]> Git Repo - linux.git/blob - drivers/cpufreq/intel_pstate.c
x86/kaslr: Expose and use the end of the physical memory address space
[linux.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <[email protected]>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <linux/bitfield.h>
29 #include <trace/events/power.h>
30
31 #include <asm/cpu.h>
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 #include <asm/intel-family.h>
37 #include "../drivers/thermal/intel/thermal_interrupt.h"
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53
54 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68         return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73         int mask, ret;
74
75         ret = fp_toint(x);
76         mask = (1 << FRAC_BITS) - 1;
77         if (x & mask)
78                 ret += 1;
79         return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
128  * @scaling:            Scaling factor between performance and frequency
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @min_freq:           @min_pstate frequency in cpufreq units
131  * @max_freq:           @max_pstate frequency in cpufreq units
132  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
133  *
134  * Stores the per cpu model P state limits and current P state.
135  */
136 struct pstate_data {
137         int     current_pstate;
138         int     min_pstate;
139         int     max_pstate;
140         int     max_pstate_physical;
141         int     perf_ctl_scaling;
142         int     scaling;
143         int     turbo_pstate;
144         unsigned int min_freq;
145         unsigned int max_freq;
146         unsigned int turbo_freq;
147 };
148
149 /**
150  * struct vid_data -    Stores voltage information data
151  * @min:                VID data for this platform corresponding to
152  *                      the lowest P state
153  * @max:                VID data corresponding to the highest P State.
154  * @turbo:              VID data for turbo P state
155  * @ratio:              Ratio of (vid max - vid min) /
156  *                      (max P state - Min P State)
157  *
158  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
159  * This data is used in Atom platforms, where in addition to target P state,
160  * the voltage data needs to be specified to select next P State.
161  */
162 struct vid_data {
163         int min;
164         int max;
165         int turbo;
166         int32_t ratio;
167 };
168
169 /**
170  * struct global_params - Global parameters, mostly tunable via sysfs.
171  * @no_turbo:           Whether or not to use turbo P-states.
172  * @turbo_disabled:     Whether or not turbo P-states are available at all,
173  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
174  *                      not the maximum reported turbo P-state is different from
175  *                      the maximum reported non-turbo one.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         int max_perf_pct;
185         int min_perf_pct;
186 };
187
188 /**
189  * struct cpudata -     Per CPU instance data storage
190  * @cpu:                CPU number for this instance data
191  * @policy:             CPUFreq policy value
192  * @update_util:        CPUFreq utility callback information
193  * @update_util_set:    CPUFreq utility callback is set
194  * @iowait_boost:       iowait-related boost fraction
195  * @last_update:        Time of the last update.
196  * @pstate:             Stores P state limits for this CPU
197  * @vid:                Stores VID limits for this CPU
198  * @last_sample_time:   Last Sample time
199  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
200  * @prev_aperf:         Last APERF value read from APERF MSR
201  * @prev_mperf:         Last MPERF value read from MPERF MSR
202  * @prev_tsc:           Last timestamp counter (TSC) value
203  * @sample:             Storage for storing last Sample data
204  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
205  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
206  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
207  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
208  * @epp_powersave:      Last saved HWP energy performance preference
209  *                      (EPP) or energy performance bias (EPB),
210  *                      when policy switched to performance
211  * @epp_policy:         Last saved policy used to set EPP/EPB
212  * @epp_default:        Power on default HWP energy performance
213  *                      preference/bias
214  * @epp_cached:         Cached HWP energy-performance preference value
215  * @hwp_req_cached:     Cached value of the last HWP Request MSR
216  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
217  * @last_io_update:     Last time when IO wake flag was set
218  * @sched_flags:        Store scheduler flags for possible cross CPU update
219  * @hwp_boost_min:      Last HWP boosted min performance
220  * @suspended:          Whether or not the driver has been suspended.
221  * @hwp_notify_work:    workqueue for HWP notifications.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226         int cpu;
227
228         unsigned int policy;
229         struct update_util_data update_util;
230         bool   update_util_set;
231
232         struct pstate_data pstate;
233         struct vid_data vid;
234
235         u64     last_update;
236         u64     last_sample_time;
237         u64     aperf_mperf_shift;
238         u64     prev_aperf;
239         u64     prev_mperf;
240         u64     prev_tsc;
241         struct sample sample;
242         int32_t min_perf_ratio;
243         int32_t max_perf_ratio;
244 #ifdef CONFIG_ACPI
245         struct acpi_processor_performance acpi_perf_data;
246         bool valid_pss_table;
247 #endif
248         unsigned int iowait_boost;
249         s16 epp_powersave;
250         s16 epp_policy;
251         s16 epp_default;
252         s16 epp_cached;
253         u64 hwp_req_cached;
254         u64 hwp_cap_cached;
255         u64 last_io_update;
256         unsigned int sched_flags;
257         u32 hwp_boost_min;
258         bool suspended;
259         struct delayed_work hwp_notify_work;
260 };
261
262 static struct cpudata **all_cpu_data;
263
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:            Callback to get maximum non turbo effective P state
267  * @get_max_physical:   Callback to get maximum non turbo physical P state
268  * @get_min:            Callback to get minimum P state
269  * @get_turbo:          Callback to get turbo P state
270  * @get_scaling:        Callback to get frequency scaling factor
271  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
272  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
273  * @get_val:            Callback to convert P state to actual MSR write value
274  * @get_vid:            Callback to get VID data for Atom platforms
275  *
276  * Core and Atom CPU models have different way to get P State limits. This
277  * structure is used to store those callbacks.
278  */
279 struct pstate_funcs {
280         int (*get_max)(int cpu);
281         int (*get_max_physical)(int cpu);
282         int (*get_min)(int cpu);
283         int (*get_turbo)(int cpu);
284         int (*get_scaling)(void);
285         int (*get_cpu_scaling)(int cpu);
286         int (*get_aperf_mperf_shift)(void);
287         u64 (*get_val)(struct cpudata*, int pstate);
288         void (*get_vid)(struct cpudata *);
289 };
290
291 static struct pstate_funcs pstate_funcs __read_mostly;
292
293 static bool hwp_active __ro_after_init;
294 static int hwp_mode_bdw __ro_after_init;
295 static bool per_cpu_limits __ro_after_init;
296 static bool hwp_forced __ro_after_init;
297 static bool hwp_boost __read_mostly;
298
299 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
300
301 #define HYBRID_SCALING_FACTOR           78741
302 #define HYBRID_SCALING_FACTOR_MTL       80000
303 #define HYBRID_SCALING_FACTOR_LNL       86957
304
305 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
306
307 static inline int core_get_scaling(void)
308 {
309         return 100000;
310 }
311
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315
316 static struct global_params global;
317
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320
321 #ifdef CONFIG_ACPI
322
323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327                 return true;
328
329         return false;
330 }
331
332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334         if (intel_pstate_acpi_pm_profile_server())
335                 return true;
336
337         return acpi_ppc;
338 }
339
340 #ifdef CONFIG_ACPI_CPPC_LIB
341
342 /* The work item is needed to avoid CPU hotplug locking issues */
343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345         sched_set_itmt_support();
346 }
347
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349
350 #define CPPC_MAX_PERF   U8_MAX
351
352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354         struct cppc_perf_caps cppc_perf;
355         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356         int ret;
357
358         ret = cppc_get_perf_caps(cpu, &cppc_perf);
359         /*
360          * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
361          *
362          * Also, on some systems with overclocking enabled, CPPC.highest_perf is
363          * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
364          * Fall back to MSR_HWP_CAPABILITIES then too.
365          */
366         if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
367                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
368
369         /*
370          * The priorities can be set regardless of whether or not
371          * sched_set_itmt_support(true) has been called and it is valid to
372          * update them at any time after it has been called.
373          */
374         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
375
376         if (max_highest_perf <= min_highest_perf) {
377                 if (cppc_perf.highest_perf > max_highest_perf)
378                         max_highest_perf = cppc_perf.highest_perf;
379
380                 if (cppc_perf.highest_perf < min_highest_perf)
381                         min_highest_perf = cppc_perf.highest_perf;
382
383                 if (max_highest_perf > min_highest_perf) {
384                         /*
385                          * This code can be run during CPU online under the
386                          * CPU hotplug locks, so sched_set_itmt_support()
387                          * cannot be called from here.  Queue up a work item
388                          * to invoke it.
389                          */
390                         schedule_work(&sched_itmt_work);
391                 }
392         }
393 }
394
395 static int intel_pstate_get_cppc_guaranteed(int cpu)
396 {
397         struct cppc_perf_caps cppc_perf;
398         int ret;
399
400         ret = cppc_get_perf_caps(cpu, &cppc_perf);
401         if (ret)
402                 return ret;
403
404         if (cppc_perf.guaranteed_perf)
405                 return cppc_perf.guaranteed_perf;
406
407         return cppc_perf.nominal_perf;
408 }
409
410 static int intel_pstate_cppc_get_scaling(int cpu)
411 {
412         struct cppc_perf_caps cppc_perf;
413         int ret;
414
415         ret = cppc_get_perf_caps(cpu, &cppc_perf);
416
417         /*
418          * If the nominal frequency and the nominal performance are not
419          * zero and the ratio between them is not 100, return the hybrid
420          * scaling factor.
421          */
422         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
423             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
424                 return hybrid_scaling_factor;
425
426         return core_get_scaling();
427 }
428
429 #else /* CONFIG_ACPI_CPPC_LIB */
430 static inline void intel_pstate_set_itmt_prio(int cpu)
431 {
432 }
433 #endif /* CONFIG_ACPI_CPPC_LIB */
434
435 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
436 {
437         struct cpudata *cpu;
438         int ret;
439         int i;
440
441         if (hwp_active) {
442                 intel_pstate_set_itmt_prio(policy->cpu);
443                 return;
444         }
445
446         if (!intel_pstate_get_ppc_enable_status())
447                 return;
448
449         cpu = all_cpu_data[policy->cpu];
450
451         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
452                                                   policy->cpu);
453         if (ret)
454                 return;
455
456         /*
457          * Check if the control value in _PSS is for PERF_CTL MSR, which should
458          * guarantee that the states returned by it map to the states in our
459          * list directly.
460          */
461         if (cpu->acpi_perf_data.control_register.space_id !=
462                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
463                 goto err;
464
465         /*
466          * If there is only one entry _PSS, simply ignore _PSS and continue as
467          * usual without taking _PSS into account
468          */
469         if (cpu->acpi_perf_data.state_count < 2)
470                 goto err;
471
472         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
473         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
474                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
475                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
476                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
477                          (u32) cpu->acpi_perf_data.states[i].power,
478                          (u32) cpu->acpi_perf_data.states[i].control);
479         }
480
481         cpu->valid_pss_table = true;
482         pr_debug("_PPC limits will be enforced\n");
483
484         return;
485
486  err:
487         cpu->valid_pss_table = false;
488         acpi_processor_unregister_performance(policy->cpu);
489 }
490
491 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
492 {
493         struct cpudata *cpu;
494
495         cpu = all_cpu_data[policy->cpu];
496         if (!cpu->valid_pss_table)
497                 return;
498
499         acpi_processor_unregister_performance(policy->cpu);
500 }
501 #else /* CONFIG_ACPI */
502 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505
506 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509
510 static inline bool intel_pstate_acpi_pm_profile_server(void)
511 {
512         return false;
513 }
514 #endif /* CONFIG_ACPI */
515
516 #ifndef CONFIG_ACPI_CPPC_LIB
517 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
518 {
519         return -ENOTSUPP;
520 }
521
522 static int intel_pstate_cppc_get_scaling(int cpu)
523 {
524         return core_get_scaling();
525 }
526 #endif /* CONFIG_ACPI_CPPC_LIB */
527
528 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
529                                         unsigned int relation)
530 {
531         if (freq == cpu->pstate.turbo_freq)
532                 return cpu->pstate.turbo_pstate;
533
534         if (freq == cpu->pstate.max_freq)
535                 return cpu->pstate.max_pstate;
536
537         switch (relation) {
538         case CPUFREQ_RELATION_H:
539                 return freq / cpu->pstate.scaling;
540         case CPUFREQ_RELATION_C:
541                 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
542         }
543
544         return DIV_ROUND_UP(freq, cpu->pstate.scaling);
545 }
546
547 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
548 {
549         return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
550 }
551
552 /**
553  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
554  * @cpu: Target CPU.
555  *
556  * On hybrid processors, HWP may expose more performance levels than there are
557  * P-states accessible through the PERF_CTL interface.  If that happens, the
558  * scaling factor between HWP performance levels and CPU frequency will be less
559  * than the scaling factor between P-state values and CPU frequency.
560  *
561  * In that case, adjust the CPU parameters used in computations accordingly.
562  */
563 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
564 {
565         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
566         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
567         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
568         int scaling = cpu->pstate.scaling;
569         int freq;
570
571         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
572         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
573         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
574         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
575         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
576         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
577
578         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
579                                            perf_ctl_scaling);
580         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
581                                          perf_ctl_scaling);
582
583         freq = perf_ctl_max_phys * perf_ctl_scaling;
584         cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
585
586         freq = cpu->pstate.min_pstate * perf_ctl_scaling;
587         cpu->pstate.min_freq = freq;
588         /*
589          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
590          * the effective range of HWP performance levels.
591          */
592         cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
593 }
594
595 static bool turbo_is_disabled(void)
596 {
597         u64 misc_en;
598
599         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
600
601         return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
602 }
603
604 static int min_perf_pct_min(void)
605 {
606         struct cpudata *cpu = all_cpu_data[0];
607         int turbo_pstate = cpu->pstate.turbo_pstate;
608
609         return turbo_pstate ?
610                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
611 }
612
613 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
614 {
615         u64 epb;
616         int ret;
617
618         if (!boot_cpu_has(X86_FEATURE_EPB))
619                 return -ENXIO;
620
621         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
622         if (ret)
623                 return (s16)ret;
624
625         return (s16)(epb & 0x0f);
626 }
627
628 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
629 {
630         s16 epp;
631
632         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
633                 /*
634                  * When hwp_req_data is 0, means that caller didn't read
635                  * MSR_HWP_REQUEST, so need to read and get EPP.
636                  */
637                 if (!hwp_req_data) {
638                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
639                                             &hwp_req_data);
640                         if (epp)
641                                 return epp;
642                 }
643                 epp = (hwp_req_data >> 24) & 0xff;
644         } else {
645                 /* When there is no EPP present, HWP uses EPB settings */
646                 epp = intel_pstate_get_epb(cpu_data);
647         }
648
649         return epp;
650 }
651
652 static int intel_pstate_set_epb(int cpu, s16 pref)
653 {
654         u64 epb;
655         int ret;
656
657         if (!boot_cpu_has(X86_FEATURE_EPB))
658                 return -ENXIO;
659
660         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
661         if (ret)
662                 return ret;
663
664         epb = (epb & ~0x0f) | pref;
665         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
666
667         return 0;
668 }
669
670 /*
671  * EPP/EPB display strings corresponding to EPP index in the
672  * energy_perf_strings[]
673  *      index           String
674  *-------------------------------------
675  *      0               default
676  *      1               performance
677  *      2               balance_performance
678  *      3               balance_power
679  *      4               power
680  */
681
682 enum energy_perf_value_index {
683         EPP_INDEX_DEFAULT = 0,
684         EPP_INDEX_PERFORMANCE,
685         EPP_INDEX_BALANCE_PERFORMANCE,
686         EPP_INDEX_BALANCE_POWERSAVE,
687         EPP_INDEX_POWERSAVE,
688 };
689
690 static const char * const energy_perf_strings[] = {
691         [EPP_INDEX_DEFAULT] = "default",
692         [EPP_INDEX_PERFORMANCE] = "performance",
693         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
694         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
695         [EPP_INDEX_POWERSAVE] = "power",
696         NULL
697 };
698 static unsigned int epp_values[] = {
699         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
700         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
701         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
702         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
703         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
704 };
705
706 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
707 {
708         s16 epp;
709         int index = -EINVAL;
710
711         *raw_epp = 0;
712         epp = intel_pstate_get_epp(cpu_data, 0);
713         if (epp < 0)
714                 return epp;
715
716         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
717                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
718                         return EPP_INDEX_PERFORMANCE;
719                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
720                         return EPP_INDEX_BALANCE_PERFORMANCE;
721                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
722                         return EPP_INDEX_BALANCE_POWERSAVE;
723                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
724                         return EPP_INDEX_POWERSAVE;
725                 *raw_epp = epp;
726                 return 0;
727         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
728                 /*
729                  * Range:
730                  *      0x00-0x03       :       Performance
731                  *      0x04-0x07       :       Balance performance
732                  *      0x08-0x0B       :       Balance power
733                  *      0x0C-0x0F       :       Power
734                  * The EPB is a 4 bit value, but our ranges restrict the
735                  * value which can be set. Here only using top two bits
736                  * effectively.
737                  */
738                 index = (epp >> 2) + 1;
739         }
740
741         return index;
742 }
743
744 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
745 {
746         int ret;
747
748         /*
749          * Use the cached HWP Request MSR value, because in the active mode the
750          * register itself may be updated by intel_pstate_hwp_boost_up() or
751          * intel_pstate_hwp_boost_down() at any time.
752          */
753         u64 value = READ_ONCE(cpu->hwp_req_cached);
754
755         value &= ~GENMASK_ULL(31, 24);
756         value |= (u64)epp << 24;
757         /*
758          * The only other updater of hwp_req_cached in the active mode,
759          * intel_pstate_hwp_set(), is called under the same lock as this
760          * function, so it cannot run in parallel with the update below.
761          */
762         WRITE_ONCE(cpu->hwp_req_cached, value);
763         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
764         if (!ret)
765                 cpu->epp_cached = epp;
766
767         return ret;
768 }
769
770 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
771                                               int pref_index, bool use_raw,
772                                               u32 raw_epp)
773 {
774         int epp = -EINVAL;
775         int ret;
776
777         if (!pref_index)
778                 epp = cpu_data->epp_default;
779
780         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
781                 if (use_raw)
782                         epp = raw_epp;
783                 else if (epp == -EINVAL)
784                         epp = epp_values[pref_index];
785
786                 /*
787                  * To avoid confusion, refuse to set EPP to any values different
788                  * from 0 (performance) if the current policy is "performance",
789                  * because those values would be overridden.
790                  */
791                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
792                         return -EBUSY;
793
794                 ret = intel_pstate_set_epp(cpu_data, epp);
795         } else {
796                 if (epp == -EINVAL)
797                         epp = (pref_index - 1) << 2;
798                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
799         }
800
801         return ret;
802 }
803
804 static ssize_t show_energy_performance_available_preferences(
805                                 struct cpufreq_policy *policy, char *buf)
806 {
807         int i = 0;
808         int ret = 0;
809
810         while (energy_perf_strings[i] != NULL)
811                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
812
813         ret += sprintf(&buf[ret], "\n");
814
815         return ret;
816 }
817
818 cpufreq_freq_attr_ro(energy_performance_available_preferences);
819
820 static struct cpufreq_driver intel_pstate;
821
822 static ssize_t store_energy_performance_preference(
823                 struct cpufreq_policy *policy, const char *buf, size_t count)
824 {
825         struct cpudata *cpu = all_cpu_data[policy->cpu];
826         char str_preference[21];
827         bool raw = false;
828         ssize_t ret;
829         u32 epp = 0;
830
831         ret = sscanf(buf, "%20s", str_preference);
832         if (ret != 1)
833                 return -EINVAL;
834
835         ret = match_string(energy_perf_strings, -1, str_preference);
836         if (ret < 0) {
837                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
838                         return ret;
839
840                 ret = kstrtouint(buf, 10, &epp);
841                 if (ret)
842                         return ret;
843
844                 if (epp > 255)
845                         return -EINVAL;
846
847                 raw = true;
848         }
849
850         /*
851          * This function runs with the policy R/W semaphore held, which
852          * guarantees that the driver pointer will not change while it is
853          * running.
854          */
855         if (!intel_pstate_driver)
856                 return -EAGAIN;
857
858         mutex_lock(&intel_pstate_limits_lock);
859
860         if (intel_pstate_driver == &intel_pstate) {
861                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
862         } else {
863                 /*
864                  * In the passive mode the governor needs to be stopped on the
865                  * target CPU before the EPP update and restarted after it,
866                  * which is super-heavy-weight, so make sure it is worth doing
867                  * upfront.
868                  */
869                 if (!raw)
870                         epp = ret ? epp_values[ret] : cpu->epp_default;
871
872                 if (cpu->epp_cached != epp) {
873                         int err;
874
875                         cpufreq_stop_governor(policy);
876                         ret = intel_pstate_set_epp(cpu, epp);
877                         err = cpufreq_start_governor(policy);
878                         if (!ret)
879                                 ret = err;
880                 } else {
881                         ret = 0;
882                 }
883         }
884
885         mutex_unlock(&intel_pstate_limits_lock);
886
887         return ret ?: count;
888 }
889
890 static ssize_t show_energy_performance_preference(
891                                 struct cpufreq_policy *policy, char *buf)
892 {
893         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
894         int preference, raw_epp;
895
896         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
897         if (preference < 0)
898                 return preference;
899
900         if (raw_epp)
901                 return  sprintf(buf, "%d\n", raw_epp);
902         else
903                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
904 }
905
906 cpufreq_freq_attr_rw(energy_performance_preference);
907
908 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
909 {
910         struct cpudata *cpu = all_cpu_data[policy->cpu];
911         int ratio, freq;
912
913         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
914         if (ratio <= 0) {
915                 u64 cap;
916
917                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
918                 ratio = HWP_GUARANTEED_PERF(cap);
919         }
920
921         freq = ratio * cpu->pstate.scaling;
922         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
923                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
924
925         return sprintf(buf, "%d\n", freq);
926 }
927
928 cpufreq_freq_attr_ro(base_frequency);
929
930 static struct freq_attr *hwp_cpufreq_attrs[] = {
931         &energy_performance_preference,
932         &energy_performance_available_preferences,
933         &base_frequency,
934         NULL,
935 };
936
937 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
938 {
939         u64 cap;
940
941         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
942         WRITE_ONCE(cpu->hwp_cap_cached, cap);
943         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
944         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
945 }
946
947 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
948 {
949         int scaling = cpu->pstate.scaling;
950
951         __intel_pstate_get_hwp_cap(cpu);
952
953         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
954         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
955         if (scaling != cpu->pstate.perf_ctl_scaling) {
956                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
957
958                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
959                                                  perf_ctl_scaling);
960                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
961                                                    perf_ctl_scaling);
962         }
963 }
964
965 static void intel_pstate_hwp_set(unsigned int cpu)
966 {
967         struct cpudata *cpu_data = all_cpu_data[cpu];
968         int max, min;
969         u64 value;
970         s16 epp;
971
972         max = cpu_data->max_perf_ratio;
973         min = cpu_data->min_perf_ratio;
974
975         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
976                 min = max;
977
978         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
979
980         value &= ~HWP_MIN_PERF(~0L);
981         value |= HWP_MIN_PERF(min);
982
983         value &= ~HWP_MAX_PERF(~0L);
984         value |= HWP_MAX_PERF(max);
985
986         if (cpu_data->epp_policy == cpu_data->policy)
987                 goto skip_epp;
988
989         cpu_data->epp_policy = cpu_data->policy;
990
991         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
992                 epp = intel_pstate_get_epp(cpu_data, value);
993                 cpu_data->epp_powersave = epp;
994                 /* If EPP read was failed, then don't try to write */
995                 if (epp < 0)
996                         goto skip_epp;
997
998                 epp = 0;
999         } else {
1000                 /* skip setting EPP, when saved value is invalid */
1001                 if (cpu_data->epp_powersave < 0)
1002                         goto skip_epp;
1003
1004                 /*
1005                  * No need to restore EPP when it is not zero. This
1006                  * means:
1007                  *  - Policy is not changed
1008                  *  - user has manually changed
1009                  *  - Error reading EPB
1010                  */
1011                 epp = intel_pstate_get_epp(cpu_data, value);
1012                 if (epp)
1013                         goto skip_epp;
1014
1015                 epp = cpu_data->epp_powersave;
1016         }
1017         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1018                 value &= ~GENMASK_ULL(31, 24);
1019                 value |= (u64)epp << 24;
1020         } else {
1021                 intel_pstate_set_epb(cpu, epp);
1022         }
1023 skip_epp:
1024         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1025         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1026 }
1027
1028 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1029
1030 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1031 {
1032         u64 value = READ_ONCE(cpu->hwp_req_cached);
1033         int min_perf;
1034
1035         intel_pstate_disable_hwp_interrupt(cpu);
1036
1037         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1038                 /*
1039                  * In case the EPP has been set to "performance" by the
1040                  * active mode "performance" scaling algorithm, replace that
1041                  * temporary value with the cached EPP one.
1042                  */
1043                 value &= ~GENMASK_ULL(31, 24);
1044                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1045                 /*
1046                  * However, make sure that EPP will be set to "performance" when
1047                  * the CPU is brought back online again and the "performance"
1048                  * scaling algorithm is still in effect.
1049                  */
1050                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1051         }
1052
1053         /*
1054          * Clear the desired perf field in the cached HWP request value to
1055          * prevent nonzero desired values from being leaked into the active
1056          * mode.
1057          */
1058         value &= ~HWP_DESIRED_PERF(~0L);
1059         WRITE_ONCE(cpu->hwp_req_cached, value);
1060
1061         value &= ~GENMASK_ULL(31, 0);
1062         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1063
1064         /* Set hwp_max = hwp_min */
1065         value |= HWP_MAX_PERF(min_perf);
1066         value |= HWP_MIN_PERF(min_perf);
1067
1068         /* Set EPP to min */
1069         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1070                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1071
1072         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1073 }
1074
1075 #define POWER_CTL_EE_ENABLE     1
1076 #define POWER_CTL_EE_DISABLE    2
1077
1078 static int power_ctl_ee_state;
1079
1080 static void set_power_ctl_ee_state(bool input)
1081 {
1082         u64 power_ctl;
1083
1084         mutex_lock(&intel_pstate_driver_lock);
1085         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1086         if (input) {
1087                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1088                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1089         } else {
1090                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1091                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1092         }
1093         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1094         mutex_unlock(&intel_pstate_driver_lock);
1095 }
1096
1097 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1098
1099 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1100 {
1101         intel_pstate_hwp_enable(cpu);
1102         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1103 }
1104
1105 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1106 {
1107         struct cpudata *cpu = all_cpu_data[policy->cpu];
1108
1109         pr_debug("CPU %d suspending\n", cpu->cpu);
1110
1111         cpu->suspended = true;
1112
1113         /* disable HWP interrupt and cancel any pending work */
1114         intel_pstate_disable_hwp_interrupt(cpu);
1115
1116         return 0;
1117 }
1118
1119 static int intel_pstate_resume(struct cpufreq_policy *policy)
1120 {
1121         struct cpudata *cpu = all_cpu_data[policy->cpu];
1122
1123         pr_debug("CPU %d resuming\n", cpu->cpu);
1124
1125         /* Only restore if the system default is changed */
1126         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1127                 set_power_ctl_ee_state(true);
1128         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1129                 set_power_ctl_ee_state(false);
1130
1131         if (cpu->suspended && hwp_active) {
1132                 mutex_lock(&intel_pstate_limits_lock);
1133
1134                 /* Re-enable HWP, because "online" has not done that. */
1135                 intel_pstate_hwp_reenable(cpu);
1136
1137                 mutex_unlock(&intel_pstate_limits_lock);
1138         }
1139
1140         cpu->suspended = false;
1141
1142         return 0;
1143 }
1144
1145 static void intel_pstate_update_policies(void)
1146 {
1147         int cpu;
1148
1149         for_each_possible_cpu(cpu)
1150                 cpufreq_update_policy(cpu);
1151 }
1152
1153 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1154                                            struct cpufreq_policy *policy)
1155 {
1156         if (hwp_active)
1157                 intel_pstate_get_hwp_cap(cpudata);
1158
1159         policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1160                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1161
1162         refresh_frequency_limits(policy);
1163 }
1164
1165 static void intel_pstate_update_limits(unsigned int cpu)
1166 {
1167         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1168
1169         if (!policy)
1170                 return;
1171
1172         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1173
1174         cpufreq_cpu_release(policy);
1175 }
1176
1177 static void intel_pstate_update_limits_for_all(void)
1178 {
1179         int cpu;
1180
1181         for_each_possible_cpu(cpu)
1182                 intel_pstate_update_limits(cpu);
1183 }
1184
1185 /************************** sysfs begin ************************/
1186 #define show_one(file_name, object)                                     \
1187         static ssize_t show_##file_name                                 \
1188         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1189         {                                                               \
1190                 return sprintf(buf, "%u\n", global.object);             \
1191         }
1192
1193 static ssize_t intel_pstate_show_status(char *buf);
1194 static int intel_pstate_update_status(const char *buf, size_t size);
1195
1196 static ssize_t show_status(struct kobject *kobj,
1197                            struct kobj_attribute *attr, char *buf)
1198 {
1199         ssize_t ret;
1200
1201         mutex_lock(&intel_pstate_driver_lock);
1202         ret = intel_pstate_show_status(buf);
1203         mutex_unlock(&intel_pstate_driver_lock);
1204
1205         return ret;
1206 }
1207
1208 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1209                             const char *buf, size_t count)
1210 {
1211         char *p = memchr(buf, '\n', count);
1212         int ret;
1213
1214         mutex_lock(&intel_pstate_driver_lock);
1215         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1216         mutex_unlock(&intel_pstate_driver_lock);
1217
1218         return ret < 0 ? ret : count;
1219 }
1220
1221 static ssize_t show_turbo_pct(struct kobject *kobj,
1222                                 struct kobj_attribute *attr, char *buf)
1223 {
1224         struct cpudata *cpu;
1225         int total, no_turbo, turbo_pct;
1226         uint32_t turbo_fp;
1227
1228         mutex_lock(&intel_pstate_driver_lock);
1229
1230         if (!intel_pstate_driver) {
1231                 mutex_unlock(&intel_pstate_driver_lock);
1232                 return -EAGAIN;
1233         }
1234
1235         cpu = all_cpu_data[0];
1236
1237         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1238         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1239         turbo_fp = div_fp(no_turbo, total);
1240         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1241
1242         mutex_unlock(&intel_pstate_driver_lock);
1243
1244         return sprintf(buf, "%u\n", turbo_pct);
1245 }
1246
1247 static ssize_t show_num_pstates(struct kobject *kobj,
1248                                 struct kobj_attribute *attr, char *buf)
1249 {
1250         struct cpudata *cpu;
1251         int total;
1252
1253         mutex_lock(&intel_pstate_driver_lock);
1254
1255         if (!intel_pstate_driver) {
1256                 mutex_unlock(&intel_pstate_driver_lock);
1257                 return -EAGAIN;
1258         }
1259
1260         cpu = all_cpu_data[0];
1261         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1262
1263         mutex_unlock(&intel_pstate_driver_lock);
1264
1265         return sprintf(buf, "%u\n", total);
1266 }
1267
1268 static ssize_t show_no_turbo(struct kobject *kobj,
1269                              struct kobj_attribute *attr, char *buf)
1270 {
1271         ssize_t ret;
1272
1273         mutex_lock(&intel_pstate_driver_lock);
1274
1275         if (!intel_pstate_driver) {
1276                 mutex_unlock(&intel_pstate_driver_lock);
1277                 return -EAGAIN;
1278         }
1279
1280         ret = sprintf(buf, "%u\n", global.no_turbo);
1281
1282         mutex_unlock(&intel_pstate_driver_lock);
1283
1284         return ret;
1285 }
1286
1287 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1288                               const char *buf, size_t count)
1289 {
1290         unsigned int input;
1291         bool no_turbo;
1292
1293         if (sscanf(buf, "%u", &input) != 1)
1294                 return -EINVAL;
1295
1296         mutex_lock(&intel_pstate_driver_lock);
1297
1298         if (!intel_pstate_driver) {
1299                 count = -EAGAIN;
1300                 goto unlock_driver;
1301         }
1302
1303         no_turbo = !!clamp_t(int, input, 0, 1);
1304
1305         WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1306         if (global.turbo_disabled && !no_turbo) {
1307                 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1308                 count = -EPERM;
1309                 if (global.no_turbo)
1310                         goto unlock_driver;
1311                 else
1312                         no_turbo = 1;
1313         }
1314
1315         if (no_turbo == global.no_turbo) {
1316                 goto unlock_driver;
1317         }
1318
1319         WRITE_ONCE(global.no_turbo, no_turbo);
1320
1321         mutex_lock(&intel_pstate_limits_lock);
1322
1323         if (no_turbo) {
1324                 struct cpudata *cpu = all_cpu_data[0];
1325                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1326
1327                 /* Squash the global minimum into the permitted range. */
1328                 if (global.min_perf_pct > pct)
1329                         global.min_perf_pct = pct;
1330         }
1331
1332         mutex_unlock(&intel_pstate_limits_lock);
1333
1334         intel_pstate_update_limits_for_all();
1335         arch_set_max_freq_ratio(no_turbo);
1336
1337 unlock_driver:
1338         mutex_unlock(&intel_pstate_driver_lock);
1339
1340         return count;
1341 }
1342
1343 static void update_qos_request(enum freq_qos_req_type type)
1344 {
1345         struct freq_qos_request *req;
1346         struct cpufreq_policy *policy;
1347         int i;
1348
1349         for_each_possible_cpu(i) {
1350                 struct cpudata *cpu = all_cpu_data[i];
1351                 unsigned int freq, perf_pct;
1352
1353                 policy = cpufreq_cpu_get(i);
1354                 if (!policy)
1355                         continue;
1356
1357                 req = policy->driver_data;
1358                 cpufreq_cpu_put(policy);
1359
1360                 if (!req)
1361                         continue;
1362
1363                 if (hwp_active)
1364                         intel_pstate_get_hwp_cap(cpu);
1365
1366                 if (type == FREQ_QOS_MIN) {
1367                         perf_pct = global.min_perf_pct;
1368                 } else {
1369                         req++;
1370                         perf_pct = global.max_perf_pct;
1371                 }
1372
1373                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1374
1375                 if (freq_qos_update_request(req, freq) < 0)
1376                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1377         }
1378 }
1379
1380 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1381                                   const char *buf, size_t count)
1382 {
1383         unsigned int input;
1384         int ret;
1385
1386         ret = sscanf(buf, "%u", &input);
1387         if (ret != 1)
1388                 return -EINVAL;
1389
1390         mutex_lock(&intel_pstate_driver_lock);
1391
1392         if (!intel_pstate_driver) {
1393                 mutex_unlock(&intel_pstate_driver_lock);
1394                 return -EAGAIN;
1395         }
1396
1397         mutex_lock(&intel_pstate_limits_lock);
1398
1399         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1400
1401         mutex_unlock(&intel_pstate_limits_lock);
1402
1403         if (intel_pstate_driver == &intel_pstate)
1404                 intel_pstate_update_policies();
1405         else
1406                 update_qos_request(FREQ_QOS_MAX);
1407
1408         mutex_unlock(&intel_pstate_driver_lock);
1409
1410         return count;
1411 }
1412
1413 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1414                                   const char *buf, size_t count)
1415 {
1416         unsigned int input;
1417         int ret;
1418
1419         ret = sscanf(buf, "%u", &input);
1420         if (ret != 1)
1421                 return -EINVAL;
1422
1423         mutex_lock(&intel_pstate_driver_lock);
1424
1425         if (!intel_pstate_driver) {
1426                 mutex_unlock(&intel_pstate_driver_lock);
1427                 return -EAGAIN;
1428         }
1429
1430         mutex_lock(&intel_pstate_limits_lock);
1431
1432         global.min_perf_pct = clamp_t(int, input,
1433                                       min_perf_pct_min(), global.max_perf_pct);
1434
1435         mutex_unlock(&intel_pstate_limits_lock);
1436
1437         if (intel_pstate_driver == &intel_pstate)
1438                 intel_pstate_update_policies();
1439         else
1440                 update_qos_request(FREQ_QOS_MIN);
1441
1442         mutex_unlock(&intel_pstate_driver_lock);
1443
1444         return count;
1445 }
1446
1447 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1448                                 struct kobj_attribute *attr, char *buf)
1449 {
1450         return sprintf(buf, "%u\n", hwp_boost);
1451 }
1452
1453 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1454                                        struct kobj_attribute *b,
1455                                        const char *buf, size_t count)
1456 {
1457         unsigned int input;
1458         int ret;
1459
1460         ret = kstrtouint(buf, 10, &input);
1461         if (ret)
1462                 return ret;
1463
1464         mutex_lock(&intel_pstate_driver_lock);
1465         hwp_boost = !!input;
1466         intel_pstate_update_policies();
1467         mutex_unlock(&intel_pstate_driver_lock);
1468
1469         return count;
1470 }
1471
1472 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1473                                       char *buf)
1474 {
1475         u64 power_ctl;
1476         int enable;
1477
1478         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1479         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1480         return sprintf(buf, "%d\n", !enable);
1481 }
1482
1483 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1484                                        const char *buf, size_t count)
1485 {
1486         bool input;
1487         int ret;
1488
1489         ret = kstrtobool(buf, &input);
1490         if (ret)
1491                 return ret;
1492
1493         set_power_ctl_ee_state(input);
1494
1495         return count;
1496 }
1497
1498 show_one(max_perf_pct, max_perf_pct);
1499 show_one(min_perf_pct, min_perf_pct);
1500
1501 define_one_global_rw(status);
1502 define_one_global_rw(no_turbo);
1503 define_one_global_rw(max_perf_pct);
1504 define_one_global_rw(min_perf_pct);
1505 define_one_global_ro(turbo_pct);
1506 define_one_global_ro(num_pstates);
1507 define_one_global_rw(hwp_dynamic_boost);
1508 define_one_global_rw(energy_efficiency);
1509
1510 static struct attribute *intel_pstate_attributes[] = {
1511         &status.attr,
1512         &no_turbo.attr,
1513         NULL
1514 };
1515
1516 static const struct attribute_group intel_pstate_attr_group = {
1517         .attrs = intel_pstate_attributes,
1518 };
1519
1520 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1521
1522 static struct kobject *intel_pstate_kobject;
1523
1524 static void __init intel_pstate_sysfs_expose_params(void)
1525 {
1526         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1527         int rc;
1528
1529         if (dev_root) {
1530                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1531                 put_device(dev_root);
1532         }
1533         if (WARN_ON(!intel_pstate_kobject))
1534                 return;
1535
1536         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1537         if (WARN_ON(rc))
1538                 return;
1539
1540         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1541                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1542                 WARN_ON(rc);
1543
1544                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1545                 WARN_ON(rc);
1546         }
1547
1548         /*
1549          * If per cpu limits are enforced there are no global limits, so
1550          * return without creating max/min_perf_pct attributes
1551          */
1552         if (per_cpu_limits)
1553                 return;
1554
1555         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1556         WARN_ON(rc);
1557
1558         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1559         WARN_ON(rc);
1560
1561         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1562                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1563                 WARN_ON(rc);
1564         }
1565 }
1566
1567 static void __init intel_pstate_sysfs_remove(void)
1568 {
1569         if (!intel_pstate_kobject)
1570                 return;
1571
1572         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1573
1574         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1575                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1576                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1577         }
1578
1579         if (!per_cpu_limits) {
1580                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1581                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1582
1583                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1584                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1585         }
1586
1587         kobject_put(intel_pstate_kobject);
1588 }
1589
1590 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1591 {
1592         int rc;
1593
1594         if (!hwp_active)
1595                 return;
1596
1597         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1598         WARN_ON_ONCE(rc);
1599 }
1600
1601 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1602 {
1603         if (!hwp_active)
1604                 return;
1605
1606         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1607 }
1608
1609 /************************** sysfs end ************************/
1610
1611 static void intel_pstate_notify_work(struct work_struct *work)
1612 {
1613         struct cpudata *cpudata =
1614                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1615         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1616
1617         if (policy) {
1618                 __intel_pstate_update_max_freq(cpudata, policy);
1619
1620                 cpufreq_cpu_release(policy);
1621         }
1622
1623         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1624 }
1625
1626 static DEFINE_SPINLOCK(hwp_notify_lock);
1627 static cpumask_t hwp_intr_enable_mask;
1628
1629 #define HWP_GUARANTEED_PERF_CHANGE_STATUS      BIT(0)
1630 #define HWP_HIGHEST_PERF_CHANGE_STATUS         BIT(3)
1631
1632 void notify_hwp_interrupt(void)
1633 {
1634         unsigned int this_cpu = smp_processor_id();
1635         u64 value, status_mask;
1636         unsigned long flags;
1637
1638         if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1639                 return;
1640
1641         status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1642         if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1643                 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1644
1645         rdmsrl_safe(MSR_HWP_STATUS, &value);
1646         if (!(value & status_mask))
1647                 return;
1648
1649         spin_lock_irqsave(&hwp_notify_lock, flags);
1650
1651         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1652                 goto ack_intr;
1653
1654         schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1655                               msecs_to_jiffies(10));
1656
1657         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1658
1659         return;
1660
1661 ack_intr:
1662         wrmsrl_safe(MSR_HWP_STATUS, 0);
1663         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1664 }
1665
1666 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1667 {
1668         bool cancel_work;
1669
1670         if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1671                 return;
1672
1673         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1674         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1675
1676         spin_lock_irq(&hwp_notify_lock);
1677         cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1678         spin_unlock_irq(&hwp_notify_lock);
1679
1680         if (cancel_work)
1681                 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1682 }
1683
1684 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1685 #define HWP_HIGHEST_PERF_CHANGE_REQ    BIT(2)
1686
1687 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1688 {
1689         /* Enable HWP notification interrupt for performance change */
1690         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1691                 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1692
1693                 spin_lock_irq(&hwp_notify_lock);
1694                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1695                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1696                 spin_unlock_irq(&hwp_notify_lock);
1697
1698                 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1699                         interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1700
1701                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1702                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1703                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1704         }
1705 }
1706
1707 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1708 {
1709         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1710
1711         /*
1712          * If the EPP is set by firmware, which means that firmware enabled HWP
1713          * - Is equal or less than 0x80 (default balance_perf EPP)
1714          * - But less performance oriented than performance EPP
1715          *   then use this as new balance_perf EPP.
1716          */
1717         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1718             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1719                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1720                 return;
1721         }
1722
1723         /*
1724          * If this CPU gen doesn't call for change in balance_perf
1725          * EPP return.
1726          */
1727         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1728                 return;
1729
1730         /*
1731          * Use hard coded value per gen to update the balance_perf
1732          * and default EPP.
1733          */
1734         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1735         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1736 }
1737
1738 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1739 {
1740         /* First disable HWP notification interrupt till we activate again */
1741         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1742                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1743
1744         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1745
1746         intel_pstate_enable_hwp_interrupt(cpudata);
1747
1748         if (cpudata->epp_default >= 0)
1749                 return;
1750
1751         intel_pstate_update_epp_defaults(cpudata);
1752 }
1753
1754 static int atom_get_min_pstate(int not_used)
1755 {
1756         u64 value;
1757
1758         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1759         return (value >> 8) & 0x7F;
1760 }
1761
1762 static int atom_get_max_pstate(int not_used)
1763 {
1764         u64 value;
1765
1766         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1767         return (value >> 16) & 0x7F;
1768 }
1769
1770 static int atom_get_turbo_pstate(int not_used)
1771 {
1772         u64 value;
1773
1774         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1775         return value & 0x7F;
1776 }
1777
1778 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1779 {
1780         u64 val;
1781         int32_t vid_fp;
1782         u32 vid;
1783
1784         val = (u64)pstate << 8;
1785         if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
1786                 val |= (u64)1 << 32;
1787
1788         vid_fp = cpudata->vid.min + mul_fp(
1789                 int_tofp(pstate - cpudata->pstate.min_pstate),
1790                 cpudata->vid.ratio);
1791
1792         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1793         vid = ceiling_fp(vid_fp);
1794
1795         if (pstate > cpudata->pstate.max_pstate)
1796                 vid = cpudata->vid.turbo;
1797
1798         return val | vid;
1799 }
1800
1801 static int silvermont_get_scaling(void)
1802 {
1803         u64 value;
1804         int i;
1805         /* Defined in Table 35-6 from SDM (Sept 2015) */
1806         static int silvermont_freq_table[] = {
1807                 83300, 100000, 133300, 116700, 80000};
1808
1809         rdmsrl(MSR_FSB_FREQ, value);
1810         i = value & 0x7;
1811         WARN_ON(i > 4);
1812
1813         return silvermont_freq_table[i];
1814 }
1815
1816 static int airmont_get_scaling(void)
1817 {
1818         u64 value;
1819         int i;
1820         /* Defined in Table 35-10 from SDM (Sept 2015) */
1821         static int airmont_freq_table[] = {
1822                 83300, 100000, 133300, 116700, 80000,
1823                 93300, 90000, 88900, 87500};
1824
1825         rdmsrl(MSR_FSB_FREQ, value);
1826         i = value & 0xF;
1827         WARN_ON(i > 8);
1828
1829         return airmont_freq_table[i];
1830 }
1831
1832 static void atom_get_vid(struct cpudata *cpudata)
1833 {
1834         u64 value;
1835
1836         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1837         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1838         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1839         cpudata->vid.ratio = div_fp(
1840                 cpudata->vid.max - cpudata->vid.min,
1841                 int_tofp(cpudata->pstate.max_pstate -
1842                         cpudata->pstate.min_pstate));
1843
1844         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1845         cpudata->vid.turbo = value & 0x7f;
1846 }
1847
1848 static int core_get_min_pstate(int cpu)
1849 {
1850         u64 value;
1851
1852         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1853         return (value >> 40) & 0xFF;
1854 }
1855
1856 static int core_get_max_pstate_physical(int cpu)
1857 {
1858         u64 value;
1859
1860         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1861         return (value >> 8) & 0xFF;
1862 }
1863
1864 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1865 {
1866         /* Check how many TDP levels present */
1867         if (plat_info & 0x600000000) {
1868                 u64 tdp_ctrl;
1869                 u64 tdp_ratio;
1870                 int tdp_msr;
1871                 int err;
1872
1873                 /* Get the TDP level (0, 1, 2) to get ratios */
1874                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1875                 if (err)
1876                         return err;
1877
1878                 /* TDP MSR are continuous starting at 0x648 */
1879                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1880                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1881                 if (err)
1882                         return err;
1883
1884                 /* For level 1 and 2, bits[23:16] contain the ratio */
1885                 if (tdp_ctrl & 0x03)
1886                         tdp_ratio >>= 16;
1887
1888                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1889                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1890
1891                 return (int)tdp_ratio;
1892         }
1893
1894         return -ENXIO;
1895 }
1896
1897 static int core_get_max_pstate(int cpu)
1898 {
1899         u64 tar;
1900         u64 plat_info;
1901         int max_pstate;
1902         int tdp_ratio;
1903         int err;
1904
1905         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1906         max_pstate = (plat_info >> 8) & 0xFF;
1907
1908         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1909         if (tdp_ratio <= 0)
1910                 return max_pstate;
1911
1912         if (hwp_active) {
1913                 /* Turbo activation ratio is not used on HWP platforms */
1914                 return tdp_ratio;
1915         }
1916
1917         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1918         if (!err) {
1919                 int tar_levels;
1920
1921                 /* Do some sanity checking for safety */
1922                 tar_levels = tar & 0xff;
1923                 if (tdp_ratio - 1 == tar_levels) {
1924                         max_pstate = tar_levels;
1925                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1926                 }
1927         }
1928
1929         return max_pstate;
1930 }
1931
1932 static int core_get_turbo_pstate(int cpu)
1933 {
1934         u64 value;
1935         int nont, ret;
1936
1937         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1938         nont = core_get_max_pstate(cpu);
1939         ret = (value) & 255;
1940         if (ret <= nont)
1941                 ret = nont;
1942         return ret;
1943 }
1944
1945 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1946 {
1947         u64 val;
1948
1949         val = (u64)pstate << 8;
1950         if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
1951                 val |= (u64)1 << 32;
1952
1953         return val;
1954 }
1955
1956 static int knl_get_aperf_mperf_shift(void)
1957 {
1958         return 10;
1959 }
1960
1961 static int knl_get_turbo_pstate(int cpu)
1962 {
1963         u64 value;
1964         int nont, ret;
1965
1966         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1967         nont = core_get_max_pstate(cpu);
1968         ret = (((value) >> 8) & 0xFF);
1969         if (ret <= nont)
1970                 ret = nont;
1971         return ret;
1972 }
1973
1974 static void hybrid_get_type(void *data)
1975 {
1976         u8 *cpu_type = data;
1977
1978         *cpu_type = get_this_hybrid_cpu_type();
1979 }
1980
1981 static int hwp_get_cpu_scaling(int cpu)
1982 {
1983         u8 cpu_type = 0;
1984
1985         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1986         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1987         if (cpu_type == 0x40)
1988                 return hybrid_scaling_factor;
1989
1990         /* Use default core scaling for E-cores */
1991         if (cpu_type == 0x20)
1992                 return core_get_scaling();
1993
1994         /*
1995          * If reached here, this system is either non-hybrid (like Tiger
1996          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1997          * no E cores (in which case CPUID for hybrid support is 0).
1998          *
1999          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2000          * so the default core scaling will be used for them.
2001          */
2002         return intel_pstate_cppc_get_scaling(cpu);
2003 }
2004
2005 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2006 {
2007         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2008         cpu->pstate.current_pstate = pstate;
2009         /*
2010          * Generally, there is no guarantee that this code will always run on
2011          * the CPU being updated, so force the register update to run on the
2012          * right CPU.
2013          */
2014         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2015                       pstate_funcs.get_val(cpu, pstate));
2016 }
2017
2018 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2019 {
2020         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2021 }
2022
2023 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2024 {
2025         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2026         int perf_ctl_scaling = pstate_funcs.get_scaling();
2027
2028         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2029         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2030         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2031
2032         if (hwp_active && !hwp_mode_bdw) {
2033                 __intel_pstate_get_hwp_cap(cpu);
2034
2035                 if (pstate_funcs.get_cpu_scaling) {
2036                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2037                         if (cpu->pstate.scaling != perf_ctl_scaling)
2038                                 intel_pstate_hybrid_hwp_adjust(cpu);
2039                 } else {
2040                         cpu->pstate.scaling = perf_ctl_scaling;
2041                 }
2042         } else {
2043                 cpu->pstate.scaling = perf_ctl_scaling;
2044                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2045                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2046         }
2047
2048         if (cpu->pstate.scaling == perf_ctl_scaling) {
2049                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2050                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2051                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2052         }
2053
2054         if (pstate_funcs.get_aperf_mperf_shift)
2055                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2056
2057         if (pstate_funcs.get_vid)
2058                 pstate_funcs.get_vid(cpu);
2059
2060         intel_pstate_set_min_pstate(cpu);
2061 }
2062
2063 /*
2064  * Long hold time will keep high perf limits for long time,
2065  * which negatively impacts perf/watt for some workloads,
2066  * like specpower. 3ms is based on experiements on some
2067  * workoads.
2068  */
2069 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2070
2071 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2072 {
2073         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2074         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2075         u32 max_limit = (hwp_req & 0xff00) >> 8;
2076         u32 min_limit = (hwp_req & 0xff);
2077         u32 boost_level1;
2078
2079         /*
2080          * Cases to consider (User changes via sysfs or boot time):
2081          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2082          *      No boost, return.
2083          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2084          *     Should result in one level boost only for P0.
2085          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2086          *     Should result in two level boost:
2087          *         (min + p1)/2 and P1.
2088          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2089          *     Should result in three level boost:
2090          *        (min + p1)/2, P1 and P0.
2091          */
2092
2093         /* If max and min are equal or already at max, nothing to boost */
2094         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2095                 return;
2096
2097         if (!cpu->hwp_boost_min)
2098                 cpu->hwp_boost_min = min_limit;
2099
2100         /* level at half way mark between min and guranteed */
2101         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2102
2103         if (cpu->hwp_boost_min < boost_level1)
2104                 cpu->hwp_boost_min = boost_level1;
2105         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2106                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2107         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2108                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2109                 cpu->hwp_boost_min = max_limit;
2110         else
2111                 return;
2112
2113         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2114         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2115         cpu->last_update = cpu->sample.time;
2116 }
2117
2118 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2119 {
2120         if (cpu->hwp_boost_min) {
2121                 bool expired;
2122
2123                 /* Check if we are idle for hold time to boost down */
2124                 expired = time_after64(cpu->sample.time, cpu->last_update +
2125                                        hwp_boost_hold_time_ns);
2126                 if (expired) {
2127                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2128                         cpu->hwp_boost_min = 0;
2129                 }
2130         }
2131         cpu->last_update = cpu->sample.time;
2132 }
2133
2134 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2135                                                       u64 time)
2136 {
2137         cpu->sample.time = time;
2138
2139         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2140                 bool do_io = false;
2141
2142                 cpu->sched_flags = 0;
2143                 /*
2144                  * Set iowait_boost flag and update time. Since IO WAIT flag
2145                  * is set all the time, we can't just conclude that there is
2146                  * some IO bound activity is scheduled on this CPU with just
2147                  * one occurrence. If we receive at least two in two
2148                  * consecutive ticks, then we treat as boost candidate.
2149                  */
2150                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2151                         do_io = true;
2152
2153                 cpu->last_io_update = time;
2154
2155                 if (do_io)
2156                         intel_pstate_hwp_boost_up(cpu);
2157
2158         } else {
2159                 intel_pstate_hwp_boost_down(cpu);
2160         }
2161 }
2162
2163 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2164                                                 u64 time, unsigned int flags)
2165 {
2166         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2167
2168         cpu->sched_flags |= flags;
2169
2170         if (smp_processor_id() == cpu->cpu)
2171                 intel_pstate_update_util_hwp_local(cpu, time);
2172 }
2173
2174 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2175 {
2176         struct sample *sample = &cpu->sample;
2177
2178         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2179 }
2180
2181 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2182 {
2183         u64 aperf, mperf;
2184         unsigned long flags;
2185         u64 tsc;
2186
2187         local_irq_save(flags);
2188         rdmsrl(MSR_IA32_APERF, aperf);
2189         rdmsrl(MSR_IA32_MPERF, mperf);
2190         tsc = rdtsc();
2191         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2192                 local_irq_restore(flags);
2193                 return false;
2194         }
2195         local_irq_restore(flags);
2196
2197         cpu->last_sample_time = cpu->sample.time;
2198         cpu->sample.time = time;
2199         cpu->sample.aperf = aperf;
2200         cpu->sample.mperf = mperf;
2201         cpu->sample.tsc =  tsc;
2202         cpu->sample.aperf -= cpu->prev_aperf;
2203         cpu->sample.mperf -= cpu->prev_mperf;
2204         cpu->sample.tsc -= cpu->prev_tsc;
2205
2206         cpu->prev_aperf = aperf;
2207         cpu->prev_mperf = mperf;
2208         cpu->prev_tsc = tsc;
2209         /*
2210          * First time this function is invoked in a given cycle, all of the
2211          * previous sample data fields are equal to zero or stale and they must
2212          * be populated with meaningful numbers for things to work, so assume
2213          * that sample.time will always be reset before setting the utilization
2214          * update hook and make the caller skip the sample then.
2215          */
2216         if (cpu->last_sample_time) {
2217                 intel_pstate_calc_avg_perf(cpu);
2218                 return true;
2219         }
2220         return false;
2221 }
2222
2223 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2224 {
2225         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2226 }
2227
2228 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2229 {
2230         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2231                           cpu->sample.core_avg_perf);
2232 }
2233
2234 static inline int32_t get_target_pstate(struct cpudata *cpu)
2235 {
2236         struct sample *sample = &cpu->sample;
2237         int32_t busy_frac;
2238         int target, avg_pstate;
2239
2240         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2241                            sample->tsc);
2242
2243         if (busy_frac < cpu->iowait_boost)
2244                 busy_frac = cpu->iowait_boost;
2245
2246         sample->busy_scaled = busy_frac * 100;
2247
2248         target = READ_ONCE(global.no_turbo) ?
2249                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2250         target += target >> 2;
2251         target = mul_fp(target, busy_frac);
2252         if (target < cpu->pstate.min_pstate)
2253                 target = cpu->pstate.min_pstate;
2254
2255         /*
2256          * If the average P-state during the previous cycle was higher than the
2257          * current target, add 50% of the difference to the target to reduce
2258          * possible performance oscillations and offset possible performance
2259          * loss related to moving the workload from one CPU to another within
2260          * a package/module.
2261          */
2262         avg_pstate = get_avg_pstate(cpu);
2263         if (avg_pstate > target)
2264                 target += (avg_pstate - target) >> 1;
2265
2266         return target;
2267 }
2268
2269 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2270 {
2271         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2272         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2273
2274         return clamp_t(int, pstate, min_pstate, max_pstate);
2275 }
2276
2277 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2278 {
2279         if (pstate == cpu->pstate.current_pstate)
2280                 return;
2281
2282         cpu->pstate.current_pstate = pstate;
2283         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2284 }
2285
2286 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2287 {
2288         int from = cpu->pstate.current_pstate;
2289         struct sample *sample;
2290         int target_pstate;
2291
2292         target_pstate = get_target_pstate(cpu);
2293         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2294         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2295         intel_pstate_update_pstate(cpu, target_pstate);
2296
2297         sample = &cpu->sample;
2298         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2299                 fp_toint(sample->busy_scaled),
2300                 from,
2301                 cpu->pstate.current_pstate,
2302                 sample->mperf,
2303                 sample->aperf,
2304                 sample->tsc,
2305                 get_avg_frequency(cpu),
2306                 fp_toint(cpu->iowait_boost * 100));
2307 }
2308
2309 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2310                                      unsigned int flags)
2311 {
2312         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2313         u64 delta_ns;
2314
2315         /* Don't allow remote callbacks */
2316         if (smp_processor_id() != cpu->cpu)
2317                 return;
2318
2319         delta_ns = time - cpu->last_update;
2320         if (flags & SCHED_CPUFREQ_IOWAIT) {
2321                 /* Start over if the CPU may have been idle. */
2322                 if (delta_ns > TICK_NSEC) {
2323                         cpu->iowait_boost = ONE_EIGHTH_FP;
2324                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2325                         cpu->iowait_boost <<= 1;
2326                         if (cpu->iowait_boost > int_tofp(1))
2327                                 cpu->iowait_boost = int_tofp(1);
2328                 } else {
2329                         cpu->iowait_boost = ONE_EIGHTH_FP;
2330                 }
2331         } else if (cpu->iowait_boost) {
2332                 /* Clear iowait_boost if the CPU may have been idle. */
2333                 if (delta_ns > TICK_NSEC)
2334                         cpu->iowait_boost = 0;
2335                 else
2336                         cpu->iowait_boost >>= 1;
2337         }
2338         cpu->last_update = time;
2339         delta_ns = time - cpu->sample.time;
2340         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2341                 return;
2342
2343         if (intel_pstate_sample(cpu, time))
2344                 intel_pstate_adjust_pstate(cpu);
2345 }
2346
2347 static struct pstate_funcs core_funcs = {
2348         .get_max = core_get_max_pstate,
2349         .get_max_physical = core_get_max_pstate_physical,
2350         .get_min = core_get_min_pstate,
2351         .get_turbo = core_get_turbo_pstate,
2352         .get_scaling = core_get_scaling,
2353         .get_val = core_get_val,
2354 };
2355
2356 static const struct pstate_funcs silvermont_funcs = {
2357         .get_max = atom_get_max_pstate,
2358         .get_max_physical = atom_get_max_pstate,
2359         .get_min = atom_get_min_pstate,
2360         .get_turbo = atom_get_turbo_pstate,
2361         .get_val = atom_get_val,
2362         .get_scaling = silvermont_get_scaling,
2363         .get_vid = atom_get_vid,
2364 };
2365
2366 static const struct pstate_funcs airmont_funcs = {
2367         .get_max = atom_get_max_pstate,
2368         .get_max_physical = atom_get_max_pstate,
2369         .get_min = atom_get_min_pstate,
2370         .get_turbo = atom_get_turbo_pstate,
2371         .get_val = atom_get_val,
2372         .get_scaling = airmont_get_scaling,
2373         .get_vid = atom_get_vid,
2374 };
2375
2376 static const struct pstate_funcs knl_funcs = {
2377         .get_max = core_get_max_pstate,
2378         .get_max_physical = core_get_max_pstate_physical,
2379         .get_min = core_get_min_pstate,
2380         .get_turbo = knl_get_turbo_pstate,
2381         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2382         .get_scaling = core_get_scaling,
2383         .get_val = core_get_val,
2384 };
2385
2386 #define X86_MATCH(vfm, policy)                                   \
2387         X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2388
2389 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2390         X86_MATCH(INTEL_SANDYBRIDGE,            core_funcs),
2391         X86_MATCH(INTEL_SANDYBRIDGE_X,          core_funcs),
2392         X86_MATCH(INTEL_ATOM_SILVERMONT,        silvermont_funcs),
2393         X86_MATCH(INTEL_IVYBRIDGE,              core_funcs),
2394         X86_MATCH(INTEL_HASWELL,                core_funcs),
2395         X86_MATCH(INTEL_BROADWELL,              core_funcs),
2396         X86_MATCH(INTEL_IVYBRIDGE_X,            core_funcs),
2397         X86_MATCH(INTEL_HASWELL_X,              core_funcs),
2398         X86_MATCH(INTEL_HASWELL_L,              core_funcs),
2399         X86_MATCH(INTEL_HASWELL_G,              core_funcs),
2400         X86_MATCH(INTEL_BROADWELL_G,            core_funcs),
2401         X86_MATCH(INTEL_ATOM_AIRMONT,           airmont_funcs),
2402         X86_MATCH(INTEL_SKYLAKE_L,              core_funcs),
2403         X86_MATCH(INTEL_BROADWELL_X,            core_funcs),
2404         X86_MATCH(INTEL_SKYLAKE,                core_funcs),
2405         X86_MATCH(INTEL_BROADWELL_D,            core_funcs),
2406         X86_MATCH(INTEL_XEON_PHI_KNL,           knl_funcs),
2407         X86_MATCH(INTEL_XEON_PHI_KNM,           knl_funcs),
2408         X86_MATCH(INTEL_ATOM_GOLDMONT,          core_funcs),
2409         X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS,     core_funcs),
2410         X86_MATCH(INTEL_SKYLAKE_X,              core_funcs),
2411         X86_MATCH(INTEL_COMETLAKE,              core_funcs),
2412         X86_MATCH(INTEL_ICELAKE_X,              core_funcs),
2413         X86_MATCH(INTEL_TIGERLAKE,              core_funcs),
2414         X86_MATCH(INTEL_SAPPHIRERAPIDS_X,       core_funcs),
2415         X86_MATCH(INTEL_EMERALDRAPIDS_X,        core_funcs),
2416         {}
2417 };
2418 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2419
2420 #ifdef CONFIG_ACPI
2421 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2422         X86_MATCH(INTEL_BROADWELL_D,            core_funcs),
2423         X86_MATCH(INTEL_BROADWELL_X,            core_funcs),
2424         X86_MATCH(INTEL_SKYLAKE_X,              core_funcs),
2425         X86_MATCH(INTEL_ICELAKE_X,              core_funcs),
2426         X86_MATCH(INTEL_SAPPHIRERAPIDS_X,       core_funcs),
2427         X86_MATCH(INTEL_EMERALDRAPIDS_X,        core_funcs),
2428         {}
2429 };
2430 #endif
2431
2432 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2433         X86_MATCH(INTEL_KABYLAKE,               core_funcs),
2434         {}
2435 };
2436
2437 static int intel_pstate_init_cpu(unsigned int cpunum)
2438 {
2439         struct cpudata *cpu;
2440
2441         cpu = all_cpu_data[cpunum];
2442
2443         if (!cpu) {
2444                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2445                 if (!cpu)
2446                         return -ENOMEM;
2447
2448                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2449
2450                 cpu->cpu = cpunum;
2451
2452                 cpu->epp_default = -EINVAL;
2453
2454                 if (hwp_active) {
2455                         intel_pstate_hwp_enable(cpu);
2456
2457                         if (intel_pstate_acpi_pm_profile_server())
2458                                 hwp_boost = true;
2459                 }
2460         } else if (hwp_active) {
2461                 /*
2462                  * Re-enable HWP in case this happens after a resume from ACPI
2463                  * S3 if the CPU was offline during the whole system/resume
2464                  * cycle.
2465                  */
2466                 intel_pstate_hwp_reenable(cpu);
2467         }
2468
2469         cpu->epp_powersave = -EINVAL;
2470         cpu->epp_policy = 0;
2471
2472         intel_pstate_get_cpu_pstates(cpu);
2473
2474         pr_debug("controlling: cpu %d\n", cpunum);
2475
2476         return 0;
2477 }
2478
2479 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2480 {
2481         struct cpudata *cpu = all_cpu_data[cpu_num];
2482
2483         if (hwp_active && !hwp_boost)
2484                 return;
2485
2486         if (cpu->update_util_set)
2487                 return;
2488
2489         /* Prevent intel_pstate_update_util() from using stale data. */
2490         cpu->sample.time = 0;
2491         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2492                                      (hwp_active ?
2493                                       intel_pstate_update_util_hwp :
2494                                       intel_pstate_update_util));
2495         cpu->update_util_set = true;
2496 }
2497
2498 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2499 {
2500         struct cpudata *cpu_data = all_cpu_data[cpu];
2501
2502         if (!cpu_data->update_util_set)
2503                 return;
2504
2505         cpufreq_remove_update_util_hook(cpu);
2506         cpu_data->update_util_set = false;
2507         synchronize_rcu();
2508 }
2509
2510 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2511 {
2512         return READ_ONCE(global.no_turbo) ?
2513                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2514 }
2515
2516 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2517                                             unsigned int policy_min,
2518                                             unsigned int policy_max)
2519 {
2520         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2521         int32_t max_policy_perf, min_policy_perf;
2522
2523         max_policy_perf = policy_max / perf_ctl_scaling;
2524         if (policy_max == policy_min) {
2525                 min_policy_perf = max_policy_perf;
2526         } else {
2527                 min_policy_perf = policy_min / perf_ctl_scaling;
2528                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2529                                           0, max_policy_perf);
2530         }
2531
2532         /*
2533          * HWP needs some special consideration, because HWP_REQUEST uses
2534          * abstract values to represent performance rather than pure ratios.
2535          */
2536         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2537                 int freq;
2538
2539                 freq = max_policy_perf * perf_ctl_scaling;
2540                 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2541                 freq = min_policy_perf * perf_ctl_scaling;
2542                 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2543         }
2544
2545         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2546                  cpu->cpu, min_policy_perf, max_policy_perf);
2547
2548         /* Normalize user input to [min_perf, max_perf] */
2549         if (per_cpu_limits) {
2550                 cpu->min_perf_ratio = min_policy_perf;
2551                 cpu->max_perf_ratio = max_policy_perf;
2552         } else {
2553                 int turbo_max = cpu->pstate.turbo_pstate;
2554                 int32_t global_min, global_max;
2555
2556                 /* Global limits are in percent of the maximum turbo P-state. */
2557                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2558                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2559                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2560
2561                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2562                          global_min, global_max);
2563
2564                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2565                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2566                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2567                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2568
2569                 /* Make sure min_perf <= max_perf */
2570                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2571                                           cpu->max_perf_ratio);
2572
2573         }
2574         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2575                  cpu->max_perf_ratio,
2576                  cpu->min_perf_ratio);
2577 }
2578
2579 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2580 {
2581         struct cpudata *cpu;
2582
2583         if (!policy->cpuinfo.max_freq)
2584                 return -ENODEV;
2585
2586         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2587                  policy->cpuinfo.max_freq, policy->max);
2588
2589         cpu = all_cpu_data[policy->cpu];
2590         cpu->policy = policy->policy;
2591
2592         mutex_lock(&intel_pstate_limits_lock);
2593
2594         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2595
2596         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2597                 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2598
2599                 /*
2600                  * NOHZ_FULL CPUs need this as the governor callback may not
2601                  * be invoked on them.
2602                  */
2603                 intel_pstate_clear_update_util_hook(policy->cpu);
2604                 intel_pstate_set_pstate(cpu, pstate);
2605         } else {
2606                 intel_pstate_set_update_util_hook(policy->cpu);
2607         }
2608
2609         if (hwp_active) {
2610                 /*
2611                  * When hwp_boost was active before and dynamically it
2612                  * was turned off, in that case we need to clear the
2613                  * update util hook.
2614                  */
2615                 if (!hwp_boost)
2616                         intel_pstate_clear_update_util_hook(policy->cpu);
2617                 intel_pstate_hwp_set(policy->cpu);
2618         }
2619         /*
2620          * policy->cur is never updated with the intel_pstate driver, but it
2621          * is used as a stale frequency value. So, keep it within limits.
2622          */
2623         policy->cur = policy->min;
2624
2625         mutex_unlock(&intel_pstate_limits_lock);
2626
2627         return 0;
2628 }
2629
2630 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2631                                            struct cpufreq_policy_data *policy)
2632 {
2633         if (!hwp_active &&
2634             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2635             policy->max < policy->cpuinfo.max_freq &&
2636             policy->max > cpu->pstate.max_freq) {
2637                 pr_debug("policy->max > max non turbo frequency\n");
2638                 policy->max = policy->cpuinfo.max_freq;
2639         }
2640 }
2641
2642 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2643                                            struct cpufreq_policy_data *policy)
2644 {
2645         int max_freq;
2646
2647         if (hwp_active) {
2648                 intel_pstate_get_hwp_cap(cpu);
2649                 max_freq = READ_ONCE(global.no_turbo) ?
2650                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2651         } else {
2652                 max_freq = intel_pstate_get_max_freq(cpu);
2653         }
2654         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2655
2656         intel_pstate_adjust_policy_max(cpu, policy);
2657 }
2658
2659 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2660 {
2661         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2662
2663         return 0;
2664 }
2665
2666 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2667 {
2668         struct cpudata *cpu = all_cpu_data[policy->cpu];
2669
2670         pr_debug("CPU %d going offline\n", cpu->cpu);
2671
2672         if (cpu->suspended)
2673                 return 0;
2674
2675         /*
2676          * If the CPU is an SMT thread and it goes offline with the performance
2677          * settings different from the minimum, it will prevent its sibling
2678          * from getting to lower performance levels, so force the minimum
2679          * performance on CPU offline to prevent that from happening.
2680          */
2681         if (hwp_active)
2682                 intel_pstate_hwp_offline(cpu);
2683         else
2684                 intel_pstate_set_min_pstate(cpu);
2685
2686         intel_pstate_exit_perf_limits(policy);
2687
2688         return 0;
2689 }
2690
2691 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2692 {
2693         struct cpudata *cpu = all_cpu_data[policy->cpu];
2694
2695         pr_debug("CPU %d going online\n", cpu->cpu);
2696
2697         intel_pstate_init_acpi_perf_limits(policy);
2698
2699         if (hwp_active) {
2700                 /*
2701                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2702                  * know that it need not do that.
2703                  */
2704                 intel_pstate_hwp_reenable(cpu);
2705                 cpu->suspended = false;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2712 {
2713         intel_pstate_clear_update_util_hook(policy->cpu);
2714
2715         return intel_cpufreq_cpu_offline(policy);
2716 }
2717
2718 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2719 {
2720         pr_debug("CPU %d exiting\n", policy->cpu);
2721
2722         policy->fast_switch_possible = false;
2723 }
2724
2725 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2726 {
2727         struct cpudata *cpu;
2728         int rc;
2729
2730         rc = intel_pstate_init_cpu(policy->cpu);
2731         if (rc)
2732                 return rc;
2733
2734         cpu = all_cpu_data[policy->cpu];
2735
2736         cpu->max_perf_ratio = 0xFF;
2737         cpu->min_perf_ratio = 0;
2738
2739         /* cpuinfo and default policy values */
2740         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2741         policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2742                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2743
2744         policy->min = policy->cpuinfo.min_freq;
2745         policy->max = policy->cpuinfo.max_freq;
2746
2747         intel_pstate_init_acpi_perf_limits(policy);
2748
2749         policy->fast_switch_possible = true;
2750
2751         return 0;
2752 }
2753
2754 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2755 {
2756         int ret = __intel_pstate_cpu_init(policy);
2757
2758         if (ret)
2759                 return ret;
2760
2761         /*
2762          * Set the policy to powersave to provide a valid fallback value in case
2763          * the default cpufreq governor is neither powersave nor performance.
2764          */
2765         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2766
2767         if (hwp_active) {
2768                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2769
2770                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2771         }
2772
2773         return 0;
2774 }
2775
2776 static struct cpufreq_driver intel_pstate = {
2777         .flags          = CPUFREQ_CONST_LOOPS,
2778         .verify         = intel_pstate_verify_policy,
2779         .setpolicy      = intel_pstate_set_policy,
2780         .suspend        = intel_pstate_suspend,
2781         .resume         = intel_pstate_resume,
2782         .init           = intel_pstate_cpu_init,
2783         .exit           = intel_pstate_cpu_exit,
2784         .offline        = intel_pstate_cpu_offline,
2785         .online         = intel_pstate_cpu_online,
2786         .update_limits  = intel_pstate_update_limits,
2787         .name           = "intel_pstate",
2788 };
2789
2790 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2791 {
2792         struct cpudata *cpu = all_cpu_data[policy->cpu];
2793
2794         intel_pstate_verify_cpu_policy(cpu, policy);
2795         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2796
2797         return 0;
2798 }
2799
2800 /* Use of trace in passive mode:
2801  *
2802  * In passive mode the trace core_busy field (also known as the
2803  * performance field, and lablelled as such on the graphs; also known as
2804  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2805  * driver call was via the normal or fast switch path. Various graphs
2806  * output from the intel_pstate_tracer.py utility that include core_busy
2807  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2808  * so we use 10 to indicate the normal path through the driver, and
2809  * 90 to indicate the fast switch path through the driver.
2810  * The scaled_busy field is not used, and is set to 0.
2811  */
2812
2813 #define INTEL_PSTATE_TRACE_TARGET 10
2814 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2815
2816 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2817 {
2818         struct sample *sample;
2819
2820         if (!trace_pstate_sample_enabled())
2821                 return;
2822
2823         if (!intel_pstate_sample(cpu, ktime_get()))
2824                 return;
2825
2826         sample = &cpu->sample;
2827         trace_pstate_sample(trace_type,
2828                 0,
2829                 old_pstate,
2830                 cpu->pstate.current_pstate,
2831                 sample->mperf,
2832                 sample->aperf,
2833                 sample->tsc,
2834                 get_avg_frequency(cpu),
2835                 fp_toint(cpu->iowait_boost * 100));
2836 }
2837
2838 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2839                                      u32 desired, bool fast_switch)
2840 {
2841         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2842
2843         value &= ~HWP_MIN_PERF(~0L);
2844         value |= HWP_MIN_PERF(min);
2845
2846         value &= ~HWP_MAX_PERF(~0L);
2847         value |= HWP_MAX_PERF(max);
2848
2849         value &= ~HWP_DESIRED_PERF(~0L);
2850         value |= HWP_DESIRED_PERF(desired);
2851
2852         if (value == prev)
2853                 return;
2854
2855         WRITE_ONCE(cpu->hwp_req_cached, value);
2856         if (fast_switch)
2857                 wrmsrl(MSR_HWP_REQUEST, value);
2858         else
2859                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2860 }
2861
2862 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2863                                           u32 target_pstate, bool fast_switch)
2864 {
2865         if (fast_switch)
2866                 wrmsrl(MSR_IA32_PERF_CTL,
2867                        pstate_funcs.get_val(cpu, target_pstate));
2868         else
2869                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2870                               pstate_funcs.get_val(cpu, target_pstate));
2871 }
2872
2873 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2874                                        int target_pstate, bool fast_switch)
2875 {
2876         struct cpudata *cpu = all_cpu_data[policy->cpu];
2877         int old_pstate = cpu->pstate.current_pstate;
2878
2879         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2880         if (hwp_active) {
2881                 int max_pstate = policy->strict_target ?
2882                                         target_pstate : cpu->max_perf_ratio;
2883
2884                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2885                                          fast_switch);
2886         } else if (target_pstate != old_pstate) {
2887                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2888         }
2889
2890         cpu->pstate.current_pstate = target_pstate;
2891
2892         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2893                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2894
2895         return target_pstate;
2896 }
2897
2898 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2899                                 unsigned int target_freq,
2900                                 unsigned int relation)
2901 {
2902         struct cpudata *cpu = all_cpu_data[policy->cpu];
2903         struct cpufreq_freqs freqs;
2904         int target_pstate;
2905
2906         freqs.old = policy->cur;
2907         freqs.new = target_freq;
2908
2909         cpufreq_freq_transition_begin(policy, &freqs);
2910
2911         target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2912         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2913
2914         freqs.new = target_pstate * cpu->pstate.scaling;
2915
2916         cpufreq_freq_transition_end(policy, &freqs, false);
2917
2918         return 0;
2919 }
2920
2921 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2922                                               unsigned int target_freq)
2923 {
2924         struct cpudata *cpu = all_cpu_data[policy->cpu];
2925         int target_pstate;
2926
2927         target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2928
2929         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2930
2931         return target_pstate * cpu->pstate.scaling;
2932 }
2933
2934 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2935                                       unsigned long min_perf,
2936                                       unsigned long target_perf,
2937                                       unsigned long capacity)
2938 {
2939         struct cpudata *cpu = all_cpu_data[cpunum];
2940         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2941         int old_pstate = cpu->pstate.current_pstate;
2942         int cap_pstate, min_pstate, max_pstate, target_pstate;
2943
2944         cap_pstate = READ_ONCE(global.no_turbo) ?
2945                                         HWP_GUARANTEED_PERF(hwp_cap) :
2946                                         HWP_HIGHEST_PERF(hwp_cap);
2947
2948         /* Optimization: Avoid unnecessary divisions. */
2949
2950         target_pstate = cap_pstate;
2951         if (target_perf < capacity)
2952                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2953
2954         min_pstate = cap_pstate;
2955         if (min_perf < capacity)
2956                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2957
2958         if (min_pstate < cpu->pstate.min_pstate)
2959                 min_pstate = cpu->pstate.min_pstate;
2960
2961         if (min_pstate < cpu->min_perf_ratio)
2962                 min_pstate = cpu->min_perf_ratio;
2963
2964         if (min_pstate > cpu->max_perf_ratio)
2965                 min_pstate = cpu->max_perf_ratio;
2966
2967         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2968         if (max_pstate < min_pstate)
2969                 max_pstate = min_pstate;
2970
2971         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2972
2973         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2974
2975         cpu->pstate.current_pstate = target_pstate;
2976         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2977 }
2978
2979 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2980 {
2981         struct freq_qos_request *req;
2982         struct cpudata *cpu;
2983         struct device *dev;
2984         int ret, freq;
2985
2986         dev = get_cpu_device(policy->cpu);
2987         if (!dev)
2988                 return -ENODEV;
2989
2990         ret = __intel_pstate_cpu_init(policy);
2991         if (ret)
2992                 return ret;
2993
2994         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2995         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2996         policy->cur = policy->cpuinfo.min_freq;
2997
2998         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2999         if (!req) {
3000                 ret = -ENOMEM;
3001                 goto pstate_exit;
3002         }
3003
3004         cpu = all_cpu_data[policy->cpu];
3005
3006         if (hwp_active) {
3007                 u64 value;
3008
3009                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3010
3011                 intel_pstate_get_hwp_cap(cpu);
3012
3013                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3014                 WRITE_ONCE(cpu->hwp_req_cached, value);
3015
3016                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3017         } else {
3018                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3019         }
3020
3021         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3022
3023         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3024                                    freq);
3025         if (ret < 0) {
3026                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3027                 goto free_req;
3028         }
3029
3030         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3031
3032         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3033                                    freq);
3034         if (ret < 0) {
3035                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3036                 goto remove_min_req;
3037         }
3038
3039         policy->driver_data = req;
3040
3041         return 0;
3042
3043 remove_min_req:
3044         freq_qos_remove_request(req);
3045 free_req:
3046         kfree(req);
3047 pstate_exit:
3048         intel_pstate_exit_perf_limits(policy);
3049
3050         return ret;
3051 }
3052
3053 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3054 {
3055         struct freq_qos_request *req;
3056
3057         req = policy->driver_data;
3058
3059         freq_qos_remove_request(req + 1);
3060         freq_qos_remove_request(req);
3061         kfree(req);
3062
3063         intel_pstate_cpu_exit(policy);
3064 }
3065
3066 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3067 {
3068         intel_pstate_suspend(policy);
3069
3070         if (hwp_active) {
3071                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3072                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3073
3074                 /*
3075                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3076                  * intel_cpufreq_adjust_perf() is in use and the last value
3077                  * written by it may not be suitable.
3078                  */
3079                 value &= ~HWP_DESIRED_PERF(~0L);
3080                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3081                 WRITE_ONCE(cpu->hwp_req_cached, value);
3082         }
3083
3084         return 0;
3085 }
3086
3087 static struct cpufreq_driver intel_cpufreq = {
3088         .flags          = CPUFREQ_CONST_LOOPS,
3089         .verify         = intel_cpufreq_verify_policy,
3090         .target         = intel_cpufreq_target,
3091         .fast_switch    = intel_cpufreq_fast_switch,
3092         .init           = intel_cpufreq_cpu_init,
3093         .exit           = intel_cpufreq_cpu_exit,
3094         .offline        = intel_cpufreq_cpu_offline,
3095         .online         = intel_pstate_cpu_online,
3096         .suspend        = intel_cpufreq_suspend,
3097         .resume         = intel_pstate_resume,
3098         .update_limits  = intel_pstate_update_limits,
3099         .name           = "intel_cpufreq",
3100 };
3101
3102 static struct cpufreq_driver *default_driver;
3103
3104 static void intel_pstate_driver_cleanup(void)
3105 {
3106         unsigned int cpu;
3107
3108         cpus_read_lock();
3109         for_each_online_cpu(cpu) {
3110                 if (all_cpu_data[cpu]) {
3111                         if (intel_pstate_driver == &intel_pstate)
3112                                 intel_pstate_clear_update_util_hook(cpu);
3113
3114                         kfree(all_cpu_data[cpu]);
3115                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3116                 }
3117         }
3118         cpus_read_unlock();
3119
3120         intel_pstate_driver = NULL;
3121 }
3122
3123 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3124 {
3125         int ret;
3126
3127         if (driver == &intel_pstate)
3128                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3129
3130         memset(&global, 0, sizeof(global));
3131         global.max_perf_pct = 100;
3132         global.turbo_disabled = turbo_is_disabled();
3133         global.no_turbo = global.turbo_disabled;
3134
3135         arch_set_max_freq_ratio(global.turbo_disabled);
3136
3137         intel_pstate_driver = driver;
3138         ret = cpufreq_register_driver(intel_pstate_driver);
3139         if (ret) {
3140                 intel_pstate_driver_cleanup();
3141                 return ret;
3142         }
3143
3144         global.min_perf_pct = min_perf_pct_min();
3145
3146         return 0;
3147 }
3148
3149 static ssize_t intel_pstate_show_status(char *buf)
3150 {
3151         if (!intel_pstate_driver)
3152                 return sprintf(buf, "off\n");
3153
3154         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3155                                         "active" : "passive");
3156 }
3157
3158 static int intel_pstate_update_status(const char *buf, size_t size)
3159 {
3160         if (size == 3 && !strncmp(buf, "off", size)) {
3161                 if (!intel_pstate_driver)
3162                         return -EINVAL;
3163
3164                 if (hwp_active)
3165                         return -EBUSY;
3166
3167                 cpufreq_unregister_driver(intel_pstate_driver);
3168                 intel_pstate_driver_cleanup();
3169                 return 0;
3170         }
3171
3172         if (size == 6 && !strncmp(buf, "active", size)) {
3173                 if (intel_pstate_driver) {
3174                         if (intel_pstate_driver == &intel_pstate)
3175                                 return 0;
3176
3177                         cpufreq_unregister_driver(intel_pstate_driver);
3178                 }
3179
3180                 return intel_pstate_register_driver(&intel_pstate);
3181         }
3182
3183         if (size == 7 && !strncmp(buf, "passive", size)) {
3184                 if (intel_pstate_driver) {
3185                         if (intel_pstate_driver == &intel_cpufreq)
3186                                 return 0;
3187
3188                         cpufreq_unregister_driver(intel_pstate_driver);
3189                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3190                 }
3191
3192                 return intel_pstate_register_driver(&intel_cpufreq);
3193         }
3194
3195         return -EINVAL;
3196 }
3197
3198 static int no_load __initdata;
3199 static int no_hwp __initdata;
3200 static int hwp_only __initdata;
3201 static unsigned int force_load __initdata;
3202
3203 static int __init intel_pstate_msrs_not_valid(void)
3204 {
3205         if (!pstate_funcs.get_max(0) ||
3206             !pstate_funcs.get_min(0) ||
3207             !pstate_funcs.get_turbo(0))
3208                 return -ENODEV;
3209
3210         return 0;
3211 }
3212
3213 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3214 {
3215         pstate_funcs.get_max   = funcs->get_max;
3216         pstate_funcs.get_max_physical = funcs->get_max_physical;
3217         pstate_funcs.get_min   = funcs->get_min;
3218         pstate_funcs.get_turbo = funcs->get_turbo;
3219         pstate_funcs.get_scaling = funcs->get_scaling;
3220         pstate_funcs.get_val   = funcs->get_val;
3221         pstate_funcs.get_vid   = funcs->get_vid;
3222         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3223 }
3224
3225 #ifdef CONFIG_ACPI
3226
3227 static bool __init intel_pstate_no_acpi_pss(void)
3228 {
3229         int i;
3230
3231         for_each_possible_cpu(i) {
3232                 acpi_status status;
3233                 union acpi_object *pss;
3234                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3235                 struct acpi_processor *pr = per_cpu(processors, i);
3236
3237                 if (!pr)
3238                         continue;
3239
3240                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3241                 if (ACPI_FAILURE(status))
3242                         continue;
3243
3244                 pss = buffer.pointer;
3245                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3246                         kfree(pss);
3247                         return false;
3248                 }
3249
3250                 kfree(pss);
3251         }
3252
3253         pr_debug("ACPI _PSS not found\n");
3254         return true;
3255 }
3256
3257 static bool __init intel_pstate_no_acpi_pcch(void)
3258 {
3259         acpi_status status;
3260         acpi_handle handle;
3261
3262         status = acpi_get_handle(NULL, "\\_SB", &handle);
3263         if (ACPI_FAILURE(status))
3264                 goto not_found;
3265
3266         if (acpi_has_method(handle, "PCCH"))
3267                 return false;
3268
3269 not_found:
3270         pr_debug("ACPI PCCH not found\n");
3271         return true;
3272 }
3273
3274 static bool __init intel_pstate_has_acpi_ppc(void)
3275 {
3276         int i;
3277
3278         for_each_possible_cpu(i) {
3279                 struct acpi_processor *pr = per_cpu(processors, i);
3280
3281                 if (!pr)
3282                         continue;
3283                 if (acpi_has_method(pr->handle, "_PPC"))
3284                         return true;
3285         }
3286         pr_debug("ACPI _PPC not found\n");
3287         return false;
3288 }
3289
3290 enum {
3291         PSS,
3292         PPC,
3293 };
3294
3295 /* Hardware vendor-specific info that has its own power management modes */
3296 static struct acpi_platform_list plat_info[] __initdata = {
3297         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3298         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3299         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3300         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3301         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3302         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3303         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3304         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3305         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3306         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312         { } /* End */
3313 };
3314
3315 #define BITMASK_OOB     (BIT(8) | BIT(18))
3316
3317 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3318 {
3319         const struct x86_cpu_id *id;
3320         u64 misc_pwr;
3321         int idx;
3322
3323         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3324         if (id) {
3325                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3326                 if (misc_pwr & BITMASK_OOB) {
3327                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3328                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3329                         return true;
3330                 }
3331         }
3332
3333         idx = acpi_match_platform_list(plat_info);
3334         if (idx < 0)
3335                 return false;
3336
3337         switch (plat_info[idx].data) {
3338         case PSS:
3339                 if (!intel_pstate_no_acpi_pss())
3340                         return false;
3341
3342                 return intel_pstate_no_acpi_pcch();
3343         case PPC:
3344                 return intel_pstate_has_acpi_ppc() && !force_load;
3345         }
3346
3347         return false;
3348 }
3349
3350 static void intel_pstate_request_control_from_smm(void)
3351 {
3352         /*
3353          * It may be unsafe to request P-states control from SMM if _PPC support
3354          * has not been enabled.
3355          */
3356         if (acpi_ppc)
3357                 acpi_processor_pstate_control();
3358 }
3359 #else /* CONFIG_ACPI not enabled */
3360 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3361 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3362 static inline void intel_pstate_request_control_from_smm(void) {}
3363 #endif /* CONFIG_ACPI */
3364
3365 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3366
3367 #define X86_MATCH_HWP(vfm, hwp_mode)                            \
3368         X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3369
3370 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3371         X86_MATCH_HWP(INTEL_BROADWELL_X,        INTEL_PSTATE_HWP_BROADWELL),
3372         X86_MATCH_HWP(INTEL_BROADWELL_D,        INTEL_PSTATE_HWP_BROADWELL),
3373         X86_MATCH_HWP(INTEL_ANY,                0),
3374         {}
3375 };
3376
3377 static bool intel_pstate_hwp_is_enabled(void)
3378 {
3379         u64 value;
3380
3381         rdmsrl(MSR_PM_ENABLE, value);
3382         return !!(value & 0x1);
3383 }
3384
3385 #define POWERSAVE_MASK                  GENMASK(7, 0)
3386 #define BALANCE_POWER_MASK              GENMASK(15, 8)
3387 #define BALANCE_PERFORMANCE_MASK        GENMASK(23, 16)
3388 #define PERFORMANCE_MASK                GENMASK(31, 24)
3389
3390 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3391         (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3392          FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3393          FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3394          FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3395
3396 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3397         (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3398          balance_perf, HWP_EPP_PERFORMANCE))
3399
3400 static const struct x86_cpu_id intel_epp_default[] = {
3401         /*
3402          * Set EPP value as 102, this is the max suggested EPP
3403          * which can result in one core turbo frequency for
3404          * AlderLake Mobile CPUs.
3405          */
3406         X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3407         X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3408         X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3409         X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3410                       179, 64, 16)),
3411         X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3412                       179, 64, 16)),
3413         {}
3414 };
3415
3416 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3417         X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3418         X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3419         X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3420         {}
3421 };
3422
3423 static int __init intel_pstate_init(void)
3424 {
3425         static struct cpudata **_all_cpu_data;
3426         const struct x86_cpu_id *id;
3427         int rc;
3428
3429         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3430                 return -ENODEV;
3431
3432         id = x86_match_cpu(hwp_support_ids);
3433         if (id) {
3434                 hwp_forced = intel_pstate_hwp_is_enabled();
3435
3436                 if (hwp_forced)
3437                         pr_info("HWP enabled by BIOS\n");
3438                 else if (no_load)
3439                         return -ENODEV;
3440
3441                 copy_cpu_funcs(&core_funcs);
3442                 /*
3443                  * Avoid enabling HWP for processors without EPP support,
3444                  * because that means incomplete HWP implementation which is a
3445                  * corner case and supporting it is generally problematic.
3446                  *
3447                  * If HWP is enabled already, though, there is no choice but to
3448                  * deal with it.
3449                  */
3450                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3451                         hwp_active = true;
3452                         hwp_mode_bdw = id->driver_data;
3453                         intel_pstate.attr = hwp_cpufreq_attrs;
3454                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3455                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3456                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3457                         if (!default_driver)
3458                                 default_driver = &intel_pstate;
3459
3460                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3461
3462                         goto hwp_cpu_matched;
3463                 }
3464                 pr_info("HWP not enabled\n");
3465         } else {
3466                 if (no_load)
3467                         return -ENODEV;
3468
3469                 id = x86_match_cpu(intel_pstate_cpu_ids);
3470                 if (!id) {
3471                         pr_info("CPU model not supported\n");
3472                         return -ENODEV;
3473                 }
3474
3475                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3476         }
3477
3478         if (intel_pstate_msrs_not_valid()) {
3479                 pr_info("Invalid MSRs\n");
3480                 return -ENODEV;
3481         }
3482         /* Without HWP start in the passive mode. */
3483         if (!default_driver)
3484                 default_driver = &intel_cpufreq;
3485
3486 hwp_cpu_matched:
3487         /*
3488          * The Intel pstate driver will be ignored if the platform
3489          * firmware has its own power management modes.
3490          */
3491         if (intel_pstate_platform_pwr_mgmt_exists()) {
3492                 pr_info("P-states controlled by the platform\n");
3493                 return -ENODEV;
3494         }
3495
3496         if (!hwp_active && hwp_only)
3497                 return -ENOTSUPP;
3498
3499         pr_info("Intel P-state driver initializing\n");
3500
3501         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3502         if (!_all_cpu_data)
3503                 return -ENOMEM;
3504
3505         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3506
3507         intel_pstate_request_control_from_smm();
3508
3509         intel_pstate_sysfs_expose_params();
3510
3511         if (hwp_active) {
3512                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3513                 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3514
3515                 if (id) {
3516                         epp_values[EPP_INDEX_POWERSAVE] =
3517                                         FIELD_GET(POWERSAVE_MASK, id->driver_data);
3518                         epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3519                                         FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3520                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3521                                         FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3522                         epp_values[EPP_INDEX_PERFORMANCE] =
3523                                         FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3524                         pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3525                                  epp_values[EPP_INDEX_POWERSAVE],
3526                                  epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3527                                  epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3528                                  epp_values[EPP_INDEX_PERFORMANCE]);
3529                 }
3530
3531                 if (hybrid_id) {
3532                         hybrid_scaling_factor = hybrid_id->driver_data;
3533                         pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3534                 }
3535
3536         }
3537
3538         mutex_lock(&intel_pstate_driver_lock);
3539         rc = intel_pstate_register_driver(default_driver);
3540         mutex_unlock(&intel_pstate_driver_lock);
3541         if (rc) {
3542                 intel_pstate_sysfs_remove();
3543                 return rc;
3544         }
3545
3546         if (hwp_active) {
3547                 const struct x86_cpu_id *id;
3548
3549                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3550                 if (id) {
3551                         set_power_ctl_ee_state(false);
3552                         pr_info("Disabling energy efficiency optimization\n");
3553                 }
3554
3555                 pr_info("HWP enabled\n");
3556         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3557                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3558         }
3559
3560         return 0;
3561 }
3562 device_initcall(intel_pstate_init);
3563
3564 static int __init intel_pstate_setup(char *str)
3565 {
3566         if (!str)
3567                 return -EINVAL;
3568
3569         if (!strcmp(str, "disable"))
3570                 no_load = 1;
3571         else if (!strcmp(str, "active"))
3572                 default_driver = &intel_pstate;
3573         else if (!strcmp(str, "passive"))
3574                 default_driver = &intel_cpufreq;
3575
3576         if (!strcmp(str, "no_hwp"))
3577                 no_hwp = 1;
3578
3579         if (!strcmp(str, "force"))
3580                 force_load = 1;
3581         if (!strcmp(str, "hwp_only"))
3582                 hwp_only = 1;
3583         if (!strcmp(str, "per_cpu_perf_limits"))
3584                 per_cpu_limits = true;
3585
3586 #ifdef CONFIG_ACPI
3587         if (!strcmp(str, "support_acpi_ppc"))
3588                 acpi_ppc = true;
3589 #endif
3590
3591         return 0;
3592 }
3593 early_param("intel_pstate", intel_pstate_setup);
3594
3595 MODULE_AUTHOR("Dirk Brandewie <[email protected]>");
3596 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
This page took 0.238647 seconds and 4 git commands to generate.