1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
7 * This file is released under the GPL.
10 #include "dm-bio-record.h"
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
29 #define DM_MSG_PREFIX "integrity"
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
47 #define RECHECK_POOL_SIZE 256
50 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
51 * so it should not be enabled in the official kernel
54 //#define INTERNAL_VERIFY
60 #define SB_MAGIC "integrt"
61 #define SB_VERSION_1 1
62 #define SB_VERSION_2 2
63 #define SB_VERSION_3 3
64 #define SB_VERSION_4 4
65 #define SB_VERSION_5 5
66 #define SB_VERSION_6 6
68 #define MAX_SECTORS_PER_BLOCK 8
73 __u8 log2_interleave_sectors;
74 __le16 integrity_tag_size;
75 __le32 journal_sections;
76 __le64 provided_data_sectors; /* userspace uses this value */
78 __u8 log2_sectors_per_block;
79 __u8 log2_blocks_per_bitmap_bit;
86 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
87 #define SB_FLAG_RECALCULATING 0x2
88 #define SB_FLAG_DIRTY_BITMAP 0x4
89 #define SB_FLAG_FIXED_PADDING 0x8
90 #define SB_FLAG_FIXED_HMAC 0x10
91 #define SB_FLAG_INLINE 0x20
93 #define JOURNAL_ENTRY_ROUNDUP 8
95 typedef __le64 commit_id_t;
96 #define JOURNAL_MAC_PER_SECTOR 8
98 struct journal_entry {
106 commit_id_t last_bytes[];
110 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112 #if BITS_PER_LONG == 64
113 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
118 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
119 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
120 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
121 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
123 #define JOURNAL_BLOCK_SECTORS 8
124 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
125 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127 struct journal_sector {
128 struct_group(sectors,
129 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
130 __u8 mac[JOURNAL_MAC_PER_SECTOR];
132 commit_id_t commit_id;
135 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
137 #define METADATA_PADDING_SECTORS 8
139 #define N_COMMIT_IDS 4
141 static unsigned char prev_commit_seq(unsigned char seq)
143 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
146 static unsigned char next_commit_seq(unsigned char seq)
148 return (seq + 1) % N_COMMIT_IDS;
152 * In-memory structures
155 struct journal_node {
164 unsigned int key_size;
167 struct dm_integrity_c {
169 struct dm_dev *meta_dev;
170 unsigned int tag_size;
172 unsigned int tuple_size;
174 mempool_t journal_io_mempool;
175 struct dm_io_client *io;
176 struct dm_bufio_client *bufio;
177 struct workqueue_struct *metadata_wq;
178 struct superblock *sb;
179 unsigned int journal_pages;
180 unsigned int n_bitmap_blocks;
182 struct page_list *journal;
183 struct page_list *journal_io;
184 struct page_list *journal_xor;
185 struct page_list *recalc_bitmap;
186 struct page_list *may_write_bitmap;
187 struct bitmap_block_status *bbs;
188 unsigned int bitmap_flush_interval;
189 int synchronous_mode;
190 struct bio_list synchronous_bios;
191 struct delayed_work bitmap_flush_work;
193 struct crypto_skcipher *journal_crypt;
194 struct scatterlist **journal_scatterlist;
195 struct scatterlist **journal_io_scatterlist;
196 struct skcipher_request **sk_requests;
198 struct crypto_shash *journal_mac;
200 struct journal_node *journal_tree;
201 struct rb_root journal_tree_root;
203 sector_t provided_data_sectors;
205 unsigned short journal_entry_size;
206 unsigned char journal_entries_per_sector;
207 unsigned char journal_section_entries;
208 unsigned short journal_section_sectors;
209 unsigned int journal_sections;
210 unsigned int journal_entries;
211 sector_t data_device_sectors;
212 sector_t meta_device_sectors;
213 unsigned int initial_sectors;
214 unsigned int metadata_run;
215 __s8 log2_metadata_run;
216 __u8 log2_buffer_sectors;
217 __u8 sectors_per_block;
218 __u8 log2_blocks_per_bitmap_bit;
224 struct crypto_shash *internal_hash;
226 struct dm_target *ti;
228 /* these variables are locked with endio_wait.lock */
229 struct rb_root in_progress;
230 struct list_head wait_list;
231 wait_queue_head_t endio_wait;
232 struct workqueue_struct *wait_wq;
233 struct workqueue_struct *offload_wq;
235 unsigned char commit_seq;
236 commit_id_t commit_ids[N_COMMIT_IDS];
238 unsigned int committed_section;
239 unsigned int n_committed_sections;
241 unsigned int uncommitted_section;
242 unsigned int n_uncommitted_sections;
244 unsigned int free_section;
245 unsigned char free_section_entry;
246 unsigned int free_sectors;
248 unsigned int free_sectors_threshold;
250 struct workqueue_struct *commit_wq;
251 struct work_struct commit_work;
253 struct workqueue_struct *writer_wq;
254 struct work_struct writer_work;
256 struct workqueue_struct *recalc_wq;
257 struct work_struct recalc_work;
259 struct bio_list flush_bio_list;
261 unsigned long autocommit_jiffies;
262 struct timer_list autocommit_timer;
263 unsigned int autocommit_msec;
265 wait_queue_head_t copy_to_journal_wait;
267 struct completion crypto_backoff;
269 bool wrote_to_journal;
270 bool journal_uptodate;
272 bool recalculate_flag;
273 bool reset_recalculate_flag;
277 bool legacy_recalculate;
279 struct alg_spec internal_hash_alg;
280 struct alg_spec journal_crypt_alg;
281 struct alg_spec journal_mac_alg;
283 atomic64_t number_of_mismatches;
285 mempool_t recheck_pool;
286 struct bio_set recheck_bios;
288 struct notifier_block reboot_notifier;
291 struct dm_integrity_range {
292 sector_t logical_sector;
298 struct task_struct *task;
299 struct list_head wait_entry;
304 struct dm_integrity_io {
305 struct work_struct work;
307 struct dm_integrity_c *ic;
311 struct dm_integrity_range range;
313 sector_t metadata_block;
314 unsigned int metadata_offset;
317 blk_status_t bi_status;
319 struct completion *completion;
321 struct dm_bio_details bio_details;
323 char *integrity_payload;
324 bool integrity_payload_from_mempool;
327 struct journal_completion {
328 struct dm_integrity_c *ic;
330 struct completion comp;
334 struct dm_integrity_range range;
335 struct journal_completion *comp;
338 struct bitmap_block_status {
339 struct work_struct work;
340 struct dm_integrity_c *ic;
342 unsigned long *bitmap;
343 struct bio_list bio_queue;
344 spinlock_t bio_queue_lock;
348 static struct kmem_cache *journal_io_cache;
350 #define JOURNAL_IO_MEMPOOL 32
353 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
354 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
355 len ? ": " : "", len, bytes)
357 #define DEBUG_print(x, ...) do { } while (0)
358 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
361 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
362 static int dm_integrity_map_inline(struct dm_integrity_io *dio);
363 static void integrity_bio_wait(struct work_struct *w);
364 static void dm_integrity_dtr(struct dm_target *ti);
366 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
369 atomic64_inc(&ic->number_of_mismatches);
370 if (!cmpxchg(&ic->failed, 0, err))
371 DMERR("Error on %s: %d", msg, err);
374 static int dm_integrity_failed(struct dm_integrity_c *ic)
376 return READ_ONCE(ic->failed);
379 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
381 if (ic->legacy_recalculate)
383 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
384 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
385 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
390 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
391 unsigned int j, unsigned char seq)
394 * Xor the number with section and sector, so that if a piece of
395 * journal is written at wrong place, it is detected.
397 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
400 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
401 sector_t *area, sector_t *offset)
404 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
405 *area = data_sector >> log2_interleave_sectors;
406 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
409 *offset = data_sector;
413 #define sector_to_block(ic, n) \
415 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
416 (n) >>= (ic)->sb->log2_sectors_per_block; \
419 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
420 sector_t offset, unsigned int *metadata_offset)
425 ms = area << ic->sb->log2_interleave_sectors;
426 if (likely(ic->log2_metadata_run >= 0))
427 ms += area << ic->log2_metadata_run;
429 ms += area * ic->metadata_run;
430 ms >>= ic->log2_buffer_sectors;
432 sector_to_block(ic, offset);
434 if (likely(ic->log2_tag_size >= 0)) {
435 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
436 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
438 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
439 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
441 *metadata_offset = mo;
445 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
452 result = area << ic->sb->log2_interleave_sectors;
453 if (likely(ic->log2_metadata_run >= 0))
454 result += (area + 1) << ic->log2_metadata_run;
456 result += (area + 1) * ic->metadata_run;
458 result += (sector_t)ic->initial_sectors + offset;
464 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
466 if (unlikely(*sec_ptr >= ic->journal_sections))
467 *sec_ptr -= ic->journal_sections;
470 static void sb_set_version(struct dm_integrity_c *ic)
472 if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
473 ic->sb->version = SB_VERSION_6;
474 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
475 ic->sb->version = SB_VERSION_5;
476 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
477 ic->sb->version = SB_VERSION_4;
478 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
479 ic->sb->version = SB_VERSION_3;
480 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
481 ic->sb->version = SB_VERSION_2;
483 ic->sb->version = SB_VERSION_1;
486 static int sb_mac(struct dm_integrity_c *ic, bool wr)
488 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
490 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
491 __u8 *sb = (__u8 *)ic->sb;
492 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
494 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
495 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
499 desc->tfm = ic->journal_mac;
502 r = crypto_shash_digest(desc, sb, mac - sb, mac);
503 if (unlikely(r < 0)) {
504 dm_integrity_io_error(ic, "crypto_shash_digest", r);
508 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
510 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
511 if (unlikely(r < 0)) {
512 dm_integrity_io_error(ic, "crypto_shash_digest", r);
515 if (memcmp(mac, actual_mac, mac_size)) {
516 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
517 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
525 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
527 struct dm_io_request io_req;
528 struct dm_io_region io_loc;
529 const enum req_op op = opf & REQ_OP_MASK;
533 io_req.mem.type = DM_IO_KMEM;
534 io_req.mem.ptr.addr = ic->sb;
535 io_req.notify.fn = NULL;
536 io_req.client = ic->io;
537 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
538 io_loc.sector = ic->start;
539 io_loc.count = SB_SECTORS;
541 if (op == REQ_OP_WRITE) {
543 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
544 r = sb_mac(ic, true);
550 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
554 if (op == REQ_OP_READ) {
555 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
556 r = sb_mac(ic, false);
565 #define BITMAP_OP_TEST_ALL_SET 0
566 #define BITMAP_OP_TEST_ALL_CLEAR 1
567 #define BITMAP_OP_SET 2
568 #define BITMAP_OP_CLEAR 3
570 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
571 sector_t sector, sector_t n_sectors, int mode)
573 unsigned long bit, end_bit, this_end_bit, page, end_page;
576 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
577 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
580 ic->sb->log2_sectors_per_block,
581 ic->log2_blocks_per_bitmap_bit,
586 if (unlikely(!n_sectors))
589 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
590 end_bit = (sector + n_sectors - 1) >>
591 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
593 page = bit / (PAGE_SIZE * 8);
594 bit %= PAGE_SIZE * 8;
596 end_page = end_bit / (PAGE_SIZE * 8);
597 end_bit %= PAGE_SIZE * 8;
601 this_end_bit = PAGE_SIZE * 8 - 1;
603 this_end_bit = end_bit;
605 data = lowmem_page_address(bitmap[page].page);
607 if (mode == BITMAP_OP_TEST_ALL_SET) {
608 while (bit <= this_end_bit) {
609 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
611 if (data[bit / BITS_PER_LONG] != -1)
613 bit += BITS_PER_LONG;
614 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
617 if (!test_bit(bit, data))
621 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
622 while (bit <= this_end_bit) {
623 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
625 if (data[bit / BITS_PER_LONG] != 0)
627 bit += BITS_PER_LONG;
628 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
631 if (test_bit(bit, data))
635 } else if (mode == BITMAP_OP_SET) {
636 while (bit <= this_end_bit) {
637 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
639 data[bit / BITS_PER_LONG] = -1;
640 bit += BITS_PER_LONG;
641 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
644 __set_bit(bit, data);
647 } else if (mode == BITMAP_OP_CLEAR) {
648 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
651 while (bit <= this_end_bit) {
652 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654 data[bit / BITS_PER_LONG] = 0;
655 bit += BITS_PER_LONG;
656 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
659 __clear_bit(bit, data);
667 if (unlikely(page < end_page)) {
676 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
678 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
681 for (i = 0; i < n_bitmap_pages; i++) {
682 unsigned long *dst_data = lowmem_page_address(dst[i].page);
683 unsigned long *src_data = lowmem_page_address(src[i].page);
685 copy_page(dst_data, src_data);
689 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
691 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
692 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
694 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
695 return &ic->bbs[bitmap_block];
698 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
699 bool e, const char *function)
701 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
702 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
704 if (unlikely(section >= ic->journal_sections) ||
705 unlikely(offset >= limit)) {
706 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
707 function, section, offset, ic->journal_sections, limit);
713 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
714 unsigned int *pl_index, unsigned int *pl_offset)
718 access_journal_check(ic, section, offset, false, "page_list_location");
720 sector = section * ic->journal_section_sectors + offset;
722 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
723 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
726 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
727 unsigned int section, unsigned int offset, unsigned int *n_sectors)
729 unsigned int pl_index, pl_offset;
732 page_list_location(ic, section, offset, &pl_index, &pl_offset);
735 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
737 va = lowmem_page_address(pl[pl_index].page);
739 return (struct journal_sector *)(va + pl_offset);
742 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
744 return access_page_list(ic, ic->journal, section, offset, NULL);
747 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
749 unsigned int rel_sector, offset;
750 struct journal_sector *js;
752 access_journal_check(ic, section, n, true, "access_journal_entry");
754 rel_sector = n % JOURNAL_BLOCK_SECTORS;
755 offset = n / JOURNAL_BLOCK_SECTORS;
757 js = access_journal(ic, section, rel_sector);
758 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
761 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
763 n <<= ic->sb->log2_sectors_per_block;
765 n += JOURNAL_BLOCK_SECTORS;
767 access_journal_check(ic, section, n, false, "access_journal_data");
769 return access_journal(ic, section, n);
772 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
774 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
776 unsigned int j, size;
778 desc->tfm = ic->journal_mac;
780 r = crypto_shash_init(desc);
781 if (unlikely(r < 0)) {
782 dm_integrity_io_error(ic, "crypto_shash_init", r);
786 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
789 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
790 if (unlikely(r < 0)) {
791 dm_integrity_io_error(ic, "crypto_shash_update", r);
795 section_le = cpu_to_le64(section);
796 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
797 if (unlikely(r < 0)) {
798 dm_integrity_io_error(ic, "crypto_shash_update", r);
803 for (j = 0; j < ic->journal_section_entries; j++) {
804 struct journal_entry *je = access_journal_entry(ic, section, j);
806 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
807 if (unlikely(r < 0)) {
808 dm_integrity_io_error(ic, "crypto_shash_update", r);
813 size = crypto_shash_digestsize(ic->journal_mac);
815 if (likely(size <= JOURNAL_MAC_SIZE)) {
816 r = crypto_shash_final(desc, result);
817 if (unlikely(r < 0)) {
818 dm_integrity_io_error(ic, "crypto_shash_final", r);
821 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
823 __u8 digest[HASH_MAX_DIGESTSIZE];
825 if (WARN_ON(size > sizeof(digest))) {
826 dm_integrity_io_error(ic, "digest_size", -EINVAL);
829 r = crypto_shash_final(desc, digest);
830 if (unlikely(r < 0)) {
831 dm_integrity_io_error(ic, "crypto_shash_final", r);
834 memcpy(result, digest, JOURNAL_MAC_SIZE);
839 memset(result, 0, JOURNAL_MAC_SIZE);
842 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
844 __u8 result[JOURNAL_MAC_SIZE];
847 if (!ic->journal_mac)
850 section_mac(ic, section, result);
852 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
853 struct journal_sector *js = access_journal(ic, section, j);
856 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
858 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
859 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
860 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
866 static void complete_journal_op(void *context)
868 struct journal_completion *comp = context;
870 BUG_ON(!atomic_read(&comp->in_flight));
871 if (likely(atomic_dec_and_test(&comp->in_flight)))
872 complete(&comp->comp);
875 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
876 unsigned int n_sections, struct journal_completion *comp)
878 struct async_submit_ctl submit;
879 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
880 unsigned int pl_index, pl_offset, section_index;
881 struct page_list *source_pl, *target_pl;
883 if (likely(encrypt)) {
884 source_pl = ic->journal;
885 target_pl = ic->journal_io;
887 source_pl = ic->journal_io;
888 target_pl = ic->journal;
891 page_list_location(ic, section, 0, &pl_index, &pl_offset);
893 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
895 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
897 section_index = pl_index;
901 struct page *src_pages[2];
902 struct page *dst_page;
904 while (unlikely(pl_index == section_index)) {
908 rw_section_mac(ic, section, true);
913 page_list_location(ic, section, 0, §ion_index, &dummy);
916 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
917 dst_page = target_pl[pl_index].page;
918 src_pages[0] = source_pl[pl_index].page;
919 src_pages[1] = ic->journal_xor[pl_index].page;
921 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
925 n_bytes -= this_step;
930 async_tx_issue_pending_all();
933 static void complete_journal_encrypt(void *data, int err)
935 struct journal_completion *comp = data;
938 if (likely(err == -EINPROGRESS)) {
939 complete(&comp->ic->crypto_backoff);
942 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
944 complete_journal_op(comp);
947 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
951 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
952 complete_journal_encrypt, comp);
954 r = crypto_skcipher_encrypt(req);
956 r = crypto_skcipher_decrypt(req);
959 if (likely(r == -EINPROGRESS))
961 if (likely(r == -EBUSY)) {
962 wait_for_completion(&comp->ic->crypto_backoff);
963 reinit_completion(&comp->ic->crypto_backoff);
966 dm_integrity_io_error(comp->ic, "encrypt", r);
970 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
971 unsigned int n_sections, struct journal_completion *comp)
973 struct scatterlist **source_sg;
974 struct scatterlist **target_sg;
976 atomic_add(2, &comp->in_flight);
978 if (likely(encrypt)) {
979 source_sg = ic->journal_scatterlist;
980 target_sg = ic->journal_io_scatterlist;
982 source_sg = ic->journal_io_scatterlist;
983 target_sg = ic->journal_scatterlist;
987 struct skcipher_request *req;
992 rw_section_mac(ic, section, true);
994 req = ic->sk_requests[section];
995 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
998 memcpy(iv, iv + ivsize, ivsize);
1000 req->src = source_sg[section];
1001 req->dst = target_sg[section];
1003 if (unlikely(do_crypt(encrypt, req, comp)))
1004 atomic_inc(&comp->in_flight);
1008 } while (n_sections);
1010 atomic_dec(&comp->in_flight);
1011 complete_journal_op(comp);
1014 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1015 unsigned int n_sections, struct journal_completion *comp)
1017 if (ic->journal_xor)
1018 return xor_journal(ic, encrypt, section, n_sections, comp);
1020 return crypt_journal(ic, encrypt, section, n_sections, comp);
1023 static void complete_journal_io(unsigned long error, void *context)
1025 struct journal_completion *comp = context;
1027 if (unlikely(error != 0))
1028 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1029 complete_journal_op(comp);
1032 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1033 unsigned int sector, unsigned int n_sectors,
1034 struct journal_completion *comp)
1036 struct dm_io_request io_req;
1037 struct dm_io_region io_loc;
1038 unsigned int pl_index, pl_offset;
1041 if (unlikely(dm_integrity_failed(ic))) {
1043 complete_journal_io(-1UL, comp);
1047 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1048 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1050 io_req.bi_opf = opf;
1051 io_req.mem.type = DM_IO_PAGE_LIST;
1053 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1055 io_req.mem.ptr.pl = &ic->journal[pl_index];
1056 io_req.mem.offset = pl_offset;
1057 if (likely(comp != NULL)) {
1058 io_req.notify.fn = complete_journal_io;
1059 io_req.notify.context = comp;
1061 io_req.notify.fn = NULL;
1063 io_req.client = ic->io;
1064 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1065 io_loc.sector = ic->start + SB_SECTORS + sector;
1066 io_loc.count = n_sectors;
1068 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1070 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1071 "reading journal" : "writing journal", r);
1073 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1074 complete_journal_io(-1UL, comp);
1079 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1080 unsigned int section, unsigned int n_sections,
1081 struct journal_completion *comp)
1083 unsigned int sector, n_sectors;
1085 sector = section * ic->journal_section_sectors;
1086 n_sectors = n_sections * ic->journal_section_sectors;
1088 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1091 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1093 struct journal_completion io_comp;
1094 struct journal_completion crypt_comp_1;
1095 struct journal_completion crypt_comp_2;
1099 init_completion(&io_comp.comp);
1101 if (commit_start + commit_sections <= ic->journal_sections) {
1102 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1103 if (ic->journal_io) {
1104 crypt_comp_1.ic = ic;
1105 init_completion(&crypt_comp_1.comp);
1106 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1107 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1108 wait_for_completion_io(&crypt_comp_1.comp);
1110 for (i = 0; i < commit_sections; i++)
1111 rw_section_mac(ic, commit_start + i, true);
1113 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1114 commit_sections, &io_comp);
1116 unsigned int to_end;
1118 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1119 to_end = ic->journal_sections - commit_start;
1120 if (ic->journal_io) {
1121 crypt_comp_1.ic = ic;
1122 init_completion(&crypt_comp_1.comp);
1123 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1124 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1125 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1126 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1127 commit_start, to_end, &io_comp);
1128 reinit_completion(&crypt_comp_1.comp);
1129 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1131 wait_for_completion_io(&crypt_comp_1.comp);
1133 crypt_comp_2.ic = ic;
1134 init_completion(&crypt_comp_2.comp);
1135 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1136 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1137 wait_for_completion_io(&crypt_comp_1.comp);
1138 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1139 wait_for_completion_io(&crypt_comp_2.comp);
1142 for (i = 0; i < to_end; i++)
1143 rw_section_mac(ic, commit_start + i, true);
1144 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145 for (i = 0; i < commit_sections - to_end; i++)
1146 rw_section_mac(ic, i, true);
1148 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1151 wait_for_completion_io(&io_comp.comp);
1154 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1155 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1157 struct dm_io_request io_req;
1158 struct dm_io_region io_loc;
1160 unsigned int sector, pl_index, pl_offset;
1162 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1164 if (unlikely(dm_integrity_failed(ic))) {
1169 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1171 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1172 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1174 io_req.bi_opf = REQ_OP_WRITE;
1175 io_req.mem.type = DM_IO_PAGE_LIST;
1176 io_req.mem.ptr.pl = &ic->journal[pl_index];
1177 io_req.mem.offset = pl_offset;
1178 io_req.notify.fn = fn;
1179 io_req.notify.context = data;
1180 io_req.client = ic->io;
1181 io_loc.bdev = ic->dev->bdev;
1182 io_loc.sector = target;
1183 io_loc.count = n_sectors;
1185 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1187 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1192 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1194 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1195 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1198 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1200 struct rb_node **n = &ic->in_progress.rb_node;
1201 struct rb_node *parent;
1203 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1205 if (likely(check_waiting)) {
1206 struct dm_integrity_range *range;
1208 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1209 if (unlikely(ranges_overlap(range, new_range)))
1217 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1220 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1221 n = &range->node.rb_left;
1222 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1223 n = &range->node.rb_right;
1228 rb_link_node(&new_range->node, parent, n);
1229 rb_insert_color(&new_range->node, &ic->in_progress);
1234 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1236 rb_erase(&range->node, &ic->in_progress);
1237 while (unlikely(!list_empty(&ic->wait_list))) {
1238 struct dm_integrity_range *last_range =
1239 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1240 struct task_struct *last_range_task;
1242 last_range_task = last_range->task;
1243 list_del(&last_range->wait_entry);
1244 if (!add_new_range(ic, last_range, false)) {
1245 last_range->task = last_range_task;
1246 list_add(&last_range->wait_entry, &ic->wait_list);
1249 last_range->waiting = false;
1250 wake_up_process(last_range_task);
1254 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1256 unsigned long flags;
1258 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1259 remove_range_unlocked(ic, range);
1260 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1263 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1265 new_range->waiting = true;
1266 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1267 new_range->task = current;
1269 __set_current_state(TASK_UNINTERRUPTIBLE);
1270 spin_unlock_irq(&ic->endio_wait.lock);
1272 spin_lock_irq(&ic->endio_wait.lock);
1273 } while (unlikely(new_range->waiting));
1276 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1278 if (unlikely(!add_new_range(ic, new_range, true)))
1279 wait_and_add_new_range(ic, new_range);
1282 static void init_journal_node(struct journal_node *node)
1284 RB_CLEAR_NODE(&node->node);
1285 node->sector = (sector_t)-1;
1288 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1290 struct rb_node **link;
1291 struct rb_node *parent;
1293 node->sector = sector;
1294 BUG_ON(!RB_EMPTY_NODE(&node->node));
1296 link = &ic->journal_tree_root.rb_node;
1300 struct journal_node *j;
1303 j = container_of(parent, struct journal_node, node);
1304 if (sector < j->sector)
1305 link = &j->node.rb_left;
1307 link = &j->node.rb_right;
1310 rb_link_node(&node->node, parent, link);
1311 rb_insert_color(&node->node, &ic->journal_tree_root);
1314 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1316 BUG_ON(RB_EMPTY_NODE(&node->node));
1317 rb_erase(&node->node, &ic->journal_tree_root);
1318 init_journal_node(node);
1321 #define NOT_FOUND (-1U)
1323 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1325 struct rb_node *n = ic->journal_tree_root.rb_node;
1326 unsigned int found = NOT_FOUND;
1328 *next_sector = (sector_t)-1;
1330 struct journal_node *j = container_of(n, struct journal_node, node);
1332 if (sector == j->sector)
1333 found = j - ic->journal_tree;
1335 if (sector < j->sector) {
1336 *next_sector = j->sector;
1337 n = j->node.rb_left;
1339 n = j->node.rb_right;
1345 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1347 struct journal_node *node, *next_node;
1348 struct rb_node *next;
1350 if (unlikely(pos >= ic->journal_entries))
1352 node = &ic->journal_tree[pos];
1353 if (unlikely(RB_EMPTY_NODE(&node->node)))
1355 if (unlikely(node->sector != sector))
1358 next = rb_next(&node->node);
1359 if (unlikely(!next))
1362 next_node = container_of(next, struct journal_node, node);
1363 return next_node->sector != sector;
1366 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1368 struct rb_node *next;
1369 struct journal_node *next_node;
1370 unsigned int next_section;
1372 BUG_ON(RB_EMPTY_NODE(&node->node));
1374 next = rb_next(&node->node);
1375 if (unlikely(!next))
1378 next_node = container_of(next, struct journal_node, node);
1380 if (next_node->sector != node->sector)
1383 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1384 if (next_section >= ic->committed_section &&
1385 next_section < ic->committed_section + ic->n_committed_sections)
1387 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1397 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1398 unsigned int *metadata_offset, unsigned int total_size, int op)
1400 #define MAY_BE_FILLER 1
1401 #define MAY_BE_HASH 2
1402 unsigned int hash_offset = 0;
1403 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1406 unsigned char *data, *dp;
1407 struct dm_buffer *b;
1408 unsigned int to_copy;
1411 r = dm_integrity_failed(ic);
1415 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1417 return PTR_ERR(data);
1419 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1420 dp = data + *metadata_offset;
1421 if (op == TAG_READ) {
1422 memcpy(tag, dp, to_copy);
1423 } else if (op == TAG_WRITE) {
1424 if (memcmp(dp, tag, to_copy)) {
1425 memcpy(dp, tag, to_copy);
1426 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1429 /* e.g.: op == TAG_CMP */
1431 if (likely(is_power_of_2(ic->tag_size))) {
1432 if (unlikely(memcmp(dp, tag, to_copy)))
1433 if (unlikely(!ic->discard) ||
1434 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1442 for (i = 0; i < to_copy; i++, ts--) {
1443 if (unlikely(dp[i] != tag[i]))
1444 may_be &= ~MAY_BE_HASH;
1445 if (likely(dp[i] != DISCARD_FILLER))
1446 may_be &= ~MAY_BE_FILLER;
1448 if (unlikely(hash_offset == ic->tag_size)) {
1449 if (unlikely(!may_be)) {
1450 dm_bufio_release(b);
1454 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1459 dm_bufio_release(b);
1462 *metadata_offset += to_copy;
1463 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1464 (*metadata_block)++;
1465 *metadata_offset = 0;
1468 if (unlikely(!is_power_of_2(ic->tag_size)))
1469 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1471 total_size -= to_copy;
1472 } while (unlikely(total_size));
1475 #undef MAY_BE_FILLER
1479 struct flush_request {
1480 struct dm_io_request io_req;
1481 struct dm_io_region io_reg;
1482 struct dm_integrity_c *ic;
1483 struct completion comp;
1486 static void flush_notify(unsigned long error, void *fr_)
1488 struct flush_request *fr = fr_;
1490 if (unlikely(error != 0))
1491 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1492 complete(&fr->comp);
1495 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1498 struct flush_request fr;
1503 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1504 fr.io_req.mem.type = DM_IO_KMEM,
1505 fr.io_req.mem.ptr.addr = NULL,
1506 fr.io_req.notify.fn = flush_notify,
1507 fr.io_req.notify.context = &fr;
1508 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1509 fr.io_reg.bdev = ic->dev->bdev,
1510 fr.io_reg.sector = 0,
1511 fr.io_reg.count = 0,
1513 init_completion(&fr.comp);
1514 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1518 r = dm_bufio_write_dirty_buffers(ic->bufio);
1520 dm_integrity_io_error(ic, "writing tags", r);
1523 wait_for_completion(&fr.comp);
1526 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1528 DECLARE_WAITQUEUE(wait, current);
1530 __add_wait_queue(&ic->endio_wait, &wait);
1531 __set_current_state(TASK_UNINTERRUPTIBLE);
1532 spin_unlock_irq(&ic->endio_wait.lock);
1534 spin_lock_irq(&ic->endio_wait.lock);
1535 __remove_wait_queue(&ic->endio_wait, &wait);
1538 static void autocommit_fn(struct timer_list *t)
1540 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1542 if (likely(!dm_integrity_failed(ic)))
1543 queue_work(ic->commit_wq, &ic->commit_work);
1546 static void schedule_autocommit(struct dm_integrity_c *ic)
1548 if (!timer_pending(&ic->autocommit_timer))
1549 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1552 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1555 unsigned long flags;
1557 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1558 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1559 bio_list_add(&ic->flush_bio_list, bio);
1560 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1562 queue_work(ic->commit_wq, &ic->commit_work);
1565 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1569 r = dm_integrity_failed(ic);
1570 if (unlikely(r) && !bio->bi_status)
1571 bio->bi_status = errno_to_blk_status(r);
1572 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1573 unsigned long flags;
1575 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 bio_list_add(&ic->synchronous_bios, bio);
1577 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1578 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1584 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1586 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1588 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1589 submit_flush_bio(ic, dio);
1594 static void dec_in_flight(struct dm_integrity_io *dio)
1596 if (atomic_dec_and_test(&dio->in_flight)) {
1597 struct dm_integrity_c *ic = dio->ic;
1600 remove_range(ic, &dio->range);
1602 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1603 schedule_autocommit(ic);
1605 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1606 if (unlikely(dio->bi_status) && !bio->bi_status)
1607 bio->bi_status = dio->bi_status;
1608 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1609 dio->range.logical_sector += dio->range.n_sectors;
1610 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1611 INIT_WORK(&dio->work, integrity_bio_wait);
1612 queue_work(ic->offload_wq, &dio->work);
1615 do_endio_flush(ic, dio);
1619 static void integrity_end_io(struct bio *bio)
1621 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1623 dm_bio_restore(&dio->bio_details, bio);
1624 if (bio->bi_integrity)
1625 bio->bi_opf |= REQ_INTEGRITY;
1627 if (dio->completion)
1628 complete(dio->completion);
1633 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1634 const char *data, char *result)
1636 __le64 sector_le = cpu_to_le64(sector);
1637 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1639 unsigned int digest_size;
1641 req->tfm = ic->internal_hash;
1643 r = crypto_shash_init(req);
1644 if (unlikely(r < 0)) {
1645 dm_integrity_io_error(ic, "crypto_shash_init", r);
1649 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1650 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1651 if (unlikely(r < 0)) {
1652 dm_integrity_io_error(ic, "crypto_shash_update", r);
1657 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1658 if (unlikely(r < 0)) {
1659 dm_integrity_io_error(ic, "crypto_shash_update", r);
1663 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1664 if (unlikely(r < 0)) {
1665 dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 r = crypto_shash_final(req, result);
1670 if (unlikely(r < 0)) {
1671 dm_integrity_io_error(ic, "crypto_shash_final", r);
1675 digest_size = crypto_shash_digestsize(ic->internal_hash);
1676 if (unlikely(digest_size < ic->tag_size))
1677 memset(result + digest_size, 0, ic->tag_size - digest_size);
1682 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1683 get_random_bytes(result, ic->tag_size);
1686 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1688 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1689 struct dm_integrity_c *ic = dio->ic;
1690 struct bvec_iter iter;
1692 sector_t sector, logical_sector, area, offset;
1695 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1696 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1697 &dio->metadata_offset);
1698 sector = get_data_sector(ic, area, offset);
1699 logical_sector = dio->range.logical_sector;
1701 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1703 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1709 char *buffer = page_to_virt(page);
1711 struct dm_io_request io_req;
1712 struct dm_io_region io_loc;
1713 io_req.bi_opf = REQ_OP_READ;
1714 io_req.mem.type = DM_IO_KMEM;
1715 io_req.mem.ptr.addr = buffer;
1716 io_req.notify.fn = NULL;
1717 io_req.client = ic->io;
1718 io_loc.bdev = ic->dev->bdev;
1719 io_loc.sector = sector;
1720 io_loc.count = ic->sectors_per_block;
1722 /* Align the bio to logical block size */
1723 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1724 alignment &= -alignment;
1725 io_loc.sector = round_down(io_loc.sector, alignment);
1726 io_loc.count += sector - io_loc.sector;
1727 buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1728 io_loc.count = round_up(io_loc.count, alignment);
1730 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1732 dio->bi_status = errno_to_blk_status(r);
1736 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1741 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742 bio->bi_bdev, logical_sector);
1743 atomic64_inc(&ic->number_of_mismatches);
1744 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745 bio, logical_sector, 0);
1748 dio->bi_status = errno_to_blk_status(r);
1752 mem = bvec_kmap_local(&bv);
1753 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1756 pos += ic->sectors_per_block << SECTOR_SHIFT;
1757 sector += ic->sectors_per_block;
1758 logical_sector += ic->sectors_per_block;
1759 } while (pos < bv.bv_len);
1762 mempool_free(page, &ic->recheck_pool);
1765 static void integrity_metadata(struct work_struct *w)
1767 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768 struct dm_integrity_c *ic = dio->ic;
1772 if (ic->internal_hash) {
1773 struct bvec_iter iter;
1775 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1778 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1781 unsigned int sectors_to_process;
1783 if (unlikely(ic->mode == 'R'))
1786 if (likely(dio->op != REQ_OP_DISCARD))
1787 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1790 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1792 checksums = checksums_onstack;
1793 if (WARN_ON(extra_space &&
1794 digest_size > sizeof(checksums_onstack))) {
1800 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803 unsigned int max_blocks = max_size / ic->tag_size;
1805 memset(checksums, DISCARD_FILLER, max_size);
1808 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1810 this_step_blocks = min(this_step_blocks, max_blocks);
1811 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812 this_step_blocks * ic->tag_size, TAG_WRITE);
1814 if (likely(checksums != checksums_onstack))
1819 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1822 if (likely(checksums != checksums_onstack))
1827 sector = dio->range.logical_sector;
1828 sectors_to_process = dio->range.n_sectors;
1830 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831 struct bio_vec bv_copy = bv;
1833 char *mem, *checksums_ptr;
1836 mem = bvec_kmap_local(&bv_copy);
1838 checksums_ptr = checksums;
1840 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841 checksums_ptr += ic->tag_size;
1842 sectors_to_process -= ic->sectors_per_block;
1843 pos += ic->sectors_per_block << SECTOR_SHIFT;
1844 sector += ic->sectors_per_block;
1845 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1848 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1851 if (likely(checksums != checksums_onstack))
1854 integrity_recheck(dio, checksums_onstack);
1860 if (!sectors_to_process)
1863 if (unlikely(pos < bv_copy.bv_len)) {
1864 bv_copy.bv_offset += pos;
1865 bv_copy.bv_len -= pos;
1870 if (likely(checksums != checksums_onstack))
1873 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1877 struct bvec_iter iter;
1878 unsigned int data_to_process = dio->range.n_sectors;
1880 sector_to_block(ic, data_to_process);
1881 data_to_process *= ic->tag_size;
1883 bip_for_each_vec(biv, bip, iter) {
1885 unsigned int this_len;
1887 BUG_ON(PageHighMem(biv.bv_page));
1888 tag = bvec_virt(&biv);
1889 this_len = min(biv.bv_len, data_to_process);
1890 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1894 data_to_process -= this_len;
1895 if (!data_to_process)
1904 dio->bi_status = errno_to_blk_status(r);
1908 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1910 if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1911 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1912 logical_sector, bio_sectors(bio),
1913 ic->provided_data_sectors);
1916 if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1917 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1918 ic->sectors_per_block,
1919 logical_sector, bio_sectors(bio));
1922 if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1923 struct bvec_iter iter;
1926 bio_for_each_segment(bv, bio, iter) {
1927 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1928 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1929 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1937 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1939 struct dm_integrity_c *ic = ti->private;
1940 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1941 struct bio_integrity_payload *bip;
1943 sector_t area, offset;
1947 dio->op = bio_op(bio);
1949 if (ic->mode == 'I')
1950 return dm_integrity_map_inline(dio);
1952 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1953 if (ti->max_io_len) {
1954 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1955 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1956 sector_t start_boundary = sec >> log2_max_io_len;
1957 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1959 if (start_boundary < end_boundary) {
1960 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1962 dm_accept_partial_bio(bio, len);
1967 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1968 submit_flush_bio(ic, dio);
1969 return DM_MAPIO_SUBMITTED;
1972 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1973 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1974 if (unlikely(dio->fua)) {
1976 * Don't pass down the FUA flag because we have to flush
1977 * disk cache anyway.
1979 bio->bi_opf &= ~REQ_FUA;
1981 if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1982 return DM_MAPIO_KILL;
1984 bip = bio_integrity(bio);
1985 if (!ic->internal_hash) {
1987 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1989 if (ic->log2_tag_size >= 0)
1990 wanted_tag_size <<= ic->log2_tag_size;
1992 wanted_tag_size *= ic->tag_size;
1993 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1994 DMERR("Invalid integrity data size %u, expected %u",
1995 bip->bip_iter.bi_size, wanted_tag_size);
1996 return DM_MAPIO_KILL;
2000 if (unlikely(bip != NULL)) {
2001 DMERR("Unexpected integrity data when using internal hash");
2002 return DM_MAPIO_KILL;
2006 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2007 return DM_MAPIO_KILL;
2009 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2010 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2011 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2013 dm_integrity_map_continue(dio, true);
2014 return DM_MAPIO_SUBMITTED;
2017 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2018 unsigned int journal_section, unsigned int journal_entry)
2020 struct dm_integrity_c *ic = dio->ic;
2021 sector_t logical_sector;
2022 unsigned int n_sectors;
2024 logical_sector = dio->range.logical_sector;
2025 n_sectors = dio->range.n_sectors;
2027 struct bio_vec bv = bio_iovec(bio);
2030 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2031 bv.bv_len = n_sectors << SECTOR_SHIFT;
2032 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2033 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2035 mem = kmap_local_page(bv.bv_page);
2036 if (likely(dio->op == REQ_OP_WRITE))
2037 flush_dcache_page(bv.bv_page);
2040 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2042 if (unlikely(dio->op == REQ_OP_READ)) {
2043 struct journal_sector *js;
2047 if (unlikely(journal_entry_is_inprogress(je))) {
2048 flush_dcache_page(bv.bv_page);
2051 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2055 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2056 js = access_journal_data(ic, journal_section, journal_entry);
2057 mem_ptr = mem + bv.bv_offset;
2060 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2061 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2063 mem_ptr += 1 << SECTOR_SHIFT;
2064 } while (++s < ic->sectors_per_block);
2065 #ifdef INTERNAL_VERIFY
2066 if (ic->internal_hash) {
2067 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2069 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2070 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2071 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2073 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2074 bio, logical_sector, 0);
2080 if (!ic->internal_hash) {
2081 struct bio_integrity_payload *bip = bio_integrity(bio);
2082 unsigned int tag_todo = ic->tag_size;
2083 char *tag_ptr = journal_entry_tag(ic, je);
2087 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2088 unsigned int tag_now = min(biv.bv_len, tag_todo);
2091 BUG_ON(PageHighMem(biv.bv_page));
2092 tag_addr = bvec_virt(&biv);
2093 if (likely(dio->op == REQ_OP_WRITE))
2094 memcpy(tag_ptr, tag_addr, tag_now);
2096 memcpy(tag_addr, tag_ptr, tag_now);
2097 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2099 tag_todo -= tag_now;
2100 } while (unlikely(tag_todo));
2101 } else if (likely(dio->op == REQ_OP_WRITE))
2102 memset(tag_ptr, 0, tag_todo);
2105 if (likely(dio->op == REQ_OP_WRITE)) {
2106 struct journal_sector *js;
2109 js = access_journal_data(ic, journal_section, journal_entry);
2110 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2114 je->last_bytes[s] = js[s].commit_id;
2115 } while (++s < ic->sectors_per_block);
2117 if (ic->internal_hash) {
2118 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2120 if (unlikely(digest_size > ic->tag_size)) {
2121 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2123 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2124 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2126 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2129 journal_entry_set_sector(je, logical_sector);
2131 logical_sector += ic->sectors_per_block;
2134 if (unlikely(journal_entry == ic->journal_section_entries)) {
2137 wraparound_section(ic, &journal_section);
2140 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2141 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2143 if (unlikely(dio->op == REQ_OP_READ))
2144 flush_dcache_page(bv.bv_page);
2146 } while (n_sectors);
2148 if (likely(dio->op == REQ_OP_WRITE)) {
2150 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2151 wake_up(&ic->copy_to_journal_wait);
2152 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2153 queue_work(ic->commit_wq, &ic->commit_work);
2155 schedule_autocommit(ic);
2157 remove_range(ic, &dio->range);
2159 if (unlikely(bio->bi_iter.bi_size)) {
2160 sector_t area, offset;
2162 dio->range.logical_sector = logical_sector;
2163 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2164 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2171 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2173 struct dm_integrity_c *ic = dio->ic;
2174 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2175 unsigned int journal_section, journal_entry;
2176 unsigned int journal_read_pos;
2177 struct completion read_comp;
2178 bool discard_retried = false;
2179 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2181 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2182 need_sync_io = true;
2184 if (need_sync_io && from_map) {
2185 INIT_WORK(&dio->work, integrity_bio_wait);
2186 queue_work(ic->offload_wq, &dio->work);
2191 spin_lock_irq(&ic->endio_wait.lock);
2193 if (unlikely(dm_integrity_failed(ic))) {
2194 spin_unlock_irq(&ic->endio_wait.lock);
2198 dio->range.n_sectors = bio_sectors(bio);
2199 journal_read_pos = NOT_FOUND;
2200 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2201 if (dio->op == REQ_OP_WRITE) {
2202 unsigned int next_entry, i, pos;
2203 unsigned int ws, we, range_sectors;
2205 dio->range.n_sectors = min(dio->range.n_sectors,
2206 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2207 if (unlikely(!dio->range.n_sectors)) {
2209 goto offload_to_thread;
2210 sleep_on_endio_wait(ic);
2213 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2214 ic->free_sectors -= range_sectors;
2215 journal_section = ic->free_section;
2216 journal_entry = ic->free_section_entry;
2218 next_entry = ic->free_section_entry + range_sectors;
2219 ic->free_section_entry = next_entry % ic->journal_section_entries;
2220 ic->free_section += next_entry / ic->journal_section_entries;
2221 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2222 wraparound_section(ic, &ic->free_section);
2224 pos = journal_section * ic->journal_section_entries + journal_entry;
2225 ws = journal_section;
2229 struct journal_entry *je;
2231 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2233 if (unlikely(pos >= ic->journal_entries))
2236 je = access_journal_entry(ic, ws, we);
2237 BUG_ON(!journal_entry_is_unused(je));
2238 journal_entry_set_inprogress(je);
2240 if (unlikely(we == ic->journal_section_entries)) {
2243 wraparound_section(ic, &ws);
2245 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2247 spin_unlock_irq(&ic->endio_wait.lock);
2248 goto journal_read_write;
2250 sector_t next_sector;
2252 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2253 if (likely(journal_read_pos == NOT_FOUND)) {
2254 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2255 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2258 unsigned int jp = journal_read_pos + 1;
2260 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2261 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2264 dio->range.n_sectors = i;
2268 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2270 * We must not sleep in the request routine because it could
2271 * stall bios on current->bio_list.
2272 * So, we offload the bio to a workqueue if we have to sleep.
2276 spin_unlock_irq(&ic->endio_wait.lock);
2277 INIT_WORK(&dio->work, integrity_bio_wait);
2278 queue_work(ic->wait_wq, &dio->work);
2281 if (journal_read_pos != NOT_FOUND)
2282 dio->range.n_sectors = ic->sectors_per_block;
2283 wait_and_add_new_range(ic, &dio->range);
2285 * wait_and_add_new_range drops the spinlock, so the journal
2286 * may have been changed arbitrarily. We need to recheck.
2287 * To simplify the code, we restrict I/O size to just one block.
2289 if (journal_read_pos != NOT_FOUND) {
2290 sector_t next_sector;
2291 unsigned int new_pos;
2293 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2294 if (unlikely(new_pos != journal_read_pos)) {
2295 remove_range_unlocked(ic, &dio->range);
2300 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2301 sector_t next_sector;
2302 unsigned int new_pos;
2304 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2305 if (unlikely(new_pos != NOT_FOUND) ||
2306 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2307 remove_range_unlocked(ic, &dio->range);
2308 spin_unlock_irq(&ic->endio_wait.lock);
2309 queue_work(ic->commit_wq, &ic->commit_work);
2310 flush_workqueue(ic->commit_wq);
2311 queue_work(ic->writer_wq, &ic->writer_work);
2312 flush_workqueue(ic->writer_wq);
2313 discard_retried = true;
2317 spin_unlock_irq(&ic->endio_wait.lock);
2319 if (unlikely(journal_read_pos != NOT_FOUND)) {
2320 journal_section = journal_read_pos / ic->journal_section_entries;
2321 journal_entry = journal_read_pos % ic->journal_section_entries;
2322 goto journal_read_write;
2325 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2326 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2327 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2328 struct bitmap_block_status *bbs;
2330 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2331 spin_lock(&bbs->bio_queue_lock);
2332 bio_list_add(&bbs->bio_queue, bio);
2333 spin_unlock(&bbs->bio_queue_lock);
2334 queue_work(ic->writer_wq, &bbs->work);
2339 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2342 init_completion(&read_comp);
2343 dio->completion = &read_comp;
2345 dio->completion = NULL;
2347 dm_bio_record(&dio->bio_details, bio);
2348 bio_set_dev(bio, ic->dev->bdev);
2349 bio->bi_integrity = NULL;
2350 bio->bi_opf &= ~REQ_INTEGRITY;
2351 bio->bi_end_io = integrity_end_io;
2352 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2354 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2355 integrity_metadata(&dio->work);
2356 dm_integrity_flush_buffers(ic, false);
2358 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2359 dio->completion = NULL;
2361 submit_bio_noacct(bio);
2366 submit_bio_noacct(bio);
2369 wait_for_completion_io(&read_comp);
2370 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2371 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2373 if (ic->mode == 'B') {
2374 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2375 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2379 if (likely(!bio->bi_status))
2380 integrity_metadata(&dio->work);
2385 INIT_WORK(&dio->work, integrity_metadata);
2386 queue_work(ic->metadata_wq, &dio->work);
2392 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2395 do_endio_flush(ic, dio);
2398 static int dm_integrity_map_inline(struct dm_integrity_io *dio)
2400 struct dm_integrity_c *ic = dio->ic;
2401 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2402 struct bio_integrity_payload *bip;
2403 unsigned payload_len, digest_size, extra_size, ret;
2405 dio->integrity_payload = NULL;
2406 dio->integrity_payload_from_mempool = false;
2408 if (unlikely(bio_integrity(bio))) {
2409 bio->bi_status = BLK_STS_NOTSUPP;
2411 return DM_MAPIO_SUBMITTED;
2414 bio_set_dev(bio, ic->dev->bdev);
2415 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2416 return DM_MAPIO_REMAPPED;
2419 payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2420 digest_size = crypto_shash_digestsize(ic->internal_hash);
2421 extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2422 payload_len += extra_size;
2423 dio->integrity_payload = kmalloc(payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2424 if (unlikely(!dio->integrity_payload)) {
2425 const unsigned x_size = PAGE_SIZE << 1;
2426 if (payload_len > x_size) {
2427 unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2428 if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2429 bio->bi_status = BLK_STS_NOTSUPP;
2431 return DM_MAPIO_SUBMITTED;
2433 dm_accept_partial_bio(bio, sectors);
2436 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2437 dio->integrity_payload_from_mempool = true;
2440 bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
2441 dio->bio_details.bi_iter = bio->bi_iter;
2443 if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2444 return DM_MAPIO_KILL;
2447 bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2449 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2450 if (unlikely(IS_ERR(bip))) {
2451 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2453 return DM_MAPIO_SUBMITTED;
2456 if (dio->op == REQ_OP_WRITE) {
2458 while (dio->bio_details.bi_iter.bi_size) {
2459 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2460 const char *mem = bvec_kmap_local(&bv);
2461 if (ic->tag_size < ic->tuple_size)
2462 memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2463 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2465 pos += ic->tuple_size;
2466 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2470 ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2471 payload_len, offset_in_page(dio->integrity_payload));
2472 if (unlikely(ret != payload_len)) {
2473 bio->bi_status = BLK_STS_RESOURCE;
2475 return DM_MAPIO_SUBMITTED;
2478 return DM_MAPIO_REMAPPED;
2481 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2483 struct dm_integrity_c *ic = dio->ic;
2484 if (unlikely(dio->integrity_payload_from_mempool))
2485 mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2487 kfree(dio->integrity_payload);
2488 dio->integrity_payload = NULL;
2489 dio->integrity_payload_from_mempool = false;
2492 static void dm_integrity_inline_recheck(struct work_struct *w)
2494 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2495 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2496 struct dm_integrity_c *ic = dio->ic;
2497 struct bio *outgoing_bio;
2498 void *outgoing_data;
2500 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2501 dio->integrity_payload_from_mempool = true;
2503 outgoing_data = dio->integrity_payload + PAGE_SIZE;
2505 while (dio->bio_details.bi_iter.bi_size) {
2506 char digest[HASH_MAX_DIGESTSIZE];
2508 struct bio_integrity_payload *bip;
2512 outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2514 r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2515 if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2516 bio_put(outgoing_bio);
2517 bio->bi_status = BLK_STS_RESOURCE;
2522 bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2523 if (unlikely(IS_ERR(bip))) {
2524 bio_put(outgoing_bio);
2525 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2530 r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2531 if (unlikely(r != ic->tuple_size)) {
2532 bio_put(outgoing_bio);
2533 bio->bi_status = BLK_STS_RESOURCE;
2538 outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2540 r = submit_bio_wait(outgoing_bio);
2541 if (unlikely(r != 0)) {
2542 bio_put(outgoing_bio);
2543 bio->bi_status = errno_to_blk_status(r);
2547 bio_put(outgoing_bio);
2549 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2550 if (unlikely(memcmp(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2551 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2552 ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2553 atomic64_inc(&ic->number_of_mismatches);
2554 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2555 bio, dio->bio_details.bi_iter.bi_sector, 0);
2557 bio->bi_status = BLK_STS_PROTECTION;
2562 bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2563 mem = bvec_kmap_local(&bv);
2564 memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2567 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2573 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2575 struct dm_integrity_c *ic = ti->private;
2576 if (ic->mode == 'I') {
2577 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2578 if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2580 while (dio->bio_details.bi_iter.bi_size) {
2581 char digest[HASH_MAX_DIGESTSIZE];
2582 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2583 char *mem = bvec_kmap_local(&bv);
2584 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2585 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2586 if (unlikely(memcmp(digest, dio->integrity_payload + pos,
2587 min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2589 dm_integrity_free_payload(dio);
2590 INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2591 queue_work(ic->offload_wq, &dio->work);
2592 return DM_ENDIO_INCOMPLETE;
2595 pos += ic->tuple_size;
2596 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2599 if (likely(dio->op == REQ_OP_READ) || likely(dio->op == REQ_OP_WRITE)) {
2600 dm_integrity_free_payload(dio);
2603 return DM_ENDIO_DONE;
2606 static void integrity_bio_wait(struct work_struct *w)
2608 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2610 dm_integrity_map_continue(dio, false);
2613 static void pad_uncommitted(struct dm_integrity_c *ic)
2615 if (ic->free_section_entry) {
2616 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2617 ic->free_section_entry = 0;
2619 wraparound_section(ic, &ic->free_section);
2620 ic->n_uncommitted_sections++;
2622 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2623 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2624 ic->journal_section_entries + ic->free_sectors)) {
2625 DMCRIT("journal_sections %u, journal_section_entries %u, "
2626 "n_uncommitted_sections %u, n_committed_sections %u, "
2627 "journal_section_entries %u, free_sectors %u",
2628 ic->journal_sections, ic->journal_section_entries,
2629 ic->n_uncommitted_sections, ic->n_committed_sections,
2630 ic->journal_section_entries, ic->free_sectors);
2634 static void integrity_commit(struct work_struct *w)
2636 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2637 unsigned int commit_start, commit_sections;
2638 unsigned int i, j, n;
2639 struct bio *flushes;
2641 del_timer(&ic->autocommit_timer);
2643 if (ic->mode == 'I')
2646 spin_lock_irq(&ic->endio_wait.lock);
2647 flushes = bio_list_get(&ic->flush_bio_list);
2648 if (unlikely(ic->mode != 'J')) {
2649 spin_unlock_irq(&ic->endio_wait.lock);
2650 dm_integrity_flush_buffers(ic, true);
2651 goto release_flush_bios;
2654 pad_uncommitted(ic);
2655 commit_start = ic->uncommitted_section;
2656 commit_sections = ic->n_uncommitted_sections;
2657 spin_unlock_irq(&ic->endio_wait.lock);
2659 if (!commit_sections)
2660 goto release_flush_bios;
2662 ic->wrote_to_journal = true;
2665 for (n = 0; n < commit_sections; n++) {
2666 for (j = 0; j < ic->journal_section_entries; j++) {
2667 struct journal_entry *je;
2669 je = access_journal_entry(ic, i, j);
2670 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2672 for (j = 0; j < ic->journal_section_sectors; j++) {
2673 struct journal_sector *js;
2675 js = access_journal(ic, i, j);
2676 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2679 if (unlikely(i >= ic->journal_sections))
2680 ic->commit_seq = next_commit_seq(ic->commit_seq);
2681 wraparound_section(ic, &i);
2685 write_journal(ic, commit_start, commit_sections);
2687 spin_lock_irq(&ic->endio_wait.lock);
2688 ic->uncommitted_section += commit_sections;
2689 wraparound_section(ic, &ic->uncommitted_section);
2690 ic->n_uncommitted_sections -= commit_sections;
2691 ic->n_committed_sections += commit_sections;
2692 spin_unlock_irq(&ic->endio_wait.lock);
2694 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2695 queue_work(ic->writer_wq, &ic->writer_work);
2699 struct bio *next = flushes->bi_next;
2701 flushes->bi_next = NULL;
2702 do_endio(ic, flushes);
2707 static void complete_copy_from_journal(unsigned long error, void *context)
2709 struct journal_io *io = context;
2710 struct journal_completion *comp = io->comp;
2711 struct dm_integrity_c *ic = comp->ic;
2713 remove_range(ic, &io->range);
2714 mempool_free(io, &ic->journal_io_mempool);
2715 if (unlikely(error != 0))
2716 dm_integrity_io_error(ic, "copying from journal", -EIO);
2717 complete_journal_op(comp);
2720 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2721 struct journal_entry *je)
2726 js->commit_id = je->last_bytes[s];
2728 } while (++s < ic->sectors_per_block);
2731 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2732 unsigned int write_sections, bool from_replay)
2734 unsigned int i, j, n;
2735 struct journal_completion comp;
2736 struct blk_plug plug;
2738 blk_start_plug(&plug);
2741 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2742 init_completion(&comp.comp);
2745 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2746 #ifndef INTERNAL_VERIFY
2747 if (unlikely(from_replay))
2749 rw_section_mac(ic, i, false);
2750 for (j = 0; j < ic->journal_section_entries; j++) {
2751 struct journal_entry *je = access_journal_entry(ic, i, j);
2752 sector_t sec, area, offset;
2753 unsigned int k, l, next_loop;
2754 sector_t metadata_block;
2755 unsigned int metadata_offset;
2756 struct journal_io *io;
2758 if (journal_entry_is_unused(je))
2760 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2761 sec = journal_entry_get_sector(je);
2762 if (unlikely(from_replay)) {
2763 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2764 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2765 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2767 if (unlikely(sec >= ic->provided_data_sectors)) {
2768 journal_entry_set_unused(je);
2772 get_area_and_offset(ic, sec, &area, &offset);
2773 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2774 for (k = j + 1; k < ic->journal_section_entries; k++) {
2775 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2776 sector_t sec2, area2, offset2;
2778 if (journal_entry_is_unused(je2))
2780 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2781 sec2 = journal_entry_get_sector(je2);
2782 if (unlikely(sec2 >= ic->provided_data_sectors))
2784 get_area_and_offset(ic, sec2, &area2, &offset2);
2785 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2787 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2791 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2793 io->range.logical_sector = sec;
2794 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2796 spin_lock_irq(&ic->endio_wait.lock);
2797 add_new_range_and_wait(ic, &io->range);
2799 if (likely(!from_replay)) {
2800 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2802 /* don't write if there is newer committed sector */
2803 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2804 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2806 journal_entry_set_unused(je2);
2807 remove_journal_node(ic, §ion_node[j]);
2809 sec += ic->sectors_per_block;
2810 offset += ic->sectors_per_block;
2812 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2813 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2815 journal_entry_set_unused(je2);
2816 remove_journal_node(ic, §ion_node[k - 1]);
2820 remove_range_unlocked(ic, &io->range);
2821 spin_unlock_irq(&ic->endio_wait.lock);
2822 mempool_free(io, &ic->journal_io_mempool);
2825 for (l = j; l < k; l++)
2826 remove_journal_node(ic, §ion_node[l]);
2828 spin_unlock_irq(&ic->endio_wait.lock);
2830 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2831 for (l = j; l < k; l++) {
2833 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2836 #ifndef INTERNAL_VERIFY
2837 unlikely(from_replay) &&
2839 ic->internal_hash) {
2840 char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2842 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2843 (char *)access_journal_data(ic, i, l), test_tag);
2844 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2845 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2846 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2850 journal_entry_set_unused(je2);
2851 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2852 ic->tag_size, TAG_WRITE);
2854 dm_integrity_io_error(ic, "reading tags", r);
2857 atomic_inc(&comp.in_flight);
2858 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2859 (k - j) << ic->sb->log2_sectors_per_block,
2860 get_data_sector(ic, area, offset),
2861 complete_copy_from_journal, io);
2867 dm_bufio_write_dirty_buffers_async(ic->bufio);
2869 blk_finish_plug(&plug);
2871 complete_journal_op(&comp);
2872 wait_for_completion_io(&comp.comp);
2874 dm_integrity_flush_buffers(ic, true);
2877 static void integrity_writer(struct work_struct *w)
2879 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2880 unsigned int write_start, write_sections;
2881 unsigned int prev_free_sectors;
2883 spin_lock_irq(&ic->endio_wait.lock);
2884 write_start = ic->committed_section;
2885 write_sections = ic->n_committed_sections;
2886 spin_unlock_irq(&ic->endio_wait.lock);
2888 if (!write_sections)
2891 do_journal_write(ic, write_start, write_sections, false);
2893 spin_lock_irq(&ic->endio_wait.lock);
2895 ic->committed_section += write_sections;
2896 wraparound_section(ic, &ic->committed_section);
2897 ic->n_committed_sections -= write_sections;
2899 prev_free_sectors = ic->free_sectors;
2900 ic->free_sectors += write_sections * ic->journal_section_entries;
2901 if (unlikely(!prev_free_sectors))
2902 wake_up_locked(&ic->endio_wait);
2904 spin_unlock_irq(&ic->endio_wait.lock);
2907 static void recalc_write_super(struct dm_integrity_c *ic)
2911 dm_integrity_flush_buffers(ic, false);
2912 if (dm_integrity_failed(ic))
2915 r = sync_rw_sb(ic, REQ_OP_WRITE);
2917 dm_integrity_io_error(ic, "writing superblock", r);
2920 static void integrity_recalc(struct work_struct *w)
2922 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2923 size_t recalc_tags_size;
2924 u8 *recalc_buffer = NULL;
2925 u8 *recalc_tags = NULL;
2926 struct dm_integrity_range range;
2927 struct dm_io_request io_req;
2928 struct dm_io_region io_loc;
2929 sector_t area, offset;
2930 sector_t metadata_block;
2931 unsigned int metadata_offset;
2932 sector_t logical_sector, n_sectors;
2936 unsigned int super_counter = 0;
2937 unsigned recalc_sectors = RECALC_SECTORS;
2940 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2941 if (!recalc_buffer) {
2943 recalc_sectors >>= 1;
2944 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2946 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2949 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2950 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2951 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2952 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2954 vfree(recalc_buffer);
2955 recalc_buffer = NULL;
2959 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2961 spin_lock_irq(&ic->endio_wait.lock);
2965 if (unlikely(dm_post_suspending(ic->ti)))
2968 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2969 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2970 if (ic->mode == 'B') {
2971 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2972 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2973 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2978 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2979 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2981 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2983 add_new_range_and_wait(ic, &range);
2984 spin_unlock_irq(&ic->endio_wait.lock);
2985 logical_sector = range.logical_sector;
2986 n_sectors = range.n_sectors;
2988 if (ic->mode == 'B') {
2989 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2990 goto advance_and_next;
2992 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2993 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2994 logical_sector += ic->sectors_per_block;
2995 n_sectors -= ic->sectors_per_block;
2998 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2999 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3000 n_sectors -= ic->sectors_per_block;
3003 get_area_and_offset(ic, logical_sector, &area, &offset);
3006 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3008 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3009 recalc_write_super(ic);
3010 if (ic->mode == 'B')
3011 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3016 if (unlikely(dm_integrity_failed(ic)))
3019 io_req.bi_opf = REQ_OP_READ;
3020 io_req.mem.type = DM_IO_VMA;
3021 io_req.mem.ptr.addr = recalc_buffer;
3022 io_req.notify.fn = NULL;
3023 io_req.client = ic->io;
3024 io_loc.bdev = ic->dev->bdev;
3025 io_loc.sector = get_data_sector(ic, area, offset);
3026 io_loc.count = n_sectors;
3028 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3030 dm_integrity_io_error(ic, "reading data", r);
3035 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3036 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3040 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3042 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3044 dm_integrity_io_error(ic, "writing tags", r);
3048 if (ic->mode == 'B') {
3049 sector_t start, end;
3051 start = (range.logical_sector >>
3052 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3053 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3054 end = ((range.logical_sector + range.n_sectors) >>
3055 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3056 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3057 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3063 spin_lock_irq(&ic->endio_wait.lock);
3064 remove_range_unlocked(ic, &range);
3065 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3069 remove_range(ic, &range);
3073 spin_unlock_irq(&ic->endio_wait.lock);
3075 recalc_write_super(ic);
3078 vfree(recalc_buffer);
3079 kvfree(recalc_tags);
3082 static void bitmap_block_work(struct work_struct *w)
3084 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3085 struct dm_integrity_c *ic = bbs->ic;
3087 struct bio_list bio_queue;
3088 struct bio_list waiting;
3090 bio_list_init(&waiting);
3092 spin_lock(&bbs->bio_queue_lock);
3093 bio_queue = bbs->bio_queue;
3094 bio_list_init(&bbs->bio_queue);
3095 spin_unlock(&bbs->bio_queue_lock);
3097 while ((bio = bio_list_pop(&bio_queue))) {
3098 struct dm_integrity_io *dio;
3100 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3102 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3103 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3104 remove_range(ic, &dio->range);
3105 INIT_WORK(&dio->work, integrity_bio_wait);
3106 queue_work(ic->offload_wq, &dio->work);
3108 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3109 dio->range.n_sectors, BITMAP_OP_SET);
3110 bio_list_add(&waiting, bio);
3114 if (bio_list_empty(&waiting))
3117 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3118 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3119 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3121 while ((bio = bio_list_pop(&waiting))) {
3122 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3124 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3125 dio->range.n_sectors, BITMAP_OP_SET);
3127 remove_range(ic, &dio->range);
3128 INIT_WORK(&dio->work, integrity_bio_wait);
3129 queue_work(ic->offload_wq, &dio->work);
3132 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3135 static void bitmap_flush_work(struct work_struct *work)
3137 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3138 struct dm_integrity_range range;
3139 unsigned long limit;
3142 dm_integrity_flush_buffers(ic, false);
3144 range.logical_sector = 0;
3145 range.n_sectors = ic->provided_data_sectors;
3147 spin_lock_irq(&ic->endio_wait.lock);
3148 add_new_range_and_wait(ic, &range);
3149 spin_unlock_irq(&ic->endio_wait.lock);
3151 dm_integrity_flush_buffers(ic, true);
3153 limit = ic->provided_data_sectors;
3154 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3155 limit = le64_to_cpu(ic->sb->recalc_sector)
3156 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3157 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3159 /*DEBUG_print("zeroing journal\n");*/
3160 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3161 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3163 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3164 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3166 spin_lock_irq(&ic->endio_wait.lock);
3167 remove_range_unlocked(ic, &range);
3168 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3170 spin_unlock_irq(&ic->endio_wait.lock);
3171 spin_lock_irq(&ic->endio_wait.lock);
3173 spin_unlock_irq(&ic->endio_wait.lock);
3177 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3178 unsigned int n_sections, unsigned char commit_seq)
3180 unsigned int i, j, n;
3185 for (n = 0; n < n_sections; n++) {
3186 i = start_section + n;
3187 wraparound_section(ic, &i);
3188 for (j = 0; j < ic->journal_section_sectors; j++) {
3189 struct journal_sector *js = access_journal(ic, i, j);
3191 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3192 memset(&js->sectors, 0, sizeof(js->sectors));
3193 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3195 for (j = 0; j < ic->journal_section_entries; j++) {
3196 struct journal_entry *je = access_journal_entry(ic, i, j);
3198 journal_entry_set_unused(je);
3202 write_journal(ic, start_section, n_sections);
3205 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3209 for (k = 0; k < N_COMMIT_IDS; k++) {
3210 if (dm_integrity_commit_id(ic, i, j, k) == id)
3213 dm_integrity_io_error(ic, "journal commit id", -EIO);
3217 static void replay_journal(struct dm_integrity_c *ic)
3220 bool used_commit_ids[N_COMMIT_IDS];
3221 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3222 unsigned int write_start, write_sections;
3223 unsigned int continue_section;
3225 unsigned char unused, last_used, want_commit_seq;
3227 if (ic->mode == 'R')
3230 if (ic->journal_uptodate)
3236 if (!ic->just_formatted) {
3237 DEBUG_print("reading journal\n");
3238 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3240 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3241 if (ic->journal_io) {
3242 struct journal_completion crypt_comp;
3245 init_completion(&crypt_comp.comp);
3246 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3247 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3248 wait_for_completion(&crypt_comp.comp);
3250 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3253 if (dm_integrity_failed(ic))
3256 journal_empty = true;
3257 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3258 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3259 for (i = 0; i < ic->journal_sections; i++) {
3260 for (j = 0; j < ic->journal_section_sectors; j++) {
3262 struct journal_sector *js = access_journal(ic, i, j);
3264 k = find_commit_seq(ic, i, j, js->commit_id);
3267 used_commit_ids[k] = true;
3268 max_commit_id_sections[k] = i;
3270 if (journal_empty) {
3271 for (j = 0; j < ic->journal_section_entries; j++) {
3272 struct journal_entry *je = access_journal_entry(ic, i, j);
3274 if (!journal_entry_is_unused(je)) {
3275 journal_empty = false;
3282 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3283 unused = N_COMMIT_IDS - 1;
3284 while (unused && !used_commit_ids[unused - 1])
3287 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3288 if (!used_commit_ids[unused])
3290 if (unused == N_COMMIT_IDS) {
3291 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3295 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3296 unused, used_commit_ids[0], used_commit_ids[1],
3297 used_commit_ids[2], used_commit_ids[3]);
3299 last_used = prev_commit_seq(unused);
3300 want_commit_seq = prev_commit_seq(last_used);
3302 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3303 journal_empty = true;
3305 write_start = max_commit_id_sections[last_used] + 1;
3306 if (unlikely(write_start >= ic->journal_sections))
3307 want_commit_seq = next_commit_seq(want_commit_seq);
3308 wraparound_section(ic, &write_start);
3311 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3312 for (j = 0; j < ic->journal_section_sectors; j++) {
3313 struct journal_sector *js = access_journal(ic, i, j);
3315 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3317 * This could be caused by crash during writing.
3318 * We won't replay the inconsistent part of the
3321 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3322 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3327 if (unlikely(i >= ic->journal_sections))
3328 want_commit_seq = next_commit_seq(want_commit_seq);
3329 wraparound_section(ic, &i);
3333 if (!journal_empty) {
3334 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3335 write_sections, write_start, want_commit_seq);
3336 do_journal_write(ic, write_start, write_sections, true);
3339 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3340 continue_section = write_start;
3341 ic->commit_seq = want_commit_seq;
3342 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3345 unsigned char erase_seq;
3348 DEBUG_print("clearing journal\n");
3350 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3352 init_journal(ic, s, 1, erase_seq);
3354 wraparound_section(ic, &s);
3355 if (ic->journal_sections >= 2) {
3356 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3357 s += ic->journal_sections - 2;
3358 wraparound_section(ic, &s);
3359 init_journal(ic, s, 1, erase_seq);
3362 continue_section = 0;
3363 ic->commit_seq = next_commit_seq(erase_seq);
3366 ic->committed_section = continue_section;
3367 ic->n_committed_sections = 0;
3369 ic->uncommitted_section = continue_section;
3370 ic->n_uncommitted_sections = 0;
3372 ic->free_section = continue_section;
3373 ic->free_section_entry = 0;
3374 ic->free_sectors = ic->journal_entries;
3376 ic->journal_tree_root = RB_ROOT;
3377 for (i = 0; i < ic->journal_entries; i++)
3378 init_journal_node(&ic->journal_tree[i]);
3381 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3383 DEBUG_print("%s\n", __func__);
3385 if (ic->mode == 'B') {
3386 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3387 ic->synchronous_mode = 1;
3389 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3390 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3391 flush_workqueue(ic->commit_wq);
3395 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3397 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3399 DEBUG_print("%s\n", __func__);
3401 dm_integrity_enter_synchronous_mode(ic);
3406 static void dm_integrity_postsuspend(struct dm_target *ti)
3408 struct dm_integrity_c *ic = ti->private;
3411 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3413 del_timer_sync(&ic->autocommit_timer);
3416 drain_workqueue(ic->recalc_wq);
3418 if (ic->mode == 'B')
3419 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3421 queue_work(ic->commit_wq, &ic->commit_work);
3422 drain_workqueue(ic->commit_wq);
3424 if (ic->mode == 'J') {
3425 queue_work(ic->writer_wq, &ic->writer_work);
3426 drain_workqueue(ic->writer_wq);
3427 dm_integrity_flush_buffers(ic, true);
3428 if (ic->wrote_to_journal) {
3429 init_journal(ic, ic->free_section,
3430 ic->journal_sections - ic->free_section, ic->commit_seq);
3431 if (ic->free_section) {
3432 init_journal(ic, 0, ic->free_section,
3433 next_commit_seq(ic->commit_seq));
3438 if (ic->mode == 'B') {
3439 dm_integrity_flush_buffers(ic, true);
3441 /* set to 0 to test bitmap replay code */
3442 init_journal(ic, 0, ic->journal_sections, 0);
3443 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3444 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3446 dm_integrity_io_error(ic, "writing superblock", r);
3450 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3452 ic->journal_uptodate = true;
3455 static void dm_integrity_resume(struct dm_target *ti)
3457 struct dm_integrity_c *ic = ti->private;
3458 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3461 DEBUG_print("resume\n");
3463 ic->wrote_to_journal = false;
3465 if (ic->provided_data_sectors != old_provided_data_sectors) {
3466 if (ic->provided_data_sectors > old_provided_data_sectors &&
3468 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3469 rw_journal_sectors(ic, REQ_OP_READ, 0,
3470 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3471 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3472 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3473 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3474 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3477 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3478 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3480 dm_integrity_io_error(ic, "writing superblock", r);
3483 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3484 DEBUG_print("resume dirty_bitmap\n");
3485 rw_journal_sectors(ic, REQ_OP_READ, 0,
3486 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3487 if (ic->mode == 'B') {
3488 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3489 !ic->reset_recalculate_flag) {
3490 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3491 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3492 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3493 BITMAP_OP_TEST_ALL_CLEAR)) {
3494 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3495 ic->sb->recalc_sector = cpu_to_le64(0);
3498 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3499 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3500 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3501 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3502 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3503 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3504 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3505 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3506 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3507 ic->sb->recalc_sector = cpu_to_le64(0);
3510 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3511 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3512 ic->reset_recalculate_flag) {
3513 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3514 ic->sb->recalc_sector = cpu_to_le64(0);
3516 init_journal(ic, 0, ic->journal_sections, 0);
3518 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3520 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3522 dm_integrity_io_error(ic, "writing superblock", r);
3525 if (ic->reset_recalculate_flag) {
3526 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3527 ic->sb->recalc_sector = cpu_to_le64(0);
3529 if (ic->mode == 'B') {
3530 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3531 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3532 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3534 dm_integrity_io_error(ic, "writing superblock", r);
3536 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3537 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3538 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3539 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3540 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3541 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3542 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3543 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3544 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3545 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3546 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3548 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3549 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3553 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3554 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3555 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3557 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3558 if (recalc_pos < ic->provided_data_sectors) {
3559 queue_work(ic->recalc_wq, &ic->recalc_work);
3560 } else if (recalc_pos > ic->provided_data_sectors) {
3561 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3562 recalc_write_super(ic);
3566 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3567 ic->reboot_notifier.next = NULL;
3568 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3569 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3572 /* set to 1 to stress test synchronous mode */
3573 dm_integrity_enter_synchronous_mode(ic);
3577 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3578 unsigned int status_flags, char *result, unsigned int maxlen)
3580 struct dm_integrity_c *ic = ti->private;
3581 unsigned int arg_count;
3585 case STATUSTYPE_INFO:
3587 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3588 ic->provided_data_sectors);
3589 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3590 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3595 case STATUSTYPE_TABLE: {
3596 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3598 watermark_percentage += ic->journal_entries / 2;
3599 do_div(watermark_percentage, ic->journal_entries);
3601 arg_count += !!ic->meta_dev;
3602 arg_count += ic->sectors_per_block != 1;
3603 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3604 arg_count += ic->reset_recalculate_flag;
3605 arg_count += ic->discard;
3606 arg_count += ic->mode == 'J';
3607 arg_count += ic->mode == 'J';
3608 arg_count += ic->mode == 'B';
3609 arg_count += ic->mode == 'B';
3610 arg_count += !!ic->internal_hash_alg.alg_string;
3611 arg_count += !!ic->journal_crypt_alg.alg_string;
3612 arg_count += !!ic->journal_mac_alg.alg_string;
3613 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3614 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3615 arg_count += ic->legacy_recalculate;
3616 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3617 ic->tag_size, ic->mode, arg_count);
3619 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3620 if (ic->sectors_per_block != 1)
3621 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3622 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3623 DMEMIT(" recalculate");
3624 if (ic->reset_recalculate_flag)
3625 DMEMIT(" reset_recalculate");
3627 DMEMIT(" allow_discards");
3628 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3629 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3630 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3631 if (ic->mode == 'J') {
3632 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3633 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3635 if (ic->mode == 'B') {
3636 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3637 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3639 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3640 DMEMIT(" fix_padding");
3641 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3642 DMEMIT(" fix_hmac");
3643 if (ic->legacy_recalculate)
3644 DMEMIT(" legacy_recalculate");
3646 #define EMIT_ALG(a, n) \
3648 if (ic->a.alg_string) { \
3649 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3650 if (ic->a.key_string) \
3651 DMEMIT(":%s", ic->a.key_string);\
3654 EMIT_ALG(internal_hash_alg, "internal_hash");
3655 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3656 EMIT_ALG(journal_mac_alg, "journal_mac");
3659 case STATUSTYPE_IMA:
3660 DMEMIT_TARGET_NAME_VERSION(ti->type);
3661 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3662 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3665 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3666 if (ic->sectors_per_block != 1)
3667 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3669 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3671 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3672 DMEMIT(",fix_padding=%c",
3673 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3674 DMEMIT(",fix_hmac=%c",
3675 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3676 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3678 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3679 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3680 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3686 static int dm_integrity_iterate_devices(struct dm_target *ti,
3687 iterate_devices_callout_fn fn, void *data)
3689 struct dm_integrity_c *ic = ti->private;
3692 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3694 return fn(ti, ic->dev, 0, ti->len, data);
3697 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3699 struct dm_integrity_c *ic = ti->private;
3701 if (ic->sectors_per_block > 1) {
3702 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3703 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3704 limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3705 limits->dma_alignment = limits->logical_block_size - 1;
3706 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3709 if (!ic->internal_hash) {
3710 struct blk_integrity *bi = &limits->integrity;
3712 memset(bi, 0, sizeof(*bi));
3713 bi->tuple_size = ic->tag_size;
3714 bi->tag_size = bi->tuple_size;
3716 ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3719 limits->max_integrity_segments = USHRT_MAX;
3722 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3724 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3726 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3727 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3728 JOURNAL_ENTRY_ROUNDUP);
3730 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3731 sector_space -= JOURNAL_MAC_PER_SECTOR;
3732 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3733 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3734 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3735 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3738 static int calculate_device_limits(struct dm_integrity_c *ic)
3740 __u64 initial_sectors;
3742 calculate_journal_section_size(ic);
3743 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3744 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3746 ic->initial_sectors = initial_sectors;
3748 if (ic->mode == 'I') {
3749 if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3751 } else if (!ic->meta_dev) {
3752 sector_t last_sector, last_area, last_offset;
3754 /* we have to maintain excessive padding for compatibility with existing volumes */
3755 __u64 metadata_run_padding =
3756 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3757 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3758 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3760 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3761 metadata_run_padding) >> SECTOR_SHIFT;
3762 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3763 ic->log2_metadata_run = __ffs(ic->metadata_run);
3765 ic->log2_metadata_run = -1;
3767 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3768 last_sector = get_data_sector(ic, last_area, last_offset);
3769 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3772 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3774 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3775 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3776 meta_size <<= ic->log2_buffer_sectors;
3777 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3778 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3780 ic->metadata_run = 1;
3781 ic->log2_metadata_run = 0;
3787 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3789 if (!ic->meta_dev) {
3792 ic->provided_data_sectors = 0;
3793 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3794 __u64 prev_data_sectors = ic->provided_data_sectors;
3796 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3797 if (calculate_device_limits(ic))
3798 ic->provided_data_sectors = prev_data_sectors;
3801 ic->provided_data_sectors = ic->data_device_sectors;
3802 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3806 static int initialize_superblock(struct dm_integrity_c *ic,
3807 unsigned int journal_sectors, unsigned int interleave_sectors)
3809 unsigned int journal_sections;
3812 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3813 memcpy(ic->sb->magic, SB_MAGIC, 8);
3814 if (ic->mode == 'I')
3815 ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
3816 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3817 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3818 if (ic->journal_mac_alg.alg_string)
3819 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3821 calculate_journal_section_size(ic);
3822 journal_sections = journal_sectors / ic->journal_section_sectors;
3823 if (!journal_sections)
3824 journal_sections = 1;
3825 if (ic->mode == 'I')
3826 journal_sections = 0;
3828 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3829 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3830 get_random_bytes(ic->sb->salt, SALT_SIZE);
3833 if (!ic->meta_dev) {
3834 if (ic->fix_padding)
3835 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3836 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3837 if (!interleave_sectors)
3838 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3839 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3840 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3841 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3843 get_provided_data_sectors(ic);
3844 if (!ic->provided_data_sectors)
3847 ic->sb->log2_interleave_sectors = 0;
3849 get_provided_data_sectors(ic);
3850 if (!ic->provided_data_sectors)
3854 ic->sb->journal_sections = cpu_to_le32(0);
3855 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3856 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3857 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3859 if (test_journal_sections > journal_sections)
3861 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3862 if (calculate_device_limits(ic))
3863 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3866 if (!le32_to_cpu(ic->sb->journal_sections)) {
3867 if (ic->log2_buffer_sectors > 3) {
3868 ic->log2_buffer_sectors--;
3869 goto try_smaller_buffer;
3875 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3882 static void dm_integrity_free_page_list(struct page_list *pl)
3888 for (i = 0; pl[i].page; i++)
3889 __free_page(pl[i].page);
3893 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3895 struct page_list *pl;
3898 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3902 for (i = 0; i < n_pages; i++) {
3903 pl[i].page = alloc_page(GFP_KERNEL);
3905 dm_integrity_free_page_list(pl);
3909 pl[i - 1].next = &pl[i];
3917 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3921 for (i = 0; i < ic->journal_sections; i++)
3926 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3927 struct page_list *pl)
3929 struct scatterlist **sl;
3932 sl = kvmalloc_array(ic->journal_sections,
3933 sizeof(struct scatterlist *),
3934 GFP_KERNEL | __GFP_ZERO);
3938 for (i = 0; i < ic->journal_sections; i++) {
3939 struct scatterlist *s;
3940 unsigned int start_index, start_offset;
3941 unsigned int end_index, end_offset;
3942 unsigned int n_pages;
3945 page_list_location(ic, i, 0, &start_index, &start_offset);
3946 page_list_location(ic, i, ic->journal_section_sectors - 1,
3947 &end_index, &end_offset);
3949 n_pages = (end_index - start_index + 1);
3951 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3954 dm_integrity_free_journal_scatterlist(ic, sl);
3958 sg_init_table(s, n_pages);
3959 for (idx = start_index; idx <= end_index; idx++) {
3960 char *va = lowmem_page_address(pl[idx].page);
3961 unsigned int start = 0, end = PAGE_SIZE;
3963 if (idx == start_index)
3964 start = start_offset;
3965 if (idx == end_index)
3966 end = end_offset + (1 << SECTOR_SHIFT);
3967 sg_set_buf(&s[idx - start_index], va + start, end - start);
3976 static void free_alg(struct alg_spec *a)
3978 kfree_sensitive(a->alg_string);
3979 kfree_sensitive(a->key);
3980 memset(a, 0, sizeof(*a));
3983 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3989 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3993 k = strchr(a->alg_string, ':');
3996 a->key_string = k + 1;
3997 if (strlen(a->key_string) & 1)
4000 a->key_size = strlen(a->key_string) / 2;
4001 a->key = kmalloc(a->key_size, GFP_KERNEL);
4004 if (hex2bin(a->key, a->key_string, a->key_size))
4010 *error = error_inval;
4013 *error = "Out of memory for an argument";
4017 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4018 char *error_alg, char *error_key)
4022 if (a->alg_string) {
4023 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4024 if (IS_ERR(*hash)) {
4032 r = crypto_shash_setkey(*hash, a->key, a->key_size);
4037 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4046 static int create_journal(struct dm_integrity_c *ic, char **error)
4050 __u64 journal_pages, journal_desc_size, journal_tree_size;
4051 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4052 struct skcipher_request *req = NULL;
4054 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4055 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4056 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4057 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4059 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4060 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4061 journal_desc_size = journal_pages * sizeof(struct page_list);
4062 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4063 *error = "Journal doesn't fit into memory";
4067 ic->journal_pages = journal_pages;
4069 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4071 *error = "Could not allocate memory for journal";
4075 if (ic->journal_crypt_alg.alg_string) {
4076 unsigned int ivsize, blocksize;
4077 struct journal_completion comp;
4080 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4081 if (IS_ERR(ic->journal_crypt)) {
4082 *error = "Invalid journal cipher";
4083 r = PTR_ERR(ic->journal_crypt);
4084 ic->journal_crypt = NULL;
4087 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4088 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4090 if (ic->journal_crypt_alg.key) {
4091 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4092 ic->journal_crypt_alg.key_size);
4094 *error = "Error setting encryption key";
4098 DEBUG_print("cipher %s, block size %u iv size %u\n",
4099 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4101 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4102 if (!ic->journal_io) {
4103 *error = "Could not allocate memory for journal io";
4108 if (blocksize == 1) {
4109 struct scatterlist *sg;
4111 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4113 *error = "Could not allocate crypt request";
4118 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4120 *error = "Could not allocate iv";
4125 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4126 if (!ic->journal_xor) {
4127 *error = "Could not allocate memory for journal xor";
4132 sg = kvmalloc_array(ic->journal_pages + 1,
4133 sizeof(struct scatterlist),
4136 *error = "Unable to allocate sg list";
4140 sg_init_table(sg, ic->journal_pages + 1);
4141 for (i = 0; i < ic->journal_pages; i++) {
4142 char *va = lowmem_page_address(ic->journal_xor[i].page);
4145 sg_set_buf(&sg[i], va, PAGE_SIZE);
4147 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4149 skcipher_request_set_crypt(req, sg, sg,
4150 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4151 init_completion(&comp.comp);
4152 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4153 if (do_crypt(true, req, &comp))
4154 wait_for_completion(&comp.comp);
4156 r = dm_integrity_failed(ic);
4158 *error = "Unable to encrypt journal";
4161 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4163 crypto_free_skcipher(ic->journal_crypt);
4164 ic->journal_crypt = NULL;
4166 unsigned int crypt_len = roundup(ivsize, blocksize);
4168 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4170 *error = "Could not allocate crypt request";
4175 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4177 *error = "Could not allocate iv";
4182 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4184 *error = "Unable to allocate crypt data";
4189 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4190 if (!ic->journal_scatterlist) {
4191 *error = "Unable to allocate sg list";
4195 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4196 if (!ic->journal_io_scatterlist) {
4197 *error = "Unable to allocate sg list";
4201 ic->sk_requests = kvmalloc_array(ic->journal_sections,
4202 sizeof(struct skcipher_request *),
4203 GFP_KERNEL | __GFP_ZERO);
4204 if (!ic->sk_requests) {
4205 *error = "Unable to allocate sk requests";
4209 for (i = 0; i < ic->journal_sections; i++) {
4210 struct scatterlist sg;
4211 struct skcipher_request *section_req;
4212 __le32 section_le = cpu_to_le32(i);
4214 memset(crypt_iv, 0x00, ivsize);
4215 memset(crypt_data, 0x00, crypt_len);
4216 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
4218 sg_init_one(&sg, crypt_data, crypt_len);
4219 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4220 init_completion(&comp.comp);
4221 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4222 if (do_crypt(true, req, &comp))
4223 wait_for_completion(&comp.comp);
4225 r = dm_integrity_failed(ic);
4227 *error = "Unable to generate iv";
4231 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4233 *error = "Unable to allocate crypt request";
4237 section_req->iv = kmalloc_array(ivsize, 2,
4239 if (!section_req->iv) {
4240 skcipher_request_free(section_req);
4241 *error = "Unable to allocate iv";
4245 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4246 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4247 ic->sk_requests[i] = section_req;
4248 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4253 for (i = 0; i < N_COMMIT_IDS; i++) {
4257 for (j = 0; j < i; j++) {
4258 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4259 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4260 goto retest_commit_id;
4263 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4266 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4267 if (journal_tree_size > ULONG_MAX) {
4268 *error = "Journal doesn't fit into memory";
4272 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4273 if (!ic->journal_tree) {
4274 *error = "Could not allocate memory for journal tree";
4280 skcipher_request_free(req);
4286 * Construct a integrity mapping
4290 * offset from the start of the device
4292 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4293 * number of optional arguments
4294 * optional arguments:
4296 * interleave_sectors
4303 * bitmap_flush_interval
4309 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4311 struct dm_integrity_c *ic;
4314 unsigned int extra_args;
4315 struct dm_arg_set as;
4316 static const struct dm_arg _args[] = {
4317 {0, 18, "Invalid number of feature args"},
4319 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4320 bool should_write_sb;
4322 unsigned long long start;
4323 __s8 log2_sectors_per_bitmap_bit = -1;
4324 __s8 log2_blocks_per_bitmap_bit;
4325 __u64 bits_in_journal;
4326 __u64 n_bitmap_bits;
4328 #define DIRECT_ARGUMENTS 4
4330 if (argc <= DIRECT_ARGUMENTS) {
4331 ti->error = "Invalid argument count";
4335 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4337 ti->error = "Cannot allocate integrity context";
4341 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4344 ic->in_progress = RB_ROOT;
4345 INIT_LIST_HEAD(&ic->wait_list);
4346 init_waitqueue_head(&ic->endio_wait);
4347 bio_list_init(&ic->flush_bio_list);
4348 init_waitqueue_head(&ic->copy_to_journal_wait);
4349 init_completion(&ic->crypto_backoff);
4350 atomic64_set(&ic->number_of_mismatches, 0);
4351 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4353 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4355 ti->error = "Device lookup failed";
4359 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4360 ti->error = "Invalid starting offset";
4366 if (strcmp(argv[2], "-")) {
4367 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4368 ti->error = "Invalid tag size";
4374 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4375 !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4376 !strcmp(argv[3], "I")) {
4377 ic->mode = argv[3][0];
4379 ti->error = "Invalid mode (expecting J, B, D, R, I)";
4384 journal_sectors = 0;
4385 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4386 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4387 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4388 sync_msec = DEFAULT_SYNC_MSEC;
4389 ic->sectors_per_block = 1;
4391 as.argc = argc - DIRECT_ARGUMENTS;
4392 as.argv = argv + DIRECT_ARGUMENTS;
4393 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4397 while (extra_args--) {
4398 const char *opt_string;
4400 unsigned long long llval;
4402 opt_string = dm_shift_arg(&as);
4405 ti->error = "Not enough feature arguments";
4408 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4409 journal_sectors = val ? val : 1;
4410 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4411 interleave_sectors = val;
4412 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4413 buffer_sectors = val;
4414 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4415 journal_watermark = val;
4416 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4418 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4420 dm_put_device(ti, ic->meta_dev);
4421 ic->meta_dev = NULL;
4423 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4424 dm_table_get_mode(ti->table), &ic->meta_dev);
4426 ti->error = "Device lookup failed";
4429 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4430 if (val < 1 << SECTOR_SHIFT ||
4431 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4432 (val & (val - 1))) {
4434 ti->error = "Invalid block_size argument";
4437 ic->sectors_per_block = val >> SECTOR_SHIFT;
4438 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4439 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4440 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4441 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4443 ti->error = "Invalid bitmap_flush_interval argument";
4446 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4447 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4448 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4449 "Invalid internal_hash argument");
4452 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4453 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4454 "Invalid journal_crypt argument");
4457 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4458 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4459 "Invalid journal_mac argument");
4462 } else if (!strcmp(opt_string, "recalculate")) {
4463 ic->recalculate_flag = true;
4464 } else if (!strcmp(opt_string, "reset_recalculate")) {
4465 ic->recalculate_flag = true;
4466 ic->reset_recalculate_flag = true;
4467 } else if (!strcmp(opt_string, "allow_discards")) {
4469 } else if (!strcmp(opt_string, "fix_padding")) {
4470 ic->fix_padding = true;
4471 } else if (!strcmp(opt_string, "fix_hmac")) {
4472 ic->fix_hmac = true;
4473 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4474 ic->legacy_recalculate = true;
4477 ti->error = "Invalid argument";
4482 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4484 ic->meta_device_sectors = ic->data_device_sectors;
4486 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4488 if (!journal_sectors) {
4489 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4490 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4493 if (!buffer_sectors)
4495 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4497 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4498 "Invalid internal hash", "Error setting internal hash key");
4502 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4503 "Invalid journal mac", "Error setting journal mac key");
4507 if (!ic->tag_size) {
4508 if (!ic->internal_hash) {
4509 ti->error = "Unknown tag size";
4513 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4515 if (ic->tag_size > MAX_TAG_SIZE) {
4516 ti->error = "Too big tag size";
4520 if (!(ic->tag_size & (ic->tag_size - 1)))
4521 ic->log2_tag_size = __ffs(ic->tag_size);
4523 ic->log2_tag_size = -1;
4525 if (ic->mode == 'I') {
4526 struct blk_integrity *bi;
4529 ti->error = "Metadata device not supported in inline mode";
4532 if (!ic->internal_hash_alg.alg_string) {
4534 ti->error = "Internal hash not set in inline mode";
4537 if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4539 ti->error = "Journal crypt not supported in inline mode";
4544 ti->error = "Discards not supported in inline mode";
4547 bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4548 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4550 ti->error = "Integrity profile not supported";
4553 /*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4554 if (bi->tuple_size < ic->tag_size) {
4556 ti->error = "The integrity profile is smaller than tag size";
4559 if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4561 ti->error = "Too big tuple size";
4564 ic->tuple_size = bi->tuple_size;
4565 if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4567 ti->error = "Integrity profile sector size mismatch";
4572 if (ic->mode == 'B' && !ic->internal_hash) {
4574 ti->error = "Bitmap mode can be only used with internal hash";
4578 if (ic->discard && !ic->internal_hash) {
4580 ti->error = "Discard can be only used with internal hash";
4584 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4585 ic->autocommit_msec = sync_msec;
4586 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4588 ic->io = dm_io_client_create();
4589 if (IS_ERR(ic->io)) {
4590 r = PTR_ERR(ic->io);
4592 ti->error = "Cannot allocate dm io";
4596 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4598 ti->error = "Cannot allocate mempool";
4602 r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4604 ti->error = "Cannot allocate mempool";
4608 if (ic->mode == 'I') {
4609 r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4611 ti->error = "Cannot allocate bio set";
4614 r = bioset_integrity_create(&ic->recheck_bios, RECHECK_POOL_SIZE);
4616 ti->error = "Cannot allocate bio integrity set";
4622 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4623 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4624 if (!ic->metadata_wq) {
4625 ti->error = "Cannot allocate workqueue";
4631 * If this workqueue weren't ordered, it would cause bio reordering
4632 * and reduced performance.
4634 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4636 ti->error = "Cannot allocate workqueue";
4641 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4642 METADATA_WORKQUEUE_MAX_ACTIVE);
4643 if (!ic->offload_wq) {
4644 ti->error = "Cannot allocate workqueue";
4649 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4650 if (!ic->commit_wq) {
4651 ti->error = "Cannot allocate workqueue";
4655 INIT_WORK(&ic->commit_work, integrity_commit);
4657 if (ic->mode == 'J' || ic->mode == 'B') {
4658 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4659 if (!ic->writer_wq) {
4660 ti->error = "Cannot allocate workqueue";
4664 INIT_WORK(&ic->writer_work, integrity_writer);
4667 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4670 ti->error = "Cannot allocate superblock area";
4674 r = sync_rw_sb(ic, REQ_OP_READ);
4676 ti->error = "Error reading superblock";
4679 should_write_sb = false;
4680 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4681 if (ic->mode != 'R') {
4682 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4684 ti->error = "The device is not initialized";
4689 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4691 ti->error = "Could not initialize superblock";
4694 if (ic->mode != 'R')
4695 should_write_sb = true;
4698 if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4700 ti->error = "Unknown version";
4703 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4705 ti->error = "Inline flag mismatch";
4708 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4710 ti->error = "Tag size doesn't match the information in superblock";
4713 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4715 ti->error = "Block size doesn't match the information in superblock";
4718 if (!le32_to_cpu(ic->sb->journal_sections) != (ic->mode == 'I')) {
4720 if (ic->mode != 'I')
4721 ti->error = "Corrupted superblock, journal_sections is 0";
4723 ti->error = "Corrupted superblock, journal_sections is not 0";
4726 /* make sure that ti->max_io_len doesn't overflow */
4727 if (!ic->meta_dev) {
4728 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4729 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4731 ti->error = "Invalid interleave_sectors in the superblock";
4735 if (ic->sb->log2_interleave_sectors) {
4737 ti->error = "Invalid interleave_sectors in the superblock";
4741 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4743 ti->error = "Journal mac mismatch";
4747 get_provided_data_sectors(ic);
4748 if (!ic->provided_data_sectors) {
4750 ti->error = "The device is too small";
4755 r = calculate_device_limits(ic);
4758 if (ic->log2_buffer_sectors > 3) {
4759 ic->log2_buffer_sectors--;
4760 goto try_smaller_buffer;
4763 ti->error = "The device is too small";
4767 if (log2_sectors_per_bitmap_bit < 0)
4768 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4769 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4770 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4772 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4773 if (bits_in_journal > UINT_MAX)
4774 bits_in_journal = UINT_MAX;
4775 if (bits_in_journal)
4776 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4777 log2_sectors_per_bitmap_bit++;
4779 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4780 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4781 if (should_write_sb)
4782 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4784 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4785 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4786 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4789 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4791 if (ti->len > ic->provided_data_sectors) {
4793 ti->error = "Not enough provided sectors for requested mapping size";
4797 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4799 do_div(threshold, 100);
4800 ic->free_sectors_threshold = threshold;
4802 DEBUG_print("initialized:\n");
4803 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4804 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4805 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4806 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4807 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4808 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4809 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4810 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4811 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4812 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4813 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4814 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4815 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4816 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4817 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4819 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4820 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4821 ic->sb->recalc_sector = cpu_to_le64(0);
4824 if (ic->internal_hash) {
4825 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4826 if (!ic->recalc_wq) {
4827 ti->error = "Cannot allocate workqueue";
4831 INIT_WORK(&ic->recalc_work, integrity_recalc);
4833 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4834 ti->error = "Recalculate can only be specified with internal_hash";
4840 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4841 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4842 dm_integrity_disable_recalculate(ic)) {
4843 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4848 if (ic->mode != 'I') {
4849 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4850 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4851 if (IS_ERR(ic->bufio)) {
4852 r = PTR_ERR(ic->bufio);
4853 ti->error = "Cannot initialize dm-bufio";
4857 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4860 if (ic->mode != 'R' && ic->mode != 'I') {
4861 r = create_journal(ic, &ti->error);
4867 if (ic->mode == 'B') {
4869 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4871 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4872 if (!ic->recalc_bitmap) {
4876 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4877 if (!ic->may_write_bitmap) {
4881 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4886 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4887 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4888 struct bitmap_block_status *bbs = &ic->bbs[i];
4889 unsigned int sector, pl_index, pl_offset;
4891 INIT_WORK(&bbs->work, bitmap_block_work);
4894 bio_list_init(&bbs->bio_queue);
4895 spin_lock_init(&bbs->bio_queue_lock);
4897 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4898 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4899 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4901 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4905 if (should_write_sb) {
4906 init_journal(ic, 0, ic->journal_sections, 0);
4907 r = dm_integrity_failed(ic);
4909 ti->error = "Error initializing journal";
4912 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4914 ti->error = "Error initializing superblock";
4917 ic->just_formatted = true;
4920 if (!ic->meta_dev && ic->mode != 'I') {
4921 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4925 if (ic->mode == 'B') {
4926 unsigned int max_io_len;
4928 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4930 max_io_len = 1U << 31;
4931 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4932 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4933 r = dm_set_target_max_io_len(ti, max_io_len);
4939 ti->num_flush_bios = 1;
4940 ti->flush_supported = true;
4942 ti->num_discard_bios = 1;
4944 if (ic->mode == 'I')
4945 ti->mempool_needs_integrity = true;
4947 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4951 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4952 dm_integrity_dtr(ti);
4956 static void dm_integrity_dtr(struct dm_target *ti)
4958 struct dm_integrity_c *ic = ti->private;
4960 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4961 BUG_ON(!list_empty(&ic->wait_list));
4963 if (ic->mode == 'B')
4964 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4965 if (ic->metadata_wq)
4966 destroy_workqueue(ic->metadata_wq);
4968 destroy_workqueue(ic->wait_wq);
4970 destroy_workqueue(ic->offload_wq);
4972 destroy_workqueue(ic->commit_wq);
4974 destroy_workqueue(ic->writer_wq);
4976 destroy_workqueue(ic->recalc_wq);
4979 dm_bufio_client_destroy(ic->bufio);
4980 bioset_exit(&ic->recheck_bios);
4981 mempool_exit(&ic->recheck_pool);
4982 mempool_exit(&ic->journal_io_mempool);
4984 dm_io_client_destroy(ic->io);
4986 dm_put_device(ti, ic->dev);
4988 dm_put_device(ti, ic->meta_dev);
4989 dm_integrity_free_page_list(ic->journal);
4990 dm_integrity_free_page_list(ic->journal_io);
4991 dm_integrity_free_page_list(ic->journal_xor);
4992 dm_integrity_free_page_list(ic->recalc_bitmap);
4993 dm_integrity_free_page_list(ic->may_write_bitmap);
4994 if (ic->journal_scatterlist)
4995 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4996 if (ic->journal_io_scatterlist)
4997 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4998 if (ic->sk_requests) {
5001 for (i = 0; i < ic->journal_sections; i++) {
5002 struct skcipher_request *req;
5004 req = ic->sk_requests[i];
5006 kfree_sensitive(req->iv);
5007 skcipher_request_free(req);
5010 kvfree(ic->sk_requests);
5012 kvfree(ic->journal_tree);
5014 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5016 if (ic->internal_hash)
5017 crypto_free_shash(ic->internal_hash);
5018 free_alg(&ic->internal_hash_alg);
5020 if (ic->journal_crypt)
5021 crypto_free_skcipher(ic->journal_crypt);
5022 free_alg(&ic->journal_crypt_alg);
5024 if (ic->journal_mac)
5025 crypto_free_shash(ic->journal_mac);
5026 free_alg(&ic->journal_mac_alg);
5029 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5032 static struct target_type integrity_target = {
5033 .name = "integrity",
5034 .version = {1, 12, 0},
5035 .module = THIS_MODULE,
5036 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5037 .ctr = dm_integrity_ctr,
5038 .dtr = dm_integrity_dtr,
5039 .map = dm_integrity_map,
5040 .end_io = dm_integrity_end_io,
5041 .postsuspend = dm_integrity_postsuspend,
5042 .resume = dm_integrity_resume,
5043 .status = dm_integrity_status,
5044 .iterate_devices = dm_integrity_iterate_devices,
5045 .io_hints = dm_integrity_io_hints,
5048 static int __init dm_integrity_init(void)
5052 journal_io_cache = kmem_cache_create("integrity_journal_io",
5053 sizeof(struct journal_io), 0, 0, NULL);
5054 if (!journal_io_cache) {
5055 DMERR("can't allocate journal io cache");
5059 r = dm_register_target(&integrity_target);
5061 kmem_cache_destroy(journal_io_cache);
5068 static void __exit dm_integrity_exit(void)
5070 dm_unregister_target(&integrity_target);
5071 kmem_cache_destroy(journal_io_cache);
5074 module_init(dm_integrity_init);
5075 module_exit(dm_integrity_exit);
5077 MODULE_AUTHOR("Milan Broz");
5078 MODULE_AUTHOR("Mikulas Patocka");
5079 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5080 MODULE_LICENSE("GPL");