]> Git Repo - linux.git/blob - drivers/dma/idxd/irq.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / dma / idxd / irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/sched/mm.h>
12 #include <uapi/linux/idxd.h>
13 #include "../dmaengine.h"
14 #include "idxd.h"
15 #include "registers.h"
16
17 enum irq_work_type {
18         IRQ_WORK_NORMAL = 0,
19         IRQ_WORK_PROCESS_FAULT,
20 };
21
22 struct idxd_resubmit {
23         struct work_struct work;
24         struct idxd_desc *desc;
25 };
26
27 struct idxd_int_handle_revoke {
28         struct work_struct work;
29         struct idxd_device *idxd;
30 };
31
32 static void idxd_device_reinit(struct work_struct *work)
33 {
34         struct idxd_device *idxd = container_of(work, struct idxd_device, work);
35         struct device *dev = &idxd->pdev->dev;
36         int rc, i;
37
38         idxd_device_reset(idxd);
39         rc = idxd_device_config(idxd);
40         if (rc < 0)
41                 goto out;
42
43         rc = idxd_device_enable(idxd);
44         if (rc < 0)
45                 goto out;
46
47         for (i = 0; i < idxd->max_wqs; i++) {
48                 if (test_bit(i, idxd->wq_enable_map)) {
49                         struct idxd_wq *wq = idxd->wqs[i];
50
51                         rc = idxd_wq_enable(wq);
52                         if (rc < 0) {
53                                 clear_bit(i, idxd->wq_enable_map);
54                                 dev_warn(dev, "Unable to re-enable wq %s\n",
55                                          dev_name(wq_confdev(wq)));
56                         }
57                 }
58         }
59
60         return;
61
62  out:
63         idxd_device_clear_state(idxd);
64 }
65
66 /*
67  * The function sends a drain descriptor for the interrupt handle. The drain ensures
68  * all descriptors with this interrupt handle is flushed and the interrupt
69  * will allow the cleanup of the outstanding descriptors.
70  */
71 static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie)
72 {
73         struct idxd_wq *wq = ie_to_wq(ie);
74         struct idxd_device *idxd = wq->idxd;
75         struct device *dev = &idxd->pdev->dev;
76         struct dsa_hw_desc desc = {};
77         void __iomem *portal;
78         int rc;
79
80         /* Issue a simple drain operation with interrupt but no completion record */
81         desc.flags = IDXD_OP_FLAG_RCI;
82         desc.opcode = DSA_OPCODE_DRAIN;
83         desc.priv = 1;
84
85         if (ie->pasid != IOMMU_PASID_INVALID)
86                 desc.pasid = ie->pasid;
87         desc.int_handle = ie->int_handle;
88         portal = idxd_wq_portal_addr(wq);
89
90         /*
91          * The wmb() makes sure that the descriptor is all there before we
92          * issue.
93          */
94         wmb();
95         if (wq_dedicated(wq)) {
96                 iosubmit_cmds512(portal, &desc, 1);
97         } else {
98                 rc = idxd_enqcmds(wq, portal, &desc);
99                 /* This should not fail unless hardware failed. */
100                 if (rc < 0)
101                         dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id);
102         }
103 }
104
105 static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie)
106 {
107         LIST_HEAD(flist);
108         struct idxd_desc *d, *t;
109         struct llist_node *head;
110
111         spin_lock(&ie->list_lock);
112         head = llist_del_all(&ie->pending_llist);
113         if (head) {
114                 llist_for_each_entry_safe(d, t, head, llnode)
115                         list_add_tail(&d->list, &ie->work_list);
116         }
117
118         list_for_each_entry_safe(d, t, &ie->work_list, list) {
119                 if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL)
120                         list_move_tail(&d->list, &flist);
121         }
122         spin_unlock(&ie->list_lock);
123
124         list_for_each_entry_safe(d, t, &flist, list) {
125                 list_del(&d->list);
126                 idxd_desc_complete(d, IDXD_COMPLETE_ABORT, true);
127         }
128 }
129
130 static void idxd_int_handle_revoke(struct work_struct *work)
131 {
132         struct idxd_int_handle_revoke *revoke =
133                 container_of(work, struct idxd_int_handle_revoke, work);
134         struct idxd_device *idxd = revoke->idxd;
135         struct pci_dev *pdev = idxd->pdev;
136         struct device *dev = &pdev->dev;
137         int i, new_handle, rc;
138
139         if (!idxd->request_int_handles) {
140                 kfree(revoke);
141                 dev_warn(dev, "Unexpected int handle refresh interrupt.\n");
142                 return;
143         }
144
145         /*
146          * The loop attempts to acquire new interrupt handle for all interrupt
147          * vectors that supports a handle. If a new interrupt handle is acquired and the
148          * wq is kernel type, the driver will kill the percpu_ref to pause all
149          * ongoing descriptor submissions. The interrupt handle is then changed.
150          * After change, the percpu_ref is revived and all the pending submissions
151          * are woken to try again. A drain is sent to for the interrupt handle
152          * at the end to make sure all invalid int handle descriptors are processed.
153          */
154         for (i = 1; i < idxd->irq_cnt; i++) {
155                 struct idxd_irq_entry *ie = idxd_get_ie(idxd, i);
156                 struct idxd_wq *wq = ie_to_wq(ie);
157
158                 if (ie->int_handle == INVALID_INT_HANDLE)
159                         continue;
160
161                 rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX);
162                 if (rc < 0) {
163                         dev_warn(dev, "get int handle %d failed: %d\n", i, rc);
164                         /*
165                          * Failed to acquire new interrupt handle. Kill the WQ
166                          * and release all the pending submitters. The submitters will
167                          * get error return code and handle appropriately.
168                          */
169                         ie->int_handle = INVALID_INT_HANDLE;
170                         idxd_wq_quiesce(wq);
171                         idxd_abort_invalid_int_handle_descs(ie);
172                         continue;
173                 }
174
175                 /* No change in interrupt handle, nothing needs to be done */
176                 if (ie->int_handle == new_handle)
177                         continue;
178
179                 if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) {
180                         /*
181                          * All the MSIX interrupts are allocated at once during probe.
182                          * Therefore we need to update all interrupts even if the WQ
183                          * isn't supporting interrupt operations.
184                          */
185                         ie->int_handle = new_handle;
186                         continue;
187                 }
188
189                 mutex_lock(&wq->wq_lock);
190                 reinit_completion(&wq->wq_resurrect);
191
192                 /* Kill percpu_ref to pause additional descriptor submissions */
193                 percpu_ref_kill(&wq->wq_active);
194
195                 /* Wait for all submitters quiesce before we change interrupt handle */
196                 wait_for_completion(&wq->wq_dead);
197
198                 ie->int_handle = new_handle;
199
200                 /* Revive percpu ref and wake up all the waiting submitters */
201                 percpu_ref_reinit(&wq->wq_active);
202                 complete_all(&wq->wq_resurrect);
203                 mutex_unlock(&wq->wq_lock);
204
205                 /*
206                  * The delay here is to wait for all possible MOVDIR64B that
207                  * are issued before percpu_ref_kill() has happened to have
208                  * reached the PCIe domain before the drain is issued. The driver
209                  * needs to ensure that the drain descriptor issued does not pass
210                  * all the other issued descriptors that contain the invalid
211                  * interrupt handle in order to ensure that the drain descriptor
212                  * interrupt will allow the cleanup of all the descriptors with
213                  * invalid interrupt handle.
214                  */
215                 if (wq_dedicated(wq))
216                         udelay(100);
217                 idxd_int_handle_revoke_drain(ie);
218         }
219         kfree(revoke);
220 }
221
222 static void idxd_evl_fault_work(struct work_struct *work)
223 {
224         struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work);
225         struct idxd_wq *wq = fault->wq;
226         struct idxd_device *idxd = wq->idxd;
227         struct device *dev = &idxd->pdev->dev;
228         struct idxd_evl *evl = idxd->evl;
229         struct __evl_entry *entry_head = fault->entry;
230         void *cr = (void *)entry_head + idxd->data->evl_cr_off;
231         int cr_size = idxd->data->compl_size;
232         u8 *status = (u8 *)cr + idxd->data->cr_status_off;
233         u8 *result = (u8 *)cr + idxd->data->cr_result_off;
234         int copied, copy_size;
235         bool *bf;
236
237         switch (fault->status) {
238         case DSA_COMP_CRA_XLAT:
239                 if (entry_head->batch && entry_head->first_err_in_batch)
240                         evl->batch_fail[entry_head->batch_id] = false;
241
242                 copy_size = cr_size;
243                 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
244                 break;
245         case DSA_COMP_BATCH_EVL_ERR:
246                 bf = &evl->batch_fail[entry_head->batch_id];
247
248                 copy_size = entry_head->rcr || *bf ? cr_size : 0;
249                 if (*bf) {
250                         if (*status == DSA_COMP_SUCCESS)
251                                 *status = DSA_COMP_BATCH_FAIL;
252                         *result = 1;
253                         *bf = false;
254                 }
255                 idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULTS);
256                 break;
257         case DSA_COMP_DRAIN_EVL:
258                 copy_size = cr_size;
259                 break;
260         default:
261                 copy_size = 0;
262                 dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status);
263                 break;
264         }
265
266         if (copy_size == 0)
267                 return;
268
269         /*
270          * Copy completion record to fault_addr in user address space
271          * that is found by wq and PASID.
272          */
273         copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr,
274                               cr, copy_size);
275         /*
276          * The task that triggered the page fault is unknown currently
277          * because multiple threads may share the user address
278          * space or the task exits already before this fault.
279          * So if the copy fails, SIGSEGV can not be sent to the task.
280          * Just print an error for the failure. The user application
281          * waiting for the completion record will time out on this
282          * failure.
283          */
284         switch (fault->status) {
285         case DSA_COMP_CRA_XLAT:
286                 if (copied != copy_size) {
287                         idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
288                         dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n",
289                                             copy_size, copied);
290                         if (entry_head->batch)
291                                 evl->batch_fail[entry_head->batch_id] = true;
292                 }
293                 break;
294         case DSA_COMP_BATCH_EVL_ERR:
295                 if (copied != copy_size) {
296                         idxd_user_counter_increment(wq, entry_head->pasid, COUNTER_FAULT_FAILS);
297                         dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n",
298                                             copy_size, copied);
299                 }
300                 break;
301         case DSA_COMP_DRAIN_EVL:
302                 if (copied != copy_size)
303                         dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n",
304                                             copy_size, copied);
305                 break;
306         }
307
308         kmem_cache_free(idxd->evl_cache, fault);
309 }
310
311 static void process_evl_entry(struct idxd_device *idxd,
312                               struct __evl_entry *entry_head, unsigned int index)
313 {
314         struct device *dev = &idxd->pdev->dev;
315         struct idxd_evl *evl = idxd->evl;
316         u8 status;
317
318         if (test_bit(index, evl->bmap)) {
319                 clear_bit(index, evl->bmap);
320         } else {
321                 status = DSA_COMP_STATUS(entry_head->error);
322
323                 if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL ||
324                     status == DSA_COMP_BATCH_EVL_ERR) {
325                         struct idxd_evl_fault *fault;
326                         int ent_size = evl_ent_size(idxd);
327
328                         if (entry_head->rci)
329                                 dev_dbg(dev, "Completion Int Req set, ignoring!\n");
330
331                         if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL)
332                                 return;
333
334                         fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC);
335                         if (fault) {
336                                 struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx];
337
338                                 fault->wq = wq;
339                                 fault->status = status;
340                                 memcpy(&fault->entry, entry_head, ent_size);
341                                 INIT_WORK(&fault->work, idxd_evl_fault_work);
342                                 queue_work(wq->wq, &fault->work);
343                         } else {
344                                 dev_warn(dev, "Failed to service fault work.\n");
345                         }
346                 } else {
347                         dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n",
348                                              status, entry_head->operation,
349                                              entry_head->fault_addr);
350                 }
351         }
352 }
353
354 static void process_evl_entries(struct idxd_device *idxd)
355 {
356         union evl_status_reg evl_status;
357         unsigned int h, t;
358         struct idxd_evl *evl = idxd->evl;
359         struct __evl_entry *entry_head;
360         unsigned int ent_size = evl_ent_size(idxd);
361         u32 size;
362
363         evl_status.bits = 0;
364         evl_status.int_pending = 1;
365
366         mutex_lock(&evl->lock);
367         /* Clear interrupt pending bit */
368         iowrite32(evl_status.bits_upper32,
369                   idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32));
370         evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
371         t = evl_status.tail;
372         h = evl_status.head;
373         size = idxd->evl->size;
374
375         while (h != t) {
376                 entry_head = (struct __evl_entry *)(evl->log + (h * ent_size));
377                 process_evl_entry(idxd, entry_head, h);
378                 h = (h + 1) % size;
379         }
380
381         evl_status.head = h;
382         iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET);
383         mutex_unlock(&evl->lock);
384 }
385
386 irqreturn_t idxd_misc_thread(int vec, void *data)
387 {
388         struct idxd_irq_entry *irq_entry = data;
389         struct idxd_device *idxd = ie_to_idxd(irq_entry);
390         struct device *dev = &idxd->pdev->dev;
391         union gensts_reg gensts;
392         u32 val = 0;
393         int i;
394         bool err = false;
395         u32 cause;
396
397         cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
398         if (!cause)
399                 return IRQ_NONE;
400
401         iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
402
403         if (cause & IDXD_INTC_HALT_STATE)
404                 goto halt;
405
406         if (cause & IDXD_INTC_ERR) {
407                 spin_lock(&idxd->dev_lock);
408                 for (i = 0; i < 4; i++)
409                         idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
410                                         IDXD_SWERR_OFFSET + i * sizeof(u64));
411
412                 iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK,
413                           idxd->reg_base + IDXD_SWERR_OFFSET);
414
415                 if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
416                         int id = idxd->sw_err.wq_idx;
417                         struct idxd_wq *wq = idxd->wqs[id];
418
419                         if (wq->type == IDXD_WQT_USER)
420                                 wake_up_interruptible(&wq->err_queue);
421                 } else {
422                         int i;
423
424                         for (i = 0; i < idxd->max_wqs; i++) {
425                                 struct idxd_wq *wq = idxd->wqs[i];
426
427                                 if (wq->type == IDXD_WQT_USER)
428                                         wake_up_interruptible(&wq->err_queue);
429                         }
430                 }
431
432                 spin_unlock(&idxd->dev_lock);
433                 val |= IDXD_INTC_ERR;
434
435                 for (i = 0; i < 4; i++)
436                         dev_warn_ratelimited(dev, "err[%d]: %#16.16llx\n",
437                                              i, idxd->sw_err.bits[i]);
438                 err = true;
439         }
440
441         if (cause & IDXD_INTC_INT_HANDLE_REVOKED) {
442                 struct idxd_int_handle_revoke *revoke;
443
444                 val |= IDXD_INTC_INT_HANDLE_REVOKED;
445
446                 revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC);
447                 if (revoke) {
448                         revoke->idxd = idxd;
449                         INIT_WORK(&revoke->work, idxd_int_handle_revoke);
450                         queue_work(idxd->wq, &revoke->work);
451
452                 } else {
453                         dev_err(dev, "Failed to allocate work for int handle revoke\n");
454                         idxd_wqs_quiesce(idxd);
455                 }
456         }
457
458         if (cause & IDXD_INTC_CMD) {
459                 val |= IDXD_INTC_CMD;
460                 complete(idxd->cmd_done);
461         }
462
463         if (cause & IDXD_INTC_OCCUPY) {
464                 /* Driver does not utilize occupancy interrupt */
465                 val |= IDXD_INTC_OCCUPY;
466         }
467
468         if (cause & IDXD_INTC_PERFMON_OVFL) {
469                 val |= IDXD_INTC_PERFMON_OVFL;
470                 perfmon_counter_overflow(idxd);
471         }
472
473         if (cause & IDXD_INTC_EVL) {
474                 val |= IDXD_INTC_EVL;
475                 process_evl_entries(idxd);
476         }
477
478         val ^= cause;
479         if (val)
480                 dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
481                               val);
482
483         if (!err)
484                 goto out;
485
486 halt:
487         gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
488         if (gensts.state == IDXD_DEVICE_STATE_HALT) {
489                 idxd->state = IDXD_DEV_HALTED;
490                 if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
491                         /*
492                          * If we need a software reset, we will throw the work
493                          * on a system workqueue in order to allow interrupts
494                          * for the device command completions.
495                          */
496                         INIT_WORK(&idxd->work, idxd_device_reinit);
497                         queue_work(idxd->wq, &idxd->work);
498                 } else {
499                         idxd->state = IDXD_DEV_HALTED;
500                         idxd_wqs_quiesce(idxd);
501                         idxd_wqs_unmap_portal(idxd);
502                         idxd_device_clear_state(idxd);
503                         dev_err(&idxd->pdev->dev,
504                                 "idxd halted, need %s.\n",
505                                 gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
506                                 "FLR" : "system reset");
507                 }
508         }
509
510 out:
511         return IRQ_HANDLED;
512 }
513
514 static void idxd_int_handle_resubmit_work(struct work_struct *work)
515 {
516         struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work);
517         struct idxd_desc *desc = irw->desc;
518         struct idxd_wq *wq = desc->wq;
519         int rc;
520
521         desc->completion->status = 0;
522         rc = idxd_submit_desc(wq, desc);
523         if (rc < 0) {
524                 dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n",
525                         desc->id, wq->id);
526                 /*
527                  * If the error is not -EAGAIN, it means the submission failed due to wq
528                  * has been killed instead of ENQCMDS failure. Here the driver needs to
529                  * notify the submitter of the failure by reporting abort status.
530                  *
531                  * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the
532                  * abort.
533                  */
534                 if (rc != -EAGAIN) {
535                         desc->completion->status = IDXD_COMP_DESC_ABORT;
536                         idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, false);
537                 }
538                 idxd_free_desc(wq, desc);
539         }
540         kfree(irw);
541 }
542
543 bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc)
544 {
545         struct idxd_wq *wq = desc->wq;
546         struct idxd_device *idxd = wq->idxd;
547         struct idxd_resubmit *irw;
548
549         irw = kzalloc(sizeof(*irw), GFP_KERNEL);
550         if (!irw)
551                 return false;
552
553         irw->desc = desc;
554         INIT_WORK(&irw->work, idxd_int_handle_resubmit_work);
555         queue_work(idxd->wq, &irw->work);
556         return true;
557 }
558
559 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry)
560 {
561         struct idxd_desc *desc, *t;
562         struct llist_node *head;
563
564         head = llist_del_all(&irq_entry->pending_llist);
565         if (!head)
566                 return;
567
568         llist_for_each_entry_safe(desc, t, head, llnode) {
569                 u8 status = desc->completion->status & DSA_COMP_STATUS_MASK;
570
571                 if (status) {
572                         /*
573                          * Check against the original status as ABORT is software defined
574                          * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
575                          */
576                         if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
577                                 idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
578                                 continue;
579                         }
580
581                         idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
582                 } else {
583                         spin_lock(&irq_entry->list_lock);
584                         list_add_tail(&desc->list,
585                                       &irq_entry->work_list);
586                         spin_unlock(&irq_entry->list_lock);
587                 }
588         }
589 }
590
591 static void irq_process_work_list(struct idxd_irq_entry *irq_entry)
592 {
593         LIST_HEAD(flist);
594         struct idxd_desc *desc, *n;
595
596         /*
597          * This lock protects list corruption from access of list outside of the irq handler
598          * thread.
599          */
600         spin_lock(&irq_entry->list_lock);
601         if (list_empty(&irq_entry->work_list)) {
602                 spin_unlock(&irq_entry->list_lock);
603                 return;
604         }
605
606         list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) {
607                 if (desc->completion->status) {
608                         list_move_tail(&desc->list, &flist);
609                 }
610         }
611
612         spin_unlock(&irq_entry->list_lock);
613
614         list_for_each_entry_safe(desc, n, &flist, list) {
615                 /*
616                  * Check against the original status as ABORT is software defined
617                  * and 0xff, which DSA_COMP_STATUS_MASK can mask out.
618                  */
619                 list_del(&desc->list);
620
621                 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) {
622                         idxd_desc_complete(desc, IDXD_COMPLETE_ABORT, true);
623                         continue;
624                 }
625
626                 idxd_desc_complete(desc, IDXD_COMPLETE_NORMAL, true);
627         }
628 }
629
630 irqreturn_t idxd_wq_thread(int irq, void *data)
631 {
632         struct idxd_irq_entry *irq_entry = data;
633
634         /*
635          * There are two lists we are processing. The pending_llist is where
636          * submmiter adds all the submitted descriptor after sending it to
637          * the workqueue. It's a lockless singly linked list. The work_list
638          * is the common linux double linked list. We are in a scenario of
639          * multiple producers and a single consumer. The producers are all
640          * the kernel submitters of descriptors, and the consumer is the
641          * kernel irq handler thread for the msix vector when using threaded
642          * irq. To work with the restrictions of llist to remain lockless,
643          * we are doing the following steps:
644          * 1. Iterate through the work_list and process any completed
645          *    descriptor. Delete the completed entries during iteration.
646          * 2. llist_del_all() from the pending list.
647          * 3. Iterate through the llist that was deleted from the pending list
648          *    and process the completed entries.
649          * 4. If the entry is still waiting on hardware, list_add_tail() to
650          *    the work_list.
651          */
652         irq_process_work_list(irq_entry);
653         irq_process_pending_llist(irq_entry);
654
655         return IRQ_HANDLED;
656 }
This page took 0.070067 seconds and 4 git commands to generate.