1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define RAID_1_10_NAME "raid1"
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
73 raid1_rb_insert(si, &serial->serial_rb);
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
87 if (WARN_ON(!mddev->serial_info_pool))
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
96 struct serial_info *si;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
125 return get_resync_pages(bio)->raid_bio;
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
151 struct resync_pages *rps;
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
163 * Allocate bios : 1 for reading, n-1 for writing
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
173 * Allocate RESYNC_PAGES data pages and attach them to
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
185 bio = r1_bio->bios[j];
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
199 r1_bio->master_bio = NULL;
205 resync_free_pages(&rps[j]);
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
215 rbio_pool_free(r1_bio, data);
219 static void r1buf_pool_free(void *__r1_bio, void *data)
221 struct pool_info *pi = data;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
233 /* resync pages array stored in the 1st bio's .bi_private */
236 rbio_pool_free(r1bio, data);
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
251 static void free_r1bio(struct r1bio *r1_bio)
253 struct r1conf *conf = r1_bio->mddev->private;
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
259 static void put_buf(struct r1bio *r1_bio)
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 mempool_free(r1_bio, &conf->r1buf_pool);
273 lower_barrier(conf, sect);
276 static void reschedule_retry(struct r1bio *r1_bio)
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
298 static void call_bio_endio(struct r1bio *r1_bio)
300 struct bio *bio = r1_bio->master_bio;
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
308 static void raid_end_bio_io(struct r1bio *r1_bio)
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
321 call_bio_endio(r1_bio);
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
329 allow_barrier(conf, sector);
333 * Update disk head position estimator based on IRQ completion info.
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 struct r1conf *conf = r1_bio->mddev->private;
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
344 * Find the disk number which triggered given bio
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
362 static void raid1_end_read_request(struct bio *bio)
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370 * this branch is our 'one mirror IO has finished' event handler:
372 update_head_pos(r1_bio->read_disk, r1_bio);
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
392 spin_unlock_irqrestore(&conf->device_lock, flags);
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
412 static void close_write(struct r1bio *r1_bio)
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
428 static void r1_bio_write_done(struct r1bio *r1_bio)
430 if (!atomic_dec_and_test(&r1_bio->remaining))
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
440 raid_end_bio_io(r1_bio);
444 static void raid1_end_write_request(struct bio *bio)
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 * 'one mirror IO has finished' event handler:
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
475 * When the device is faulty, it is not necessary to
476 * handle write error.
478 if (!test_bit(Faulty, &rdev->flags))
479 set_bit(R1BIO_WriteError, &r1_bio->state);
481 /* Fail the request */
482 set_bit(R1BIO_Degraded, &r1_bio->state);
483 /* Finished with this branch */
484 r1_bio->bios[mirror] = NULL;
489 * Set R1BIO_Uptodate in our master bio, so that we
490 * will return a good error code for to the higher
491 * levels even if IO on some other mirrored buffer
494 * The 'master' represents the composite IO operation
495 * to user-side. So if something waits for IO, then it
496 * will wait for the 'master' bio.
498 r1_bio->bios[mirror] = NULL;
501 * Do not set R1BIO_Uptodate if the current device is
502 * rebuilding or Faulty. This is because we cannot use
503 * such device for properly reading the data back (we could
504 * potentially use it, if the current write would have felt
505 * before rdev->recovery_offset, but for simplicity we don't
508 if (test_bit(In_sync, &rdev->flags) &&
509 !test_bit(Faulty, &rdev->flags))
510 set_bit(R1BIO_Uptodate, &r1_bio->state);
512 /* Maybe we can clear some bad blocks. */
513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
515 r1_bio->bios[mirror] = IO_MADE_GOOD;
516 set_bit(R1BIO_MadeGood, &r1_bio->state);
521 if (test_bit(CollisionCheck, &rdev->flags))
522 remove_serial(rdev, lo, hi);
523 if (test_bit(WriteMostly, &rdev->flags))
524 atomic_dec(&r1_bio->behind_remaining);
527 * In behind mode, we ACK the master bio once the I/O
528 * has safely reached all non-writemostly
529 * disks. Setting the Returned bit ensures that this
530 * gets done only once -- we don't ever want to return
531 * -EIO here, instead we'll wait
533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 /* Maybe we can return now */
536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 struct bio *mbio = r1_bio->master_bio;
538 pr_debug("raid1: behind end write sectors"
540 (unsigned long long) mbio->bi_iter.bi_sector,
541 (unsigned long long) bio_end_sector(mbio) - 1);
542 call_bio_endio(r1_bio);
545 } else if (rdev->mddev->serialize_policy)
546 remove_serial(rdev, lo, hi);
547 if (r1_bio->bios[mirror] == NULL)
548 rdev_dec_pending(rdev, conf->mddev);
551 * Let's see if all mirrored write operations have finished
554 r1_bio_write_done(r1_bio);
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
565 WARN_ON(sectors == 0);
567 * len is the number of sectors from start_sector to end of the
568 * barrier unit which start_sector belongs to.
570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
579 static void update_read_sectors(struct r1conf *conf, int disk,
580 sector_t this_sector, int len)
582 struct raid1_info *info = &conf->mirrors[disk];
584 atomic_inc(&info->rdev->nr_pending);
585 if (info->next_seq_sect != this_sector)
586 info->seq_start = this_sector;
587 info->next_seq_sect = this_sector + len;
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 sector_t this_sector = r1_bio->sector;
594 int len = r1_bio->sectors;
597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 struct md_rdev *rdev;
601 if (r1_bio->bios[disk] == IO_BLOCKED)
604 rdev = conf->mirrors[disk].rdev;
605 if (!rdev || test_bit(Faulty, &rdev->flags))
608 /* choose the first disk even if it has some bad blocks. */
609 read_len = raid1_check_read_range(rdev, this_sector, &len);
611 update_read_sectors(conf, disk, this_sector, read_len);
612 *max_sectors = read_len;
620 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
623 sector_t this_sector = r1_bio->sector;
628 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
629 struct md_rdev *rdev;
633 if (r1_bio->bios[disk] == IO_BLOCKED)
636 rdev = conf->mirrors[disk].rdev;
637 if (!rdev || test_bit(Faulty, &rdev->flags) ||
638 test_bit(WriteMostly, &rdev->flags))
641 /* keep track of the disk with the most readable sectors. */
642 len = r1_bio->sectors;
643 read_len = raid1_check_read_range(rdev, this_sector, &len);
644 if (read_len > best_len) {
650 if (best_disk != -1) {
651 *max_sectors = best_len;
652 update_read_sectors(conf, best_disk, this_sector, best_len);
658 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
661 sector_t this_sector = r1_bio->sector;
666 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
667 struct md_rdev *rdev;
671 if (r1_bio->bios[disk] == IO_BLOCKED)
674 rdev = conf->mirrors[disk].rdev;
675 if (!rdev || test_bit(Faulty, &rdev->flags) ||
676 !test_bit(WriteMostly, &rdev->flags))
679 /* there are no bad blocks, we can use this disk */
680 len = r1_bio->sectors;
681 read_len = raid1_check_read_range(rdev, this_sector, &len);
682 if (read_len == r1_bio->sectors) {
683 *max_sectors = read_len;
684 update_read_sectors(conf, disk, this_sector, read_len);
689 * there are partial bad blocks, choose the rdev with largest
692 if (read_len > bb_read_len) {
694 bb_read_len = read_len;
699 *max_sectors = bb_read_len;
700 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
706 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
708 /* TODO: address issues with this check and concurrency. */
709 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
710 conf->mirrors[disk].head_position == r1_bio->sector;
714 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
715 * disk. If yes, choose the idle disk.
717 static bool should_choose_next(struct r1conf *conf, int disk)
719 struct raid1_info *mirror = &conf->mirrors[disk];
722 if (!test_bit(Nonrot, &mirror->rdev->flags))
725 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
726 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
727 mirror->next_seq_sect > opt_iosize &&
728 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
731 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
733 if (!rdev || test_bit(Faulty, &rdev->flags))
736 /* still in recovery */
737 if (!test_bit(In_sync, &rdev->flags) &&
738 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
741 /* don't read from slow disk unless have to */
742 if (test_bit(WriteMostly, &rdev->flags))
745 /* don't split IO for bad blocks unless have to */
746 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
752 struct read_balance_ctl {
753 sector_t closest_dist;
754 int closest_dist_disk;
756 int min_pending_disk;
761 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
764 struct read_balance_ctl ctl = {
765 .closest_dist_disk = -1,
766 .closest_dist = MaxSector,
767 .min_pending_disk = -1,
768 .min_pending = UINT_MAX,
769 .sequential_disk = -1,
772 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
773 struct md_rdev *rdev;
775 unsigned int pending;
777 if (r1_bio->bios[disk] == IO_BLOCKED)
780 rdev = conf->mirrors[disk].rdev;
781 if (!rdev_readable(rdev, r1_bio))
784 /* At least two disks to choose from so failfast is OK */
785 if (ctl.readable_disks++ == 1)
786 set_bit(R1BIO_FailFast, &r1_bio->state);
788 pending = atomic_read(&rdev->nr_pending);
789 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
791 /* Don't change to another disk for sequential reads */
792 if (is_sequential(conf, disk, r1_bio)) {
793 if (!should_choose_next(conf, disk))
797 * Add 'pending' to avoid choosing this disk if
798 * there is other idle disk.
802 * If there is no other idle disk, this disk
805 ctl.sequential_disk = disk;
808 if (ctl.min_pending > pending) {
809 ctl.min_pending = pending;
810 ctl.min_pending_disk = disk;
813 if (ctl.closest_dist > dist) {
814 ctl.closest_dist = dist;
815 ctl.closest_dist_disk = disk;
820 * sequential IO size exceeds optimal iosize, however, there is no other
821 * idle disk, so choose the sequential disk.
823 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
824 return ctl.sequential_disk;
827 * If all disks are rotational, choose the closest disk. If any disk is
828 * non-rotational, choose the disk with less pending request even the
829 * disk is rotational, which might/might not be optimal for raids with
830 * mixed ratation/non-rotational disks depending on workload.
832 if (ctl.min_pending_disk != -1 &&
833 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
834 return ctl.min_pending_disk;
836 return ctl.closest_dist_disk;
840 * This routine returns the disk from which the requested read should be done.
842 * 1) If resync is in progress, find the first usable disk and use it even if it
843 * has some bad blocks.
845 * 2) Now that there is no resync, loop through all disks and skipping slow
846 * disks and disks with bad blocks for now. Only pay attention to key disk
849 * 3) If we've made it this far, now look for disks with bad blocks and choose
850 * the one with most number of sectors.
852 * 4) If we are all the way at the end, we have no choice but to use a disk even
853 * if it is write mostly.
855 * The rdev for the device selected will have nr_pending incremented.
857 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
862 clear_bit(R1BIO_FailFast, &r1_bio->state);
864 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
866 return choose_first_rdev(conf, r1_bio, max_sectors);
868 disk = choose_best_rdev(conf, r1_bio);
870 *max_sectors = r1_bio->sectors;
871 update_read_sectors(conf, disk, r1_bio->sector,
877 * If we are here it means we didn't find a perfectly good disk so
878 * now spend a bit more time trying to find one with the most good
881 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
885 return choose_slow_rdev(conf, r1_bio, max_sectors);
888 static void wake_up_barrier(struct r1conf *conf)
890 if (wq_has_sleeper(&conf->wait_barrier))
891 wake_up(&conf->wait_barrier);
894 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
896 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
897 raid1_prepare_flush_writes(conf->mddev->bitmap);
898 wake_up_barrier(conf);
900 while (bio) { /* submit pending writes */
901 struct bio *next = bio->bi_next;
903 raid1_submit_write(bio);
909 static void flush_pending_writes(struct r1conf *conf)
911 /* Any writes that have been queued but are awaiting
912 * bitmap updates get flushed here.
914 spin_lock_irq(&conf->device_lock);
916 if (conf->pending_bio_list.head) {
917 struct blk_plug plug;
920 bio = bio_list_get(&conf->pending_bio_list);
921 spin_unlock_irq(&conf->device_lock);
924 * As this is called in a wait_event() loop (see freeze_array),
925 * current->state might be TASK_UNINTERRUPTIBLE which will
926 * cause a warning when we prepare to wait again. As it is
927 * rare that this path is taken, it is perfectly safe to force
928 * us to go around the wait_event() loop again, so the warning
929 * is a false-positive. Silence the warning by resetting
932 __set_current_state(TASK_RUNNING);
933 blk_start_plug(&plug);
934 flush_bio_list(conf, bio);
935 blk_finish_plug(&plug);
937 spin_unlock_irq(&conf->device_lock);
941 * Sometimes we need to suspend IO while we do something else,
942 * either some resync/recovery, or reconfigure the array.
943 * To do this we raise a 'barrier'.
944 * The 'barrier' is a counter that can be raised multiple times
945 * to count how many activities are happening which preclude
947 * We can only raise the barrier if there is no pending IO.
948 * i.e. if nr_pending == 0.
949 * We choose only to raise the barrier if no-one is waiting for the
950 * barrier to go down. This means that as soon as an IO request
951 * is ready, no other operations which require a barrier will start
952 * until the IO request has had a chance.
954 * So: regular IO calls 'wait_barrier'. When that returns there
955 * is no backgroup IO happening, It must arrange to call
956 * allow_barrier when it has finished its IO.
957 * backgroup IO calls must call raise_barrier. Once that returns
958 * there is no normal IO happeing. It must arrange to call
959 * lower_barrier when the particular background IO completes.
961 * If resync/recovery is interrupted, returns -EINTR;
962 * Otherwise, returns 0.
964 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
966 int idx = sector_to_idx(sector_nr);
968 spin_lock_irq(&conf->resync_lock);
970 /* Wait until no block IO is waiting */
971 wait_event_lock_irq(conf->wait_barrier,
972 !atomic_read(&conf->nr_waiting[idx]),
975 /* block any new IO from starting */
976 atomic_inc(&conf->barrier[idx]);
978 * In raise_barrier() we firstly increase conf->barrier[idx] then
979 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
980 * increase conf->nr_pending[idx] then check conf->barrier[idx].
981 * A memory barrier here to make sure conf->nr_pending[idx] won't
982 * be fetched before conf->barrier[idx] is increased. Otherwise
983 * there will be a race between raise_barrier() and _wait_barrier().
985 smp_mb__after_atomic();
987 /* For these conditions we must wait:
988 * A: while the array is in frozen state
989 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
990 * existing in corresponding I/O barrier bucket.
991 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
992 * max resync count which allowed on current I/O barrier bucket.
994 wait_event_lock_irq(conf->wait_barrier,
995 (!conf->array_frozen &&
996 !atomic_read(&conf->nr_pending[idx]) &&
997 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
998 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1001 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1002 atomic_dec(&conf->barrier[idx]);
1003 spin_unlock_irq(&conf->resync_lock);
1004 wake_up(&conf->wait_barrier);
1008 atomic_inc(&conf->nr_sync_pending);
1009 spin_unlock_irq(&conf->resync_lock);
1014 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1016 int idx = sector_to_idx(sector_nr);
1018 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1020 atomic_dec(&conf->barrier[idx]);
1021 atomic_dec(&conf->nr_sync_pending);
1022 wake_up(&conf->wait_barrier);
1025 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1030 * We need to increase conf->nr_pending[idx] very early here,
1031 * then raise_barrier() can be blocked when it waits for
1032 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1033 * conf->resync_lock when there is no barrier raised in same
1034 * barrier unit bucket. Also if the array is frozen, I/O
1035 * should be blocked until array is unfrozen.
1037 atomic_inc(&conf->nr_pending[idx]);
1039 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1040 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1041 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1042 * barrier is necessary here to make sure conf->barrier[idx] won't be
1043 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1044 * will be a race between _wait_barrier() and raise_barrier().
1046 smp_mb__after_atomic();
1049 * Don't worry about checking two atomic_t variables at same time
1050 * here. If during we check conf->barrier[idx], the array is
1051 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1052 * 0, it is safe to return and make the I/O continue. Because the
1053 * array is frozen, all I/O returned here will eventually complete
1054 * or be queued, no race will happen. See code comment in
1057 if (!READ_ONCE(conf->array_frozen) &&
1058 !atomic_read(&conf->barrier[idx]))
1062 * After holding conf->resync_lock, conf->nr_pending[idx]
1063 * should be decreased before waiting for barrier to drop.
1064 * Otherwise, we may encounter a race condition because
1065 * raise_barrer() might be waiting for conf->nr_pending[idx]
1066 * to be 0 at same time.
1068 spin_lock_irq(&conf->resync_lock);
1069 atomic_inc(&conf->nr_waiting[idx]);
1070 atomic_dec(&conf->nr_pending[idx]);
1072 * In case freeze_array() is waiting for
1073 * get_unqueued_pending() == extra
1075 wake_up_barrier(conf);
1076 /* Wait for the barrier in same barrier unit bucket to drop. */
1078 /* Return false when nowait flag is set */
1082 wait_event_lock_irq(conf->wait_barrier,
1083 !conf->array_frozen &&
1084 !atomic_read(&conf->barrier[idx]),
1086 atomic_inc(&conf->nr_pending[idx]);
1089 atomic_dec(&conf->nr_waiting[idx]);
1090 spin_unlock_irq(&conf->resync_lock);
1094 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1096 int idx = sector_to_idx(sector_nr);
1100 * Very similar to _wait_barrier(). The difference is, for read
1101 * I/O we don't need wait for sync I/O, but if the whole array
1102 * is frozen, the read I/O still has to wait until the array is
1103 * unfrozen. Since there is no ordering requirement with
1104 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1106 atomic_inc(&conf->nr_pending[idx]);
1108 if (!READ_ONCE(conf->array_frozen))
1111 spin_lock_irq(&conf->resync_lock);
1112 atomic_inc(&conf->nr_waiting[idx]);
1113 atomic_dec(&conf->nr_pending[idx]);
1115 * In case freeze_array() is waiting for
1116 * get_unqueued_pending() == extra
1118 wake_up_barrier(conf);
1119 /* Wait for array to be unfrozen */
1121 /* Return false when nowait flag is set */
1123 /* Return false when nowait flag is set */
1126 wait_event_lock_irq(conf->wait_barrier,
1127 !conf->array_frozen,
1129 atomic_inc(&conf->nr_pending[idx]);
1132 atomic_dec(&conf->nr_waiting[idx]);
1133 spin_unlock_irq(&conf->resync_lock);
1137 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1139 int idx = sector_to_idx(sector_nr);
1141 return _wait_barrier(conf, idx, nowait);
1144 static void _allow_barrier(struct r1conf *conf, int idx)
1146 atomic_dec(&conf->nr_pending[idx]);
1147 wake_up_barrier(conf);
1150 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1152 int idx = sector_to_idx(sector_nr);
1154 _allow_barrier(conf, idx);
1157 /* conf->resync_lock should be held */
1158 static int get_unqueued_pending(struct r1conf *conf)
1162 ret = atomic_read(&conf->nr_sync_pending);
1163 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1164 ret += atomic_read(&conf->nr_pending[idx]) -
1165 atomic_read(&conf->nr_queued[idx]);
1170 static void freeze_array(struct r1conf *conf, int extra)
1172 /* Stop sync I/O and normal I/O and wait for everything to
1174 * This is called in two situations:
1175 * 1) management command handlers (reshape, remove disk, quiesce).
1176 * 2) one normal I/O request failed.
1178 * After array_frozen is set to 1, new sync IO will be blocked at
1179 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1180 * or wait_read_barrier(). The flying I/Os will either complete or be
1181 * queued. When everything goes quite, there are only queued I/Os left.
1183 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1184 * barrier bucket index which this I/O request hits. When all sync and
1185 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1186 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1187 * in handle_read_error(), we may call freeze_array() before trying to
1188 * fix the read error. In this case, the error read I/O is not queued,
1189 * so get_unqueued_pending() == 1.
1191 * Therefore before this function returns, we need to wait until
1192 * get_unqueued_pendings(conf) gets equal to extra. For
1193 * normal I/O context, extra is 1, in rested situations extra is 0.
1195 spin_lock_irq(&conf->resync_lock);
1196 conf->array_frozen = 1;
1197 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1198 wait_event_lock_irq_cmd(
1200 get_unqueued_pending(conf) == extra,
1202 flush_pending_writes(conf));
1203 spin_unlock_irq(&conf->resync_lock);
1205 static void unfreeze_array(struct r1conf *conf)
1207 /* reverse the effect of the freeze */
1208 spin_lock_irq(&conf->resync_lock);
1209 conf->array_frozen = 0;
1210 spin_unlock_irq(&conf->resync_lock);
1211 wake_up(&conf->wait_barrier);
1214 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1217 int size = bio->bi_iter.bi_size;
1218 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1220 struct bio *behind_bio = NULL;
1222 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1223 &r1_bio->mddev->bio_set);
1225 /* discard op, we don't support writezero/writesame yet */
1226 if (!bio_has_data(bio)) {
1227 behind_bio->bi_iter.bi_size = size;
1231 while (i < vcnt && size) {
1233 int len = min_t(int, PAGE_SIZE, size);
1235 page = alloc_page(GFP_NOIO);
1236 if (unlikely(!page))
1239 if (!bio_add_page(behind_bio, page, len, 0)) {
1248 bio_copy_data(behind_bio, bio);
1250 r1_bio->behind_master_bio = behind_bio;
1251 set_bit(R1BIO_BehindIO, &r1_bio->state);
1256 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1257 bio->bi_iter.bi_size);
1258 bio_free_pages(behind_bio);
1259 bio_put(behind_bio);
1262 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1264 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1266 struct mddev *mddev = plug->cb.data;
1267 struct r1conf *conf = mddev->private;
1270 if (from_schedule) {
1271 spin_lock_irq(&conf->device_lock);
1272 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1273 spin_unlock_irq(&conf->device_lock);
1274 wake_up_barrier(conf);
1275 md_wakeup_thread(mddev->thread);
1280 /* we aren't scheduling, so we can do the write-out directly. */
1281 bio = bio_list_get(&plug->pending);
1282 flush_bio_list(conf, bio);
1286 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1288 r1_bio->master_bio = bio;
1289 r1_bio->sectors = bio_sectors(bio);
1291 r1_bio->mddev = mddev;
1292 r1_bio->sector = bio->bi_iter.bi_sector;
1295 static inline struct r1bio *
1296 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1298 struct r1conf *conf = mddev->private;
1299 struct r1bio *r1_bio;
1301 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1302 /* Ensure no bio records IO_BLOCKED */
1303 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1304 init_r1bio(r1_bio, mddev, bio);
1308 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1309 int max_read_sectors, struct r1bio *r1_bio)
1311 struct r1conf *conf = mddev->private;
1312 struct raid1_info *mirror;
1313 struct bio *read_bio;
1314 struct bitmap *bitmap = mddev->bitmap;
1315 const enum req_op op = bio_op(bio);
1316 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1319 bool r1bio_existed = !!r1_bio;
1320 char b[BDEVNAME_SIZE];
1323 * If r1_bio is set, we are blocking the raid1d thread
1324 * so there is a tiny risk of deadlock. So ask for
1325 * emergency memory if needed.
1327 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1329 if (r1bio_existed) {
1330 /* Need to get the block device name carefully */
1331 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1334 snprintf(b, sizeof(b), "%pg", rdev->bdev);
1340 * Still need barrier for READ in case that whole
1343 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1344 bio->bi_opf & REQ_NOWAIT)) {
1345 bio_wouldblock_error(bio);
1350 r1_bio = alloc_r1bio(mddev, bio);
1352 init_r1bio(r1_bio, mddev, bio);
1353 r1_bio->sectors = max_read_sectors;
1356 * make_request() can abort the operation when read-ahead is being
1357 * used and no empty request is available.
1359 rdisk = read_balance(conf, r1_bio, &max_sectors);
1362 /* couldn't find anywhere to read from */
1363 if (r1bio_existed) {
1364 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1367 (unsigned long long)r1_bio->sector);
1369 raid_end_bio_io(r1_bio);
1372 mirror = conf->mirrors + rdisk;
1375 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1377 (unsigned long long)r1_bio->sector,
1378 mirror->rdev->bdev);
1380 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1383 * Reading from a write-mostly device must take care not to
1384 * over-take any writes that are 'behind'
1386 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1387 wait_event(bitmap->behind_wait,
1388 atomic_read(&bitmap->behind_writes) == 0);
1391 if (max_sectors < bio_sectors(bio)) {
1392 struct bio *split = bio_split(bio, max_sectors,
1393 gfp, &conf->bio_split);
1394 bio_chain(split, bio);
1395 submit_bio_noacct(bio);
1397 r1_bio->master_bio = bio;
1398 r1_bio->sectors = max_sectors;
1401 r1_bio->read_disk = rdisk;
1402 if (!r1bio_existed) {
1403 md_account_bio(mddev, &bio);
1404 r1_bio->master_bio = bio;
1406 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1409 r1_bio->bios[rdisk] = read_bio;
1411 read_bio->bi_iter.bi_sector = r1_bio->sector +
1412 mirror->rdev->data_offset;
1413 read_bio->bi_end_io = raid1_end_read_request;
1414 read_bio->bi_opf = op | do_sync;
1415 if (test_bit(FailFast, &mirror->rdev->flags) &&
1416 test_bit(R1BIO_FailFast, &r1_bio->state))
1417 read_bio->bi_opf |= MD_FAILFAST;
1418 read_bio->bi_private = r1_bio;
1419 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1420 submit_bio_noacct(read_bio);
1423 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1424 int max_write_sectors)
1426 struct r1conf *conf = mddev->private;
1427 struct r1bio *r1_bio;
1429 struct bitmap *bitmap = mddev->bitmap;
1430 unsigned long flags;
1431 struct md_rdev *blocked_rdev;
1434 bool write_behind = false;
1435 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1437 if (mddev_is_clustered(mddev) &&
1438 md_cluster_ops->area_resyncing(mddev, WRITE,
1439 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1442 if (bio->bi_opf & REQ_NOWAIT) {
1443 bio_wouldblock_error(bio);
1447 prepare_to_wait(&conf->wait_barrier,
1449 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1450 bio->bi_iter.bi_sector,
1451 bio_end_sector(bio)))
1455 finish_wait(&conf->wait_barrier, &w);
1459 * Register the new request and wait if the reconstruction
1460 * thread has put up a bar for new requests.
1461 * Continue immediately if no resync is active currently.
1463 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1464 bio->bi_opf & REQ_NOWAIT)) {
1465 bio_wouldblock_error(bio);
1470 r1_bio = alloc_r1bio(mddev, bio);
1471 r1_bio->sectors = max_write_sectors;
1473 /* first select target devices under rcu_lock and
1474 * inc refcount on their rdev. Record them by setting
1476 * If there are known/acknowledged bad blocks on any device on
1477 * which we have seen a write error, we want to avoid writing those
1479 * This potentially requires several writes to write around
1480 * the bad blocks. Each set of writes gets it's own r1bio
1481 * with a set of bios attached.
1484 disks = conf->raid_disks * 2;
1485 blocked_rdev = NULL;
1486 max_sectors = r1_bio->sectors;
1487 for (i = 0; i < disks; i++) {
1488 struct md_rdev *rdev = conf->mirrors[i].rdev;
1491 * The write-behind io is only attempted on drives marked as
1492 * write-mostly, which means we could allocate write behind
1495 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1496 write_behind = true;
1498 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1499 atomic_inc(&rdev->nr_pending);
1500 blocked_rdev = rdev;
1503 r1_bio->bios[i] = NULL;
1504 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1505 if (i < conf->raid_disks)
1506 set_bit(R1BIO_Degraded, &r1_bio->state);
1510 atomic_inc(&rdev->nr_pending);
1511 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1516 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1517 &first_bad, &bad_sectors);
1519 /* mustn't write here until the bad block is
1521 set_bit(BlockedBadBlocks, &rdev->flags);
1522 blocked_rdev = rdev;
1525 if (is_bad && first_bad <= r1_bio->sector) {
1526 /* Cannot write here at all */
1527 bad_sectors -= (r1_bio->sector - first_bad);
1528 if (bad_sectors < max_sectors)
1529 /* mustn't write more than bad_sectors
1530 * to other devices yet
1532 max_sectors = bad_sectors;
1533 rdev_dec_pending(rdev, mddev);
1534 /* We don't set R1BIO_Degraded as that
1535 * only applies if the disk is
1536 * missing, so it might be re-added,
1537 * and we want to know to recover this
1539 * In this case the device is here,
1540 * and the fact that this chunk is not
1541 * in-sync is recorded in the bad
1547 int good_sectors = first_bad - r1_bio->sector;
1548 if (good_sectors < max_sectors)
1549 max_sectors = good_sectors;
1552 r1_bio->bios[i] = bio;
1555 if (unlikely(blocked_rdev)) {
1556 /* Wait for this device to become unblocked */
1559 for (j = 0; j < i; j++)
1560 if (r1_bio->bios[j])
1561 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1562 mempool_free(r1_bio, &conf->r1bio_pool);
1563 allow_barrier(conf, bio->bi_iter.bi_sector);
1565 if (bio->bi_opf & REQ_NOWAIT) {
1566 bio_wouldblock_error(bio);
1569 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1570 blocked_rdev->raid_disk);
1571 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1572 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1577 * When using a bitmap, we may call alloc_behind_master_bio below.
1578 * alloc_behind_master_bio allocates a copy of the data payload a page
1579 * at a time and thus needs a new bio that can fit the whole payload
1580 * this bio in page sized chunks.
1582 if (write_behind && bitmap)
1583 max_sectors = min_t(int, max_sectors,
1584 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1585 if (max_sectors < bio_sectors(bio)) {
1586 struct bio *split = bio_split(bio, max_sectors,
1587 GFP_NOIO, &conf->bio_split);
1588 bio_chain(split, bio);
1589 submit_bio_noacct(bio);
1591 r1_bio->master_bio = bio;
1592 r1_bio->sectors = max_sectors;
1595 md_account_bio(mddev, &bio);
1596 r1_bio->master_bio = bio;
1597 atomic_set(&r1_bio->remaining, 1);
1598 atomic_set(&r1_bio->behind_remaining, 0);
1602 for (i = 0; i < disks; i++) {
1603 struct bio *mbio = NULL;
1604 struct md_rdev *rdev = conf->mirrors[i].rdev;
1605 if (!r1_bio->bios[i])
1610 * Not if there are too many, or cannot
1611 * allocate memory, or a reader on WriteMostly
1612 * is waiting for behind writes to flush */
1613 if (bitmap && write_behind &&
1614 (atomic_read(&bitmap->behind_writes)
1615 < mddev->bitmap_info.max_write_behind) &&
1616 !waitqueue_active(&bitmap->behind_wait)) {
1617 alloc_behind_master_bio(r1_bio, bio);
1620 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1621 test_bit(R1BIO_BehindIO, &r1_bio->state));
1625 if (r1_bio->behind_master_bio) {
1626 mbio = bio_alloc_clone(rdev->bdev,
1627 r1_bio->behind_master_bio,
1628 GFP_NOIO, &mddev->bio_set);
1629 if (test_bit(CollisionCheck, &rdev->flags))
1630 wait_for_serialization(rdev, r1_bio);
1631 if (test_bit(WriteMostly, &rdev->flags))
1632 atomic_inc(&r1_bio->behind_remaining);
1634 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1637 if (mddev->serialize_policy)
1638 wait_for_serialization(rdev, r1_bio);
1641 r1_bio->bios[i] = mbio;
1643 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1644 mbio->bi_end_io = raid1_end_write_request;
1645 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1646 if (test_bit(FailFast, &rdev->flags) &&
1647 !test_bit(WriteMostly, &rdev->flags) &&
1648 conf->raid_disks - mddev->degraded > 1)
1649 mbio->bi_opf |= MD_FAILFAST;
1650 mbio->bi_private = r1_bio;
1652 atomic_inc(&r1_bio->remaining);
1653 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1654 /* flush_pending_writes() needs access to the rdev so...*/
1655 mbio->bi_bdev = (void *)rdev;
1656 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1657 spin_lock_irqsave(&conf->device_lock, flags);
1658 bio_list_add(&conf->pending_bio_list, mbio);
1659 spin_unlock_irqrestore(&conf->device_lock, flags);
1660 md_wakeup_thread(mddev->thread);
1664 r1_bio_write_done(r1_bio);
1666 /* In case raid1d snuck in to freeze_array */
1667 wake_up_barrier(conf);
1670 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1674 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1675 && md_flush_request(mddev, bio))
1679 * There is a limit to the maximum size, but
1680 * the read/write handler might find a lower limit
1681 * due to bad blocks. To avoid multiple splits,
1682 * we pass the maximum number of sectors down
1683 * and let the lower level perform the split.
1685 sectors = align_to_barrier_unit_end(
1686 bio->bi_iter.bi_sector, bio_sectors(bio));
1688 if (bio_data_dir(bio) == READ)
1689 raid1_read_request(mddev, bio, sectors, NULL);
1691 md_write_start(mddev,bio);
1692 raid1_write_request(mddev, bio, sectors);
1697 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1699 struct r1conf *conf = mddev->private;
1702 lockdep_assert_held(&mddev->lock);
1704 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705 conf->raid_disks - mddev->degraded);
1706 for (i = 0; i < conf->raid_disks; i++) {
1707 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1709 seq_printf(seq, "%s",
1710 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1712 seq_printf(seq, "]");
1716 * raid1_error() - RAID1 error handler.
1717 * @mddev: affected md device.
1718 * @rdev: member device to fail.
1720 * The routine acknowledges &rdev failure and determines new @mddev state.
1721 * If it failed, then:
1722 * - &MD_BROKEN flag is set in &mddev->flags.
1723 * - recovery is disabled.
1724 * Otherwise, it must be degraded:
1725 * - recovery is interrupted.
1726 * - &mddev->degraded is bumped.
1728 * @rdev is marked as &Faulty excluding case when array is failed and
1729 * &mddev->fail_last_dev is off.
1731 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1733 struct r1conf *conf = mddev->private;
1734 unsigned long flags;
1736 spin_lock_irqsave(&conf->device_lock, flags);
1738 if (test_bit(In_sync, &rdev->flags) &&
1739 (conf->raid_disks - mddev->degraded) == 1) {
1740 set_bit(MD_BROKEN, &mddev->flags);
1742 if (!mddev->fail_last_dev) {
1743 conf->recovery_disabled = mddev->recovery_disabled;
1744 spin_unlock_irqrestore(&conf->device_lock, flags);
1748 set_bit(Blocked, &rdev->flags);
1749 if (test_and_clear_bit(In_sync, &rdev->flags))
1751 set_bit(Faulty, &rdev->flags);
1752 spin_unlock_irqrestore(&conf->device_lock, flags);
1754 * if recovery is running, make sure it aborts.
1756 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757 set_mask_bits(&mddev->sb_flags, 0,
1758 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760 "md/raid1:%s: Operation continuing on %d devices.\n",
1761 mdname(mddev), rdev->bdev,
1762 mdname(mddev), conf->raid_disks - mddev->degraded);
1765 static void print_conf(struct r1conf *conf)
1769 pr_debug("RAID1 conf printout:\n");
1771 pr_debug("(!conf)\n");
1774 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1777 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778 for (i = 0; i < conf->raid_disks; i++) {
1779 struct md_rdev *rdev = conf->mirrors[i].rdev;
1781 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782 i, !test_bit(In_sync, &rdev->flags),
1783 !test_bit(Faulty, &rdev->flags),
1788 static void close_sync(struct r1conf *conf)
1792 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793 _wait_barrier(conf, idx, false);
1794 _allow_barrier(conf, idx);
1797 mempool_exit(&conf->r1buf_pool);
1800 static int raid1_spare_active(struct mddev *mddev)
1803 struct r1conf *conf = mddev->private;
1805 unsigned long flags;
1808 * Find all failed disks within the RAID1 configuration
1809 * and mark them readable.
1810 * Called under mddev lock, so rcu protection not needed.
1811 * device_lock used to avoid races with raid1_end_read_request
1812 * which expects 'In_sync' flags and ->degraded to be consistent.
1814 spin_lock_irqsave(&conf->device_lock, flags);
1815 for (i = 0; i < conf->raid_disks; i++) {
1816 struct md_rdev *rdev = conf->mirrors[i].rdev;
1817 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1819 && !test_bit(Candidate, &repl->flags)
1820 && repl->recovery_offset == MaxSector
1821 && !test_bit(Faulty, &repl->flags)
1822 && !test_and_set_bit(In_sync, &repl->flags)) {
1823 /* replacement has just become active */
1825 !test_and_clear_bit(In_sync, &rdev->flags))
1828 /* Replaced device not technically
1829 * faulty, but we need to be sure
1830 * it gets removed and never re-added
1832 set_bit(Faulty, &rdev->flags);
1833 sysfs_notify_dirent_safe(
1838 && rdev->recovery_offset == MaxSector
1839 && !test_bit(Faulty, &rdev->flags)
1840 && !test_and_set_bit(In_sync, &rdev->flags)) {
1842 sysfs_notify_dirent_safe(rdev->sysfs_state);
1845 mddev->degraded -= count;
1846 spin_unlock_irqrestore(&conf->device_lock, flags);
1852 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1855 struct raid1_info *info = conf->mirrors + disk;
1858 info += conf->raid_disks;
1863 if (bdev_nonrot(rdev->bdev)) {
1864 set_bit(Nonrot, &rdev->flags);
1865 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1868 rdev->raid_disk = disk;
1869 info->head_position = 0;
1870 info->seq_start = MaxSector;
1871 WRITE_ONCE(info->rdev, rdev);
1876 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1878 struct raid1_info *info = conf->mirrors + disk;
1879 struct md_rdev *rdev = info->rdev;
1881 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882 atomic_read(&rdev->nr_pending))
1885 /* Only remove non-faulty devices if recovery is not possible. */
1886 if (!test_bit(Faulty, &rdev->flags) &&
1887 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888 rdev->mddev->degraded < conf->raid_disks)
1891 if (test_and_clear_bit(Nonrot, &rdev->flags))
1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1894 WRITE_ONCE(info->rdev, NULL);
1898 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1900 struct r1conf *conf = mddev->private;
1902 int mirror = 0, repl_slot = -1;
1903 struct raid1_info *p;
1905 int last = conf->raid_disks - 1;
1907 if (mddev->recovery_disabled == conf->recovery_disabled)
1910 if (rdev->raid_disk >= 0)
1911 first = last = rdev->raid_disk;
1914 * find the disk ... but prefer rdev->saved_raid_disk
1917 if (rdev->saved_raid_disk >= 0 &&
1918 rdev->saved_raid_disk >= first &&
1919 rdev->saved_raid_disk < conf->raid_disks &&
1920 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1921 first = last = rdev->saved_raid_disk;
1923 for (mirror = first; mirror <= last; mirror++) {
1924 p = conf->mirrors + mirror;
1926 err = mddev_stack_new_rdev(mddev, rdev);
1930 raid1_add_conf(conf, rdev, mirror, false);
1931 /* As all devices are equivalent, we don't need a full recovery
1932 * if this was recently any drive of the array
1934 if (rdev->saved_raid_disk < 0)
1938 if (test_bit(WantReplacement, &p->rdev->flags) &&
1939 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943 if (err && repl_slot >= 0) {
1944 /* Add this device as a replacement */
1945 clear_bit(In_sync, &rdev->flags);
1946 set_bit(Replacement, &rdev->flags);
1947 raid1_add_conf(conf, rdev, repl_slot, true);
1956 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1958 struct r1conf *conf = mddev->private;
1960 int number = rdev->raid_disk;
1961 struct raid1_info *p = conf->mirrors + number;
1963 if (unlikely(number >= conf->raid_disks))
1966 if (rdev != p->rdev) {
1967 number += conf->raid_disks;
1968 p = conf->mirrors + number;
1972 if (rdev == p->rdev) {
1973 if (!raid1_remove_conf(conf, number)) {
1978 if (number < conf->raid_disks &&
1979 conf->mirrors[conf->raid_disks + number].rdev) {
1980 /* We just removed a device that is being replaced.
1981 * Move down the replacement. We drain all IO before
1982 * doing this to avoid confusion.
1984 struct md_rdev *repl =
1985 conf->mirrors[conf->raid_disks + number].rdev;
1986 freeze_array(conf, 0);
1987 if (atomic_read(&repl->nr_pending)) {
1988 /* It means that some queued IO of retry_list
1989 * hold repl. Thus, we cannot set replacement
1990 * as NULL, avoiding rdev NULL pointer
1991 * dereference in sync_request_write and
1992 * handle_write_finished.
1995 unfreeze_array(conf);
1998 clear_bit(Replacement, &repl->flags);
1999 WRITE_ONCE(p->rdev, repl);
2000 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2001 unfreeze_array(conf);
2004 clear_bit(WantReplacement, &rdev->flags);
2005 err = md_integrity_register(mddev);
2013 static void end_sync_read(struct bio *bio)
2015 struct r1bio *r1_bio = get_resync_r1bio(bio);
2017 update_head_pos(r1_bio->read_disk, r1_bio);
2020 * we have read a block, now it needs to be re-written,
2021 * or re-read if the read failed.
2022 * We don't do much here, just schedule handling by raid1d
2024 if (!bio->bi_status)
2025 set_bit(R1BIO_Uptodate, &r1_bio->state);
2027 if (atomic_dec_and_test(&r1_bio->remaining))
2028 reschedule_retry(r1_bio);
2031 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2033 sector_t sync_blocks = 0;
2034 sector_t s = r1_bio->sector;
2035 long sectors_to_go = r1_bio->sectors;
2037 /* make sure these bits don't get cleared. */
2039 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2041 sectors_to_go -= sync_blocks;
2042 } while (sectors_to_go > 0);
2045 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2047 if (atomic_dec_and_test(&r1_bio->remaining)) {
2048 struct mddev *mddev = r1_bio->mddev;
2049 int s = r1_bio->sectors;
2051 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2052 test_bit(R1BIO_WriteError, &r1_bio->state))
2053 reschedule_retry(r1_bio);
2056 md_done_sync(mddev, s, uptodate);
2061 static void end_sync_write(struct bio *bio)
2063 int uptodate = !bio->bi_status;
2064 struct r1bio *r1_bio = get_resync_r1bio(bio);
2065 struct mddev *mddev = r1_bio->mddev;
2066 struct r1conf *conf = mddev->private;
2067 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2070 abort_sync_write(mddev, r1_bio);
2071 set_bit(WriteErrorSeen, &rdev->flags);
2072 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2073 set_bit(MD_RECOVERY_NEEDED, &
2075 set_bit(R1BIO_WriteError, &r1_bio->state);
2076 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2077 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2078 r1_bio->sector, r1_bio->sectors)) {
2079 set_bit(R1BIO_MadeGood, &r1_bio->state);
2082 put_sync_write_buf(r1_bio, uptodate);
2085 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2086 int sectors, struct page *page, blk_opf_t rw)
2088 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2091 if (rw == REQ_OP_WRITE) {
2092 set_bit(WriteErrorSeen, &rdev->flags);
2093 if (!test_and_set_bit(WantReplacement,
2095 set_bit(MD_RECOVERY_NEEDED, &
2096 rdev->mddev->recovery);
2098 /* need to record an error - either for the block or the device */
2099 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2100 md_error(rdev->mddev, rdev);
2104 static int fix_sync_read_error(struct r1bio *r1_bio)
2106 /* Try some synchronous reads of other devices to get
2107 * good data, much like with normal read errors. Only
2108 * read into the pages we already have so we don't
2109 * need to re-issue the read request.
2110 * We don't need to freeze the array, because being in an
2111 * active sync request, there is no normal IO, and
2112 * no overlapping syncs.
2113 * We don't need to check is_badblock() again as we
2114 * made sure that anything with a bad block in range
2115 * will have bi_end_io clear.
2117 struct mddev *mddev = r1_bio->mddev;
2118 struct r1conf *conf = mddev->private;
2119 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2120 struct page **pages = get_resync_pages(bio)->pages;
2121 sector_t sect = r1_bio->sector;
2122 int sectors = r1_bio->sectors;
2124 struct md_rdev *rdev;
2126 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2127 if (test_bit(FailFast, &rdev->flags)) {
2128 /* Don't try recovering from here - just fail it
2129 * ... unless it is the last working device of course */
2130 md_error(mddev, rdev);
2131 if (test_bit(Faulty, &rdev->flags))
2132 /* Don't try to read from here, but make sure
2133 * put_buf does it's thing
2135 bio->bi_end_io = end_sync_write;
2140 int d = r1_bio->read_disk;
2144 if (s > (PAGE_SIZE>>9))
2147 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2148 /* No rcu protection needed here devices
2149 * can only be removed when no resync is
2150 * active, and resync is currently active
2152 rdev = conf->mirrors[d].rdev;
2153 if (sync_page_io(rdev, sect, s<<9,
2155 REQ_OP_READ, false)) {
2161 if (d == conf->raid_disks * 2)
2163 } while (!success && d != r1_bio->read_disk);
2167 /* Cannot read from anywhere, this block is lost.
2168 * Record a bad block on each device. If that doesn't
2169 * work just disable and interrupt the recovery.
2170 * Don't fail devices as that won't really help.
2172 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2173 mdname(mddev), bio->bi_bdev,
2174 (unsigned long long)r1_bio->sector);
2175 for (d = 0; d < conf->raid_disks * 2; d++) {
2176 rdev = conf->mirrors[d].rdev;
2177 if (!rdev || test_bit(Faulty, &rdev->flags))
2179 if (!rdev_set_badblocks(rdev, sect, s, 0))
2183 conf->recovery_disabled =
2184 mddev->recovery_disabled;
2185 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2186 md_done_sync(mddev, r1_bio->sectors, 0);
2198 /* write it back and re-read */
2199 while (d != r1_bio->read_disk) {
2201 d = conf->raid_disks * 2;
2203 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2205 rdev = conf->mirrors[d].rdev;
2206 if (r1_sync_page_io(rdev, sect, s,
2208 REQ_OP_WRITE) == 0) {
2209 r1_bio->bios[d]->bi_end_io = NULL;
2210 rdev_dec_pending(rdev, mddev);
2214 while (d != r1_bio->read_disk) {
2216 d = conf->raid_disks * 2;
2218 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2220 rdev = conf->mirrors[d].rdev;
2221 if (r1_sync_page_io(rdev, sect, s,
2224 atomic_add(s, &rdev->corrected_errors);
2230 set_bit(R1BIO_Uptodate, &r1_bio->state);
2235 static void process_checks(struct r1bio *r1_bio)
2237 /* We have read all readable devices. If we haven't
2238 * got the block, then there is no hope left.
2239 * If we have, then we want to do a comparison
2240 * and skip the write if everything is the same.
2241 * If any blocks failed to read, then we need to
2242 * attempt an over-write
2244 struct mddev *mddev = r1_bio->mddev;
2245 struct r1conf *conf = mddev->private;
2250 /* Fix variable parts of all bios */
2251 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2252 for (i = 0; i < conf->raid_disks * 2; i++) {
2253 blk_status_t status;
2254 struct bio *b = r1_bio->bios[i];
2255 struct resync_pages *rp = get_resync_pages(b);
2256 if (b->bi_end_io != end_sync_read)
2258 /* fixup the bio for reuse, but preserve errno */
2259 status = b->bi_status;
2260 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2261 b->bi_status = status;
2262 b->bi_iter.bi_sector = r1_bio->sector +
2263 conf->mirrors[i].rdev->data_offset;
2264 b->bi_end_io = end_sync_read;
2265 rp->raid_bio = r1_bio;
2268 /* initialize bvec table again */
2269 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2271 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2272 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2273 !r1_bio->bios[primary]->bi_status) {
2274 r1_bio->bios[primary]->bi_end_io = NULL;
2275 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2278 r1_bio->read_disk = primary;
2279 for (i = 0; i < conf->raid_disks * 2; i++) {
2281 struct bio *pbio = r1_bio->bios[primary];
2282 struct bio *sbio = r1_bio->bios[i];
2283 blk_status_t status = sbio->bi_status;
2284 struct page **ppages = get_resync_pages(pbio)->pages;
2285 struct page **spages = get_resync_pages(sbio)->pages;
2287 int page_len[RESYNC_PAGES] = { 0 };
2288 struct bvec_iter_all iter_all;
2290 if (sbio->bi_end_io != end_sync_read)
2292 /* Now we can 'fixup' the error value */
2293 sbio->bi_status = 0;
2295 bio_for_each_segment_all(bi, sbio, iter_all)
2296 page_len[j++] = bi->bv_len;
2299 for (j = vcnt; j-- ; ) {
2300 if (memcmp(page_address(ppages[j]),
2301 page_address(spages[j]),
2308 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2309 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2311 /* No need to write to this device. */
2312 sbio->bi_end_io = NULL;
2313 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317 bio_copy_data(sbio, pbio);
2321 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2323 struct r1conf *conf = mddev->private;
2325 int disks = conf->raid_disks * 2;
2328 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2329 /* ouch - failed to read all of that. */
2330 if (!fix_sync_read_error(r1_bio))
2333 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2334 process_checks(r1_bio);
2339 atomic_set(&r1_bio->remaining, 1);
2340 for (i = 0; i < disks ; i++) {
2341 wbio = r1_bio->bios[i];
2342 if (wbio->bi_end_io == NULL ||
2343 (wbio->bi_end_io == end_sync_read &&
2344 (i == r1_bio->read_disk ||
2345 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2347 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2348 abort_sync_write(mddev, r1_bio);
2352 wbio->bi_opf = REQ_OP_WRITE;
2353 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2354 wbio->bi_opf |= MD_FAILFAST;
2356 wbio->bi_end_io = end_sync_write;
2357 atomic_inc(&r1_bio->remaining);
2358 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2360 submit_bio_noacct(wbio);
2363 put_sync_write_buf(r1_bio, 1);
2367 * This is a kernel thread which:
2369 * 1. Retries failed read operations on working mirrors.
2370 * 2. Updates the raid superblock when problems encounter.
2371 * 3. Performs writes following reads for array synchronising.
2374 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2376 sector_t sect = r1_bio->sector;
2377 int sectors = r1_bio->sectors;
2378 int read_disk = r1_bio->read_disk;
2379 struct mddev *mddev = conf->mddev;
2380 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2382 if (exceed_read_errors(mddev, rdev)) {
2383 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2393 if (s > (PAGE_SIZE>>9))
2397 rdev = conf->mirrors[d].rdev;
2399 (test_bit(In_sync, &rdev->flags) ||
2400 (!test_bit(Faulty, &rdev->flags) &&
2401 rdev->recovery_offset >= sect + s)) &&
2402 rdev_has_badblock(rdev, sect, s) == 0) {
2403 atomic_inc(&rdev->nr_pending);
2404 if (sync_page_io(rdev, sect, s<<9,
2405 conf->tmppage, REQ_OP_READ, false))
2407 rdev_dec_pending(rdev, mddev);
2413 if (d == conf->raid_disks * 2)
2415 } while (d != read_disk);
2418 /* Cannot read from anywhere - mark it bad */
2419 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2420 if (!rdev_set_badblocks(rdev, sect, s, 0))
2421 md_error(mddev, rdev);
2424 /* write it back and re-read */
2426 while (d != read_disk) {
2428 d = conf->raid_disks * 2;
2430 rdev = conf->mirrors[d].rdev;
2432 !test_bit(Faulty, &rdev->flags)) {
2433 atomic_inc(&rdev->nr_pending);
2434 r1_sync_page_io(rdev, sect, s,
2435 conf->tmppage, REQ_OP_WRITE);
2436 rdev_dec_pending(rdev, mddev);
2440 while (d != read_disk) {
2442 d = conf->raid_disks * 2;
2444 rdev = conf->mirrors[d].rdev;
2446 !test_bit(Faulty, &rdev->flags)) {
2447 atomic_inc(&rdev->nr_pending);
2448 if (r1_sync_page_io(rdev, sect, s,
2449 conf->tmppage, REQ_OP_READ)) {
2450 atomic_add(s, &rdev->corrected_errors);
2451 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2453 (unsigned long long)(sect +
2457 rdev_dec_pending(rdev, mddev);
2465 static int narrow_write_error(struct r1bio *r1_bio, int i)
2467 struct mddev *mddev = r1_bio->mddev;
2468 struct r1conf *conf = mddev->private;
2469 struct md_rdev *rdev = conf->mirrors[i].rdev;
2471 /* bio has the data to be written to device 'i' where
2472 * we just recently had a write error.
2473 * We repeatedly clone the bio and trim down to one block,
2474 * then try the write. Where the write fails we record
2476 * It is conceivable that the bio doesn't exactly align with
2477 * blocks. We must handle this somehow.
2479 * We currently own a reference on the rdev.
2485 int sect_to_write = r1_bio->sectors;
2488 if (rdev->badblocks.shift < 0)
2491 block_sectors = roundup(1 << rdev->badblocks.shift,
2492 bdev_logical_block_size(rdev->bdev) >> 9);
2493 sector = r1_bio->sector;
2494 sectors = ((sector + block_sectors)
2495 & ~(sector_t)(block_sectors - 1))
2498 while (sect_to_write) {
2500 if (sectors > sect_to_write)
2501 sectors = sect_to_write;
2502 /* Write at 'sector' for 'sectors'*/
2504 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2505 wbio = bio_alloc_clone(rdev->bdev,
2506 r1_bio->behind_master_bio,
2507 GFP_NOIO, &mddev->bio_set);
2509 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2510 GFP_NOIO, &mddev->bio_set);
2513 wbio->bi_opf = REQ_OP_WRITE;
2514 wbio->bi_iter.bi_sector = r1_bio->sector;
2515 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2517 bio_trim(wbio, sector - r1_bio->sector, sectors);
2518 wbio->bi_iter.bi_sector += rdev->data_offset;
2520 if (submit_bio_wait(wbio) < 0)
2522 ok = rdev_set_badblocks(rdev, sector,
2527 sect_to_write -= sectors;
2529 sectors = block_sectors;
2534 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2537 int s = r1_bio->sectors;
2538 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2539 struct md_rdev *rdev = conf->mirrors[m].rdev;
2540 struct bio *bio = r1_bio->bios[m];
2541 if (bio->bi_end_io == NULL)
2543 if (!bio->bi_status &&
2544 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2545 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2547 if (bio->bi_status &&
2548 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2549 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2550 md_error(conf->mddev, rdev);
2554 md_done_sync(conf->mddev, s, 1);
2557 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2562 for (m = 0; m < conf->raid_disks * 2 ; m++)
2563 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2564 struct md_rdev *rdev = conf->mirrors[m].rdev;
2565 rdev_clear_badblocks(rdev,
2567 r1_bio->sectors, 0);
2568 rdev_dec_pending(rdev, conf->mddev);
2569 } else if (r1_bio->bios[m] != NULL) {
2570 /* This drive got a write error. We need to
2571 * narrow down and record precise write
2575 if (!narrow_write_error(r1_bio, m)) {
2576 md_error(conf->mddev,
2577 conf->mirrors[m].rdev);
2578 /* an I/O failed, we can't clear the bitmap */
2579 set_bit(R1BIO_Degraded, &r1_bio->state);
2581 rdev_dec_pending(conf->mirrors[m].rdev,
2585 spin_lock_irq(&conf->device_lock);
2586 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2587 idx = sector_to_idx(r1_bio->sector);
2588 atomic_inc(&conf->nr_queued[idx]);
2589 spin_unlock_irq(&conf->device_lock);
2591 * In case freeze_array() is waiting for condition
2592 * get_unqueued_pending() == extra to be true.
2594 wake_up(&conf->wait_barrier);
2595 md_wakeup_thread(conf->mddev->thread);
2597 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2598 close_write(r1_bio);
2599 raid_end_bio_io(r1_bio);
2603 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2605 struct mddev *mddev = conf->mddev;
2607 struct md_rdev *rdev;
2610 clear_bit(R1BIO_ReadError, &r1_bio->state);
2611 /* we got a read error. Maybe the drive is bad. Maybe just
2612 * the block and we can fix it.
2613 * We freeze all other IO, and try reading the block from
2614 * other devices. When we find one, we re-write
2615 * and check it that fixes the read error.
2616 * This is all done synchronously while the array is
2620 bio = r1_bio->bios[r1_bio->read_disk];
2622 r1_bio->bios[r1_bio->read_disk] = NULL;
2624 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2626 && !test_bit(FailFast, &rdev->flags)) {
2627 freeze_array(conf, 1);
2628 fix_read_error(conf, r1_bio);
2629 unfreeze_array(conf);
2630 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2631 md_error(mddev, rdev);
2633 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2636 rdev_dec_pending(rdev, conf->mddev);
2637 sector = r1_bio->sector;
2638 bio = r1_bio->master_bio;
2640 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2642 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2643 allow_barrier(conf, sector);
2646 static void raid1d(struct md_thread *thread)
2648 struct mddev *mddev = thread->mddev;
2649 struct r1bio *r1_bio;
2650 unsigned long flags;
2651 struct r1conf *conf = mddev->private;
2652 struct list_head *head = &conf->retry_list;
2653 struct blk_plug plug;
2656 md_check_recovery(mddev);
2658 if (!list_empty_careful(&conf->bio_end_io_list) &&
2659 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2661 spin_lock_irqsave(&conf->device_lock, flags);
2662 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2663 list_splice_init(&conf->bio_end_io_list, &tmp);
2664 spin_unlock_irqrestore(&conf->device_lock, flags);
2665 while (!list_empty(&tmp)) {
2666 r1_bio = list_first_entry(&tmp, struct r1bio,
2668 list_del(&r1_bio->retry_list);
2669 idx = sector_to_idx(r1_bio->sector);
2670 atomic_dec(&conf->nr_queued[idx]);
2671 if (mddev->degraded)
2672 set_bit(R1BIO_Degraded, &r1_bio->state);
2673 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2674 close_write(r1_bio);
2675 raid_end_bio_io(r1_bio);
2679 blk_start_plug(&plug);
2682 flush_pending_writes(conf);
2684 spin_lock_irqsave(&conf->device_lock, flags);
2685 if (list_empty(head)) {
2686 spin_unlock_irqrestore(&conf->device_lock, flags);
2689 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2690 list_del(head->prev);
2691 idx = sector_to_idx(r1_bio->sector);
2692 atomic_dec(&conf->nr_queued[idx]);
2693 spin_unlock_irqrestore(&conf->device_lock, flags);
2695 mddev = r1_bio->mddev;
2696 conf = mddev->private;
2697 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2698 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2699 test_bit(R1BIO_WriteError, &r1_bio->state))
2700 handle_sync_write_finished(conf, r1_bio);
2702 sync_request_write(mddev, r1_bio);
2703 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2704 test_bit(R1BIO_WriteError, &r1_bio->state))
2705 handle_write_finished(conf, r1_bio);
2706 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2707 handle_read_error(conf, r1_bio);
2712 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2713 md_check_recovery(mddev);
2715 blk_finish_plug(&plug);
2718 static int init_resync(struct r1conf *conf)
2722 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2723 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2725 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2726 r1buf_pool_free, conf->poolinfo);
2729 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2731 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2732 struct resync_pages *rps;
2736 for (i = conf->poolinfo->raid_disks; i--; ) {
2737 bio = r1bio->bios[i];
2738 rps = bio->bi_private;
2739 bio_reset(bio, NULL, 0);
2740 bio->bi_private = rps;
2742 r1bio->master_bio = NULL;
2747 * perform a "sync" on one "block"
2749 * We need to make sure that no normal I/O request - particularly write
2750 * requests - conflict with active sync requests.
2752 * This is achieved by tracking pending requests and a 'barrier' concept
2753 * that can be installed to exclude normal IO requests.
2756 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2757 sector_t max_sector, int *skipped)
2759 struct r1conf *conf = mddev->private;
2760 struct r1bio *r1_bio;
2762 sector_t nr_sectors;
2766 int write_targets = 0, read_targets = 0;
2767 sector_t sync_blocks;
2768 int still_degraded = 0;
2769 int good_sectors = RESYNC_SECTORS;
2770 int min_bad = 0; /* number of sectors that are bad in all devices */
2771 int idx = sector_to_idx(sector_nr);
2774 if (!mempool_initialized(&conf->r1buf_pool))
2775 if (init_resync(conf))
2778 if (sector_nr >= max_sector) {
2779 /* If we aborted, we need to abort the
2780 * sync on the 'current' bitmap chunk (there will
2781 * only be one in raid1 resync.
2782 * We can find the current addess in mddev->curr_resync
2784 if (mddev->curr_resync < max_sector) /* aborted */
2785 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2787 else /* completed sync */
2790 md_bitmap_close_sync(mddev->bitmap);
2793 if (mddev_is_clustered(mddev)) {
2794 conf->cluster_sync_low = 0;
2795 conf->cluster_sync_high = 0;
2800 if (mddev->bitmap == NULL &&
2801 mddev->recovery_cp == MaxSector &&
2802 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2803 conf->fullsync == 0) {
2805 return max_sector - sector_nr;
2807 /* before building a request, check if we can skip these blocks..
2808 * This call the bitmap_start_sync doesn't actually record anything
2810 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2811 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2812 /* We can skip this block, and probably several more */
2818 * If there is non-resync activity waiting for a turn, then let it
2819 * though before starting on this new sync request.
2821 if (atomic_read(&conf->nr_waiting[idx]))
2822 schedule_timeout_uninterruptible(1);
2824 /* we are incrementing sector_nr below. To be safe, we check against
2825 * sector_nr + two times RESYNC_SECTORS
2828 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2829 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2832 if (raise_barrier(conf, sector_nr))
2835 r1_bio = raid1_alloc_init_r1buf(conf);
2838 * If we get a correctably read error during resync or recovery,
2839 * we might want to read from a different device. So we
2840 * flag all drives that could conceivably be read from for READ,
2841 * and any others (which will be non-In_sync devices) for WRITE.
2842 * If a read fails, we try reading from something else for which READ
2846 r1_bio->mddev = mddev;
2847 r1_bio->sector = sector_nr;
2849 set_bit(R1BIO_IsSync, &r1_bio->state);
2850 /* make sure good_sectors won't go across barrier unit boundary */
2851 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2853 for (i = 0; i < conf->raid_disks * 2; i++) {
2854 struct md_rdev *rdev;
2855 bio = r1_bio->bios[i];
2857 rdev = conf->mirrors[i].rdev;
2859 test_bit(Faulty, &rdev->flags)) {
2860 if (i < conf->raid_disks)
2862 } else if (!test_bit(In_sync, &rdev->flags)) {
2863 bio->bi_opf = REQ_OP_WRITE;
2864 bio->bi_end_io = end_sync_write;
2867 /* may need to read from here */
2868 sector_t first_bad = MaxSector;
2871 if (is_badblock(rdev, sector_nr, good_sectors,
2872 &first_bad, &bad_sectors)) {
2873 if (first_bad > sector_nr)
2874 good_sectors = first_bad - sector_nr;
2876 bad_sectors -= (sector_nr - first_bad);
2878 min_bad > bad_sectors)
2879 min_bad = bad_sectors;
2882 if (sector_nr < first_bad) {
2883 if (test_bit(WriteMostly, &rdev->flags)) {
2890 bio->bi_opf = REQ_OP_READ;
2891 bio->bi_end_io = end_sync_read;
2893 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2894 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2895 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2897 * The device is suitable for reading (InSync),
2898 * but has bad block(s) here. Let's try to correct them,
2899 * if we are doing resync or repair. Otherwise, leave
2900 * this device alone for this sync request.
2902 bio->bi_opf = REQ_OP_WRITE;
2903 bio->bi_end_io = end_sync_write;
2907 if (rdev && bio->bi_end_io) {
2908 atomic_inc(&rdev->nr_pending);
2909 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2910 bio_set_dev(bio, rdev->bdev);
2911 if (test_bit(FailFast, &rdev->flags))
2912 bio->bi_opf |= MD_FAILFAST;
2917 r1_bio->read_disk = disk;
2919 if (read_targets == 0 && min_bad > 0) {
2920 /* These sectors are bad on all InSync devices, so we
2921 * need to mark them bad on all write targets
2924 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2925 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2926 struct md_rdev *rdev = conf->mirrors[i].rdev;
2927 ok = rdev_set_badblocks(rdev, sector_nr,
2931 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936 /* Cannot record the badblocks, so need to
2938 * If there are multiple read targets, could just
2939 * fail the really bad ones ???
2941 conf->recovery_disabled = mddev->recovery_disabled;
2942 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2948 if (min_bad > 0 && min_bad < good_sectors) {
2949 /* only resync enough to reach the next bad->good
2951 good_sectors = min_bad;
2954 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2955 /* extra read targets are also write targets */
2956 write_targets += read_targets-1;
2958 if (write_targets == 0 || read_targets == 0) {
2959 /* There is nowhere to write, so all non-sync
2960 * drives must be failed - so we are finished
2964 max_sector = sector_nr + min_bad;
2965 rv = max_sector - sector_nr;
2971 if (max_sector > mddev->resync_max)
2972 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2973 if (max_sector > sector_nr + good_sectors)
2974 max_sector = sector_nr + good_sectors;
2979 int len = PAGE_SIZE;
2980 if (sector_nr + (len>>9) > max_sector)
2981 len = (max_sector - sector_nr) << 9;
2984 if (sync_blocks == 0) {
2985 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2986 &sync_blocks, still_degraded) &&
2988 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2990 if ((len >> 9) > sync_blocks)
2991 len = sync_blocks<<9;
2994 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2995 struct resync_pages *rp;
2997 bio = r1_bio->bios[i];
2998 rp = get_resync_pages(bio);
2999 if (bio->bi_end_io) {
3000 page = resync_fetch_page(rp, page_idx);
3003 * won't fail because the vec table is big
3004 * enough to hold all these pages
3006 __bio_add_page(bio, page, len, 0);
3009 nr_sectors += len>>9;
3010 sector_nr += len>>9;
3011 sync_blocks -= (len>>9);
3012 } while (++page_idx < RESYNC_PAGES);
3014 r1_bio->sectors = nr_sectors;
3016 if (mddev_is_clustered(mddev) &&
3017 conf->cluster_sync_high < sector_nr + nr_sectors) {
3018 conf->cluster_sync_low = mddev->curr_resync_completed;
3019 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3020 /* Send resync message */
3021 md_cluster_ops->resync_info_update(mddev,
3022 conf->cluster_sync_low,
3023 conf->cluster_sync_high);
3026 /* For a user-requested sync, we read all readable devices and do a
3029 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3030 atomic_set(&r1_bio->remaining, read_targets);
3031 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3032 bio = r1_bio->bios[i];
3033 if (bio->bi_end_io == end_sync_read) {
3035 md_sync_acct_bio(bio, nr_sectors);
3036 if (read_targets == 1)
3037 bio->bi_opf &= ~MD_FAILFAST;
3038 submit_bio_noacct(bio);
3042 atomic_set(&r1_bio->remaining, 1);
3043 bio = r1_bio->bios[r1_bio->read_disk];
3044 md_sync_acct_bio(bio, nr_sectors);
3045 if (read_targets == 1)
3046 bio->bi_opf &= ~MD_FAILFAST;
3047 submit_bio_noacct(bio);
3052 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057 return mddev->dev_sectors;
3060 static struct r1conf *setup_conf(struct mddev *mddev)
3062 struct r1conf *conf;
3064 struct raid1_info *disk;
3065 struct md_rdev *rdev;
3068 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3072 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3073 sizeof(atomic_t), GFP_KERNEL);
3074 if (!conf->nr_pending)
3077 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3078 sizeof(atomic_t), GFP_KERNEL);
3079 if (!conf->nr_waiting)
3082 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3083 sizeof(atomic_t), GFP_KERNEL);
3084 if (!conf->nr_queued)
3087 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3088 sizeof(atomic_t), GFP_KERNEL);
3092 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3093 mddev->raid_disks, 2),
3098 conf->tmppage = alloc_page(GFP_KERNEL);
3102 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3103 if (!conf->poolinfo)
3105 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3106 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3107 rbio_pool_free, conf->poolinfo);
3111 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3115 conf->poolinfo->mddev = mddev;
3118 spin_lock_init(&conf->device_lock);
3119 conf->raid_disks = mddev->raid_disks;
3120 rdev_for_each(rdev, mddev) {
3121 int disk_idx = rdev->raid_disk;
3123 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3126 if (!raid1_add_conf(conf, rdev, disk_idx,
3127 test_bit(Replacement, &rdev->flags)))
3130 conf->mddev = mddev;
3131 INIT_LIST_HEAD(&conf->retry_list);
3132 INIT_LIST_HEAD(&conf->bio_end_io_list);
3134 spin_lock_init(&conf->resync_lock);
3135 init_waitqueue_head(&conf->wait_barrier);
3137 bio_list_init(&conf->pending_bio_list);
3138 conf->recovery_disabled = mddev->recovery_disabled - 1;
3141 for (i = 0; i < conf->raid_disks * 2; i++) {
3143 disk = conf->mirrors + i;
3145 if (i < conf->raid_disks &&
3146 disk[conf->raid_disks].rdev) {
3147 /* This slot has a replacement. */
3149 /* No original, just make the replacement
3150 * a recovering spare
3153 disk[conf->raid_disks].rdev;
3154 disk[conf->raid_disks].rdev = NULL;
3155 } else if (!test_bit(In_sync, &disk->rdev->flags))
3156 /* Original is not in_sync - bad */
3161 !test_bit(In_sync, &disk->rdev->flags)) {
3162 disk->head_position = 0;
3164 (disk->rdev->saved_raid_disk < 0))
3170 rcu_assign_pointer(conf->thread,
3171 md_register_thread(raid1d, mddev, "raid1"));
3179 mempool_exit(&conf->r1bio_pool);
3180 kfree(conf->mirrors);
3181 safe_put_page(conf->tmppage);
3182 kfree(conf->poolinfo);
3183 kfree(conf->nr_pending);
3184 kfree(conf->nr_waiting);
3185 kfree(conf->nr_queued);
3186 kfree(conf->barrier);
3187 bioset_exit(&conf->bio_split);
3190 return ERR_PTR(err);
3193 static int raid1_set_limits(struct mddev *mddev)
3195 struct queue_limits lim;
3198 md_init_stacking_limits(&lim);
3199 lim.max_write_zeroes_sectors = 0;
3200 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3202 queue_limits_cancel_update(mddev->gendisk->queue);
3205 return queue_limits_set(mddev->gendisk->queue, &lim);
3208 static int raid1_run(struct mddev *mddev)
3210 struct r1conf *conf;
3214 if (mddev->level != 1) {
3215 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216 mdname(mddev), mddev->level);
3219 if (mddev->reshape_position != MaxSector) {
3220 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3226 * copy the already verified devices into our private RAID1
3227 * bookkeeping area. [whatever we allocate in run(),
3228 * should be freed in raid1_free()]
3230 if (mddev->private == NULL)
3231 conf = setup_conf(mddev);
3233 conf = mddev->private;
3236 return PTR_ERR(conf);
3238 if (!mddev_is_dm(mddev)) {
3239 ret = raid1_set_limits(mddev);
3244 mddev->degraded = 0;
3245 for (i = 0; i < conf->raid_disks; i++)
3246 if (conf->mirrors[i].rdev == NULL ||
3247 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3251 * RAID1 needs at least one disk in active
3253 if (conf->raid_disks - mddev->degraded < 1) {
3254 md_unregister_thread(mddev, &conf->thread);
3258 if (conf->raid_disks - mddev->degraded == 1)
3259 mddev->recovery_cp = MaxSector;
3261 if (mddev->recovery_cp != MaxSector)
3262 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3265 mdname(mddev), mddev->raid_disks - mddev->degraded,
3269 * Ok, everything is just fine now
3271 rcu_assign_pointer(mddev->thread, conf->thread);
3272 rcu_assign_pointer(conf->thread, NULL);
3273 mddev->private = conf;
3274 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3276 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3278 ret = md_integrity_register(mddev);
3280 md_unregister_thread(mddev, &mddev->thread);
3284 static void raid1_free(struct mddev *mddev, void *priv)
3286 struct r1conf *conf = priv;
3288 mempool_exit(&conf->r1bio_pool);
3289 kfree(conf->mirrors);
3290 safe_put_page(conf->tmppage);
3291 kfree(conf->poolinfo);
3292 kfree(conf->nr_pending);
3293 kfree(conf->nr_waiting);
3294 kfree(conf->nr_queued);
3295 kfree(conf->barrier);
3296 bioset_exit(&conf->bio_split);
3300 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3302 /* no resync is happening, and there is enough space
3303 * on all devices, so we can resize.
3304 * We need to make sure resync covers any new space.
3305 * If the array is shrinking we should possibly wait until
3306 * any io in the removed space completes, but it hardly seems
3309 sector_t newsize = raid1_size(mddev, sectors, 0);
3310 if (mddev->external_size &&
3311 mddev->array_sectors > newsize)
3313 if (mddev->bitmap) {
3314 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3318 md_set_array_sectors(mddev, newsize);
3319 if (sectors > mddev->dev_sectors &&
3320 mddev->recovery_cp > mddev->dev_sectors) {
3321 mddev->recovery_cp = mddev->dev_sectors;
3322 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3324 mddev->dev_sectors = sectors;
3325 mddev->resync_max_sectors = sectors;
3329 static int raid1_reshape(struct mddev *mddev)
3332 * 1/ resize the r1bio_pool
3333 * 2/ resize conf->mirrors
3335 * We allocate a new r1bio_pool if we can.
3336 * Then raise a device barrier and wait until all IO stops.
3337 * Then resize conf->mirrors and swap in the new r1bio pool.
3339 * At the same time, we "pack" the devices so that all the missing
3340 * devices have the higher raid_disk numbers.
3342 mempool_t newpool, oldpool;
3343 struct pool_info *newpoolinfo;
3344 struct raid1_info *newmirrors;
3345 struct r1conf *conf = mddev->private;
3346 int cnt, raid_disks;
3347 unsigned long flags;
3351 memset(&newpool, 0, sizeof(newpool));
3352 memset(&oldpool, 0, sizeof(oldpool));
3354 /* Cannot change chunk_size, layout, or level */
3355 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3356 mddev->layout != mddev->new_layout ||
3357 mddev->level != mddev->new_level) {
3358 mddev->new_chunk_sectors = mddev->chunk_sectors;
3359 mddev->new_layout = mddev->layout;
3360 mddev->new_level = mddev->level;
3364 if (!mddev_is_clustered(mddev))
3365 md_allow_write(mddev);
3367 raid_disks = mddev->raid_disks + mddev->delta_disks;
3369 if (raid_disks < conf->raid_disks) {
3371 for (d= 0; d < conf->raid_disks; d++)
3372 if (conf->mirrors[d].rdev)
3374 if (cnt > raid_disks)
3378 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3381 newpoolinfo->mddev = mddev;
3382 newpoolinfo->raid_disks = raid_disks * 2;
3384 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3385 rbio_pool_free, newpoolinfo);
3390 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3395 mempool_exit(&newpool);
3399 freeze_array(conf, 0);
3401 /* ok, everything is stopped */
3402 oldpool = conf->r1bio_pool;
3403 conf->r1bio_pool = newpool;
3405 for (d = d2 = 0; d < conf->raid_disks; d++) {
3406 struct md_rdev *rdev = conf->mirrors[d].rdev;
3407 if (rdev && rdev->raid_disk != d2) {
3408 sysfs_unlink_rdev(mddev, rdev);
3409 rdev->raid_disk = d2;
3410 sysfs_unlink_rdev(mddev, rdev);
3411 if (sysfs_link_rdev(mddev, rdev))
3412 pr_warn("md/raid1:%s: cannot register rd%d\n",
3413 mdname(mddev), rdev->raid_disk);
3416 newmirrors[d2++].rdev = rdev;
3418 kfree(conf->mirrors);
3419 conf->mirrors = newmirrors;
3420 kfree(conf->poolinfo);
3421 conf->poolinfo = newpoolinfo;
3423 spin_lock_irqsave(&conf->device_lock, flags);
3424 mddev->degraded += (raid_disks - conf->raid_disks);
3425 spin_unlock_irqrestore(&conf->device_lock, flags);
3426 conf->raid_disks = mddev->raid_disks = raid_disks;
3427 mddev->delta_disks = 0;
3429 unfreeze_array(conf);
3431 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3432 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3433 md_wakeup_thread(mddev->thread);
3435 mempool_exit(&oldpool);
3439 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3441 struct r1conf *conf = mddev->private;
3444 freeze_array(conf, 0);
3446 unfreeze_array(conf);
3449 static void *raid1_takeover(struct mddev *mddev)
3451 /* raid1 can take over:
3452 * raid5 with 2 devices, any layout or chunk size
3454 if (mddev->level == 5 && mddev->raid_disks == 2) {
3455 struct r1conf *conf;
3456 mddev->new_level = 1;
3457 mddev->new_layout = 0;
3458 mddev->new_chunk_sectors = 0;
3459 conf = setup_conf(mddev);
3460 if (!IS_ERR(conf)) {
3461 /* Array must appear to be quiesced */
3462 conf->array_frozen = 1;
3463 mddev_clear_unsupported_flags(mddev,
3464 UNSUPPORTED_MDDEV_FLAGS);
3468 return ERR_PTR(-EINVAL);
3471 static struct md_personality raid1_personality =
3475 .owner = THIS_MODULE,
3476 .make_request = raid1_make_request,
3479 .status = raid1_status,
3480 .error_handler = raid1_error,
3481 .hot_add_disk = raid1_add_disk,
3482 .hot_remove_disk= raid1_remove_disk,
3483 .spare_active = raid1_spare_active,
3484 .sync_request = raid1_sync_request,
3485 .resize = raid1_resize,
3487 .check_reshape = raid1_reshape,
3488 .quiesce = raid1_quiesce,
3489 .takeover = raid1_takeover,
3492 static int __init raid_init(void)
3494 return register_md_personality(&raid1_personality);
3497 static void raid_exit(void)
3499 unregister_md_personality(&raid1_personality);
3502 module_init(raid_init);
3503 module_exit(raid_exit);
3504 MODULE_LICENSE("GPL");
3505 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3506 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3507 MODULE_ALIAS("md-raid1");
3508 MODULE_ALIAS("md-level-1");