]> Git Repo - linux.git/blob - drivers/dma/qcom/gpi.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / dma / qcom / gpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19
20 #define TRE_TYPE_DMA            0x10
21 #define TRE_TYPE_GO             0x20
22 #define TRE_TYPE_CONFIG0        0x22
23
24 /* TRE flags */
25 #define TRE_FLAGS_CHAIN         BIT(0)
26 #define TRE_FLAGS_IEOB          BIT(8)
27 #define TRE_FLAGS_IEOT          BIT(9)
28 #define TRE_FLAGS_BEI           BIT(10)
29 #define TRE_FLAGS_LINK          BIT(11)
30 #define TRE_FLAGS_TYPE          GENMASK(23, 16)
31
32 /* SPI CONFIG0 WD0 */
33 #define TRE_SPI_C0_WORD_SZ      GENMASK(4, 0)
34 #define TRE_SPI_C0_LOOPBACK     BIT(8)
35 #define TRE_SPI_C0_CS           BIT(11)
36 #define TRE_SPI_C0_CPHA         BIT(12)
37 #define TRE_SPI_C0_CPOL         BIT(13)
38 #define TRE_SPI_C0_TX_PACK      BIT(24)
39 #define TRE_SPI_C0_RX_PACK      BIT(25)
40
41 /* CONFIG0 WD2 */
42 #define TRE_C0_CLK_DIV          GENMASK(11, 0)
43 #define TRE_C0_CLK_SRC          GENMASK(19, 16)
44
45 /* SPI GO WD0 */
46 #define TRE_SPI_GO_CMD          GENMASK(4, 0)
47 #define TRE_SPI_GO_CS           GENMASK(10, 8)
48 #define TRE_SPI_GO_FRAG         BIT(26)
49
50 /* GO WD2 */
51 #define TRE_RX_LEN              GENMASK(23, 0)
52
53 /* I2C Config0 WD0 */
54 #define TRE_I2C_C0_TLOW         GENMASK(7, 0)
55 #define TRE_I2C_C0_THIGH        GENMASK(15, 8)
56 #define TRE_I2C_C0_TCYL         GENMASK(23, 16)
57 #define TRE_I2C_C0_TX_PACK      BIT(24)
58 #define TRE_I2C_C0_RX_PACK      BIT(25)
59
60 /* I2C GO WD0 */
61 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
62 #define TRE_I2C_GO_ADDR         GENMASK(14, 8)
63 #define TRE_I2C_GO_STRETCH      BIT(26)
64
65 /* DMA TRE */
66 #define TRE_DMA_LEN             GENMASK(23, 0)
67
68 /* Register offsets from gpi-top */
69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)  (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
71 #define GPII_n_CH_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
72 #define GPII_n_CH_k_CNTXT_0_ERIDX       GENMASK(18, 14)
73 #define GPII_n_CH_k_CNTXT_0_DIR         BIT(3)
74 #define GPII_n_CH_k_CNTXT_0_PROTO       GENMASK(2, 0)
75
76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
77         (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)       | \
78          FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)         | \
79          FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)               | \
80          FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81
82 #define GPI_CHTYPE_DIR_IN       (0)
83 #define GPI_CHTYPE_DIR_OUT      (1)
84
85 #define GPI_CHTYPE_PROTO_GPI    (0x2)
86
87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)       (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88 #define GPII_n_CH_CMD_OFFS(n)                   (0x23008 + (0x4000 * (n)))
89 #define GPII_n_CH_CMD_OPCODE                    GENMASK(31, 24)
90 #define GPII_n_CH_CMD_CHID                      GENMASK(7, 0)
91 #define GPII_n_CH_CMD(opcode, chid)                              \
92                      (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93                       FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94
95 #define GPII_n_CH_CMD_ALLOCATE          (0)
96 #define GPII_n_CH_CMD_START             (1)
97 #define GPII_n_CH_CMD_STOP              (2)
98 #define GPII_n_CH_CMD_RESET             (9)
99 #define GPII_n_CH_CMD_DE_ALLOC          (10)
100 #define GPII_n_CH_CMD_UART_SW_STALE     (32)
101 #define GPII_n_CH_CMD_UART_RFR_READY    (33)
102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103
104 /* EV Context Array */
105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
107 #define GPII_n_EV_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
108 #define GPII_n_EV_k_CNTXT_0_INTYPE      BIT(16)
109 #define GPII_n_EV_k_CNTXT_0_CHTYPE      GENMASK(3, 0)
110
111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)           \
112         (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |     \
113          FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |     \
114          FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115
116 #define GPI_INTTYPE_IRQ         (1)
117 #define GPI_CHTYPE_GPI_EV       (0x2)
118
119 enum CNTXT_OFFS {
120         CNTXT_0_CONFIG = 0x0,
121         CNTXT_1_R_LENGTH = 0x4,
122         CNTXT_2_RING_BASE_LSB = 0x8,
123         CNTXT_3_RING_BASE_MSB = 0xC,
124         CNTXT_4_RING_RP_LSB = 0x10,
125         CNTXT_5_RING_RP_MSB = 0x14,
126         CNTXT_6_RING_WP_LSB = 0x18,
127         CNTXT_7_RING_WP_MSB = 0x1C,
128         CNTXT_8_RING_INT_MOD = 0x20,
129         CNTXT_9_RING_INTVEC = 0x24,
130         CNTXT_10_RING_MSI_LSB = 0x28,
131         CNTXT_11_RING_MSI_MSB = 0x2C,
132         CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133         CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134 };
135
136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)    (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137 #define GPII_n_EV_CH_CMD_OFFS(n)                (0x23010 + (0x4000 * (n)))
138 #define GPII_n_EV_CMD_OPCODE                    GENMASK(31, 24)
139 #define GPII_n_EV_CMD_CHID                      GENMASK(7, 0)
140 #define GPII_n_EV_CMD(opcode, chid)                              \
141                      (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142                       FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143
144 #define GPII_n_EV_CH_CMD_ALLOCATE               (0x00)
145 #define GPII_n_EV_CH_CMD_RESET                  (0x09)
146 #define GPII_n_EV_CH_CMD_DE_ALLOC               (0x0A)
147
148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)           (0x23080 + (0x4000 * (n)))
149
150 /* mask type register */
151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)       (0x23088 + (0x4000 * (n)))
152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK          GENMASK(6, 0)
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL       BIT(6)
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB          BIT(3)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB          BIT(2)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL       BIT(1)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL       BIT(0)
158
159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)    (0x23090 + (0x4000 * (n)))
160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)      (0x23094 + (0x4000 * (n)))
161
162 /* Mask channel control interrupt register */
163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)     (0x23098 + (0x4000 * (n)))
164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK        GENMASK(1, 0)
165
166 /* Mask event control interrupt register */
167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)  (0x2309C + (0x4000 * (n)))
168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK     BIT(0)
169
170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)     (0x230A0 + (0x4000 * (n)))
171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)  (0x230A4 + (0x4000 * (n)))
172
173 /* Mask event interrupt register */
174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)   (0x230B8 + (0x4000 * (n)))
175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK      BIT(0)
176
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)   (0x230C0 + (0x4000 * (n)))
178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)      (0x23100 + (0x4000 * (n)))
179 #define GPI_GLOB_IRQ_ERROR_INT_MSK              BIT(0)
180
181 /* GPII specific Global - Enable bit register */
182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)        (0x23108 + (0x4000 * (n)))
183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)       (0x23110 + (0x4000 * (n)))
184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)      (0x23118 + (0x4000 * (n)))
185
186 /* GPII general interrupt - Enable bit register */
187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)        (0x23120 + (0x4000 * (n)))
188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK           GENMASK(3, 0)
189
190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)       (0x23128 + (0x4000 * (n)))
191
192 /* GPII Interrupt Type register */
193 #define GPII_n_CNTXT_INTSET_OFFS(n)             (0x23180 + (0x4000 * (n)))
194 #define GPII_n_CNTXT_INTSET_BMSK                BIT(0)
195
196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)       (0x23188 + (0x4000 * (n)))
197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)       (0x2318C + (0x4000 * (n)))
198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)          (0x23400 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)          (0x23404 + (0x4000 * (n)))
200
201 #define GPII_n_ERROR_LOG_OFFS(n)                (0x23200 + (0x4000 * (n)))
202
203 /* QOS Registers */
204 #define GPII_n_CH_k_QOS_OFFS(n, k)              (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205
206 /* Scratch registers */
207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)        (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208 #define GPII_n_CH_k_SCRATCH_0_SEID              GENMASK(2, 0)
209 #define GPII_n_CH_k_SCRATCH_0_PROTO             GENMASK(7, 4)
210 #define GPII_n_CH_k_SCRATCH_0_PAIR              GENMASK(20, 16)
211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)                \
212                              (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)      | \
213                               FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)    | \
214                               FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)        (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)        (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)        (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218
219 struct __packed gpi_tre {
220         u32 dword[4];
221 };
222
223 enum msm_gpi_tce_code {
224         MSM_GPI_TCE_SUCCESS = 1,
225         MSM_GPI_TCE_EOT = 2,
226         MSM_GPI_TCE_EOB = 4,
227         MSM_GPI_TCE_UNEXP_ERR = 16,
228 };
229
230 #define CMD_TIMEOUT_MS          (250)
231
232 #define MAX_CHANNELS_PER_GPII   (2)
233 #define GPI_TX_CHAN             (0)
234 #define GPI_RX_CHAN             (1)
235 #define STATE_IGNORE            (U32_MAX)
236 #define EV_FACTOR               (2)
237 #define REQ_OF_DMA_ARGS         (5) /* # of arguments required from client */
238 #define CHAN_TRES               64
239
240 struct __packed xfer_compl_event {
241         u64 ptr;
242         u32 length:24;
243         u8 code;
244         u16 status;
245         u8 type;
246         u8 chid;
247 };
248
249 struct __packed immediate_data_event {
250         u8 data_bytes[8];
251         u8 length:4;
252         u8 resvd:4;
253         u16 tre_index;
254         u8 code;
255         u16 status;
256         u8 type;
257         u8 chid;
258 };
259
260 struct __packed qup_notif_event {
261         u32 status;
262         u32 time;
263         u32 count:24;
264         u8 resvd;
265         u16 resvd1;
266         u8 type;
267         u8 chid;
268 };
269
270 struct __packed gpi_ere {
271         u32 dword[4];
272 };
273
274 enum GPI_EV_TYPE {
275         XFER_COMPLETE_EV_TYPE = 0x22,
276         IMMEDIATE_DATA_EV_TYPE = 0x30,
277         QUP_NOTIF_EV_TYPE = 0x31,
278         STALE_EV_TYPE = 0xFF,
279 };
280
281 union __packed gpi_event {
282         struct __packed xfer_compl_event xfer_compl_event;
283         struct __packed immediate_data_event immediate_data_event;
284         struct __packed qup_notif_event qup_notif_event;
285         struct __packed gpi_ere gpi_ere;
286 };
287
288 enum gpii_irq_settings {
289         DEFAULT_IRQ_SETTINGS,
290         MASK_IEOB_SETTINGS,
291 };
292
293 enum gpi_ev_state {
294         DEFAULT_EV_CH_STATE = 0,
295         EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296         EV_STATE_ALLOCATED,
297         MAX_EV_STATES
298 };
299
300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301         [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302         [EV_STATE_ALLOCATED] = "ALLOCATED",
303 };
304
305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306                                     "INVALID" : gpi_ev_state_str[(_state)])
307
308 enum gpi_ch_state {
309         DEFAULT_CH_STATE = 0x0,
310         CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311         CH_STATE_ALLOCATED = 0x1,
312         CH_STATE_STARTED = 0x2,
313         CH_STATE_STOPPED = 0x3,
314         CH_STATE_STOP_IN_PROC = 0x4,
315         CH_STATE_ERROR = 0xf,
316         MAX_CH_STATES
317 };
318
319 enum gpi_cmd {
320         GPI_CH_CMD_BEGIN,
321         GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322         GPI_CH_CMD_START,
323         GPI_CH_CMD_STOP,
324         GPI_CH_CMD_RESET,
325         GPI_CH_CMD_DE_ALLOC,
326         GPI_CH_CMD_UART_SW_STALE,
327         GPI_CH_CMD_UART_RFR_READY,
328         GPI_CH_CMD_UART_RFR_NOT_READY,
329         GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330         GPI_EV_CMD_BEGIN,
331         GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332         GPI_EV_CMD_RESET,
333         GPI_EV_CMD_DEALLOC,
334         GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335         GPI_MAX_CMD,
336 };
337
338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339
340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341         [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342         [GPI_CH_CMD_START] = "CH START",
343         [GPI_CH_CMD_STOP] = "CH STOP",
344         [GPI_CH_CMD_RESET] = "CH_RESET",
345         [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346         [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347         [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348         [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349         [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350         [GPI_EV_CMD_RESET] = "EV RESET",
351         [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352 };
353
354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355                                   gpi_cmd_str[(_cmd)])
356
357 /*
358  * @DISABLE_STATE: no register access allowed
359  * @CONFIG_STATE:  client has configured the channel
360  * @PREP_HARDWARE: register access is allowed
361  *                 however, no processing EVENTS
362  * @ACTIVE_STATE: channels are fully operational
363  * @PREPARE_TERMINATE: graceful termination of channels
364  *                     register access is allowed
365  * @PAUSE_STATE: channels are active, but not processing any events
366  */
367 enum gpi_pm_state {
368         DISABLE_STATE,
369         CONFIG_STATE,
370         PREPARE_HARDWARE,
371         ACTIVE_STATE,
372         PREPARE_TERMINATE,
373         PAUSE_STATE,
374         MAX_PM_STATE
375 };
376
377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378
379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380         [DISABLE_STATE] = "DISABLE",
381         [CONFIG_STATE] = "CONFIG",
382         [PREPARE_HARDWARE] = "PREPARE HARDWARE",
383         [ACTIVE_STATE] = "ACTIVE",
384         [PREPARE_TERMINATE] = "PREPARE TERMINATE",
385         [PAUSE_STATE] = "PAUSE",
386 };
387
388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389                               "INVALID" : gpi_pm_state_str[(_state)])
390
391 static const struct {
392         enum gpi_cmd gpi_cmd;
393         u32 opcode;
394         u32 state;
395 } gpi_cmd_info[GPI_MAX_CMD] = {
396         {
397                 GPI_CH_CMD_ALLOCATE,
398                 GPII_n_CH_CMD_ALLOCATE,
399                 CH_STATE_ALLOCATED,
400         },
401         {
402                 GPI_CH_CMD_START,
403                 GPII_n_CH_CMD_START,
404                 CH_STATE_STARTED,
405         },
406         {
407                 GPI_CH_CMD_STOP,
408                 GPII_n_CH_CMD_STOP,
409                 CH_STATE_STOPPED,
410         },
411         {
412                 GPI_CH_CMD_RESET,
413                 GPII_n_CH_CMD_RESET,
414                 CH_STATE_ALLOCATED,
415         },
416         {
417                 GPI_CH_CMD_DE_ALLOC,
418                 GPII_n_CH_CMD_DE_ALLOC,
419                 CH_STATE_NOT_ALLOCATED,
420         },
421         {
422                 GPI_CH_CMD_UART_SW_STALE,
423                 GPII_n_CH_CMD_UART_SW_STALE,
424                 STATE_IGNORE,
425         },
426         {
427                 GPI_CH_CMD_UART_RFR_READY,
428                 GPII_n_CH_CMD_UART_RFR_READY,
429                 STATE_IGNORE,
430         },
431         {
432                 GPI_CH_CMD_UART_RFR_NOT_READY,
433                 GPII_n_CH_CMD_UART_RFR_NOT_READY,
434                 STATE_IGNORE,
435         },
436         {
437                 GPI_EV_CMD_ALLOCATE,
438                 GPII_n_EV_CH_CMD_ALLOCATE,
439                 EV_STATE_ALLOCATED,
440         },
441         {
442                 GPI_EV_CMD_RESET,
443                 GPII_n_EV_CH_CMD_RESET,
444                 EV_STATE_ALLOCATED,
445         },
446         {
447                 GPI_EV_CMD_DEALLOC,
448                 GPII_n_EV_CH_CMD_DE_ALLOC,
449                 EV_STATE_NOT_ALLOCATED,
450         },
451 };
452
453 struct gpi_ring {
454         void *pre_aligned;
455         size_t alloc_size;
456         phys_addr_t phys_addr;
457         dma_addr_t dma_handle;
458         void *base;
459         void *wp;
460         void *rp;
461         u32 len;
462         u32 el_size;
463         u32 elements;
464         bool configured;
465 };
466
467 struct gpi_dev {
468         struct dma_device dma_device;
469         struct device *dev;
470         struct resource *res;
471         void __iomem *regs;
472         void __iomem *ee_base; /*ee register base address*/
473         u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474         u32 gpii_mask; /* gpii instances available for apps */
475         u32 ev_factor; /* ev ring length factor */
476         struct gpii *gpiis;
477 };
478
479 struct gchan {
480         struct virt_dma_chan vc;
481         u32 chid;
482         u32 seid;
483         u32 protocol;
484         struct gpii *gpii;
485         enum gpi_ch_state ch_state;
486         enum gpi_pm_state pm_state;
487         void __iomem *ch_cntxt_base_reg;
488         void __iomem *ch_cntxt_db_reg;
489         void __iomem *ch_cmd_reg;
490         u32 dir;
491         struct gpi_ring ch_ring;
492         void *config;
493 };
494
495 struct gpii {
496         u32 gpii_id;
497         struct gchan gchan[MAX_CHANNELS_PER_GPII];
498         struct gpi_dev *gpi_dev;
499         int irq;
500         void __iomem *regs; /* points to gpi top */
501         void __iomem *ev_cntxt_base_reg;
502         void __iomem *ev_cntxt_db_reg;
503         void __iomem *ev_ring_rp_lsb_reg;
504         void __iomem *ev_cmd_reg;
505         void __iomem *ieob_clr_reg;
506         struct mutex ctrl_lock;
507         enum gpi_ev_state ev_state;
508         bool configured_irq;
509         enum gpi_pm_state pm_state;
510         rwlock_t pm_lock;
511         struct gpi_ring ev_ring;
512         struct tasklet_struct ev_task; /* event processing tasklet */
513         struct completion cmd_completion;
514         enum gpi_cmd gpi_cmd;
515         u32 cntxt_type_irq_msk;
516         bool ieob_set;
517 };
518
519 #define MAX_TRE 3
520
521 struct gpi_desc {
522         struct virt_dma_desc vd;
523         size_t len;
524         void *db; /* DB register to program */
525         struct gchan *gchan;
526         struct gpi_tre tre[MAX_TRE];
527         u32 num_tre;
528 };
529
530 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
531         GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
532 };
533
534 static irqreturn_t gpi_handle_irq(int irq, void *data);
535 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
536 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
537 static void gpi_process_events(struct gpii *gpii);
538
539 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
540 {
541         return container_of(dma_chan, struct gchan, vc.chan);
542 }
543
544 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
545 {
546         return container_of(vd, struct gpi_desc, vd);
547 }
548
549 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
550                                       void *addr)
551 {
552         return ring->phys_addr + (addr - ring->base);
553 }
554
555 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
556 {
557         return ring->base + (addr - ring->phys_addr);
558 }
559
560 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
561 {
562         return readl_relaxed(addr);
563 }
564
565 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
566 {
567         writel_relaxed(val, addr);
568 }
569
570 /* gpi_write_reg_field - write to specific bit field */
571 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
572                                        u32 mask, u32 shift, u32 val)
573 {
574         u32 tmp = gpi_read_reg(gpii, addr);
575
576         tmp &= ~mask;
577         val = tmp | ((val << shift) & mask);
578         gpi_write_reg(gpii, addr, val);
579 }
580
581 static __always_inline void
582 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
583 {
584         void __iomem *addr = gpii->regs + offset;
585         u32 tmp = gpi_read_reg(gpii, addr);
586
587         tmp &= ~mask;
588         tmp |= u32_encode_bits(val, mask);
589
590         gpi_write_reg(gpii, addr, tmp);
591 }
592
593 static void gpi_disable_interrupts(struct gpii *gpii)
594 {
595         gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
596                        GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
597         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
598                        GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
599         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
600                        GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
601         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
602                        GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
603         gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
604                        GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
605         gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
606                        GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
607         gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
608                        GPII_n_CNTXT_INTSET_BMSK, 0);
609
610         gpii->cntxt_type_irq_msk = 0;
611         devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
612         gpii->configured_irq = false;
613 }
614
615 /* configure and enable interrupts */
616 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
617 {
618         const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
619                               GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
620                               GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
621                               GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
622                               GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
623         int ret;
624
625         if (!gpii->configured_irq) {
626                 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
627                                        gpi_handle_irq, IRQF_TRIGGER_HIGH,
628                                        "gpi-dma", gpii);
629                 if (ret < 0) {
630                         dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
631                                 gpii->irq, ret);
632                         return ret;
633                 }
634         }
635
636         if (settings == MASK_IEOB_SETTINGS) {
637                 /*
638                  * GPII only uses one EV ring per gpii so we can globally
639                  * enable/disable IEOB interrupt
640                  */
641                 if (mask)
642                         gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
643                 else
644                         gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
645                 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
646                                GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
647         } else {
648                 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
649                                GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
650                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
651                                GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
652                                GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
653                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
654                                GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
655                                GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
656                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
657                                GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
658                                GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
659                 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
660                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
661                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
662                 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
663                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
664                 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
665                 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
666                 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
667                 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
668                 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
669                                GPII_n_CNTXT_INTSET_BMSK, 1);
670                 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
671
672                 gpii->cntxt_type_irq_msk = enable;
673         }
674
675         gpii->configured_irq = true;
676         return 0;
677 }
678
679 /* Sends gpii event or channel command */
680 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
681                         enum gpi_cmd gpi_cmd)
682 {
683         u32 chid = MAX_CHANNELS_PER_GPII;
684         unsigned long timeout;
685         void __iomem *cmd_reg;
686         u32 cmd;
687
688         if (gpi_cmd >= GPI_MAX_CMD)
689                 return -EINVAL;
690         if (IS_CHAN_CMD(gpi_cmd))
691                 chid = gchan->chid;
692
693         dev_dbg(gpii->gpi_dev->dev,
694                 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
695
696         /* send opcode and wait for completion */
697         reinit_completion(&gpii->cmd_completion);
698         gpii->gpi_cmd = gpi_cmd;
699
700         cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
701         cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
702                                      GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
703         gpi_write_reg(gpii, cmd_reg, cmd);
704         timeout = wait_for_completion_timeout(&gpii->cmd_completion,
705                                               msecs_to_jiffies(CMD_TIMEOUT_MS));
706         if (!timeout) {
707                 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
708                         TO_GPI_CMD_STR(gpi_cmd), chid);
709                 return -EIO;
710         }
711
712         /* confirm new ch state is correct , if the cmd is a state change cmd */
713         if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
714                 return 0;
715
716         if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
717                 return 0;
718
719         if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
720                 return 0;
721
722         return -EIO;
723 }
724
725 /* program transfer ring DB register */
726 static inline void gpi_write_ch_db(struct gchan *gchan,
727                                    struct gpi_ring *ring, void *wp)
728 {
729         struct gpii *gpii = gchan->gpii;
730         phys_addr_t p_wp;
731
732         p_wp = to_physical(ring, wp);
733         gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
734 }
735
736 /* program event ring DB register */
737 static inline void gpi_write_ev_db(struct gpii *gpii,
738                                    struct gpi_ring *ring, void *wp)
739 {
740         phys_addr_t p_wp;
741
742         p_wp = ring->phys_addr + (wp - ring->base);
743         gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
744 }
745
746 /* process transfer completion interrupt */
747 static void gpi_process_ieob(struct gpii *gpii)
748 {
749         gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
750
751         gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
752         tasklet_hi_schedule(&gpii->ev_task);
753 }
754
755 /* process channel control interrupt */
756 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
757 {
758         u32 gpii_id = gpii->gpii_id;
759         u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
760         u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
761         struct gchan *gchan;
762         u32 chid, state;
763
764         /* clear the status */
765         offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
766         gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
767
768         for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
769                 if (!(BIT(chid) & ch_irq))
770                         continue;
771
772                 gchan = &gpii->gchan[chid];
773                 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
774                                      CNTXT_0_CONFIG);
775                 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
776
777                 /*
778                  * CH_CMD_DEALLOC cmd always successful. However cmd does
779                  * not change hardware status. So overwriting software state
780                  * to default state.
781                  */
782                 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
783                         state = DEFAULT_CH_STATE;
784                 gchan->ch_state = state;
785
786                 /*
787                  * Triggering complete all if ch_state is not a stop in process.
788                  * Stop in process is a transition state and we will wait for
789                  * stop interrupt before notifying.
790                  */
791                 if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
792                         complete_all(&gpii->cmd_completion);
793         }
794 }
795
796 /* processing gpi general error interrupts */
797 static void gpi_process_gen_err_irq(struct gpii *gpii)
798 {
799         u32 gpii_id = gpii->gpii_id;
800         u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
801         u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
802
803         /* clear the status */
804         dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
805
806         /* Clear the register */
807         offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
808         gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
809 }
810
811 /* processing gpi level error interrupts */
812 static void gpi_process_glob_err_irq(struct gpii *gpii)
813 {
814         u32 gpii_id = gpii->gpii_id;
815         u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
816         u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
817
818         offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
819         gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
820
821         /* only error interrupt should be set */
822         if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
823                 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
824                 return;
825         }
826
827         offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
828         gpi_write_reg(gpii, gpii->regs + offset, 0);
829 }
830
831 /* gpii interrupt handler */
832 static irqreturn_t gpi_handle_irq(int irq, void *data)
833 {
834         struct gpii *gpii = data;
835         u32 gpii_id = gpii->gpii_id;
836         u32 type, offset;
837         unsigned long flags;
838
839         read_lock_irqsave(&gpii->pm_lock, flags);
840
841         /*
842          * States are out of sync to receive interrupt
843          * while software state is in DISABLE state, bailing out.
844          */
845         if (!REG_ACCESS_VALID(gpii->pm_state)) {
846                 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
847                         TO_GPI_PM_STR(gpii->pm_state));
848                 goto exit_irq;
849         }
850
851         offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
852         type = gpi_read_reg(gpii, gpii->regs + offset);
853
854         do {
855                 /* global gpii error */
856                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
857                         gpi_process_glob_err_irq(gpii);
858                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
859                 }
860
861                 /* transfer complete interrupt */
862                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
863                         gpi_process_ieob(gpii);
864                         type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
865                 }
866
867                 /* event control irq */
868                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
869                         u32 ev_state;
870                         u32 ev_ch_irq;
871
872                         dev_dbg(gpii->gpi_dev->dev,
873                                 "processing EV CTRL interrupt\n");
874                         offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
875                         ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
876
877                         offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
878                                 (gpii_id);
879                         gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
880                         ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
881                                                 CNTXT_0_CONFIG);
882                         ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
883
884                         /*
885                          * CMD EV_CMD_DEALLOC is always successful. However
886                          * cmd does not change hardware status. So overwriting
887                          * software state to default state.
888                          */
889                         if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
890                                 ev_state = DEFAULT_EV_CH_STATE;
891
892                         gpii->ev_state = ev_state;
893                         dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
894                                 TO_GPI_EV_STATE_STR(gpii->ev_state));
895                         complete_all(&gpii->cmd_completion);
896                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
897                 }
898
899                 /* channel control irq */
900                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
901                         dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
902                         gpi_process_ch_ctrl_irq(gpii);
903                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
904                 }
905
906                 if (type) {
907                         dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
908                         gpi_process_gen_err_irq(gpii);
909                         goto exit_irq;
910                 }
911
912                 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
913                 type = gpi_read_reg(gpii, gpii->regs + offset);
914         } while (type);
915
916 exit_irq:
917         read_unlock_irqrestore(&gpii->pm_lock, flags);
918
919         return IRQ_HANDLED;
920 }
921
922 /* process DMA Immediate completion data events */
923 static void gpi_process_imed_data_event(struct gchan *gchan,
924                                         struct immediate_data_event *imed_event)
925 {
926         struct gpii *gpii = gchan->gpii;
927         struct gpi_ring *ch_ring = &gchan->ch_ring;
928         void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
929         struct dmaengine_result result;
930         struct gpi_desc *gpi_desc;
931         struct virt_dma_desc *vd;
932         unsigned long flags;
933         u32 chid;
934
935         /*
936          * If channel not active don't process event
937          */
938         if (gchan->pm_state != ACTIVE_STATE) {
939                 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
940                         TO_GPI_PM_STR(gchan->pm_state));
941                 return;
942         }
943
944         spin_lock_irqsave(&gchan->vc.lock, flags);
945         vd = vchan_next_desc(&gchan->vc);
946         if (!vd) {
947                 struct gpi_ere *gpi_ere;
948                 struct gpi_tre *gpi_tre;
949
950                 spin_unlock_irqrestore(&gchan->vc.lock, flags);
951                 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
952                 gpi_ere = (struct gpi_ere *)imed_event;
953                 dev_dbg(gpii->gpi_dev->dev,
954                         "Event: %08x %08x %08x %08x\n",
955                         gpi_ere->dword[0], gpi_ere->dword[1],
956                         gpi_ere->dword[2], gpi_ere->dword[3]);
957                 gpi_tre = tre;
958                 dev_dbg(gpii->gpi_dev->dev,
959                         "Pending TRE: %08x %08x %08x %08x\n",
960                         gpi_tre->dword[0], gpi_tre->dword[1],
961                         gpi_tre->dword[2], gpi_tre->dword[3]);
962                 return;
963         }
964         gpi_desc = to_gpi_desc(vd);
965         spin_unlock_irqrestore(&gchan->vc.lock, flags);
966
967         /*
968          * RP pointed by Event is to last TRE processed,
969          * we need to update ring rp to tre + 1
970          */
971         tre += ch_ring->el_size;
972         if (tre >= (ch_ring->base + ch_ring->len))
973                 tre = ch_ring->base;
974         ch_ring->rp = tre;
975
976         /* make sure rp updates are immediately visible to all cores */
977         smp_wmb();
978
979         chid = imed_event->chid;
980         if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
981                 if (chid == GPI_RX_CHAN)
982                         goto gpi_free_desc;
983                 else
984                         return;
985         }
986
987         if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
988                 result.result = DMA_TRANS_ABORTED;
989         else
990                 result.result = DMA_TRANS_NOERROR;
991         result.residue = gpi_desc->len - imed_event->length;
992
993         dma_cookie_complete(&vd->tx);
994         dmaengine_desc_get_callback_invoke(&vd->tx, &result);
995
996 gpi_free_desc:
997         spin_lock_irqsave(&gchan->vc.lock, flags);
998         list_del(&vd->node);
999         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1000         kfree(gpi_desc);
1001         gpi_desc = NULL;
1002 }
1003
1004 /* processing transfer completion events */
1005 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1006                                          struct xfer_compl_event *compl_event)
1007 {
1008         struct gpii *gpii = gchan->gpii;
1009         struct gpi_ring *ch_ring = &gchan->ch_ring;
1010         void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1011         struct virt_dma_desc *vd;
1012         struct gpi_desc *gpi_desc;
1013         struct dmaengine_result result;
1014         unsigned long flags;
1015         u32 chid;
1016
1017         /* only process events on active channel */
1018         if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1019                 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1020                         TO_GPI_PM_STR(gchan->pm_state));
1021                 return;
1022         }
1023
1024         spin_lock_irqsave(&gchan->vc.lock, flags);
1025         vd = vchan_next_desc(&gchan->vc);
1026         if (!vd) {
1027                 struct gpi_ere *gpi_ere;
1028
1029                 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1030                 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1031                 gpi_ere = (struct gpi_ere *)compl_event;
1032                 dev_err(gpii->gpi_dev->dev,
1033                         "Event: %08x %08x %08x %08x\n",
1034                         gpi_ere->dword[0], gpi_ere->dword[1],
1035                         gpi_ere->dword[2], gpi_ere->dword[3]);
1036                 return;
1037         }
1038
1039         gpi_desc = to_gpi_desc(vd);
1040         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1041
1042         /*
1043          * RP pointed by Event is to last TRE processed,
1044          * we need to update ring rp to ev_rp + 1
1045          */
1046         ev_rp += ch_ring->el_size;
1047         if (ev_rp >= (ch_ring->base + ch_ring->len))
1048                 ev_rp = ch_ring->base;
1049         ch_ring->rp = ev_rp;
1050
1051         /* update must be visible to other cores */
1052         smp_wmb();
1053
1054         chid = compl_event->chid;
1055         if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1056                 if (chid == GPI_RX_CHAN)
1057                         goto gpi_free_desc;
1058                 else
1059                         return;
1060         }
1061
1062         if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1063                 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1064                 result.result = DMA_TRANS_ABORTED;
1065         } else {
1066                 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1067                 result.result = DMA_TRANS_NOERROR;
1068         }
1069         result.residue = gpi_desc->len - compl_event->length;
1070         dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1071
1072         dma_cookie_complete(&vd->tx);
1073         dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1074
1075 gpi_free_desc:
1076         spin_lock_irqsave(&gchan->vc.lock, flags);
1077         list_del(&vd->node);
1078         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1079         kfree(gpi_desc);
1080         gpi_desc = NULL;
1081 }
1082
1083 /* process all events */
1084 static void gpi_process_events(struct gpii *gpii)
1085 {
1086         struct gpi_ring *ev_ring = &gpii->ev_ring;
1087         phys_addr_t cntxt_rp;
1088         void *rp;
1089         union gpi_event *gpi_event;
1090         struct gchan *gchan;
1091         u32 chid, type;
1092
1093         cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1094         rp = to_virtual(ev_ring, cntxt_rp);
1095
1096         do {
1097                 while (rp != ev_ring->rp) {
1098                         gpi_event = ev_ring->rp;
1099                         chid = gpi_event->xfer_compl_event.chid;
1100                         type = gpi_event->xfer_compl_event.type;
1101
1102                         dev_dbg(gpii->gpi_dev->dev,
1103                                 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1104                                 chid, type, gpi_event->gpi_ere.dword[0],
1105                                 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1106                                 gpi_event->gpi_ere.dword[3]);
1107
1108                         switch (type) {
1109                         case XFER_COMPLETE_EV_TYPE:
1110                                 gchan = &gpii->gchan[chid];
1111                                 gpi_process_xfer_compl_event(gchan,
1112                                                              &gpi_event->xfer_compl_event);
1113                                 break;
1114                         case STALE_EV_TYPE:
1115                                 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1116                                 break;
1117                         case IMMEDIATE_DATA_EV_TYPE:
1118                                 gchan = &gpii->gchan[chid];
1119                                 gpi_process_imed_data_event(gchan,
1120                                                             &gpi_event->immediate_data_event);
1121                                 break;
1122                         case QUP_NOTIF_EV_TYPE:
1123                                 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1124                                 break;
1125                         default:
1126                                 dev_dbg(gpii->gpi_dev->dev,
1127                                         "not supported event type:0x%x\n", type);
1128                         }
1129                         gpi_ring_recycle_ev_element(ev_ring);
1130                 }
1131                 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1132
1133                 /* clear pending IEOB events */
1134                 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1135
1136                 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1137                 rp = to_virtual(ev_ring, cntxt_rp);
1138
1139         } while (rp != ev_ring->rp);
1140 }
1141
1142 /* processing events using tasklet */
1143 static void gpi_ev_tasklet(unsigned long data)
1144 {
1145         struct gpii *gpii = (struct gpii *)data;
1146
1147         read_lock(&gpii->pm_lock);
1148         if (!REG_ACCESS_VALID(gpii->pm_state)) {
1149                 read_unlock(&gpii->pm_lock);
1150                 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1151                         TO_GPI_PM_STR(gpii->pm_state));
1152                 return;
1153         }
1154
1155         /* process the events */
1156         gpi_process_events(gpii);
1157
1158         /* enable IEOB, switching back to interrupts */
1159         gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1160         read_unlock(&gpii->pm_lock);
1161 }
1162
1163 /* marks all pending events for the channel as stale */
1164 static void gpi_mark_stale_events(struct gchan *gchan)
1165 {
1166         struct gpii *gpii = gchan->gpii;
1167         struct gpi_ring *ev_ring = &gpii->ev_ring;
1168         u32 cntxt_rp, local_rp;
1169         void *ev_rp;
1170
1171         cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1172
1173         ev_rp = ev_ring->rp;
1174         local_rp = (u32)to_physical(ev_ring, ev_rp);
1175         while (local_rp != cntxt_rp) {
1176                 union gpi_event *gpi_event = ev_rp;
1177                 u32 chid = gpi_event->xfer_compl_event.chid;
1178
1179                 if (chid == gchan->chid)
1180                         gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1181                 ev_rp += ev_ring->el_size;
1182                 if (ev_rp >= (ev_ring->base + ev_ring->len))
1183                         ev_rp = ev_ring->base;
1184                 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1185                 local_rp = (u32)to_physical(ev_ring, ev_rp);
1186         }
1187 }
1188
1189 /* reset sw state and issue channel reset or de-alloc */
1190 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1191 {
1192         struct gpii *gpii = gchan->gpii;
1193         struct gpi_ring *ch_ring = &gchan->ch_ring;
1194         LIST_HEAD(list);
1195         int ret;
1196
1197         ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1198         if (ret) {
1199                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1200                         TO_GPI_CMD_STR(gpi_cmd), ret);
1201                 return ret;
1202         }
1203
1204         /* initialize the local ring ptrs */
1205         ch_ring->rp = ch_ring->base;
1206         ch_ring->wp = ch_ring->base;
1207
1208         /* visible to other cores */
1209         smp_wmb();
1210
1211         /* check event ring for any stale events */
1212         write_lock_irq(&gpii->pm_lock);
1213         gpi_mark_stale_events(gchan);
1214
1215         /* remove all async descriptors */
1216         spin_lock(&gchan->vc.lock);
1217         vchan_get_all_descriptors(&gchan->vc, &list);
1218         spin_unlock(&gchan->vc.lock);
1219         write_unlock_irq(&gpii->pm_lock);
1220         vchan_dma_desc_free_list(&gchan->vc, &list);
1221
1222         return 0;
1223 }
1224
1225 static int gpi_start_chan(struct gchan *gchan)
1226 {
1227         struct gpii *gpii = gchan->gpii;
1228         int ret;
1229
1230         ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1231         if (ret) {
1232                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1233                         TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1234                 return ret;
1235         }
1236
1237         /* gpii CH is active now */
1238         write_lock_irq(&gpii->pm_lock);
1239         gchan->pm_state = ACTIVE_STATE;
1240         write_unlock_irq(&gpii->pm_lock);
1241
1242         return 0;
1243 }
1244
1245 static int gpi_stop_chan(struct gchan *gchan)
1246 {
1247         struct gpii *gpii = gchan->gpii;
1248         int ret;
1249
1250         ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1251         if (ret) {
1252                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1253                         TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1254                 return ret;
1255         }
1256
1257         return 0;
1258 }
1259
1260 /* allocate and configure the transfer channel */
1261 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1262 {
1263         struct gpii *gpii = chan->gpii;
1264         struct gpi_ring *ring = &chan->ch_ring;
1265         int ret;
1266         u32 id = gpii->gpii_id;
1267         u32 chid = chan->chid;
1268         u32 pair_chid = !chid;
1269
1270         if (send_alloc_cmd) {
1271                 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1272                 if (ret) {
1273                         dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1274                                 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1275                         return ret;
1276                 }
1277         }
1278
1279         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1280                       GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1281         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1282         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1283         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1284                       upper_32_bits(ring->phys_addr));
1285         gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1286                       upper_32_bits(ring->phys_addr));
1287         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1288                       GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1289         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1290         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1291         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1292         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1293
1294         /* flush all the writes */
1295         wmb();
1296         return 0;
1297 }
1298
1299 /* allocate and configure event ring */
1300 static int gpi_alloc_ev_chan(struct gpii *gpii)
1301 {
1302         struct gpi_ring *ring = &gpii->ev_ring;
1303         void __iomem *base = gpii->ev_cntxt_base_reg;
1304         int ret;
1305
1306         ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1307         if (ret) {
1308                 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1309                         TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1310                 return ret;
1311         }
1312
1313         /* program event context */
1314         gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1315                       GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1316         gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1317         gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1318         gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1319         gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1320                       upper_32_bits(ring->phys_addr));
1321         gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1322         gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1323         gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1324         gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1325         gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1326         gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1327
1328         /* add events to ring */
1329         ring->wp = (ring->base + ring->len - ring->el_size);
1330
1331         /* flush all the writes */
1332         wmb();
1333
1334         /* gpii is active now */
1335         write_lock_irq(&gpii->pm_lock);
1336         gpii->pm_state = ACTIVE_STATE;
1337         write_unlock_irq(&gpii->pm_lock);
1338         gpi_write_ev_db(gpii, ring, ring->wp);
1339
1340         return 0;
1341 }
1342
1343 /* calculate # of ERE/TRE available to queue */
1344 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1345 {
1346         int elements = 0;
1347
1348         if (ring->wp < ring->rp) {
1349                 elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1350         } else {
1351                 elements = (ring->rp - ring->base) / ring->el_size;
1352                 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1353         }
1354
1355         return elements;
1356 }
1357
1358 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1359 {
1360         if (gpi_ring_num_elements_avail(ring) <= 0)
1361                 return -ENOMEM;
1362
1363         *wp = ring->wp;
1364         ring->wp += ring->el_size;
1365         if (ring->wp  >= (ring->base + ring->len))
1366                 ring->wp = ring->base;
1367
1368         /* visible to other cores */
1369         smp_wmb();
1370
1371         return 0;
1372 }
1373
1374 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1375 {
1376         /* Update the WP */
1377         ring->wp += ring->el_size;
1378         if (ring->wp  >= (ring->base + ring->len))
1379                 ring->wp = ring->base;
1380
1381         /* Update the RP */
1382         ring->rp += ring->el_size;
1383         if (ring->rp  >= (ring->base + ring->len))
1384                 ring->rp = ring->base;
1385
1386         /* visible to other cores */
1387         smp_wmb();
1388 }
1389
1390 static void gpi_free_ring(struct gpi_ring *ring,
1391                           struct gpii *gpii)
1392 {
1393         dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1394                           ring->pre_aligned, ring->dma_handle);
1395         memset(ring, 0, sizeof(*ring));
1396 }
1397
1398 /* allocate memory for transfer and event rings */
1399 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1400                           u32 el_size, struct gpii *gpii)
1401 {
1402         u64 len = elements * el_size;
1403         int bit;
1404
1405         /* ring len must be power of 2 */
1406         bit = find_last_bit((unsigned long *)&len, 32);
1407         if (((1 << bit) - 1) & len)
1408                 bit++;
1409         len = 1 << bit;
1410         ring->alloc_size = (len + (len - 1));
1411         dev_dbg(gpii->gpi_dev->dev,
1412                 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1413                   elements, el_size, (elements * el_size), len,
1414                   ring->alloc_size);
1415
1416         ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1417                                                ring->alloc_size,
1418                                                &ring->dma_handle, GFP_KERNEL);
1419         if (!ring->pre_aligned) {
1420                 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1421                         ring->alloc_size);
1422                 return -ENOMEM;
1423         }
1424
1425         /* align the physical mem */
1426         ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1427         ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1428         ring->rp = ring->base;
1429         ring->wp = ring->base;
1430         ring->len = len;
1431         ring->el_size = el_size;
1432         ring->elements = ring->len / ring->el_size;
1433         memset(ring->base, 0, ring->len);
1434         ring->configured = true;
1435
1436         /* update to other cores */
1437         smp_wmb();
1438
1439         dev_dbg(gpii->gpi_dev->dev,
1440                 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1441                 &ring->dma_handle, &ring->phys_addr, ring->len,
1442                 ring->el_size, ring->elements);
1443
1444         return 0;
1445 }
1446
1447 /* copy tre into transfer ring */
1448 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1449                            struct gpi_tre *gpi_tre, void **wp)
1450 {
1451         struct gpi_tre *ch_tre;
1452         int ret;
1453
1454         /* get next tre location we can copy */
1455         ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1456         if (unlikely(ret)) {
1457                 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1458                 return;
1459         }
1460
1461         /* copy the tre info */
1462         memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1463         *wp = ch_tre;
1464 }
1465
1466 /* reset and restart transfer channel */
1467 static int gpi_terminate_all(struct dma_chan *chan)
1468 {
1469         struct gchan *gchan = to_gchan(chan);
1470         struct gpii *gpii = gchan->gpii;
1471         int schid, echid, i;
1472         int ret = 0;
1473
1474         mutex_lock(&gpii->ctrl_lock);
1475
1476         /*
1477          * treat both channels as a group if its protocol is not UART
1478          * STOP, RESET, or START needs to be in lockstep
1479          */
1480         schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1481         echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1482
1483         /* stop the channel */
1484         for (i = schid; i < echid; i++) {
1485                 gchan = &gpii->gchan[i];
1486
1487                 /* disable ch state so no more TRE processing */
1488                 write_lock_irq(&gpii->pm_lock);
1489                 gchan->pm_state = PREPARE_TERMINATE;
1490                 write_unlock_irq(&gpii->pm_lock);
1491
1492                 /* send command to Stop the channel */
1493                 ret = gpi_stop_chan(gchan);
1494         }
1495
1496         /* reset the channels (clears any pending tre) */
1497         for (i = schid; i < echid; i++) {
1498                 gchan = &gpii->gchan[i];
1499
1500                 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1501                 if (ret) {
1502                         dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1503                         goto terminate_exit;
1504                 }
1505
1506                 /* reprogram channel CNTXT */
1507                 ret = gpi_alloc_chan(gchan, false);
1508                 if (ret) {
1509                         dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1510                         goto terminate_exit;
1511                 }
1512         }
1513
1514         /* restart the channels */
1515         for (i = schid; i < echid; i++) {
1516                 gchan = &gpii->gchan[i];
1517
1518                 ret = gpi_start_chan(gchan);
1519                 if (ret) {
1520                         dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1521                         goto terminate_exit;
1522                 }
1523         }
1524
1525 terminate_exit:
1526         mutex_unlock(&gpii->ctrl_lock);
1527         return ret;
1528 }
1529
1530 /* pause dma transfer for all channels */
1531 static int gpi_pause(struct dma_chan *chan)
1532 {
1533         struct gchan *gchan = to_gchan(chan);
1534         struct gpii *gpii = gchan->gpii;
1535         int i, ret;
1536
1537         mutex_lock(&gpii->ctrl_lock);
1538
1539         /*
1540          * pause/resume are per gpii not per channel, so
1541          * client needs to call pause only once
1542          */
1543         if (gpii->pm_state == PAUSE_STATE) {
1544                 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1545                 mutex_unlock(&gpii->ctrl_lock);
1546                 return 0;
1547         }
1548
1549         /* send stop command to stop the channels */
1550         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1551                 ret = gpi_stop_chan(&gpii->gchan[i]);
1552                 if (ret) {
1553                         mutex_unlock(&gpii->ctrl_lock);
1554                         return ret;
1555                 }
1556         }
1557
1558         disable_irq(gpii->irq);
1559
1560         /* Wait for threads to complete out */
1561         tasklet_kill(&gpii->ev_task);
1562
1563         write_lock_irq(&gpii->pm_lock);
1564         gpii->pm_state = PAUSE_STATE;
1565         write_unlock_irq(&gpii->pm_lock);
1566         mutex_unlock(&gpii->ctrl_lock);
1567
1568         return 0;
1569 }
1570
1571 /* resume dma transfer */
1572 static int gpi_resume(struct dma_chan *chan)
1573 {
1574         struct gchan *gchan = to_gchan(chan);
1575         struct gpii *gpii = gchan->gpii;
1576         int i, ret;
1577
1578         mutex_lock(&gpii->ctrl_lock);
1579         if (gpii->pm_state == ACTIVE_STATE) {
1580                 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1581                 mutex_unlock(&gpii->ctrl_lock);
1582                 return 0;
1583         }
1584
1585         enable_irq(gpii->irq);
1586
1587         /* send start command to start the channels */
1588         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1589                 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1590                 if (ret) {
1591                         dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1592                         mutex_unlock(&gpii->ctrl_lock);
1593                         return ret;
1594                 }
1595         }
1596
1597         write_lock_irq(&gpii->pm_lock);
1598         gpii->pm_state = ACTIVE_STATE;
1599         write_unlock_irq(&gpii->pm_lock);
1600         mutex_unlock(&gpii->ctrl_lock);
1601
1602         return 0;
1603 }
1604
1605 static void gpi_desc_free(struct virt_dma_desc *vd)
1606 {
1607         struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1608
1609         kfree(gpi_desc);
1610         gpi_desc = NULL;
1611 }
1612
1613 static int
1614 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1615 {
1616         struct gchan *gchan = to_gchan(chan);
1617
1618         if (!config->peripheral_config)
1619                 return -EINVAL;
1620
1621         gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1622         if (!gchan->config)
1623                 return -ENOMEM;
1624
1625         memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1626
1627         return 0;
1628 }
1629
1630 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1631                               struct scatterlist *sgl, enum dma_transfer_direction direction)
1632 {
1633         struct gpi_i2c_config *i2c = chan->config;
1634         struct device *dev = chan->gpii->gpi_dev->dev;
1635         unsigned int tre_idx = 0;
1636         dma_addr_t address;
1637         struct gpi_tre *tre;
1638         unsigned int i;
1639
1640         /* first create config tre if applicable */
1641         if (i2c->set_config) {
1642                 tre = &desc->tre[tre_idx];
1643                 tre_idx++;
1644
1645                 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1646                 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1647                 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1648                 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1649                 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1650
1651                 tre->dword[1] = 0;
1652
1653                 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1654
1655                 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1656                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1657         }
1658
1659         /* create the GO tre for Tx */
1660         if (i2c->op == I2C_WRITE) {
1661                 tre = &desc->tre[tre_idx];
1662                 tre_idx++;
1663
1664                 if (i2c->multi_msg)
1665                         tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1666                 else
1667                         tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1668
1669                 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1670                 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1671
1672                 tre->dword[1] = 0;
1673                 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1674
1675                 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1676
1677                 if (i2c->multi_msg)
1678                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1679                 else
1680                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1681         }
1682
1683         if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1684                 /* create the DMA TRE */
1685                 tre = &desc->tre[tre_idx];
1686                 tre_idx++;
1687
1688                 address = sg_dma_address(sgl);
1689                 tre->dword[0] = lower_32_bits(address);
1690                 tre->dword[1] = upper_32_bits(address);
1691
1692                 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1693
1694                 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1695                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1696         }
1697
1698         for (i = 0; i < tre_idx; i++)
1699                 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1700                         desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1701
1702         return tre_idx;
1703 }
1704
1705 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1706                               struct scatterlist *sgl, enum dma_transfer_direction direction)
1707 {
1708         struct gpi_spi_config *spi = chan->config;
1709         struct device *dev = chan->gpii->gpi_dev->dev;
1710         unsigned int tre_idx = 0;
1711         dma_addr_t address;
1712         struct gpi_tre *tre;
1713         unsigned int i;
1714
1715         /* first create config tre if applicable */
1716         if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1717                 tre = &desc->tre[tre_idx];
1718                 tre_idx++;
1719
1720                 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1721                 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1722                 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1723                 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1724                 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1725                 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1726
1727                 tre->dword[1] = 0;
1728
1729                 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1730                 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1731
1732                 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1733                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1734         }
1735
1736         /* create the GO tre for Tx */
1737         if (direction == DMA_MEM_TO_DEV) {
1738                 tre = &desc->tre[tre_idx];
1739                 tre_idx++;
1740
1741                 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1742                 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1743                 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1744
1745                 tre->dword[1] = 0;
1746
1747                 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1748
1749                 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1750                 if (spi->cmd == SPI_RX) {
1751                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1752                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1753                 } else if (spi->cmd == SPI_TX) {
1754                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1755                 } else { /* SPI_DUPLEX */
1756                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1757                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1758                 }
1759         }
1760
1761         /* create the dma tre */
1762         tre = &desc->tre[tre_idx];
1763         tre_idx++;
1764
1765         address = sg_dma_address(sgl);
1766         tre->dword[0] = lower_32_bits(address);
1767         tre->dword[1] = upper_32_bits(address);
1768
1769         tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1770
1771         tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1772         if (direction == DMA_MEM_TO_DEV)
1773                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1774
1775         for (i = 0; i < tre_idx; i++)
1776                 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1777                         desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1778
1779         return tre_idx;
1780 }
1781
1782 /* copy tre into transfer ring */
1783 static struct dma_async_tx_descriptor *
1784 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1785                   unsigned int sg_len, enum dma_transfer_direction direction,
1786                   unsigned long flags, void *context)
1787 {
1788         struct gchan *gchan = to_gchan(chan);
1789         struct gpii *gpii = gchan->gpii;
1790         struct device *dev = gpii->gpi_dev->dev;
1791         struct gpi_ring *ch_ring = &gchan->ch_ring;
1792         struct gpi_desc *gpi_desc;
1793         u32 nr, nr_tre = 0;
1794         u8 set_config;
1795         int i;
1796
1797         gpii->ieob_set = false;
1798         if (!is_slave_direction(direction)) {
1799                 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1800                 return NULL;
1801         }
1802
1803         if (sg_len > 1) {
1804                 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1805                 return NULL;
1806         }
1807
1808         nr_tre = 3;
1809         set_config = *(u32 *)gchan->config;
1810         if (!set_config)
1811                 nr_tre = 2;
1812         if (direction == DMA_DEV_TO_MEM) /* rx */
1813                 nr_tre = 1;
1814
1815         /* calculate # of elements required & available */
1816         nr = gpi_ring_num_elements_avail(ch_ring);
1817         if (nr < nr_tre) {
1818                 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1819                 return NULL;
1820         }
1821
1822         gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1823         if (!gpi_desc)
1824                 return NULL;
1825
1826         /* create TREs for xfer */
1827         if (gchan->protocol == QCOM_GPI_SPI) {
1828                 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1829         } else if (gchan->protocol == QCOM_GPI_I2C) {
1830                 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1831         } else {
1832                 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1833                 kfree(gpi_desc);
1834                 return NULL;
1835         }
1836
1837         /* set up the descriptor */
1838         gpi_desc->gchan = gchan;
1839         gpi_desc->len = sg_dma_len(sgl);
1840         gpi_desc->num_tre  = i;
1841
1842         return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1843 }
1844
1845 /* rings transfer ring db to being transfer */
1846 static void gpi_issue_pending(struct dma_chan *chan)
1847 {
1848         struct gchan *gchan = to_gchan(chan);
1849         struct gpii *gpii = gchan->gpii;
1850         unsigned long flags, pm_lock_flags;
1851         struct virt_dma_desc *vd = NULL;
1852         struct gpi_desc *gpi_desc;
1853         struct gpi_ring *ch_ring = &gchan->ch_ring;
1854         void *tre, *wp = NULL;
1855         int i;
1856
1857         read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1858
1859         /* move all submitted discriptors to issued list */
1860         spin_lock_irqsave(&gchan->vc.lock, flags);
1861         if (vchan_issue_pending(&gchan->vc))
1862                 vd = list_last_entry(&gchan->vc.desc_issued,
1863                                      struct virt_dma_desc, node);
1864         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1865
1866         /* nothing to do list is empty */
1867         if (!vd) {
1868                 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1869                 return;
1870         }
1871
1872         gpi_desc = to_gpi_desc(vd);
1873         for (i = 0; i < gpi_desc->num_tre; i++) {
1874                 tre = &gpi_desc->tre[i];
1875                 gpi_queue_xfer(gpii, gchan, tre, &wp);
1876         }
1877
1878         gpi_desc->db = ch_ring->wp;
1879         gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1880         read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1881 }
1882
1883 static int gpi_ch_init(struct gchan *gchan)
1884 {
1885         struct gpii *gpii = gchan->gpii;
1886         const int ev_factor = gpii->gpi_dev->ev_factor;
1887         u32 elements;
1888         int i = 0, ret = 0;
1889
1890         gchan->pm_state = CONFIG_STATE;
1891
1892         /* check if both channels are configured before continue */
1893         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1894                 if (gpii->gchan[i].pm_state != CONFIG_STATE)
1895                         goto exit_gpi_init;
1896
1897         /* protocol must be same for both channels */
1898         if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1899                 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1900                         gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1901                 ret = -EINVAL;
1902                 goto exit_gpi_init;
1903         }
1904
1905         /* allocate memory for event ring */
1906         elements = CHAN_TRES << ev_factor;
1907         ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1908                              sizeof(union gpi_event), gpii);
1909         if (ret)
1910                 goto exit_gpi_init;
1911
1912         /* configure interrupts */
1913         write_lock_irq(&gpii->pm_lock);
1914         gpii->pm_state = PREPARE_HARDWARE;
1915         write_unlock_irq(&gpii->pm_lock);
1916         ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1917         if (ret) {
1918                 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1919                 goto error_config_int;
1920         }
1921
1922         /* allocate event rings */
1923         ret = gpi_alloc_ev_chan(gpii);
1924         if (ret) {
1925                 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1926                 goto error_alloc_ev_ring;
1927         }
1928
1929         /* Allocate all channels */
1930         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1931                 ret = gpi_alloc_chan(&gpii->gchan[i], true);
1932                 if (ret) {
1933                         dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1934                         goto error_alloc_chan;
1935                 }
1936         }
1937
1938         /* start channels  */
1939         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1940                 ret = gpi_start_chan(&gpii->gchan[i]);
1941                 if (ret) {
1942                         dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1943                         goto error_start_chan;
1944                 }
1945         }
1946         return ret;
1947
1948 error_start_chan:
1949         for (i = i - 1; i >= 0; i--) {
1950                 gpi_stop_chan(&gpii->gchan[i]);
1951                 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1952         }
1953         i = 2;
1954 error_alloc_chan:
1955         for (i = i - 1; i >= 0; i--)
1956                 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1957 error_alloc_ev_ring:
1958         gpi_disable_interrupts(gpii);
1959 error_config_int:
1960         gpi_free_ring(&gpii->ev_ring, gpii);
1961 exit_gpi_init:
1962         return ret;
1963 }
1964
1965 /* release all channel resources */
1966 static void gpi_free_chan_resources(struct dma_chan *chan)
1967 {
1968         struct gchan *gchan = to_gchan(chan);
1969         struct gpii *gpii = gchan->gpii;
1970         enum gpi_pm_state cur_state;
1971         int ret, i;
1972
1973         mutex_lock(&gpii->ctrl_lock);
1974
1975         cur_state = gchan->pm_state;
1976
1977         /* disable ch state so no more TRE processing for this channel */
1978         write_lock_irq(&gpii->pm_lock);
1979         gchan->pm_state = PREPARE_TERMINATE;
1980         write_unlock_irq(&gpii->pm_lock);
1981
1982         /* attempt to do graceful hardware shutdown */
1983         if (cur_state == ACTIVE_STATE) {
1984                 gpi_stop_chan(gchan);
1985
1986                 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1987                 if (ret)
1988                         dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1989
1990                 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1991         }
1992
1993         /* free all allocated memory */
1994         gpi_free_ring(&gchan->ch_ring, gpii);
1995         vchan_free_chan_resources(&gchan->vc);
1996         kfree(gchan->config);
1997
1998         write_lock_irq(&gpii->pm_lock);
1999         gchan->pm_state = DISABLE_STATE;
2000         write_unlock_irq(&gpii->pm_lock);
2001
2002         /* if other rings are still active exit */
2003         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2004                 if (gpii->gchan[i].ch_ring.configured)
2005                         goto exit_free;
2006
2007         /* deallocate EV Ring */
2008         cur_state = gpii->pm_state;
2009         write_lock_irq(&gpii->pm_lock);
2010         gpii->pm_state = PREPARE_TERMINATE;
2011         write_unlock_irq(&gpii->pm_lock);
2012
2013         /* wait for threads to complete out */
2014         tasklet_kill(&gpii->ev_task);
2015
2016         /* send command to de allocate event ring */
2017         if (cur_state == ACTIVE_STATE)
2018                 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2019
2020         gpi_free_ring(&gpii->ev_ring, gpii);
2021
2022         /* disable interrupts */
2023         if (cur_state == ACTIVE_STATE)
2024                 gpi_disable_interrupts(gpii);
2025
2026         /* set final state to disable */
2027         write_lock_irq(&gpii->pm_lock);
2028         gpii->pm_state = DISABLE_STATE;
2029         write_unlock_irq(&gpii->pm_lock);
2030
2031 exit_free:
2032         mutex_unlock(&gpii->ctrl_lock);
2033 }
2034
2035 /* allocate channel resources */
2036 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2037 {
2038         struct gchan *gchan = to_gchan(chan);
2039         struct gpii *gpii = gchan->gpii;
2040         int ret;
2041
2042         mutex_lock(&gpii->ctrl_lock);
2043
2044         /* allocate memory for transfer ring */
2045         ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2046                              sizeof(struct gpi_tre), gpii);
2047         if (ret)
2048                 goto xfer_alloc_err;
2049
2050         ret = gpi_ch_init(gchan);
2051
2052         mutex_unlock(&gpii->ctrl_lock);
2053
2054         return ret;
2055 xfer_alloc_err:
2056         mutex_unlock(&gpii->ctrl_lock);
2057
2058         return ret;
2059 }
2060
2061 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2062 {
2063         struct gchan *tx_chan, *rx_chan;
2064         unsigned int gpii;
2065
2066         /* check if same seid is already configured for another chid */
2067         for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2068                 if (!((1 << gpii) & gpi_dev->gpii_mask))
2069                         continue;
2070
2071                 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2072                 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2073
2074                 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2075                         return gpii;
2076                 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2077                         return gpii;
2078         }
2079
2080         /* no channels configured with same seid, return next avail gpii */
2081         for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2082                 if (!((1 << gpii) & gpi_dev->gpii_mask))
2083                         continue;
2084
2085                 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2086                 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2087
2088                 /* check if gpii is configured */
2089                 if (tx_chan->vc.chan.client_count ||
2090                     rx_chan->vc.chan.client_count)
2091                         continue;
2092
2093                 /* found a free gpii */
2094                 return gpii;
2095         }
2096
2097         /* no gpii instance available to use */
2098         return -EIO;
2099 }
2100
2101 /* gpi_of_dma_xlate: open client requested channel */
2102 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2103                                          struct of_dma *of_dma)
2104 {
2105         struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2106         u32 seid, chid;
2107         int gpii;
2108         struct gchan *gchan;
2109
2110         if (args->args_count < 3) {
2111                 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2112                         args->args_count);
2113                 return NULL;
2114         }
2115
2116         chid = args->args[0];
2117         if (chid >= MAX_CHANNELS_PER_GPII) {
2118                 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2119                 return NULL;
2120         }
2121
2122         seid = args->args[1];
2123
2124         /* find next available gpii to use */
2125         gpii = gpi_find_avail_gpii(gpi_dev, seid);
2126         if (gpii < 0) {
2127                 dev_err(gpi_dev->dev, "no available gpii instances\n");
2128                 return NULL;
2129         }
2130
2131         gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2132         if (gchan->vc.chan.client_count) {
2133                 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2134                         gpii, chid, gchan->seid);
2135                 return NULL;
2136         }
2137
2138         gchan->seid = seid;
2139         gchan->protocol = args->args[2];
2140
2141         return dma_get_slave_channel(&gchan->vc.chan);
2142 }
2143
2144 static int gpi_probe(struct platform_device *pdev)
2145 {
2146         struct gpi_dev *gpi_dev;
2147         unsigned int i;
2148         u32 ee_offset;
2149         int ret;
2150
2151         gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2152         if (!gpi_dev)
2153                 return -ENOMEM;
2154
2155         gpi_dev->dev = &pdev->dev;
2156         gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2157         if (IS_ERR(gpi_dev->regs))
2158                 return PTR_ERR(gpi_dev->regs);
2159         gpi_dev->ee_base = gpi_dev->regs;
2160
2161         ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2162                                    &gpi_dev->max_gpii);
2163         if (ret) {
2164                 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2165                 return ret;
2166         }
2167
2168         ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2169                                    &gpi_dev->gpii_mask);
2170         if (ret) {
2171                 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2172                 return ret;
2173         }
2174
2175         ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2176         gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2177
2178         gpi_dev->ev_factor = EV_FACTOR;
2179
2180         ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2181         if (ret) {
2182                 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2183                 return ret;
2184         }
2185
2186         gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2187                                       gpi_dev->max_gpii, GFP_KERNEL);
2188         if (!gpi_dev->gpiis)
2189                 return -ENOMEM;
2190
2191         /* setup all the supported gpii */
2192         INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2193         for (i = 0; i < gpi_dev->max_gpii; i++) {
2194                 struct gpii *gpii = &gpi_dev->gpiis[i];
2195                 int chan;
2196
2197                 if (!((1 << i) & gpi_dev->gpii_mask))
2198                         continue;
2199
2200                 /* set up ev cntxt register map */
2201                 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2202                 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2203                 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2204                 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2205                 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2206
2207                 /* set up irq */
2208                 ret = platform_get_irq(pdev, i);
2209                 if (ret < 0)
2210                         return ret;
2211                 gpii->irq = ret;
2212
2213                 /* set up channel specific register info */
2214                 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2215                         struct gchan *gchan = &gpii->gchan[chan];
2216
2217                         /* set up ch cntxt register map */
2218                         gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2219                                 GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2220                         gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2221                                 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2222                         gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2223
2224                         /* vchan setup */
2225                         vchan_init(&gchan->vc, &gpi_dev->dma_device);
2226                         gchan->vc.desc_free = gpi_desc_free;
2227                         gchan->chid = chan;
2228                         gchan->gpii = gpii;
2229                         gchan->dir = GPII_CHAN_DIR[chan];
2230                 }
2231                 mutex_init(&gpii->ctrl_lock);
2232                 rwlock_init(&gpii->pm_lock);
2233                 tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2234                              (unsigned long)gpii);
2235                 init_completion(&gpii->cmd_completion);
2236                 gpii->gpii_id = i;
2237                 gpii->regs = gpi_dev->ee_base;
2238                 gpii->gpi_dev = gpi_dev;
2239         }
2240
2241         platform_set_drvdata(pdev, gpi_dev);
2242
2243         /* clear and Set capabilities */
2244         dma_cap_zero(gpi_dev->dma_device.cap_mask);
2245         dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2246
2247         /* configure dmaengine apis */
2248         gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2249         gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2250         gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2251         gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2252         gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2253         gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2254         gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2255         gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2256         gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2257         gpi_dev->dma_device.device_config = gpi_peripheral_config;
2258         gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2259         gpi_dev->dma_device.dev = gpi_dev->dev;
2260         gpi_dev->dma_device.device_pause = gpi_pause;
2261         gpi_dev->dma_device.device_resume = gpi_resume;
2262
2263         /* register with dmaengine framework */
2264         ret = dma_async_device_register(&gpi_dev->dma_device);
2265         if (ret) {
2266                 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2267                 return ret;
2268         }
2269
2270         ret = of_dma_controller_register(gpi_dev->dev->of_node,
2271                                          gpi_of_dma_xlate, gpi_dev);
2272         if (ret) {
2273                 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2274                 return ret;
2275         }
2276
2277         return ret;
2278 }
2279
2280 static const struct of_device_id gpi_of_match[] = {
2281         { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2282         { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2283         /*
2284          * Do not grow the list for compatible devices. Instead use
2285          * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2286          * (for ee_offset = 0x10000).
2287          */
2288         { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2289         { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2290         { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2291         { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2292         { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2293         { },
2294 };
2295 MODULE_DEVICE_TABLE(of, gpi_of_match);
2296
2297 static struct platform_driver gpi_driver = {
2298         .probe = gpi_probe,
2299         .driver = {
2300                 .name = KBUILD_MODNAME,
2301                 .of_match_table = gpi_of_match,
2302         },
2303 };
2304
2305 static int __init gpi_init(void)
2306 {
2307         return platform_driver_register(&gpi_driver);
2308 }
2309 subsys_initcall(gpi_init)
2310
2311 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2312 MODULE_LICENSE("GPL v2");
This page took 0.166496 seconds and 4 git commands to generate.