disks with bad blocks for now. Only pay attention to key disk
847  * choice.
848  *
849  * 3) If we've made it this far, now look for disks with bad blocks and choose
850  * the one with most number of sectors.
851  *
852  * 4) If we are all the way at the end, we have no choice but to use a disk even
853  * if it is write mostly.
854  *
855  * The rdev for the device selected will have nr_pending incremented.
856  */
857 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
858                         int *max_sectors)
859 {
860         int disk;
861
862         clear_bit(R1BIO_FailFast, &r1_bio->state);
863
864         if (raid1_should_read_first(conf->mddev, r1_bio->sector,
865                                     r1_bio->sectors))
866                 return choose_first_rdev(conf, r1_bio, max_sectors);
867
868         disk = choose_best_rdev(conf, r1_bio);
869         if (disk >= 0) {
870                 *max_sectors = r1_bio->sectors;
871                 update_read_sectors(conf, disk, r1_bio->sector,
872                                     r1_bio->sectors);
873                 return disk;
874         }
875
876         /*
877          * If we are here it means we didn't find a perfectly good disk so
878          * now spend a bit more time trying to find one with the most good
879          * sectors.
880          */
881         disk = choose_bb_rdev(conf, r1_bio, max_sectors);
882         if (disk >= 0)
883                 return disk;
884
885         return choose_slow_rdev(conf, r1_bio, max_sectors);
886 }
887
888 static void wake_up_barrier(struct r1conf *conf)
889 {
890         if (wq_has_sleeper(&conf->wait_barrier))
891                 wake_up(&conf->wait_barrier);
892 }
893
894 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
895 {
896         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
897         raid1_prepare_flush_writes(conf->mddev->bitmap);
898         wake_up_barrier(conf);
899
900         while (bio) { /* submit pending writes */
901                 struct bio *next = bio->bi_next;
902
903                 raid1_submit_write(bio);
904                 bio = next;
905                 cond_resched();
906         }
907 }
908
909 static void flush_pending_writes(struct r1conf *conf)
910 {
911         /* Any writes that have been queued but are awaiting
912          * bitmap updates get flushed here.
913          */
914         spin_lock_irq(&conf->device_lock);
915
916         if (conf->pending_bio_list.head) {
917                 struct blk_plug plug;
918                 struct bio *bio;
919
920                 bio = bio_list_get(&conf->pending_bio_list);
921                 spin_unlock_irq(&conf->device_lock);
922
923                 /*
924                  * As this is called in a wait_event() loop (see freeze_array),
925                  * current->state might be TASK_UNINTERRUPTIBLE which will
926                  * cause a warning when we prepare to wait again.  As it is
927                  * rare that this path is taken, it is perfectly safe to force
928                  * us to go around the wait_event() loop again, so the warning
929                  * is a false-positive.  Silence the warning by resetting
930                  * thread state
931                  */
932                 __set_current_state(TASK_RUNNING);
933                 blk_start_plug(&plug);
934                 flush_bio_list(conf, bio);
935                 blk_finish_plug(&plug);
936         } else
937                 spin_unlock_irq(&conf->device_lock);
938 }
939
940 /* Barriers....
941  * Sometimes we need to suspend IO while we do something else,
942  * either some resync/recovery, or reconfigure the array.
943  * To do this we raise a 'barrier'.
944  * The 'barrier' is a counter that can be raised multiple times
945  * to count how many activities are happening which preclude
946  * normal IO.
947  * We can only raise the barrier if there is no pending IO.
948  * i.e. if nr_pending == 0.
949  * We choose only to raise the barrier if no-one is waiting for the
950  * barrier to go down.  This means that as soon as an IO request
951  * is ready, no other operations which require a barrier will start
952  * until the IO request has had a chance.
953  *
954  * So: regular IO calls 'wait_barrier'.  When that returns there
955  *    is no backgroup IO happening,  It must arrange to call
956  *    allow_barrier when it has finished its IO.
957  * backgroup IO calls must call raise_barrier.  Once that returns
958  *    there is no normal IO happeing.  It must arrange to call
959  *    lower_barrier when the particular background IO completes.
960  *
961  * If resync/recovery is interrupted, returns -EINTR;
962  * Otherwise, returns 0.
963  */
964 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
965 {
966         int idx = sector_to_idx(sector_nr);
967
968         spin_lock_irq(&conf->resync_lock);
969
970         /* Wait until no block IO is waiting */
971         wait_event_lock_irq(conf->wait_barrier,
972                             !atomic_read(&conf->nr_waiting[idx]),
973                             conf->resync_lock);
974
975         /* block any new IO from starting */
976         atomic_inc(&conf->barrier[idx]);
977         /*
978          * In raise_barrier() we firstly increase conf->barrier[idx] then
979          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
980          * increase conf->nr_pending[idx] then check conf->barrier[idx].
981          * A memory barrier here to make sure conf->nr_pending[idx] won't
982          * be fetched before conf->barrier[idx] is increased. Otherwise
983          * there will be a race between raise_barrier() and _wait_barrier().
984          */
985         smp_mb__after_atomic();
986
987         /* For these conditions we must wait:
988          * A: while the array is in frozen state
989          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
990          *    existing in corresponding I/O barrier bucket.
991          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
992          *    max resync count which allowed on current I/O barrier bucket.
993          */
994         wait_event_lock_irq(conf->wait_barrier,
995                             (!conf->array_frozen &&
996                              !atomic_read(&conf->nr_pending[idx]) &&
997                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
998                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
999                             conf->resync_lock);
1000
1001         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1002                 atomic_dec(&conf->barrier[idx]);
1003                 spin_unlock_irq(&conf->resync_lock);
1004                 wake_up(&conf->wait_barrier);
1005                 return -EINTR;
1006         }
1007
1008         atomic_inc(&conf->nr_sync_pending);
1009         spin_unlock_irq(&conf->resync_lock);
1010
1011         return 0;
1012 }
1013
1014 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1015 {
1016         int idx = sector_to_idx(sector_nr);
1017
1018         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1019
1020         atomic_dec(&conf->barrier[idx]);
1021         atomic_dec(&conf->nr_sync_pending);
1022         wake_up(&conf->wait_barrier);
1023 }
1024
1025 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1026 {
1027         bool ret = true;
1028
1029         /*
1030          * We need to increase conf->nr_pending[idx] very early here,
1031          * then raise_barrier() can be blocked when it waits for
1032          * conf->nr_pending[idx] to be 0. Then we can avoid holding
1033          * conf->resync_lock when there is no barrier raised in same
1034          * barrier unit bucket. Also if the array is frozen, I/O
1035          * should be blocked until array is unfrozen.
1036          */
1037         atomic_inc(&conf->nr_pending[idx]);
1038         /*
1039          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1040          * check conf->barrier[idx]. In raise_barrier() we firstly increase
1041          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1042          * barrier is necessary here to make sure conf->barrier[idx] won't be
1043          * fetched before conf->nr_pending[idx] is increased. Otherwise there
1044          * will be a race between _wait_barrier() and raise_barrier().
1045          */
1046         smp_mb__after_atomic();
1047
1048         /*
1049          * Don't worry about checking two atomic_t variables at same time
1050          * here. If during we check conf->barrier[idx], the array is
1051          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1052          * 0, it is safe to return and make the I/O continue. Because the
1053          * array is frozen, all I/O returned here will eventually complete
1054          * or be queued, no race will happen. See code comment in
1055          * frozen_array().
1056          */
1057         if (!READ_ONCE(conf->array_frozen) &&
1058             !atomic_read(&conf->barrier[idx]))
1059                 return ret;
1060
1061         /*
1062          * After holding conf->resync_lock, conf->nr_pending[idx]
1063          * should be decreased before waiting for barrier to drop.
1064          * Otherwise, we may encounter a race condition because
1065          * raise_barrer() might be waiting for conf->nr_pending[idx]
1066          * to be 0 at same time.
1067          */
1068         spin_lock_irq(&conf->resync_lock);
1069         atomic_inc(&conf->nr_waiting[idx]);
1070         atomic_dec(&conf->nr_pending[idx]);
1071         /*
1072          * In case freeze_array() is waiting for
1073          * get_unqueued_pending() == extra
1074          */
1075         wake_up_barrier(conf);
1076         /* Wait for the barrier in same barrier unit bucket to drop. */
1077
1078         /* Return false when nowait flag is set */
1079         if (nowait) {
1080                 ret = false;
1081         } else {
1082                 wait_event_lock_irq(conf->wait_barrier,
1083                                 !conf->array_frozen &&
1084                                 !atomic_read(&conf->barrier[idx]),
1085                                 conf->resync_lock);
1086                 atomic_inc(&conf->nr_pending[idx]);
1087         }
1088
1089         atomic_dec(&conf->nr_waiting[idx]);
1090         spin_unlock_irq(&conf->resync_lock);
1091         return ret;
1092 }
1093
1094 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1095 {
1096         int idx = sector_to_idx(sector_nr);
1097         bool ret = true;
1098
1099         /*
1100          * Very similar to _wait_barrier(). The difference is, for read
1101          * I/O we don't need wait for sync I/O, but if the whole array
1102          * is frozen, the read I/O still has to wait until the array is
1103          * unfrozen. Since there is no ordering requirement with
1104          * conf->barrier[idx] here, memory barrier is unnecessary as well.
1105          */
1106         atomic_inc(&conf->nr_pending[idx]);
1107
1108         if (!READ_ONCE(conf->array_frozen))
1109                 return ret;
1110
1111         spin_lock_irq(&conf->resync_lock);
1112         atomic_inc(&conf->nr_waiting[idx]);
1113         atomic_dec(&conf->nr_pending[idx]);
1114         /*
1115          * In case freeze_array() is waiting for
1116          * get_unqueued_pending() == extra
1117          */
1118         wake_up_barrier(conf);
1119         /* Wait for array to be unfrozen */
1120
1121         /* Return false when nowait flag is set */
1122         if (nowait) {
1123                 /* Return false when nowait flag is set */
1124                 ret = false;
1125         } else {
1126                 wait_event_lock_irq(conf->wait_barrier,
1127                                 !conf->array_frozen,
1128                                 conf->resync_lock);
1129                 atomic_inc(&conf->nr_pending[idx]);
1130         }
1131
1132         atomic_dec(&conf->nr_waiting[idx]);
1133         spin_unlock_irq(&conf->resync_lock);
1134         return ret;
1135 }
1136
1137 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1138 {
1139         int idx = sector_to_idx(sector_nr);
1140
1141         return _wait_barrier(conf, idx, nowait);
1142 }
1143
1144 static void _allow_barrier(struct r1conf *conf, int idx)
1145 {
1146         atomic_dec(&conf->nr_pending[idx]);
1147         wake_up_barrier(conf);
1148 }
1149
1150 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1151 {
1152         int idx = sector_to_idx(sector_nr);
1153
1154         _allow_barrier(conf, idx);
1155 }
1156
1157 /* conf->resync_lock should be held */
1158 static int get_unqueued_pending(struct r1conf *conf)
1159 {
1160         int idx, ret;
1161
1162         ret = atomic_read(&conf->nr_sync_pending);
1163         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1164                 ret += atomic_read(&conf->nr_pending[idx]) -
1165                         atomic_read(&conf->nr_queued[idx]);
1166
1167         return ret;
1168 }
1169
1170 static void freeze_array(struct r1conf *conf, int extra)
1171 {
1172         /* Stop sync I/O and normal I/O and wait for everything to
1173          * go quiet.
1174          * This is called in two situations:
1175          * 1) management command handlers (reshape, remove disk, quiesce).
1176          * 2) one normal I/O request failed.
1177
1178          * After array_frozen is set to 1, new sync IO will be blocked at
1179          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1180          * or wait_read_barrier(). The flying I/Os will either complete or be
1181          * queued. When everything goes quite, there are only queued I/Os left.
1182
1183          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1184          * barrier bucket index which this I/O request hits. When all sync and
1185          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1186          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1187          * in handle_read_error(), we may call freeze_array() before trying to
1188          * fix the read error. In this case, the error read I/O is not queued,
1189          * so get_unqueued_pending() == 1.
1190          *
1191          * Therefore before this function returns, we need to wait until
1192          * get_unqueued_pendings(conf) gets equal to extra. For
1193          * normal I/O context, extra is 1, in rested situations extra is 0.
1194          */
1195         spin_lock_irq(&conf->resync_lock);
1196         conf->array_frozen = 1;
1197         mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1198         wait_event_lock_irq_cmd(
1199                 conf->wait_barrier,
1200                 get_unqueued_pending(conf) == extra,
1201                 conf->resync_lock,
1202                 flush_pending_writes(conf));
1203         spin_unlock_irq(&conf->resync_lock);
1204 }
1205 static void unfreeze_array(struct r1conf *conf)
1206 {
1207         /* reverse the effect of the freeze */
1208         spin_lock_irq(&conf->resync_lock);
1209         conf->array_frozen = 0;
1210         spin_unlock_irq(&conf->resync_lock);
1211         wake_up(&conf->wait_barrier);
1212 }
1213
1214 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1215                                            struct bio *bio)
1216 {
1217         int size = bio->bi_iter.bi_size;
1218         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1219         int i = 0;
1220         struct bio *behind_bio = NULL;
1221
1222         behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1223                                       &r1_bio->mddev->bio_set);
1224
1225         /* discard op, we don't support writezero/writesame yet */
1226         if (!bio_has_data(bio)) {
1227                 behind_bio->bi_iter.bi_size = size;
1228                 goto skip_copy;
1229         }
1230
1231         while (i < vcnt && size) {
1232                 struct page *page;
1233                 int len = min_t(int, PAGE_SIZE, size);
1234
1235                 page = alloc_page(GFP_NOIO);
1236                 if (unlikely(!page))
1237                         goto free_pages;
1238
1239                 if (!bio_add_page(behind_bio, page, len, 0)) {
1240                         put_page(page);
1241                         goto free_pages;
1242                 }
1243
1244                 size -= len;
1245                 i++;
1246         }
1247
1248         bio_copy_data(behind_bio, bio);
1249 skip_copy:
1250         r1_bio->behind_master_bio = behind_bio;
1251         set_bit(R1BIO_BehindIO, &r1_bio->state);
1252
1253         return;
1254
1255 free_pages:
1256         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1257                  bio->bi_iter.bi_size);
1258         bio_free_pages(behind_bio);
1259         bio_put(behind_bio);
1260 }
1261
1262 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1263 {
1264         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1265                                                   cb);
1266         struct mddev *mddev = plug->cb.data;
1267         struct r1conf *conf = mddev->private;
1268         struct bio *bio;
1269
1270         if (from_schedule) {
1271                 spin_lock_irq(&conf->device_lock);
1272                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1273                 spin_unlock_irq(&conf->device_lock);
1274                 wake_up_barrier(conf);
1275                 md_wakeup_thread(mddev->thread);
1276                 kfree(plug);
1277                 return;
1278         }
1279
1280         /* we aren't scheduling, so we can do the write-out directly. */
1281         bio = bio_list_get(&plug->pending);
1282         flush_bio_list(conf, bio);
1283         kfree(plug);
1284 }
1285
1286 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1287 {
1288         r1_bio->master_bio = bio;
1289         r1_bio->sectors = bio_sectors(bio);
1290         r1_bio->state = 0;
1291         r1_bio->mddev = mddev;
1292         r1_bio->sector = bio->bi_iter.bi_sector;
1293 }
1294
1295 static inline struct r1bio *
1296 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1297 {
1298         struct r1conf *conf = mddev->private;
1299         struct r1bio *r1_bio;
1300
1301         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1302         /* Ensure no bio records IO_BLOCKED */
1303         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1304         init_r1bio(r1_bio, mddev, bio);
1305         return r1_bio;
1306 }
1307
1308 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1309                                int max_read_sectors, struct r1bio *r1_bio)
1310 {
1311         struct r1conf *conf = mddev->private;
1312         struct raid1_info *mirror;
1313         struct bio *read_bio;
1314         struct bitmap *bitmap = mddev->bitmap;
1315         const enum req_op op = bio_op(bio);
1316         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1317         int max_sectors;
1318         int rdisk;
1319         bool r1bio_existed = !!r1_bio;
1320         char b[BDEVNAME_SIZE];
1321
1322         /*
1323          * If r1_bio is set, we are blocking the raid1d thread
1324          * so there is a tiny risk of deadlock.  So ask for
1325          * emergency memory if needed.
1326          */
1327         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1328
1329         if (r1bio_existed) {
1330                 /* Need to get the block device name carefully */
1331                 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1332
1333                 if (rdev)
1334                         snprintf(b, sizeof(b), "%pg", rdev->bdev);
1335                 else
1336                         strcpy(b, "???");
1337         }
1338
1339         /*
1340          * Still need barrier for READ in case that whole
1341          * array is frozen.
1342          */
1343         if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1344                                 bio->bi_opf & REQ_NOWAIT)) {
1345                 bio_wouldblock_error(bio);
1346                 return;
1347         }
1348
1349         if (!r1_bio)
1350                 r1_bio = alloc_r1bio(mddev, bio);
1351         else
1352                 init_r1bio(r1_bio, mddev, bio);
1353         r1_bio->sectors = max_read_sectors;
1354
1355         /*
1356          * make_request() can abort the operation when read-ahead is being
1357          * used and no empty request is available.
1358          */
1359         rdisk = read_balance(conf, r1_bio, &max_sectors);
1360
1361         if (rdisk < 0) {
1362                 /* couldn't find anywhere to read from */
1363                 if (r1bio_existed) {
1364                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1365                                             mdname(mddev),
1366                                             b,
1367                                             (unsigned long long)r1_bio->sector);
1368                 }
1369                 raid_end_bio_io(r1_bio);
1370                 return;
1371         }
1372         mirror = conf->mirrors + rdisk;
1373
1374         if (r1bio_existed)
1375                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1376                                     mdname(mddev),
1377                                     (unsigned long long)r1_bio->sector,
1378                                     mirror->rdev->bdev);
1379
1380         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1381             bitmap) {
1382                 /*
1383                  * Reading from a write-mostly device must take care not to
1384                  * over-take any writes that are 'behind'
1385                  */
1386                 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1387                 wait_event(bitmap->behind_wait,
1388                            atomic_read(&bitmap->behind_writes) == 0);
1389         }
1390
1391         if (max_sectors < bio_sectors(bio)) {
1392                 struct bio *split = bio_split(bio, max_sectors,
1393                                               gfp, &conf->bio_split);
1394                 bio_chain(split, bio);
1395                 submit_bio_noacct(bio);
1396                 bio = split;
1397                 r1_bio->master_bio = bio;
1398                 r1_bio->sectors = max_sectors;
1399         }
1400
1401         r1_bio->read_disk = rdisk;
1402         if (!r1bio_existed) {
1403                 md_account_bio(mddev, &bio);
1404                 r1_bio->master_bio = bio;
1405         }
1406         read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1407                                    &mddev->bio_set);
1408
1409         r1_bio->bios[rdisk] = read_bio;
1410
1411         read_bio->bi_iter.bi_sector = r1_bio->sector +
1412                 mirror->rdev->data_offset;
1413         read_bio->bi_end_io = raid1_end_read_request;
1414         read_bio->bi_opf = op | do_sync;
1415         if (test_bit(FailFast, &mirror->rdev->flags) &&
1416             test_bit(R1BIO_FailFast, &r1_bio->state))
1417                 read_bio->bi_opf |= MD_FAILFAST;
1418         read_bio->bi_private = r1_bio;
1419         mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1420         submit_bio_noacct(read_bio);
1421 }
1422
1423 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1424                                 int max_write_sectors)
1425 {
1426         struct r1conf *conf = mddev->private;
1427         struct r1bio *r1_bio;
1428         int i, disks;
1429         struct bitmap *bitmap = mddev->bitmap;
1430         unsigned long flags;
1431         struct md_rdev *blocked_rdev;
1432         int first_clone;
1433         int max_sectors;
1434         bool write_behind = false;
1435         bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1436
1437         if (mddev_is_clustered(mddev) &&
1438              md_cluster_ops->area_resyncing(mddev, WRITE,
1439                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1440
1441                 DEFINE_WAIT(w);
1442                 if (bio->bi_opf & REQ_NOWAIT) {
1443                         bio_wouldblock_error(bio);
1444                         return;
1445                 }
1446                 for (;;) {
1447                         prepare_to_wait(&conf->wait_barrier,
1448                                         &w, TASK_IDLE);
1449                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1450                                                         bio->bi_iter.bi_sector,
1451                                                         bio_end_sector(bio)))
1452                                 break;
1453                         schedule();
1454                 }
1455                 finish_wait(&conf->wait_barrier, &w);
1456         }
1457
1458         /*
1459          * Register the new request and wait if the reconstruction
1460          * thread has put up a bar for new requests.
1461          * Continue immediately if no resync is active currently.
1462          */
1463         if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1464                                 bio->bi_opf & REQ_NOWAIT)) {
1465                 bio_wouldblock_error(bio);
1466                 return;
1467         }
1468
1469  retry_write:
1470         r1_bio = alloc_r1bio(mddev, bio);
1471         r1_bio->sectors = max_write_sectors;
1472
1473         /* first select target devices under rcu_lock and
1474          * inc refcount on their rdev.  Record them by setting
1475          * bios[x] to bio
1476          * If there are known/acknowledged bad blocks on any device on
1477          * which we have seen a write error, we want to avoid writing those
1478          * blocks.
1479          * This potentially requires several writes to write around
1480          * the bad blocks.  Each set of writes gets it's own r1bio
1481          * with a set of bios attached.
1482          */
1483
1484         disks = conf->raid_disks * 2;
1485         blocked_rdev = NULL;
1486         max_sectors = r1_bio->sectors;
1487         for (i = 0;  i < disks; i++) {
1488                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1489
1490                 /*
1491                  * The write-behind io is only attempted on drives marked as
1492                  * write-mostly, which means we could allocate write behind
1493                  * bio later.
1494                  */
1495                 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1496                         write_behind = true;
1497
1498                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1499                         atomic_inc(&rdev->nr_pending);
1500                         blocked_rdev = rdev;
1501                         break;
1502                 }
1503                 r1_bio->bios[i] = NULL;
1504                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1505                         if (i < conf->raid_disks)
1506                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1507                         continue;
1508                 }
1509
1510                 atomic_inc(&rdev->nr_pending);
1511                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1512                         sector_t first_bad;
1513                         int bad_sectors;
1514                         int is_bad;
1515
1516                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1517                                              &first_bad, &bad_sectors);
1518                         if (is_bad < 0) {
1519                                 /* mustn't write here until the bad block is
1520                                  * acknowledged*/
1521                                 set_bit(BlockedBadBlocks, &rdev->flags);
1522                                 blocked_rdev = rdev;
1523                                 break;
1524                         }
1525                         if (is_bad && first_bad <= r1_bio->sector) {
1526                                 /* Cannot write here at all */
1527                                 bad_sectors -= (r1_bio->sector - first_bad);
1528                                 if (bad_sectors < max_sectors)
1529                                         /* mustn't write more than bad_sectors
1530                                          * to other devices yet
1531                                          */
1532                                         max_sectors = bad_sectors;
1533                                 rdev_dec_pending(rdev, mddev);
1534                                 /* We don't set R1BIO_Degraded as that
1535                                  * only applies if the disk is
1536                                  * missing, so it might be re-added,
1537                                  * and we want to know to recover this
1538                                  * chunk.
1539                                  * In this case the device is here,
1540                                  * and the fact that this chunk is not
1541                                  * in-sync is recorded in the bad
1542                                  * block log
1543                                  */
1544                                 continue;
1545                         }
1546                         if (is_bad) {
1547                                 int good_sectors = first_bad - r1_bio->sector;
1548                                 if (good_sectors < max_sectors)
1549                                         max_sectors = good_sectors;
1550                         }
1551                 }
1552                 r1_bio->bios[i] = bio;
1553         }
1554
1555         if (unlikely(blocked_rdev)) {
1556                 /* Wait for this device to become unblocked */
1557                 int j;
1558
1559                 for (j = 0; j < i; j++)
1560                         if (r1_bio->bios[j])
1561                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1562                 mempool_free(r1_bio, &conf->r1bio_pool);
1563                 allow_barrier(conf, bio->bi_iter.bi_sector);
1564
1565                 if (bio->bi_opf & REQ_NOWAIT) {
1566                         bio_wouldblock_error(bio);
1567                         return;
1568                 }
1569                 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1570                                 blocked_rdev->raid_disk);
1571                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1572                 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1573                 goto retry_write;
1574         }
1575
1576         /*
1577          * When using a bitmap, we may call alloc_behind_master_bio below.
1578          * alloc_behind_master_bio allocates a copy of the data payload a page
1579          * at a time and thus needs a new bio that can fit the whole payload
1580          * this bio in page sized chunks.
1581          */
1582         if (write_behind && bitmap)
1583                 max_sectors = min_t(int, max_sectors,
1584                                     BIO_MAX_VECS * (PAGE_SIZE >> 9));
1585         if (max_sectors < bio_sectors(bio)) {
1586                 struct bio *split = bio_split(bio, max_sectors,
1587                                               GFP_NOIO, &conf->bio_split);
1588                 bio_chain(split, bio);
1589                 submit_bio_noacct(bio);
1590                 bio = split;
1591                 r1_bio->master_bio = bio;
1592                 r1_bio->sectors = max_sectors;
1593         }
1594
1595         md_account_bio(mddev, &bio);
1596         r1_bio->master_bio = bio;
1597         atomic_set(&r1_bio->remaining, 1);
1598         atomic_set(&r1_bio->behind_remaining, 0);
1599
1600         first_clone = 1;
1601
1602         for (i = 0; i < disks; i++) {
1603                 struct bio *mbio = NULL;
1604                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1605                 if (!r1_bio->bios[i])
1606                         continue;
1607
1608                 if (first_clone) {
1609                         /* do behind I/O ?
1610                          * Not if there are too many, or cannot
1611                          * allocate memory, or a reader on WriteMostly
1612                          * is waiting for behind writes to flush */
1613                         if (bitmap && write_behind &&
1614                             (atomic_read(&bitmap->behind_writes)
1615                              < mddev->bitmap_info.max_write_behind) &&
1616                             !waitqueue_active(&bitmap->behind_wait)) {
1617                                 alloc_behind_master_bio(r1_bio, bio);
1618                         }
1619
1620                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1621                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1622                         first_clone = 0;
1623                 }
1624
1625                 if (r1_bio->behind_master_bio) {
1626                         mbio = bio_alloc_clone(rdev->bdev,
1627                                                r1_bio->behind_master_bio,
1628                                                GFP_NOIO, &mddev->bio_set);
1629                         if (test_bit(CollisionCheck, &rdev->flags))
1630                                 wait_for_serialization(rdev, r1_bio);
1631                         if (test_bit(WriteMostly, &rdev->flags))
1632                                 atomic_inc(&r1_bio->behind_remaining);
1633                 } else {
1634                         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1635                                                &mddev->bio_set);
1636
1637                         if (mddev->serialize_policy)
1638                                 wait_for_serialization(rdev, r1_bio);
1639                 }
1640
1641                 r1_bio->bios[i] = mbio;
1642
1643                 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1644                 mbio->bi_end_io = raid1_end_write_request;
1645                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1646                 if (test_bit(FailFast, &rdev->flags) &&
1647                     !test_bit(WriteMostly, &rdev->flags) &&
1648                     conf->raid_disks - mddev->degraded > 1)
1649                         mbio->bi_opf |= MD_FAILFAST;
1650                 mbio->bi_private = r1_bio;
1651
1652                 atomic_inc(&r1_bio->remaining);
1653                 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1654                 /* flush_pending_writes() needs access to the rdev so...*/
1655                 mbio->bi_bdev = (void *)rdev;
1656                 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1657                         spin_lock_irqsave(&conf->device_lock, flags);
1658                         bio_list_add(&conf->pending_bio_list, mbio);
1659                         spin_unlock_irqrestore(&conf->device_lock, flags);
1660                         md_wakeup_thread(mddev->thread);
1661                 }
1662         }
1663
1664         r1_bio_write_done(r1_bio);
1665
1666         /* In case raid1d snuck in to freeze_array */
1667         wake_up_barrier(conf);
1668 }
1669
1670 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1671 {
1672         sector_t sectors;
1673
1674         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1675             && md_flush_request(mddev, bio))
1676                 return true;
1677
1678         /*
1679          * There is a limit to the maximum size, but
1680          * the read/write handler might find a lower limit
1681          * due to bad blocks.  To avoid multiple splits,
1682          * we pass the maximum number of sectors down
1683          * and let the lower level perform the split.
1684          */
1685         sectors = align_to_barrier_unit_end(
1686                 bio->bi_iter.bi_sector, bio_sectors(bio));
1687
1688         if (bio_data_dir(bio) == READ)
1689                 raid1_read_request(mddev, bio, sectors, NULL);
1690         else {
1691                 md_write_start(mddev,bio);
1692                 raid1_write_request(mddev, bio, sectors);
1693         }
1694         return true;
1695 }
1696
1697 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1698 {
1699         struct r1conf *conf = mddev->private;
1700         int i;
1701
1702         lockdep_assert_held(&mddev->lock);
1703
1704         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705                    conf->raid_disks - mddev->degraded);
1706         for (i = 0; i < conf->raid_disks; i++) {
1707                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1709                 seq_printf(seq, "%s",
1710                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711         }
1712         seq_printf(seq, "]");
1713 }
1714
1715 /**
1716  * raid1_error() - RAID1 error handler.
1717  * @mddev: affected md device.
1718  * @rdev: member device to fail.
1719  *
1720  * The routine acknowledges &rdev failure and determines new @mddev state.
1721  * If it failed, then:
1722  *      - &MD_BROKEN flag is set in &mddev->flags.
1723  *      - recovery is disabled.
1724  * Otherwise, it must be degraded:
1725  *      - recovery is interrupted.
1726  *      - &mddev->degraded is bumped.
1727  *
1728  * @rdev is marked as &Faulty excluding case when array is failed and
1729  * &mddev->fail_last_dev is off.
1730  */
1731 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733         struct r1conf *conf = mddev->private;
1734         unsigned long flags;
1735
1736         spin_lock_irqsave(&conf->device_lock, flags);
1737
1738         if (test_bit(In_sync, &rdev->flags) &&
1739             (conf->raid_disks - mddev->degraded) == 1) {
1740                 set_bit(MD_BROKEN, &mddev->flags);
1741
1742                 if (!mddev->fail_last_dev) {
1743                         conf->recovery_disabled = mddev->recovery_disabled;
1744                         spin_unlock_irqrestore(&conf->device_lock, flags);
1745                         return;
1746                 }
1747         }
1748         set_bit(Blocked, &rdev->flags);
1749         if (test_and_clear_bit(In_sync, &rdev->flags))
1750                 mddev->degraded++;
1751         set_bit(Faulty, &rdev->flags);
1752         spin_unlock_irqrestore(&conf->device_lock, flags);
1753         /*
1754          * if recovery is running, make sure it aborts.
1755          */
1756         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757         set_mask_bits(&mddev->sb_flags, 0,
1758                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759         pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760                 "md/raid1:%s: Operation continuing on %d devices.\n",
1761                 mdname(mddev), rdev->bdev,
1762                 mdname(mddev), conf->raid_disks - mddev->degraded);
1763 }
1764
1765 static void print_conf(struct r1conf *conf)
1766 {
1767         int i;
1768
1769         pr_debug("RAID1 conf printout:\n");
1770         if (!conf) {
1771                 pr_debug("(!conf)\n");
1772                 return;
1773         }
1774         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775                  conf->raid_disks);
1776
1777         lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778         for (i = 0; i < conf->raid_disks; i++) {
1779                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1780                 if (rdev)
1781                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782                                  i, !test_bit(In_sync, &rdev->flags),
1783                                  !test_bit(Faulty, &rdev->flags),
1784                                  rdev->bdev);
1785         }
1786 }
1787
1788 static void close_sync(struct r1conf *conf)
1789 {
1790         int idx;
1791
1792         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793                 _wait_barrier(conf, idx, false);
1794                 _allow_barrier(conf, idx);
1795         }
1796
1797         mempool_exit(&conf->r1buf_pool);
1798 }
1799
1800 static int raid1_spare_active(struct mddev *mddev)
1801 {
1802         int i;
1803         struct r1conf *conf = mddev->private;
1804         int count = 0;
1805         unsigned long flags;
1806
1807         /*
1808          * Find all failed disks within the RAID1 configuration
1809          * and mark them readable.
1810          * Called under mddev lock, so rcu protection not needed.
1811          * device_lock used to avoid races with raid1_end_read_request
1812          * which expects 'In_sync' flags and ->degraded to be consistent.
1813          */
1814         spin_lock_irqsave(&conf->device_lock, flags);
1815         for (i = 0; i < conf->raid_disks; i++) {
1816                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1817                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818                 if (repl
1819                     && !test_bit(Candidate, &repl->flags)
1820                     && repl->recovery_offset == MaxSector
1821                     && !test_bit(Faulty, &repl->flags)
1822                     && !test_and_set_bit(In_sync, &repl->flags)) {
1823                         /* replacement has just become active */
1824                         if (!rdev ||
1825                             !test_and_clear_bit(In_sync, &rdev->flags))
1826                                 count++;
1827                         if (rdev) {
1828                                 /* Replaced device not technically
1829                                  * faulty, but we need to be sure
1830                                  * it gets removed and never re-added
1831                                  */
1832                                 set_bit(Faulty, &rdev->flags);
1833                                 sysfs_notify_dirent_safe(
1834                                         rdev->sysfs_state);
1835                         }
1836                 }
1837                 if (rdev
1838                     && rdev->recovery_offset == MaxSector
1839                     && !test_bit(Faulty, &rdev->flags)
1840                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1841                         count++;
1842                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1843                 }
1844         }
1845         mddev->degraded -= count;
1846         spin_unlock_irqrestore(&conf->device_lock, flags);
1847
1848         print_conf(conf);
1849         return count;
1850 }
1851
1852 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853                            bool replacement)
1854 {
1855         struct raid1_info *info = conf->mirrors + disk;
1856
1857         if (replacement)
1858                 info += conf->raid_disks;
1859
1860         if (info->rdev)
1861                 return false;
1862
1863         if (bdev_nonrot(rdev->bdev)) {
1864                 set_bit(Nonrot, &rdev->flags);
1865                 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866         }
1867
1868         rdev->raid_disk = disk;
1869         info->head_position = 0;
1870         info->seq_start = MaxSector;
1871         WRITE_ONCE(info->rdev, rdev);
1872
1873         return true;
1874 }
1875
1876 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877 {
1878         struct raid1_info *info = conf->mirrors + disk;
1879         struct md_rdev *rdev = info->rdev;
1880
1881         if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882             atomic_read(&rdev->nr_pending))
1883                 return false;
1884
1885         /* Only remove non-faulty devices if recovery is not possible. */
1886         if (!test_bit(Faulty, &rdev->flags) &&
1887             rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888             rdev->mddev->degraded < conf->raid_disks)
1889                 return false;
1890
1891         if (test_and_clear_bit(Nonrot, &rdev->flags))
1892                 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
1894         WRITE_ONCE(info->rdev, NULL);
1895         return true;
1896 }
1897
1898 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900         struct r1conf *conf = mddev->private;
1901         int err = -EEXIST;
1902         int mirror = 0, repl_slot = -1;
1903         struct raid1_info *p;
1904         int first = 0;
1905         int last = conf->raid_disks - 1;
1906
1907         if (mddev->recovery_disabled == conf->recovery_disabled)
1908                 return -EBUSY;
1909
1910         if (rdev->raid_disk >= 0)
1911                 first = last = rdev->raid_disk;
1912
1913         /*
1914          * find the disk ... but prefer rdev->saved_raid_disk
1915          * if possible.
1916          */
1917         if (rdev->saved_raid_disk >= 0 &&
1918             rdev->saved_raid_disk >= first &&
1919             rdev->saved_raid_disk < conf->raid_disks &&
1920             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1921                 first = last = rdev->saved_raid_disk;
1922
1923         for (mirror = first; mirror <= last; mirror++) {
1924                 p = conf->mirrors + mirror;
1925                 if (!p->rdev) {
1926                         err = mddev_stack_new_rdev(mddev, rdev);
1927                         if (err)
1928                                 return err;
1929
1930                         raid1_add_conf(conf, rdev, mirror, false);
1931                         /* As all devices are equivalent, we don't need a full recovery
1932                          * if this was recently any drive of the array
1933                          */
1934                         if (rdev->saved_raid_disk < 0)
1935                                 conf->fullsync = 1;
1936                         break;
1937                 }
1938                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1939                     p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1940                         repl_slot = mirror;
1941         }
1942
1943         if (err && repl_slot >= 0) {
1944                 /* Add this device as a replacement */
1945                 clear_bit(In_sync, &rdev->flags);
1946                 set_bit(Replacement, &rdev->flags);
1947                 raid1_add_conf(conf, rdev, repl_slot, true);
1948                 err = 0;
1949                 conf->fullsync = 1;
1950         }
1951
1952         print_conf(conf);
1953         return err;
1954 }
1955
1956 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1957 {
1958         struct r1conf *conf = mddev->private;
1959         int err = 0;
1960         int number = rdev->raid_disk;
1961         struct raid1_info *p = conf->mirrors + number;
1962
1963         if (unlikely(number >= conf->raid_disks))
1964                 goto abort;
1965
1966         if (rdev != p->rdev) {
1967                 number += conf->raid_disks;
1968                 p = conf->mirrors + number;
1969         }
1970
1971         print_conf(conf);
1972         if (rdev == p->rdev) {
1973                 if (!raid1_remove_conf(conf, number)) {
1974                         err = -EBUSY;
1975                         goto abort;
1976                 }
1977
1978                 if (number < conf->raid_disks &&
1979                     conf->mirrors[conf->raid_disks + number].rdev) {
1980                         /* We just removed a device that is being replaced.
1981                          * Move down the replacement.  We drain all IO before
1982                          * doing this to avoid confusion.
1983                          */
1984                         struct md_rdev *repl =
1985                                 conf->mirrors[conf->raid_disks + number].rdev;
1986                         freeze_array(conf, 0);
1987                         if (atomic_read(&repl->nr_pending)) {
1988                                 /* It means that some queued IO of retry_list
1989                                  * hold repl. Thus, we cannot set replacement
1990                                  * as NULL, avoiding rdev NULL pointer
1991                                  * dereference in sync_request_write and
1992                                  * handle_write_finished.
1993                                  */
1994                                 err = -EBUSY;
1995                                 unfreeze_array(conf);
1996                                 goto abort;
1997                         }
1998                         clear_bit(Replacement, &repl->flags);
1999                         WRITE_ONCE(p->rdev, repl);
2000                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
2001                         unfreeze_array(conf);
2002                 }
2003
2004                 clear_bit(WantReplacement, &rdev->flags);
2005                 err = md_integrity_register(mddev);
2006         }
2007 abort:
2008
2009         print_conf(conf);
2010         return err;
2011 }
2012
2013 static void end_sync_read(struct bio *bio)
2014 {
2015         struct r1bio *r1_bio = get_resync_r1bio(bio);
2016
2017         update_head_pos(r1_bio->read_disk, r1_bio);
2018
2019         /*
2020          * we have read a block, now it needs to be re-written,
2021          * or re-read if the read failed.
2022          * We don't do much here, just schedule handling by raid1d
2023          */
2024         if (!bio->bi_status)
2025                 set_bit(R1BIO_Uptodate, &r1_bio->state);
2026
2027         if (atomic_dec_and_test(&r1_bio->remaining))
2028                 reschedule_retry(r1_bio);
2029 }
2030
2031 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2032 {
2033         sector_t sync_blocks = 0;
2034         sector_t s = r1_bio->sector;
2035         long sectors_to_go = r1_bio->sectors;
2036
2037         /* make sure these bits don't get cleared. */
2038         do {
2039                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2040                 s += sync_blocks;
2041                 sectors_to_go -= sync_blocks;
2042         } while (sectors_to_go > 0);
2043 }
2044
2045 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2046 {
2047         if (atomic_dec_and_test(&r1_bio->remaining)) {
2048                 struct mddev *mddev = r1_bio->mddev;
2049                 int s = r1_bio->sectors;
2050
2051                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2052                     test_bit(R1BIO_WriteError, &r1_bio->state))
2053                         reschedule_retry(r1_bio);
2054                 else {
2055                         put_buf(r1_bio);
2056                         md_done_sync(mddev, s, uptodate);
2057                 }
2058         }
2059 }
2060
2061 static void end_sync_write(struct bio *bio)
2062 {
2063         int uptodate = !bio->bi_status;
2064         struct r1bio *r1_bio = get_resync_r1bio(bio);
2065         struct mddev *mddev = r1_bio->mddev;
2066         struct r1conf *conf = mddev->private;
2067         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2068
2069         if (!uptodate) {
2070                 abort_sync_write(mddev, r1_bio);
2071                 set_bit(WriteErrorSeen, &rdev->flags);
2072                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2073                         set_bit(MD_RECOVERY_NEEDED, &
2074                                 mddev->recovery);
2075                 set_bit(R1BIO_WriteError, &r1_bio->state);
2076         } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2077                    !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2078                                       r1_bio->sector, r1_bio->sectors)) {
2079                 set_bit(R1BIO_MadeGood, &r1_bio->state);
2080         }
2081
2082         put_sync_write_buf(r1_bio, uptodate);
2083 }
2084
2085 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2086                            int sectors, struct page *page, blk_opf_t rw)
2087 {
2088         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2089                 /* success */
2090                 return 1;
2091         if (rw == REQ_OP_WRITE) {
2092                 set_bit(WriteErrorSeen, &rdev->flags);
2093                 if (!test_and_set_bit(WantReplacement,
2094                                       &rdev->flags))
2095                         set_bit(MD_RECOVERY_NEEDED, &
2096                                 rdev->mddev->recovery);
2097         }
2098         /* need to record an error - either for the block or the device */
2099         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2100                 md_error(rdev->mddev, rdev);
2101         return 0;
2102 }
2103
2104 static int fix_sync_read_error(struct r1bio *r1_bio)
2105 {
2106         /* Try some synchronous reads of other devices to get
2107          * good data, much like with normal read errors.  Only
2108          * read into the pages we already have so we don't
2109          * need to re-issue the read request.
2110          * We don't need to freeze the array, because being in an
2111          * active sync request, there is no normal IO, and
2112          * no overlapping syncs.
2113          * We don't need to check is_badblock() again as we
2114          * made sure that anything with a bad block in range
2115          * will have bi_end_io clear.
2116          */
2117         struct mddev *mddev = r1_bio->mddev;
2118         struct r1conf *conf = mddev->private;
2119         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2120         struct page **pages = get_resync_pages(bio)->pages;
2121         sector_t sect = r1_bio->sector;
2122         int sectors = r1_bio->sectors;
2123         int idx = 0;
2124         struct md_rdev *rdev;
2125
2126         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2127         if (test_bit(FailFast, &rdev->flags)) {
2128                 /* Don't try recovering from here - just fail it
2129                  * ... unless it is the last working device of course */
2130                 md_error(mddev, rdev);
2131                 if (test_bit(Faulty, &rdev->flags))
2132                         /* Don't try to read from here, but make sure
2133                          * put_buf does it's thing
2134                          */
2135                         bio->bi_end_io = end_sync_write;
2136         }
2137
2138         while(sectors) {
2139                 int s = sectors;
2140                 int d = r1_bio->read_disk;
2141                 int success = 0;
2142                 int start;
2143
2144                 if (s > (PAGE_SIZE>>9))
2145                         s = PAGE_SIZE >> 9;
2146                 do {
2147                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2148                                 /* No rcu protection needed here devices
2149                                  * can only be removed when no resync is
2150                                  * active, and resync is currently active
2151                                  */
2152                                 rdev = conf->mirrors[d].rdev;
2153                                 if (sync_page_io(rdev, sect, s<<9,
2154                                                  pages[idx],
2155                                                  REQ_OP_READ, false)) {
2156                                         success = 1;
2157                                         break;
2158                                 }
2159                         }
2160                         d++;
2161                         if (d == conf->raid_disks * 2)
2162                                 d = 0;
2163                 } while (!success && d != r1_bio->read_disk);
2164
2165                 if (!success) {
2166                         int abort = 0;
2167                         /* Cannot read from anywhere, this block is lost.
2168                          * Record a bad block on each device.  If that doesn't
2169                          * work just disable and interrupt the recovery.
2170                          * Don't fail devices as that won't really help.
2171                          */
2172                         pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2173                                             mdname(mddev), bio->bi_bdev,
2174                                             (unsigned long long)r1_bio->sector);
2175                         for (d = 0; d < conf->raid_disks * 2; d++) {
2176                                 rdev = conf->mirrors[d].rdev;
2177                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2178                                         continue;
2179                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2180                                         abort = 1;
2181                         }
2182                         if (abort) {
2183                                 conf->recovery_disabled =
2184                                         mddev->recovery_disabled;
2185                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2186                                 md_done_sync(mddev, r1_bio->sectors, 0);
2187                                 put_buf(r1_bio);
2188                                 return 0;
2189                         }
2190                         /* Try next page */
2191                         sectors -= s;
2192                         sect += s;
2193                         idx++;
2194                         continue;
2195                 }
2196
2197                 start = d;
2198                 /* write it back and re-read */
2199                 while (d != r1_bio->read_disk) {
2200                         if (d == 0)
2201                                 d = conf->raid_disks * 2;
2202                         d--;
2203                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2204                                 continue;
2205                         rdev = conf->mirrors[d].rdev;
2206                         if (r1_sync_page_io(rdev, sect, s,
2207                                             pages[idx],
2208                                             REQ_OP_WRITE) == 0) {
2209                                 r1_bio->bios[d]->bi_end_io = NULL;
2210                                 rdev_dec_pending(rdev, mddev);
2211                         }
2212                 }
2213                 d = start;
2214                 while (d != r1_bio->read_disk) {
2215                         if (d == 0)
2216                                 d = conf->raid_disks * 2;
2217                         d--;
2218                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2219                                 continue;
2220                         rdev = conf->mirrors[d].rdev;
2221                         if (r1_sync_page_io(rdev, sect, s,
2222                                             pages[idx],
2223                                             REQ_OP_READ) != 0)
2224                                 atomic_add(s, &rdev->corrected_errors);
2225                 }
2226                 sectors -= s;
2227                 sect += s;
2228                 idx ++;
2229         }
2230         set_bit(R1BIO_Uptodate, &r1_bio->state);
2231         bio->bi_status = 0;
2232         return 1;
2233 }
2234
2235 static void process_checks(struct r1bio *r1_bio)
2236 {
2237         /* We have read all readable devices.  If we haven't
2238          * got the block, then there is no hope left.
2239          * If we have, then we want to do a comparison
2240          * and skip the write if everything is the same.
2241          * If any blocks failed to read, then we need to
2242          * attempt an over-write
2243          */
2244         struct mddev *mddev = r1_bio->mddev;
2245         struct r1conf *conf = mddev->private;
2246         int primary;
2247         int i;
2248         int vcnt;
2249
2250         /* Fix variable parts of all bios */
2251         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2252         for (i = 0; i < conf->raid_disks * 2; i++) {
2253                 blk_status_t status;
2254                 struct bio *b = r1_bio->bios[i];
2255                 struct resync_pages *rp = get_resync_pages(b);
2256                 if (b->bi_end_io != end_sync_read)
2257                         continue;
2258                 /* fixup the bio for reuse, but preserve errno */
2259                 status = b->bi_status;
2260                 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2261                 b->bi_status = status;
2262                 b->bi_iter.bi_sector = r1_bio->sector +
2263                         conf->mirrors[i].rdev->data_offset;
2264                 b->bi_end_io = end_sync_read;
2265                 rp->raid_bio = r1_bio;
2266                 b->bi_private = rp;
2267
2268                 /* initialize bvec table again */
2269                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2270         }
2271         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2272                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2273                     !r1_bio->bios[primary]->bi_status) {
2274                         r1_bio->bios[primary]->bi_end_io = NULL;
2275                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2276                         break;
2277                 }
2278         r1_bio->read_disk = primary;
2279         for (i = 0; i < conf->raid_disks * 2; i++) {
2280                 int j = 0;
2281                 struct bio *pbio = r1_bio->bios[primary];
2282                 struct bio *sbio = r1_bio->bios[i];
2283                 blk_status_t status = sbio->bi_status;
2284                 struct page **ppages = get_resync_pages(pbio)->pages;
2285                 struct page **spages = get_resync_pages(sbio)->pages;
2286                 struct bio_vec *bi;
2287                 int page_len[RESYNC_PAGES] = { 0 };
2288                 struct bvec_iter_all iter_all;
2289
2290                 if (sbio->bi_end_io != end_sync_read)
2291                         continue;
2292                 /* Now we can 'fixup' the error value */
2293                 sbio->bi_status = 0;
2294
2295                 bio_for_each_segment_all(bi, sbio, iter_all)
2296                         page_len[j++] = bi->bv_len;
2297
2298                 if (!status) {
2299                         for (j = vcnt; j-- ; ) {
2300                                 if (memcmp(page_address(ppages[j]),
2301                                            page_address(spages[j]),
2302                                            page_len[j]))
2303                                         break;
2304                         }
2305                 } else
2306                         j = 0;
2307                 if (j >= 0)
2308                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2309                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2310                               && !status)) {
2311                         /* No need to write to this device. */
2312                         sbio->bi_end_io = NULL;
2313                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2314                         continue;
2315                 }
2316
2317                 bio_copy_data(sbio, pbio);
2318         }
2319 }
2320
2321 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2322 {
2323         struct r1conf *conf = mddev->private;
2324         int i;
2325         int disks = conf->raid_disks * 2;
2326         struct bio *wbio;
2327
2328         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2329                 /* ouch - failed to read all of that. */
2330                 if (!fix_sync_read_error(r1_bio))
2331                         return;
2332
2333         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2334                 process_checks(r1_bio);
2335
2336         /*
2337          * schedule writes
2338          */
2339         atomic_set(&r1_bio->remaining, 1);
2340         for (i = 0; i < disks ; i++) {
2341                 wbio = r1_bio->bios[i];
2342                 if (wbio->bi_end_io == NULL ||
2343                     (wbio->bi_end_io == end_sync_read &&
2344                      (i == r1_bio->read_disk ||
2345                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2346                         continue;
2347                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2348                         abort_sync_write(mddev, r1_bio);
2349                         continue;
2350                 }
2351
2352                 wbio->bi_opf = REQ_OP_WRITE;
2353                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2354                         wbio->bi_opf |= MD_FAILFAST;
2355
2356                 wbio->bi_end_io = end_sync_write;
2357                 atomic_inc(&r1_bio->remaining);
2358                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2359
2360                 submit_bio_noacct(wbio);
2361         }
2362
2363         put_sync_write_buf(r1_bio, 1);
2364 }
2365
2366 /*
2367  * This is a kernel thread which:
2368  *
2369  *      1.      Retries failed read operations on working mirrors.
2370  *      2.      Updates the raid superblock when problems encounter.
2371  *      3.      Performs writes following reads for array synchronising.
2372  */
2373
2374 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2375 {
2376         sector_t sect = r1_bio->sector;
2377         int sectors = r1_bio->sectors;
2378         int read_disk = r1_bio->read_disk;
2379         struct mddev *mddev = conf->mddev;
2380         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2381
2382         if (exceed_read_errors(mddev, rdev)) {
2383                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2384                 return;
2385         }
2386
2387         while(sectors) {
2388                 int s = sectors;
2389                 int d = read_disk;
2390                 int success = 0;
2391                 int start;
2392
2393                 if (s > (PAGE_SIZE>>9))
2394                         s = PAGE_SIZE >> 9;
2395
2396                 do {
2397                         rdev = conf->mirrors[d].rdev;
2398                         if (rdev &&
2399                             (test_bit(In_sync, &rdev->flags) ||
2400                              (!test_bit(Faulty, &rdev->flags) &&
2401                               rdev->recovery_offset >= sect + s)) &&
2402                             rdev_has_badblock(rdev, sect, s) == 0) {
2403                                 atomic_inc(&rdev->nr_pending);
2404                                 if (sync_page_io(rdev, sect, s<<9,
2405                                          conf->tmppage, REQ_OP_READ, false))
2406                                         success = 1;
2407                                 rdev_dec_pending(rdev, mddev);
2408                                 if (success)
2409                                         break;
2410                         }
2411
2412                         d++;
2413                         if (d == conf->raid_disks * 2)
2414                                 d = 0;
2415                 } while (d != read_disk);
2416
2417                 if (!success) {
2418                         /* Cannot read from anywhere - mark it bad */
2419                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2420                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2421                                 md_error(mddev, rdev);
2422                         break;
2423                 }
2424                 /* write it back and re-read */
2425                 start = d;
2426                 while (d != read_disk) {
2427                         if (d==0)
2428                                 d = conf->raid_disks * 2;
2429                         d--;
2430                         rdev = conf->mirrors[d].rdev;
2431                         if (rdev &&
2432                             !test_bit(Faulty, &rdev->flags)) {
2433                                 atomic_inc(&rdev->nr_pending);
2434                                 r1_sync_page_io(rdev, sect, s,
2435                                                 conf->tmppage, REQ_OP_WRITE);
2436                                 rdev_dec_pending(rdev, mddev);
2437                         }
2438                 }
2439                 d = start;
2440                 while (d != read_disk) {
2441                         if (d==0)
2442                                 d = conf->raid_disks * 2;
2443                         d--;
2444                         rdev = conf->mirrors[d].rdev;
2445                         if (rdev &&
2446                             !test_bit(Faulty, &rdev->flags)) {
2447                                 atomic_inc(&rdev->nr_pending);
2448                                 if (r1_sync_page_io(rdev, sect, s,
2449                                                 conf->tmppage, REQ_OP_READ)) {
2450                                         atomic_add(s, &rdev->corrected_errors);
2451                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2452                                                 mdname(mddev), s,
2453                                                 (unsigned long long)(sect +
2454                                                                      rdev->data_offset),
2455                                                 rdev->bdev);
2456                                 }
2457                                 rdev_dec_pending(rdev, mddev);
2458                         }
2459                 }
2460                 sectors -= s;
2461                 sect += s;
2462         }
2463 }
2464
2465 static int narrow_write_error(struct r1bio *r1_bio, int i)
2466 {
2467         struct mddev *mddev = r1_bio->mddev;
2468         struct r1conf *conf = mddev->private;
2469         struct md_rdev *rdev = conf->mirrors[i].rdev;
2470
2471         /* bio has the data to be written to device 'i' where
2472          * we just recently had a write error.
2473          * We repeatedly clone the bio and trim down to one block,
2474          * then try the write.  Where the write fails we record
2475          * a bad block.
2476          * It is conceivable that the bio doesn't exactly align with
2477          * blocks.  We must handle this somehow.
2478          *
2479          * We currently own a reference on the rdev.
2480          */
2481
2482         int block_sectors;
2483         sector_t sector;
2484         int sectors;
2485         int sect_to_write = r1_bio->sectors;
2486         int ok = 1;
2487
2488         if (rdev->badblocks.shift < 0)
2489                 return 0;
2490
2491         block_sectors = roundup(1 << rdev->badblocks.shift,
2492                                 bdev_logical_block_size(rdev->bdev) >> 9);
2493         sector = r1_bio->sector;
2494         sectors = ((sector + block_sectors)
2495                    & ~(sector_t)(block_sectors - 1))
2496                 - sector;
2497
2498         while (sect_to_write) {
2499                 struct bio *wbio;
2500                 if (sectors > sect_to_write)
2501                         sectors = sect_to_write;
2502                 /* Write at 'sector' for 'sectors'*/
2503
2504                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2505                         wbio = bio_alloc_clone(rdev->bdev,
2506                                                r1_bio->behind_master_bio,
2507                                                GFP_NOIO, &mddev->bio_set);
2508                 } else {
2509                         wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2510                                                GFP_NOIO, &mddev->bio_set);
2511                 }
2512
2513                 wbio->bi_opf = REQ_OP_WRITE;
2514                 wbio->bi_iter.bi_sector = r1_bio->sector;
2515                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2516
2517                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2518                 wbio->bi_iter.bi_sector += rdev->data_offset;
2519
2520                 if (submit_bio_wait(wbio) < 0)
2521                         /* failure! */
2522                         ok = rdev_set_badblocks(rdev, sector,
2523                                                 sectors, 0)
2524                                 && ok;
2525
2526                 bio_put(wbio);
2527                 sect_to_write -= sectors;
2528                 sector += sectors;
2529                 sectors = block_sectors;
2530         }
2531         return ok;
2532 }
2533
2534 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2535 {
2536         int m;
2537         int s = r1_bio->sectors;
2538         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2539                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2540                 struct bio *bio = r1_bio->bios[m];
2541                 if (bio->bi_end_io == NULL)
2542                         continue;
2543                 if (!bio->bi_status &&
2544                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2545                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2546                 }
2547                 if (bio->bi_status &&
2548                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2549                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2550                                 md_error(conf->mddev, rdev);
2551                 }
2552         }
2553         put_buf(r1_bio);
2554         md_done_sync(conf->mddev, s, 1);
2555 }
2556
2557 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2558 {
2559         int m, idx;
2560         bool fail = false;
2561
2562         for (m = 0; m < conf->raid_disks * 2 ; m++)
2563                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2564                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2565                         rdev_clear_badblocks(rdev,
2566                                              r1_bio->sector,
2567                                              r1_bio->sectors, 0);
2568                         rdev_dec_pending(rdev, conf->mddev);
2569                 } else if (r1_bio->bios[m] != NULL) {
2570                         /* This drive got a write error.  We need to
2571                          * narrow down and record precise write
2572                          * errors.
2573                          */
2574                         fail = true;
2575                         if (!narrow_write_error(r1_bio, m)) {
2576                                 md_error(conf->mddev,
2577                                          conf->mirrors[m].rdev);
2578                                 /* an I/O failed, we can't clear the bitmap */
2579                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2580                         }
2581                         rdev_dec_pending(conf->mirrors[m].rdev,
2582                                          conf->mddev);
2583                 }
2584         if (fail) {
2585                 spin_lock_irq(&conf->device_lock);
2586                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2587                 idx = sector_to_idx(r1_bio->sector);
2588                 atomic_inc(&conf->nr_queued[idx]);
2589                 spin_unlock_irq(&conf->device_lock);
2590                 /*
2591                  * In case freeze_array() is waiting for condition
2592                  * get_unqueued_pending() == extra to be true.
2593                  */
2594                 wake_up(&conf->wait_barrier);
2595                 md_wakeup_thread(conf->mddev->thread);
2596         } else {
2597                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2598                         close_write(r1_bio);
2599                 raid_end_bio_io(r1_bio);
2600         }
2601 }
2602
2603 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2604 {
2605         struct mddev *mddev = conf->mddev;
2606         struct bio *bio;
2607         struct md_rdev *rdev;
2608         sector_t sector;
2609
2610         clear_bit(R1BIO_ReadError, &r1_bio->state);
2611         /* we got a read error. Maybe the drive is bad.  Maybe just
2612          * the block and we can fix it.
2613          * We freeze all other IO, and try reading the block from
2614          * other devices.  When we find one, we re-write
2615          * and check it that fixes the read error.
2616          * This is all done synchronously while the array is
2617          * frozen
2618          */
2619
2620         bio = r1_bio->bios[r1_bio->read_disk];
2621         bio_put(bio);
2622         r1_bio->bios[r1_bio->read_disk] = NULL;
2623
2624         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2625         if (mddev->ro == 0
2626             && !test_bit(FailFast, &rdev->flags)) {
2627                 freeze_array(conf, 1);
2628                 fix_read_error(conf, r1_bio);
2629                 unfreeze_array(conf);
2630         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2631                 md_error(mddev, rdev);
2632         } else {
2633                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2634         }
2635
2636         rdev_dec_pending(rdev, conf->mddev);
2637         sector = r1_bio->sector;
2638         bio = r1_bio->master_bio;
2639
2640         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2641         r1_bio->state = 0;
2642         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2643         allow_barrier(conf, sector);
2644 }
2645
2646 static void raid1d(struct md_thread *thread)
2647 {
2648         struct mddev *mddev = thread->mddev;
2649         struct r1bio *r1_bio;
2650         unsigned long flags;
2651         struct r1conf *conf = mddev->private;
2652         struct list_head *head = &conf->retry_list;
2653         struct blk_plug plug;
2654         int idx;
2655
2656         md_check_recovery(mddev);
2657
2658         if (!list_empty_careful(&conf->bio_end_io_list) &&
2659             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2660                 LIST_HEAD(tmp);
2661                 spin_lock_irqsave(&conf->device_lock, flags);
2662                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2663                         list_splice_init(&conf->bio_end_io_list, &tmp);
2664                 spin_unlock_irqrestore(&conf->device_lock, flags);
2665                 while (!list_empty(&tmp)) {
2666                         r1_bio = list_first_entry(&tmp, struct r1bio,
2667                                                   retry_list);
2668                         list_del(&r1_bio->retry_list);
2669                         idx = sector_to_idx(r1_bio->sector);
2670                         atomic_dec(&conf->nr_queued[idx]);
2671                         if (mddev->degraded)
2672                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2673                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2674                                 close_write(r1_bio);
2675                         raid_end_bio_io(r1_bio);
2676                 }
2677         }
2678
2679         blk_start_plug(&plug);
2680         for (;;) {
2681
2682                 flush_pending_writes(conf);
2683
2684                 spin_lock_irqsave(&conf->device_lock, flags);
2685                 if (list_empty(head)) {
2686                         spin_unlock_irqrestore(&conf->device_lock, flags);
2687                         break;
2688                 }
2689                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2690                 list_del(head->prev);
2691                 idx = sector_to_idx(r1_bio->sector);
2692                 atomic_dec(&conf->nr_queued[idx]);
2693                 spin_unlock_irqrestore(&conf->device_lock, flags);
2694
2695                 mddev = r1_bio->mddev;
2696                 conf = mddev->private;
2697                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2698                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2699                             test_bit(R1BIO_WriteError, &r1_bio->state))
2700                                 handle_sync_write_finished(conf, r1_bio);
2701                         else
2702                                 sync_request_write(mddev, r1_bio);
2703                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2704                            test_bit(R1BIO_WriteError, &r1_bio->state))
2705                         handle_write_finished(conf, r1_bio);
2706                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2707                         handle_read_error(conf, r1_bio);
2708                 else
2709                         WARN_ON_ONCE(1);
2710
2711                 cond_resched();
2712                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2713                         md_check_recovery(mddev);
2714         }
2715         blk_finish_plug(&plug);
2716 }
2717
2718 static int init_resync(struct r1conf *conf)
2719 {
2720         int buffs;
2721
2722         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2723         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2724
2725         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2726                             r1buf_pool_free, conf->poolinfo);
2727 }
2728
2729 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2730 {
2731         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2732         struct resync_pages *rps;
2733         struct bio *bio;
2734         int i;
2735
2736         for (i = conf->poolinfo->raid_disks; i--; ) {
2737                 bio = r1bio->bios[i];
2738                 rps = bio->bi_private;
2739                 bio_reset(bio, NULL, 0);
2740                 bio->bi_private = rps;
2741         }
2742         r1bio->master_bio = NULL;
2743         return r1bio;
2744 }
2745
2746 /*
2747  * perform a "sync" on one "block"
2748  *
2749  * We need to make sure that no normal I/O request - particularly write
2750  * requests - conflict with active sync requests.
2751  *
2752  * This is achieved by tracking pending requests and a 'barrier' concept
2753  * that can be installed to exclude normal IO requests.
2754  */
2755
2756 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2757                                    sector_t max_sector, int *skipped)
2758 {
2759         struct r1conf *conf = mddev->private;
2760         struct r1bio *r1_bio;
2761         struct bio *bio;
2762         sector_t nr_sectors;
2763         int disk = -1;
2764         int i;
2765         int wonly = -1;
2766         int write_targets = 0, read_targets = 0;
2767         sector_t sync_blocks;
2768         int still_degraded = 0;
2769         int good_sectors = RESYNC_SECTORS;
2770         int min_bad = 0; /* number of sectors that are bad in all devices */
2771         int idx = sector_to_idx(sector_nr);
2772         int page_idx = 0;
2773
2774         if (!mempool_initialized(&conf->r1buf_pool))
2775                 if (init_resync(conf))
2776                         return 0;
2777
2778         if (sector_nr >= max_sector) {
2779                 /* If we aborted, we need to abort the
2780                  * sync on the 'current' bitmap chunk (there will
2781                  * only be one in raid1 resync.
2782                  * We can find the current addess in mddev->curr_resync
2783                  */
2784                 if (mddev->curr_resync < max_sector) /* aborted */
2785                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2786                                            &sync_blocks, 1);
2787                 else /* completed sync */
2788                         conf->fullsync = 0;
2789
2790                 md_bitmap_close_sync(mddev->bitmap);
2791                 close_sync(conf);
2792
2793                 if (mddev_is_clustered(mddev)) {
2794                         conf->cluster_sync_low = 0;
2795                         conf->cluster_sync_high = 0;
2796                 }
2797                 return 0;
2798         }
2799
2800         if (mddev->bitmap == NULL &&
2801             mddev->recovery_cp == MaxSector &&
2802             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2803             conf->fullsync == 0) {
2804                 *skipped = 1;
2805                 return max_sector - sector_nr;
2806         }
2807         /* before building a request, check if we can skip these blocks..
2808          * This call the bitmap_start_sync doesn't actually record anything
2809          */
2810         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2811             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2812                 /* We can skip this block, and probably several more */
2813                 *skipped = 1;
2814                 return sync_blocks;
2815         }
2816
2817         /*
2818          * If there is non-resync activity waiting for a turn, then let it
2819          * though before starting on this new sync request.
2820          */
2821         if (atomic_read(&conf->nr_waiting[idx]))
2822                 schedule_timeout_uninterruptible(1);
2823
2824         /* we are incrementing sector_nr below. To be safe, we check against
2825          * sector_nr + two times RESYNC_SECTORS
2826          */
2827
2828         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2829                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2830
2831
2832         if (raise_barrier(conf, sector_nr))
2833                 return 0;
2834
2835         r1_bio = raid1_alloc_init_r1buf(conf);
2836
2837         /*
2838          * If we get a correctably read error during resync or recovery,
2839          * we might want to read from a different device.  So we
2840          * flag all drives that could conceivably be read from for READ,
2841          * and any others (which will be non-In_sync devices) for WRITE.
2842          * If a read fails, we try reading from something else for which READ
2843          * is OK.
2844          */
2845
2846         r1_bio->mddev = mddev;
2847         r1_bio->sector = sector_nr;
2848         r1_bio->state = 0;
2849         set_bit(R1BIO_IsSync, &r1_bio->state);
2850         /* make sure good_sectors won't go across barrier unit boundary */
2851         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2852
2853         for (i = 0; i < conf->raid_disks * 2; i++) {
2854                 struct md_rdev *rdev;
2855                 bio = r1_bio->bios[i];
2856
2857                 rdev = conf->mirrors[i].rdev;
2858                 if (rdev == NULL ||
2859                     test_bit(Faulty, &rdev->flags)) {
2860                         if (i < conf->raid_disks)
2861                                 still_degraded = 1;
2862                 } else if (!test_bit(In_sync, &rdev->flags)) {
2863                         bio->bi_opf = REQ_OP_WRITE;
2864                         bio->bi_end_io = end_sync_write;
2865                         write_targets ++;
2866                 } else {
2867                         /* may need to read from here */
2868                         sector_t first_bad = MaxSector;
2869                         int bad_sectors;
2870
2871                         if (is_badblock(rdev, sector_nr, good_sectors,
2872                                         &first_bad, &bad_sectors)) {
2873                                 if (first_bad > sector_nr)
2874                                         good_sectors = first_bad - sector_nr;
2875                                 else {
2876                                         bad_sectors -= (sector_nr - first_bad);
2877                                         if (min_bad == 0 ||
2878                                             min_bad > bad_sectors)
2879                                                 min_bad = bad_sectors;
2880                                 }
2881                         }
2882                         if (sector_nr < first_bad) {
2883                                 if (test_bit(WriteMostly, &rdev->flags)) {
2884                                         if (wonly < 0)
2885                                                 wonly = i;
2886                                 } else {
2887                                         if (disk < 0)
2888                                                 disk = i;
2889                                 }
2890                                 bio->bi_opf = REQ_OP_READ;
2891                                 bio->bi_end_io = end_sync_read;
2892                                 read_targets++;
2893                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2894                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2895                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2896                                 /*
2897                                  * The device is suitable for reading (InSync),
2898                                  * but has bad block(s) here. Let's try to correct them,
2899                                  * if we are doing resync or repair. Otherwise, leave
2900                                  * this device alone for this sync request.
2901                                  */
2902                                 bio->bi_opf = REQ_OP_WRITE;
2903                                 bio->bi_end_io = end_sync_write;
2904                                 write_targets++;
2905                         }
2906                 }
2907                 if (rdev && bio->bi_end_io) {
2908                         atomic_inc(&rdev->nr_pending);
2909                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2910                         bio_set_dev(bio, rdev->bdev);
2911                         if (test_bit(FailFast, &rdev->flags))
2912                                 bio->bi_opf |= MD_FAILFAST;
2913                 }
2914         }
2915         if (disk < 0)
2916                 disk = wonly;
2917         r1_bio->read_disk = disk;
2918
2919         if (read_targets == 0 && min_bad > 0) {
2920                 /* These sectors are bad on all InSync devices, so we
2921                  * need to mark them bad on all write targets
2922                  */
2923                 int ok = 1;
2924                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2925                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2926                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2927                                 ok = rdev_set_badblocks(rdev, sector_nr,
2928                                                         min_bad, 0
2929                                         ) && ok;
2930                         }
2931                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2932                 *skipped = 1;
2933                 put_buf(r1_bio);
2934
2935                 if (!ok) {
2936                         /* Cannot record the badblocks, so need to
2937                          * abort the resync.
2938                          * If there are multiple read targets, could just
2939                          * fail the really bad ones ???
2940                          */
2941                         conf->recovery_disabled = mddev->recovery_disabled;
2942                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2943                         return 0;
2944                 } else
2945                         return min_bad;
2946
2947         }
2948         if (min_bad > 0 && min_bad < good_sectors) {
2949                 /* only resync enough to reach the next bad->good
2950                  * transition */
2951                 good_sectors = min_bad;
2952         }
2953
2954         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2955                 /* extra read targets are also write targets */
2956                 write_targets += read_targets-1;
2957
2958         if (write_targets == 0 || read_targets == 0) {
2959                 /* There is nowhere to write, so all non-sync
2960                  * drives must be failed - so we are finished
2961                  */
2962                 sector_t rv;
2963                 if (min_bad > 0)
2964                         max_sector = sector_nr + min_bad;
2965                 rv = max_sector - sector_nr;
2966                 *skipped = 1;
2967                 put_buf(r1_bio);
2968                 return rv;
2969         }
2970
2971         if (max_sector > mddev->resync_max)
2972                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2973         if (max_sector > sector_nr + good_sectors)
2974                 max_sector = sector_nr + good_sectors;
2975         nr_sectors = 0;
2976         sync_blocks = 0;
2977         do {
2978                 struct page *page;
2979                 int len = PAGE_SIZE;
2980                 if (sector_nr + (len>>9) > max_sector)
2981                         len = (max_sector - sector_nr) << 9;
2982                 if (len == 0)
2983                         break;
2984                 if (sync_blocks == 0) {
2985                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2986                                                   &sync_blocks, still_degraded) &&
2987                             !conf->fullsync &&
2988                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2989                                 break;
2990                         if ((len >> 9) > sync_blocks)
2991                                 len = sync_blocks<<9;
2992                 }
2993
2994                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2995                         struct resync_pages *rp;
2996
2997                         bio = r1_bio->bios[i];
2998                         rp = get_resync_pages(bio);
2999                         if (bio->bi_end_io) {
3000                                 page = resync_fetch_page(rp, page_idx);
3001
3002                                 /*
3003                                  * won't fail because the vec table is big
3004                                  * enough to hold all these pages
3005                                  */
3006                                 __bio_add_page(bio, page, len, 0);
3007                         }
3008                 }
3009                 nr_sectors += len>>9;
3010                 sector_nr += len>>9;
3011                 sync_blocks -= (len>>9);
3012         } while (++page_idx < RESYNC_PAGES);
3013
3014         r1_bio->sectors = nr_sectors;
3015
3016         if (mddev_is_clustered(mddev) &&
3017                         conf->cluster_sync_high < sector_nr + nr_sectors) {
3018                 conf->cluster_sync_low = mddev->curr_resync_completed;
3019                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3020                 /* Send resync message */
3021                 md_cluster_ops->resync_info_update(mddev,
3022                                 conf->cluster_sync_low,
3023                                 conf->cluster_sync_high);
3024         }
3025
3026         /* For a user-requested sync, we read all readable devices and do a
3027          * compare
3028          */
3029         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3030                 atomic_set(&r1_bio->remaining, read_targets);
3031                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3032                         bio = r1_bio->bios[i];
3033                         if (bio->bi_end_io == end_sync_read) {
3034                                 read_targets--;
3035                                 md_sync_acct_bio(bio, nr_sectors);
3036                                 if (read_targets == 1)
3037                                         bio->bi_opf &= ~MD_FAILFAST;
3038                                 submit_bio_noacct(bio);
3039                         }
3040                 }
3041         } else {
3042                 atomic_set(&r1_bio->remaining, 1);
3043                 bio = r1_bio->bios[r1_bio->read_disk];
3044                 md_sync_acct_bio(bio, nr_sectors);
3045                 if (read_targets == 1)
3046                         bio->bi_opf &= ~MD_FAILFAST;
3047                 submit_bio_noacct(bio);
3048         }
3049         return nr_sectors;
3050 }
3051
3052 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3053 {
3054         if (sectors)
3055                 return sectors;
3056
3057         return mddev->dev_sectors;
3058 }
3059
3060 static struct r1conf *setup_conf(struct mddev *mddev)
3061 {
3062         struct r1conf *conf;
3063         int i;
3064         struct raid1_info *disk;
3065         struct md_rdev *rdev;
3066         int err = -ENOMEM;
3067
3068         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3069         if (!conf)
3070                 goto abort;
3071
3072         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3073                                    sizeof(atomic_t), GFP_KERNEL);
3074         if (!conf->nr_pending)
3075                 goto abort;
3076
3077         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3078                                    sizeof(atomic_t), GFP_KERNEL);
3079         if (!conf->nr_waiting)
3080                 goto abort;
3081
3082         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3083                                   sizeof(atomic_t), GFP_KERNEL);
3084         if (!conf->nr_queued)
3085                 goto abort;
3086
3087         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3088                                 sizeof(atomic_t), GFP_KERNEL);
3089         if (!conf->barrier)
3090                 goto abort;
3091
3092         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3093                                             mddev->raid_disks, 2),
3094                                 GFP_KERNEL);
3095         if (!conf->mirrors)
3096                 goto abort;
3097
3098         conf->tmppage = alloc_page(GFP_KERNEL);
3099         if (!conf->tmppage)
3100                 goto abort;
3101
3102         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3103         if (!conf->poolinfo)
3104                 goto abort;
3105         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3106         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3107                            rbio_pool_free, conf->poolinfo);
3108         if (err)
3109                 goto abort;
3110
3111         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3112         if (err)
3113                 goto abort;
3114
3115         conf->poolinfo->mddev = mddev;
3116
3117         err = -EINVAL;
3118         spin_lock_init(&conf->device_lock);
3119         conf->raid_disks = mddev->raid_disks;
3120         rdev_for_each(rdev, mddev) {
3121                 int disk_idx = rdev->raid_disk;
3122
3123                 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3124                         continue;
3125
3126                 if (!raid1_add_conf(conf, rdev, disk_idx,
3127                                     test_bit(Replacement, &rdev->flags)))
3128                         goto abort;
3129         }
3130         conf->mddev = mddev;
3131         INIT_LIST_HEAD(&conf->retry_list);
3132         INIT_LIST_HEAD(&conf->bio_end_io_list);
3133
3134         spin_lock_init(&conf->resync_lock);
3135         init_waitqueue_head(&conf->wait_barrier);
3136
3137         bio_list_init(&conf->pending_bio_list);
3138         conf->recovery_disabled = mddev->recovery_disabled - 1;
3139
3140         err = -EIO;
3141         for (i = 0; i < conf->raid_disks * 2; i++) {
3142
3143                 disk = conf->mirrors + i;
3144
3145                 if (i < conf->raid_disks &&
3146                     disk[conf->raid_disks].rdev) {
3147                         /* This slot has a replacement. */
3148                         if (!disk->rdev) {
3149                                 /* No original, just make the replacement
3150                                  * a recovering spare
3151                                  */
3152                                 disk->rdev =
3153                                         disk[conf->raid_disks].rdev;
3154                                 disk[conf->raid_disks].rdev = NULL;
3155                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3156                                 /* Original is not in_sync - bad */
3157                                 goto abort;
3158                 }
3159
3160                 if (!disk->rdev ||
3161                     !test_bit(In_sync, &disk->rdev->flags)) {
3162                         disk->head_position = 0;
3163                         if (disk->rdev &&
3164                             (disk->rdev->saved_raid_disk < 0))
3165                                 conf->fullsync = 1;
3166                 }
3167         }
3168
3169         err = -ENOMEM;
3170         rcu_assign_pointer(conf->thread,
3171                            md_register_thread(raid1d, mddev, "raid1"));
3172         if (!conf->thread)
3173                 goto abort;
3174
3175         return conf;
3176
3177  abort:
3178         if (conf) {
3179                 mempool_exit(&conf->r1bio_pool);
3180                 kfree(conf->mirrors);
3181                 safe_put_page(conf->tmppage);
3182                 kfree(conf->poolinfo);
3183                 kfree(conf->nr_pending);
3184                 kfree(conf->nr_waiting);
3185                 kfree(conf->nr_queued);
3186                 kfree(conf->barrier);
3187                 bioset_exit(&conf->bio_split);
3188                 kfree(conf);
3189         }
3190         return ERR_PTR(err);
3191 }
3192
3193 static int raid1_set_limits(struct mddev *mddev)
3194 {
3195         struct queue_limits lim;
3196         int err;
3197
3198         md_init_stacking_limits(&lim);
3199         lim.max_write_zeroes_sectors = 0;
3200         err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3201         if (err) {
3202                 queue_limits_cancel_update(mddev->gendisk->queue);
3203                 return err;
3204         }
3205         return queue_limits_set(mddev->gendisk->queue, &lim);
3206 }
3207
3208 static int raid1_run(struct mddev *mddev)
3209 {
3210         struct r1conf *conf;
3211         int i;
3212         int ret;
3213
3214         if (mddev->level != 1) {
3215                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216                         mdname(mddev), mddev->level);
3217                 return -EIO;
3218         }
3219         if (mddev->reshape_position != MaxSector) {
3220                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221                         mdname(mddev));
3222                 return -EIO;
3223         }
3224
3225         /*
3226          * copy the already verified devices into our private RAID1
3227          * bookkeeping area. [whatever we allocate in run(),
3228          * should be freed in raid1_free()]
3229          */
3230         if (mddev->private == NULL)
3231                 conf = setup_conf(mddev);
3232         else
3233                 conf = mddev->private;
3234
3235         if (IS_ERR(conf))
3236                 return PTR_ERR(conf);
3237
3238         if (!mddev_is_dm(mddev)) {
3239                 ret = raid1_set_limits(mddev);
3240                 if (ret)
3241                         return ret;
3242         }
3243
3244         mddev->degraded = 0;
3245         for (i = 0; i < conf->raid_disks; i++)
3246                 if (conf->mirrors[i].rdev == NULL ||
3247                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249                         mddev->degraded++;
3250         /*
3251          * RAID1 needs at least one disk in active
3252          */
3253         if (conf->raid_disks - mddev->degraded < 1) {
3254                 md_unregister_thread(mddev, &conf->thread);
3255                 return -EINVAL;
3256         }
3257
3258         if (conf->raid_disks - mddev->degraded == 1)
3259                 mddev->recovery_cp = MaxSector;
3260
3261         if (mddev->recovery_cp != MaxSector)
3262                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3263                         mdname(mddev));
3264         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3265                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3266                 mddev->raid_disks);
3267
3268         /*
3269          * Ok, everything is just fine now
3270          */
3271         rcu_assign_pointer(mddev->thread, conf->thread);
3272         rcu_assign_pointer(conf->thread, NULL);
3273         mddev->private = conf;
3274         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3275
3276         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3277
3278         ret = md_integrity_register(mddev);
3279         if (ret)
3280                 md_unregister_thread(mddev, &mddev->thread);
3281         return ret;
3282 }
3283
3284 static void raid1_free(struct mddev *mddev, void *priv)
3285 {
3286         struct r1conf *conf = priv;
3287
3288         mempool_exit(&conf->r1bio_pool);
3289         kfree(conf->mirrors);
3290         safe_put_page(conf->tmppage);
3291         kfree(conf->poolinfo);
3292         kfree(conf->nr_pending);
3293         kfree(conf->nr_waiting);
3294         kfree(conf->nr_queued);
3295         kfree(conf->barrier);
3296         bioset_exit(&conf->bio_split);
3297         kfree(conf);
3298 }
3299
3300 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3301 {
3302         /* no resync is happening, and there is enough space
3303          * on all devices, so we can resize.
3304          * We need to make sure resync covers any new space.
3305          * If the array is shrinking we should possibly wait until
3306          * any io in the removed space completes, but it hardly seems
3307          * worth it.
3308          */
3309         sector_t newsize = raid1_size(mddev, sectors, 0);
3310         if (mddev->external_size &&
3311             mddev->array_sectors > newsize)
3312                 return -EINVAL;
3313         if (mddev->bitmap) {
3314                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3315                 if (ret)
3316                         return ret;
3317         }
3318         md_set_array_sectors(mddev, newsize);
3319         if (sectors > mddev->dev_sectors &&
3320             mddev->recovery_cp > mddev->dev_sectors) {
3321                 mddev->recovery_cp = mddev->dev_sectors;
3322                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3323         }
3324         mddev->dev_sectors = sectors;
3325         mddev->resync_max_sectors = sectors;
3326         return 0;
3327 }
3328
3329 static int raid1_reshape(struct mddev *mddev)
3330 {
3331         /* We need to:
3332          * 1/ resize the r1bio_pool
3333          * 2/ resize conf->mirrors
3334          *
3335          * We allocate a new r1bio_pool if we can.
3336          * Then raise a device barrier and wait until all IO stops.
3337          * Then resize conf->mirrors and swap in the new r1bio pool.
3338          *
3339          * At the same time, we "pack" the devices so that all the missing
3340          * devices have the higher raid_disk numbers.
3341          */
3342         mempool_t newpool, oldpool;
3343         struct pool_info *newpoolinfo;
3344         struct raid1_info *newmirrors;
3345         struct r1conf *conf = mddev->private;
3346         int cnt, raid_disks;
3347         unsigned long flags;
3348         int d, d2;
3349         int ret;
3350
3351         memset(&newpool, 0, sizeof(newpool));
3352         memset(&oldpool, 0, sizeof(oldpool));
3353
3354         /* Cannot change chunk_size, layout, or level */
3355         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3356             mddev->layout != mddev->new_layout ||
3357             mddev->level != mddev->new_level) {
3358                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3359                 mddev->new_layout = mddev->layout;
3360                 mddev->new_level = mddev->level;
3361                 return -EINVAL;
3362         }
3363
3364         if (!mddev_is_clustered(mddev))
3365                 md_allow_write(mddev);
3366
3367         raid_disks = mddev->raid_disks + mddev->delta_disks;
3368
3369         if (raid_disks < conf->raid_disks) {
3370                 cnt=0;
3371                 for (d= 0; d < conf->raid_disks; d++)
3372                         if (conf->mirrors[d].rdev)
3373                                 cnt++;
3374                 if (cnt > raid_disks)
3375                         return -EBUSY;
3376         }
3377
3378         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3379         if (!newpoolinfo)
3380                 return -ENOMEM;
3381         newpoolinfo->mddev = mddev;
3382         newpoolinfo->raid_disks = raid_disks * 2;
3383
3384         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3385                            rbio_pool_free, newpoolinfo);
3386         if (ret) {
3387                 kfree(newpoolinfo);
3388                 return ret;
3389         }
3390         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3391                                          raid_disks, 2),
3392                              GFP_KERNEL);
3393         if (!newmirrors) {
3394                 kfree(newpoolinfo);
3395                 mempool_exit(&newpool);
3396                 return -ENOMEM;
3397         }
3398
3399         freeze_array(conf, 0);
3400
3401         /* ok, everything is stopped */
3402         oldpool = conf->r1bio_pool;
3403         conf->r1bio_pool = newpool;
3404
3405         for (d = d2 = 0; d < conf->raid_disks; d++) {
3406                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3407                 if (rdev && rdev->raid_disk != d2) {
3408                         sysfs_unlink_rdev(mddev, rdev);
3409                         rdev->raid_disk = d2;
3410                         sysfs_unlink_rdev(mddev, rdev);
3411                         if (sysfs_link_rdev(mddev, rdev))
3412                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3413                                         mdname(mddev), rdev->raid_disk);
3414                 }
3415                 if (rdev)
3416                         newmirrors[d2++].rdev = rdev;
3417         }
3418         kfree(conf->mirrors);
3419         conf->mirrors = newmirrors;
3420         kfree(conf->poolinfo);
3421         conf->poolinfo = newpoolinfo;
3422
3423         spin_lock_irqsave(&conf->device_lock, flags);
3424         mddev->degraded += (raid_disks - conf->raid_disks);
3425         spin_unlock_irqrestore(&conf->device_lock, flags);
3426         conf->raid_disks = mddev->raid_disks = raid_disks;
3427         mddev->delta_disks = 0;
3428
3429         unfreeze_array(conf);
3430
3431         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3432         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3433         md_wakeup_thread(mddev->thread);
3434
3435         mempool_exit(&oldpool);
3436         return 0;
3437 }
3438
3439 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3440 {
3441         struct r1conf *conf = mddev->private;
3442
3443         if (quiesce)
3444                 freeze_array(conf, 0);
3445         else
3446                 unfreeze_array(conf);
3447 }
3448
3449 static void *raid1_takeover(struct mddev *mddev)
3450 {
3451         /* raid1 can take over:
3452          *  raid5 with 2 devices, any layout or chunk size
3453          */
3454         if (mddev->level == 5 && mddev->raid_disks == 2) {
3455                 struct r1conf *conf;
3456                 mddev->new_level = 1;
3457                 mddev->new_layout = 0;
3458                 mddev->new_chunk_sectors = 0;
3459                 conf = setup_conf(mddev);
3460                 if (!IS_ERR(conf)) {
3461                         /* Array must appear to be quiesced */
3462                         conf->array_frozen = 1;
3463                         mddev_clear_unsupported_flags(mddev,
3464                                 UNSUPPORTED_MDDEV_FLAGS);
3465                 }
3466                 return conf;
3467         }
3468         return ERR_PTR(-EINVAL);
3469 }
3470
3471 static struct md_personality raid1_personality =
3472 {
3473         .name           = "raid1",
3474         .level          = 1,
3475         .owner          = THIS_MODULE,
3476         .make_request   = raid1_make_request,
3477         .run            = raid1_run,
3478         .free           = raid1_free,
3479         .status         = raid1_status,
3480         .error_handler  = raid1_error,
3481         .hot_add_disk   = raid1_add_disk,
3482         .hot_remove_disk= raid1_remove_disk,
3483         .spare_active   = raid1_spare_active,
3484         .sync_request   = raid1_sync_request,
3485         .resize         = raid1_resize,
3486         .size           = raid1_size,
3487         .check_reshape  = raid1_reshape,
3488         .quiesce        = raid1_quiesce,
3489         .takeover       = raid1_takeover,
3490 };
3491
3492 static int __init raid_init(void)
3493 {
3494         return register_md_personality(&raid1_personality);
3495 }
3496
3497 static void raid_exit(void)
3498 {
3499         unregister_md_personality(&raid1_personality);
3500 }
3501
3502 module_init(raid_init);
3503 module_exit(raid_exit);
3504 MODULE_LICENSE("GPL");
3505 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3506 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3507 MODULE_ALIAS("md-raid1");
3508 MODULE_ALIAS("md-level-1");
This page took 0.235005 seconds and 4 git commands to generate.