1 // SPDX-License-Identifier: GPL-2.0-only
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
6 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
56 #include <trace/events/ipi.h>
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
63 struct secondary_data secondary_data;
64 /* Number of CPUs which aren't online, but looping in kernel text. */
65 static int cpus_stuck_in_kernel;
76 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
79 IPI_CPU_BACKTRACE = NR_IPI,
84 static int ipi_irq_base __ro_after_init;
85 static int nr_ipi __ro_after_init = NR_IPI;
86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
88 static void ipi_setup(int cpu);
90 #ifdef CONFIG_HOTPLUG_CPU
91 static void ipi_teardown(int cpu);
92 static int op_cpu_kill(unsigned int cpu);
94 static inline int op_cpu_kill(unsigned int cpu)
102 * Boot a secondary CPU, and assign it the specified idle task.
103 * This also gives us the initial stack to use for this CPU.
105 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
107 const struct cpu_operations *ops = get_cpu_ops(cpu);
110 return ops->cpu_boot(cpu);
115 static DECLARE_COMPLETION(cpu_running);
117 int __cpu_up(unsigned int cpu, struct task_struct *idle)
123 * We need to tell the secondary core where to find its stack and the
126 secondary_data.task = idle;
127 update_cpu_boot_status(CPU_MMU_OFF);
129 /* Now bring the CPU into our world */
130 ret = boot_secondary(cpu, idle);
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 * CPU was successfully started, wait for it to come online or
141 wait_for_completion_timeout(&cpu_running,
142 msecs_to_jiffies(5000));
146 pr_crit("CPU%u: failed to come online\n", cpu);
147 secondary_data.task = NULL;
148 status = READ_ONCE(secondary_data.status);
149 if (status == CPU_MMU_OFF)
150 status = READ_ONCE(__early_cpu_boot_status);
152 switch (status & CPU_BOOT_STATUS_MASK) {
154 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
156 cpus_stuck_in_kernel++;
159 if (!op_cpu_kill(cpu)) {
160 pr_crit("CPU%u: died during early boot\n", cpu);
163 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
165 case CPU_STUCK_IN_KERNEL:
166 pr_crit("CPU%u: is stuck in kernel\n", cpu);
167 if (status & CPU_STUCK_REASON_52_BIT_VA)
168 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
169 if (status & CPU_STUCK_REASON_NO_GRAN) {
170 pr_crit("CPU%u: does not support %luK granule\n",
171 cpu, PAGE_SIZE / SZ_1K);
173 cpus_stuck_in_kernel++;
175 case CPU_PANIC_KERNEL:
176 panic("CPU%u detected unsupported configuration\n", cpu);
182 static void init_gic_priority_masking(void)
186 if (WARN_ON(!gic_enable_sre()))
189 cpuflags = read_sysreg(daif);
191 WARN_ON(!(cpuflags & PSR_I_BIT));
192 WARN_ON(!(cpuflags & PSR_F_BIT));
194 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
198 * This is the secondary CPU boot entry. We're using this CPUs
199 * idle thread stack, but a set of temporary page tables.
201 asmlinkage notrace void secondary_start_kernel(void)
203 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
204 struct mm_struct *mm = &init_mm;
205 const struct cpu_operations *ops;
206 unsigned int cpu = smp_processor_id();
209 * All kernel threads share the same mm context; grab a
210 * reference and switch to it.
213 current->active_mm = mm;
216 * TTBR0 is only used for the identity mapping at this stage. Make it
217 * point to zero page to avoid speculatively fetching new entries.
219 cpu_uninstall_idmap();
221 if (system_uses_irq_prio_masking())
222 init_gic_priority_masking();
224 rcutree_report_cpu_starting(cpu);
225 trace_hardirqs_off();
228 * If the system has established the capabilities, make sure
229 * this CPU ticks all of those. If it doesn't, the CPU will
230 * fail to come online.
232 check_local_cpu_capabilities();
234 ops = get_cpu_ops(cpu);
235 if (ops->cpu_postboot)
239 * Log the CPU info before it is marked online and might get read.
242 store_cpu_topology(cpu);
245 * Enable GIC and timers.
247 notify_cpu_starting(cpu);
254 * OK, now it's safe to let the boot CPU continue. Wait for
255 * the CPU migration code to notice that the CPU is online
256 * before we continue.
258 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
259 cpu, (unsigned long)mpidr,
261 update_cpu_boot_status(CPU_BOOT_SUCCESS);
262 set_cpu_online(cpu, true);
263 complete(&cpu_running);
266 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
268 * As with setup_arch() we must unmask Debug and SError exceptions, and
269 * as the root irqchip has already been detected and initialized we can
270 * unmask IRQ and FIQ at the same time.
272 local_daif_restore(DAIF_PROCCTX);
275 * OK, it's off to the idle thread for us
277 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
280 #ifdef CONFIG_HOTPLUG_CPU
281 static int op_cpu_disable(unsigned int cpu)
283 const struct cpu_operations *ops = get_cpu_ops(cpu);
286 * If we don't have a cpu_die method, abort before we reach the point
287 * of no return. CPU0 may not have an cpu_ops, so test for it.
289 if (!ops || !ops->cpu_die)
293 * We may need to abort a hot unplug for some other mechanism-specific
296 if (ops->cpu_disable)
297 return ops->cpu_disable(cpu);
303 * __cpu_disable runs on the processor to be shutdown.
305 int __cpu_disable(void)
307 unsigned int cpu = smp_processor_id();
310 ret = op_cpu_disable(cpu);
314 remove_cpu_topology(cpu);
315 numa_remove_cpu(cpu);
318 * Take this CPU offline. Once we clear this, we can't return,
319 * and we must not schedule until we're ready to give up the cpu.
321 set_cpu_online(cpu, false);
325 * OK - migrate IRQs away from this CPU
327 irq_migrate_all_off_this_cpu();
332 static int op_cpu_kill(unsigned int cpu)
334 const struct cpu_operations *ops = get_cpu_ops(cpu);
337 * If we have no means of synchronising with the dying CPU, then assume
338 * that it is really dead. We can only wait for an arbitrary length of
339 * time and hope that it's dead, so let's skip the wait and just hope.
344 return ops->cpu_kill(cpu);
348 * Called on the thread which is asking for a CPU to be shutdown after the
349 * shutdown completed.
351 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
355 pr_debug("CPU%u: shutdown\n", cpu);
358 * Now that the dying CPU is beyond the point of no return w.r.t.
359 * in-kernel synchronisation, try to get the firwmare to help us to
360 * verify that it has really left the kernel before we consider
361 * clobbering anything it might still be using.
363 err = op_cpu_kill(cpu);
365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
369 * Called from the idle thread for the CPU which has been shutdown.
372 void __noreturn cpu_die(void)
374 unsigned int cpu = smp_processor_id();
375 const struct cpu_operations *ops = get_cpu_ops(cpu);
381 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
382 cpuhp_ap_report_dead();
385 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 * mechanism must perform all required cache maintenance to ensure that
387 * no dirty lines are lost in the process of shutting down the CPU.
395 static void __cpu_try_die(int cpu)
397 #ifdef CONFIG_HOTPLUG_CPU
398 const struct cpu_operations *ops = get_cpu_ops(cpu);
400 if (ops && ops->cpu_die)
406 * Kill the calling secondary CPU, early in bringup before it is turned
409 void __noreturn cpu_die_early(void)
411 int cpu = smp_processor_id();
413 pr_crit("CPU%d: will not boot\n", cpu);
415 /* Mark this CPU absent */
416 set_cpu_present(cpu, 0);
417 rcutree_report_cpu_dead();
419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
420 update_cpu_boot_status(CPU_KILL_ME);
424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
429 static void __init hyp_mode_check(void)
431 if (is_hyp_mode_available())
432 pr_info("CPU: All CPU(s) started at EL2\n");
433 else if (is_hyp_mode_mismatched())
434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
435 "CPU: CPUs started in inconsistent modes");
437 pr_info("CPU: All CPU(s) started at EL1\n");
438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
439 kvm_compute_layout();
440 kvm_apply_hyp_relocations();
444 void __init smp_cpus_done(unsigned int max_cpus)
446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
448 setup_system_features();
449 setup_user_features();
450 mark_linear_text_alias_ro();
453 void __init smp_prepare_boot_cpu(void)
456 * The runtime per-cpu areas have been allocated by
457 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
458 * freed shortly, so we must move over to the runtime per-cpu area.
460 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
462 cpuinfo_store_boot_cpu();
463 setup_boot_cpu_features();
465 /* Conditionally switch to GIC PMR for interrupt masking */
466 if (system_uses_irq_prio_masking())
467 init_gic_priority_masking();
469 kasan_init_hw_tags();
473 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
474 * entries and check for duplicates. If any is found just ignore the
475 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
476 * matching valid MPIDR values.
478 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
482 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
483 if (cpu_logical_map(i) == hwid)
489 * Initialize cpu operations for a logical cpu and
490 * set it in the possible mask on success
492 static int __init smp_cpu_setup(int cpu)
494 const struct cpu_operations *ops;
496 if (init_cpu_ops(cpu))
499 ops = get_cpu_ops(cpu);
500 if (ops->cpu_init(cpu))
503 set_cpu_possible(cpu, true);
508 static bool bootcpu_valid __initdata;
509 static unsigned int cpu_count = 1;
511 int arch_register_cpu(int cpu)
513 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
514 struct cpu *c = &per_cpu(cpu_devices, cpu);
516 if (!acpi_disabled && !acpi_handle &&
517 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
518 return -EPROBE_DEFER;
520 #ifdef CONFIG_ACPI_HOTPLUG_CPU
521 /* For now block anything that looks like physical CPU Hotplug */
522 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
523 pr_err_once("Changing CPU present bit is not supported\n");
529 * Availability of the acpi handle is sufficient to establish
530 * that _STA has aleady been checked. No need to recheck here.
532 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
534 return register_cpu(c, cpu);
537 #ifdef CONFIG_ACPI_HOTPLUG_CPU
538 void arch_unregister_cpu(int cpu)
540 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
541 struct cpu *c = &per_cpu(cpu_devices, cpu);
543 unsigned long long sta;
546 pr_err_once("Removing a CPU without associated ACPI handle\n");
550 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
551 if (ACPI_FAILURE(status))
554 /* For now do not allow anything that looks like physical CPU HP */
555 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
556 pr_err_once("Changing CPU present bit is not supported\n");
562 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
565 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
567 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
569 return &cpu_madt_gicc[cpu];
571 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
574 * acpi_map_gic_cpu_interface - parse processor MADT entry
576 * Carry out sanity checks on MADT processor entry and initialize
577 * cpu_logical_map on success
580 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
582 u64 hwid = processor->arm_mpidr;
584 if (!(processor->flags &
585 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
586 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
590 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
591 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
595 if (is_mpidr_duplicate(cpu_count, hwid)) {
596 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
600 /* Check if GICC structure of boot CPU is available in the MADT */
601 if (cpu_logical_map(0) == hwid) {
603 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
607 bootcpu_valid = true;
608 cpu_madt_gicc[0] = *processor;
612 if (cpu_count >= NR_CPUS)
615 /* map the logical cpu id to cpu MPIDR */
616 set_cpu_logical_map(cpu_count, hwid);
618 cpu_madt_gicc[cpu_count] = *processor;
621 * Set-up the ACPI parking protocol cpu entries
622 * while initializing the cpu_logical_map to
623 * avoid parsing MADT entries multiple times for
624 * nothing (ie a valid cpu_logical_map entry should
625 * contain a valid parking protocol data set to
626 * initialize the cpu if the parking protocol is
627 * the only available enable method).
629 acpi_set_mailbox_entry(cpu_count, processor);
635 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
636 const unsigned long end)
638 struct acpi_madt_generic_interrupt *processor;
640 processor = (struct acpi_madt_generic_interrupt *)header;
641 if (BAD_MADT_GICC_ENTRY(processor, end))
644 acpi_table_print_madt_entry(&header->common);
646 acpi_map_gic_cpu_interface(processor);
651 static void __init acpi_parse_and_init_cpus(void)
656 * do a walk of MADT to determine how many CPUs
657 * we have including disabled CPUs, and get information
658 * we need for SMP init.
660 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
661 acpi_parse_gic_cpu_interface, 0);
664 * In ACPI, SMP and CPU NUMA information is provided in separate
665 * static tables, namely the MADT and the SRAT.
667 * Thus, it is simpler to first create the cpu logical map through
668 * an MADT walk and then map the logical cpus to their node ids
671 acpi_map_cpus_to_nodes();
673 for (i = 0; i < nr_cpu_ids; i++)
674 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
677 #define acpi_parse_and_init_cpus(...) do { } while (0)
681 * Enumerate the possible CPU set from the device tree and build the
682 * cpu logical map array containing MPIDR values related to logical
683 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
685 static void __init of_parse_and_init_cpus(void)
687 struct device_node *dn;
689 for_each_of_cpu_node(dn) {
690 u64 hwid = of_get_cpu_hwid(dn, 0);
692 if (hwid & ~MPIDR_HWID_BITMASK)
695 if (is_mpidr_duplicate(cpu_count, hwid)) {
696 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
702 * The numbering scheme requires that the boot CPU
703 * must be assigned logical id 0. Record it so that
704 * the logical map built from DT is validated and can
707 if (hwid == cpu_logical_map(0)) {
709 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
714 bootcpu_valid = true;
715 early_map_cpu_to_node(0, of_node_to_nid(dn));
718 * cpu_logical_map has already been
719 * initialized and the boot cpu doesn't need
720 * the enable-method so continue without
726 if (cpu_count >= NR_CPUS)
729 pr_debug("cpu logical map 0x%llx\n", hwid);
730 set_cpu_logical_map(cpu_count, hwid);
732 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
739 * Enumerate the possible CPU set from the device tree or ACPI and build the
740 * cpu logical map array containing MPIDR values related to logical
741 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
743 void __init smp_init_cpus(void)
748 of_parse_and_init_cpus();
750 acpi_parse_and_init_cpus();
752 if (cpu_count > nr_cpu_ids)
753 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
754 cpu_count, nr_cpu_ids);
756 if (!bootcpu_valid) {
757 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
762 * We need to set the cpu_logical_map entries before enabling
763 * the cpus so that cpu processor description entries (DT cpu nodes
764 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
765 * with entries in cpu_logical_map while initializing the cpus.
766 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
768 for (i = 1; i < nr_cpu_ids; i++) {
769 if (cpu_logical_map(i) != INVALID_HWID) {
770 if (smp_cpu_setup(i))
771 set_cpu_logical_map(i, INVALID_HWID);
776 void __init smp_prepare_cpus(unsigned int max_cpus)
778 const struct cpu_operations *ops;
781 unsigned int this_cpu;
785 this_cpu = smp_processor_id();
786 store_cpu_topology(this_cpu);
787 numa_store_cpu_info(this_cpu);
788 numa_add_cpu(this_cpu);
791 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
792 * secondary CPUs present.
798 * Initialise the present map (which describes the set of CPUs
799 * actually populated at the present time) and release the
800 * secondaries from the bootloader.
802 for_each_possible_cpu(cpu) {
804 if (cpu == smp_processor_id())
807 ops = get_cpu_ops(cpu);
811 err = ops->cpu_prepare(cpu);
815 set_cpu_present(cpu, true);
816 numa_store_cpu_info(cpu);
820 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
821 [IPI_RESCHEDULE] = "Rescheduling interrupts",
822 [IPI_CALL_FUNC] = "Function call interrupts",
823 [IPI_CPU_STOP] = "CPU stop interrupts",
824 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
825 [IPI_TIMER] = "Timer broadcast interrupts",
826 [IPI_IRQ_WORK] = "IRQ work interrupts",
827 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts",
828 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts",
831 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
833 unsigned long irq_err_count;
835 int arch_show_interrupts(struct seq_file *p, int prec)
839 for (i = 0; i < MAX_IPI; i++) {
840 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
841 prec >= 4 ? " " : "");
842 for_each_online_cpu(cpu)
843 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
844 seq_printf(p, " %s\n", ipi_types[i]);
847 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
851 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
853 smp_cross_call(mask, IPI_CALL_FUNC);
856 void arch_send_call_function_single_ipi(int cpu)
858 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
861 #ifdef CONFIG_IRQ_WORK
862 void arch_irq_work_raise(void)
864 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
868 static void __noreturn local_cpu_stop(void)
870 set_cpu_online(smp_processor_id(), false);
873 sdei_mask_local_cpu();
878 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
879 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
880 * CPUs that have already stopped themselves.
882 void __noreturn panic_smp_self_stop(void)
887 #ifdef CONFIG_KEXEC_CORE
888 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
891 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
893 #ifdef CONFIG_KEXEC_CORE
894 crash_save_cpu(regs, cpu);
896 atomic_dec(&waiting_for_crash_ipi);
899 sdei_mask_local_cpu();
901 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
911 static void arm64_backtrace_ipi(cpumask_t *mask)
913 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
916 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
919 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
920 * nothing about it truly needs to be implemented using an NMI, it's
921 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
922 * returned false our backtrace attempt will just use a regular IPI.
924 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
928 void kgdb_roundup_cpus(void)
930 int this_cpu = raw_smp_processor_id();
933 for_each_online_cpu(cpu) {
934 /* No need to roundup ourselves */
938 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
944 * Main handler for inter-processor interrupts
946 static void do_handle_IPI(int ipinr)
948 unsigned int cpu = smp_processor_id();
950 if ((unsigned)ipinr < NR_IPI)
951 trace_ipi_entry(ipi_types[ipinr]);
959 generic_smp_call_function_interrupt();
966 case IPI_CPU_CRASH_STOP:
967 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
968 ipi_cpu_crash_stop(cpu, get_irq_regs());
974 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
976 tick_receive_broadcast();
980 #ifdef CONFIG_IRQ_WORK
986 case IPI_CPU_BACKTRACE:
988 * NOTE: in some cases this _won't_ be NMI context. See the
989 * comment in arch_trigger_cpumask_backtrace().
991 nmi_cpu_backtrace(get_irq_regs());
994 case IPI_KGDB_ROUNDUP:
995 kgdb_nmicallback(cpu, get_irq_regs());
999 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1003 if ((unsigned)ipinr < NR_IPI)
1004 trace_ipi_exit(ipi_types[ipinr]);
1007 static irqreturn_t ipi_handler(int irq, void *data)
1009 do_handle_IPI(irq - ipi_irq_base);
1013 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1015 trace_ipi_raise(target, ipi_types[ipinr]);
1016 __ipi_send_mask(ipi_desc[ipinr], target);
1019 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1021 if (!system_uses_irq_prio_masking())
1026 case IPI_CPU_CRASH_STOP:
1027 case IPI_CPU_BACKTRACE:
1028 case IPI_KGDB_ROUNDUP:
1035 static void ipi_setup(int cpu)
1039 if (WARN_ON_ONCE(!ipi_irq_base))
1042 for (i = 0; i < nr_ipi; i++) {
1043 if (ipi_should_be_nmi(i)) {
1044 prepare_percpu_nmi(ipi_irq_base + i);
1045 enable_percpu_nmi(ipi_irq_base + i, 0);
1047 enable_percpu_irq(ipi_irq_base + i, 0);
1052 #ifdef CONFIG_HOTPLUG_CPU
1053 static void ipi_teardown(int cpu)
1057 if (WARN_ON_ONCE(!ipi_irq_base))
1060 for (i = 0; i < nr_ipi; i++) {
1061 if (ipi_should_be_nmi(i)) {
1062 disable_percpu_nmi(ipi_irq_base + i);
1063 teardown_percpu_nmi(ipi_irq_base + i);
1065 disable_percpu_irq(ipi_irq_base + i);
1071 void __init set_smp_ipi_range(int ipi_base, int n)
1075 WARN_ON(n < MAX_IPI);
1076 nr_ipi = min(n, MAX_IPI);
1078 for (i = 0; i < nr_ipi; i++) {
1081 if (ipi_should_be_nmi(i)) {
1082 err = request_percpu_nmi(ipi_base + i, ipi_handler,
1084 WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1087 err = request_percpu_irq(ipi_base + i, ipi_handler,
1089 WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1093 ipi_desc[i] = irq_to_desc(ipi_base + i);
1094 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1097 ipi_irq_base = ipi_base;
1099 /* Setup the boot CPU immediately */
1100 ipi_setup(smp_processor_id());
1103 void arch_smp_send_reschedule(int cpu)
1105 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1108 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1109 void arch_send_wakeup_ipi(unsigned int cpu)
1112 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1113 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1115 smp_send_reschedule(cpu);
1119 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1120 void tick_broadcast(const struct cpumask *mask)
1122 smp_cross_call(mask, IPI_TIMER);
1127 * The number of CPUs online, not counting this CPU (which may not be
1128 * fully online and so not counted in num_online_cpus()).
1130 static inline unsigned int num_other_online_cpus(void)
1132 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1134 return num_online_cpus() - this_cpu_online;
1137 void smp_send_stop(void)
1139 unsigned long timeout;
1141 if (num_other_online_cpus()) {
1144 cpumask_copy(&mask, cpu_online_mask);
1145 cpumask_clear_cpu(smp_processor_id(), &mask);
1147 if (system_state <= SYSTEM_RUNNING)
1148 pr_crit("SMP: stopping secondary CPUs\n");
1149 smp_cross_call(&mask, IPI_CPU_STOP);
1152 /* Wait up to one second for other CPUs to stop */
1153 timeout = USEC_PER_SEC;
1154 while (num_other_online_cpus() && timeout--)
1157 if (num_other_online_cpus())
1158 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1159 cpumask_pr_args(cpu_online_mask));
1161 sdei_mask_local_cpu();
1164 #ifdef CONFIG_KEXEC_CORE
1165 void crash_smp_send_stop(void)
1167 static int cpus_stopped;
1169 unsigned long timeout;
1172 * This function can be called twice in panic path, but obviously
1173 * we execute this only once.
1181 * If this cpu is the only one alive at this point in time, online or
1182 * not, there are no stop messages to be sent around, so just back out.
1184 if (num_other_online_cpus() == 0)
1187 cpumask_copy(&mask, cpu_online_mask);
1188 cpumask_clear_cpu(smp_processor_id(), &mask);
1190 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1192 pr_crit("SMP: stopping secondary CPUs\n");
1193 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1195 /* Wait up to one second for other CPUs to stop */
1196 timeout = USEC_PER_SEC;
1197 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1200 if (atomic_read(&waiting_for_crash_ipi) > 0)
1201 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1202 cpumask_pr_args(&mask));
1205 sdei_mask_local_cpu();
1206 sdei_handler_abort();
1209 bool smp_crash_stop_failed(void)
1211 return (atomic_read(&waiting_for_crash_ipi) > 0);
1215 static bool have_cpu_die(void)
1217 #ifdef CONFIG_HOTPLUG_CPU
1218 int any_cpu = raw_smp_processor_id();
1219 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1221 if (ops && ops->cpu_die)
1227 bool cpus_are_stuck_in_kernel(void)
1229 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1231 return !!cpus_stuck_in_kernel || smp_spin_tables ||
1232 is_protected_kvm_enabled();