1 // SPDX-License-Identifier: GPL-2.0
3 * cfg80211 scan result handling
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
25 #include "wext-compat.h"
29 * DOC: BSS tree/list structure
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
80 * struct cfg80211_colocated_ap - colocated AP information
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
100 struct cfg80211_colocated_ap {
101 struct list_head list;
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
107 u8 unsolicited_probe:1,
116 static void bss_free(struct cfg80211_internal_bss *bss)
118 struct cfg80211_bss_ies *ies;
120 if (WARN_ON(atomic_read(&bss->hold)))
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
128 kfree_rcu(ies, rcu_head);
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
143 lockdep_assert_held(&rdev->bss_lock);
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
163 lockdep_assert_held(&rdev->bss_lock);
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
171 if (hbss->refcount == 0)
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
182 if (tbss->refcount == 0)
187 if (bss->refcount == 0)
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
194 lockdep_assert_held(&rdev->bss_lock);
196 if (!list_empty(&bss->hidden_list)) {
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
201 if (!bss->pub.hidden_beacon_bss)
204 * if it's a probe response entry break its
205 * link to the other entries in the group
207 list_del_init(&bss->hidden_list);
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
224 u8 id_len, ext_id_len, i, loop_len, id;
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
248 if (elem->id == WLAN_EID_EXTENSION) {
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
258 list = &non_inherit_elem->data[2];
262 for (i = 0; i < loop_len; i++) {
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
283 sub_copy = kmemdup(subelement, subie_len, gfp);
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
296 /* get non inheritance list if exists */
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
321 const struct element *old_elem = (void *)tmp_old;
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
342 memcpy(pos, tmp, tmp[1] + 2);
344 tmp[0] = WLAN_EID_SSID;
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
353 tmp[0] = WLAN_EID_SSID;
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
360 tmp_old += tmp_old[1] + 2;
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
375 tmp_new += tmp_new[1] + 2;
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
385 const struct cfg80211_bss_ies *ies;
386 const struct element *ssid_elem;
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
394 ies = rcu_access_pointer(a->ies);
397 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
400 if (ssid_elem->datalen != ssid_len)
402 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
409 const struct element *ssid_elem;
410 struct cfg80211_bss *bss = NULL;
413 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
419 /* check if nontrans_bss is in the list */
420 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
421 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
422 ssid_elem->datalen)) {
430 /* add to the list */
431 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
435 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
436 unsigned long expire_time)
438 struct cfg80211_internal_bss *bss, *tmp;
439 bool expired = false;
441 lockdep_assert_held(&rdev->bss_lock);
443 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
444 if (atomic_read(&bss->hold))
446 if (!time_after(expire_time, bss->ts))
449 if (__cfg80211_unlink_bss(rdev, bss))
454 rdev->bss_generation++;
457 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
459 struct cfg80211_internal_bss *bss, *oldest = NULL;
462 lockdep_assert_held(&rdev->bss_lock);
464 list_for_each_entry(bss, &rdev->bss_list, list) {
465 if (atomic_read(&bss->hold))
468 if (!list_empty(&bss->hidden_list) &&
469 !bss->pub.hidden_beacon_bss)
472 if (oldest && time_before(oldest->ts, bss->ts))
477 if (WARN_ON(!oldest))
481 * The callers make sure to increase rdev->bss_generation if anything
482 * gets removed (and a new entry added), so there's no need to also do
486 ret = __cfg80211_unlink_bss(rdev, oldest);
491 static u8 cfg80211_parse_bss_param(u8 data,
492 struct cfg80211_colocated_ap *coloc_ap)
494 coloc_ap->oct_recommended =
495 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
496 coloc_ap->same_ssid =
497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
498 coloc_ap->multi_bss =
499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
500 coloc_ap->transmitted_bssid =
501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
502 coloc_ap->unsolicited_probe =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
504 coloc_ap->colocated_ess =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
507 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
510 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
511 const struct element **elem, u32 *s_ssid)
514 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
515 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
518 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
522 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
524 struct cfg80211_colocated_ap *ap, *tmp_ap;
526 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
532 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
533 const u8 *pos, u8 length,
534 const struct element *ssid_elem,
537 /* skip the TBTT offset */
540 memcpy(entry->bssid, pos, ETH_ALEN);
543 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
544 memcpy(&entry->short_ssid, pos,
545 sizeof(entry->short_ssid));
546 entry->short_ssid_valid = true;
550 /* skip non colocated APs */
551 if (!cfg80211_parse_bss_param(*pos, entry))
555 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
557 * no information about the short ssid. Consider the entry valid
558 * for now. It would later be dropped in case there are explicit
559 * SSIDs that need to be matched
561 if (!entry->same_ssid)
565 if (entry->same_ssid) {
566 entry->short_ssid = s_ssid_tmp;
567 entry->short_ssid_valid = true;
570 * This is safe because we validate datalen in
571 * cfg80211_parse_colocated_ap(), before calling this
574 memcpy(&entry->ssid, &ssid_elem->data,
576 entry->ssid_len = ssid_elem->datalen;
581 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
582 struct list_head *list)
584 struct ieee80211_neighbor_ap_info *ap_info;
585 const struct element *elem, *ssid_elem;
588 int n_coloc = 0, ret;
591 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
597 end = pos + elem->datalen;
599 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
603 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
604 while (pos + sizeof(*ap_info) <= end) {
605 enum nl80211_band band;
609 ap_info = (void *)pos;
610 count = u8_get_bits(ap_info->tbtt_info_hdr,
611 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
612 length = ap_info->tbtt_info_len;
614 pos += sizeof(*ap_info);
616 if (!ieee80211_operating_class_to_band(ap_info->op_class,
620 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
622 if (end - pos < count * length)
626 * TBTT info must include bss param + BSSID +
627 * (short SSID or same_ssid bit to be set).
628 * ignore other options, and move to the
631 if (band != NL80211_BAND_6GHZ ||
632 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
633 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
634 pos += count * length;
638 for (i = 0; i < count; i++) {
639 struct cfg80211_colocated_ap *entry;
641 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
647 entry->center_freq = freq;
649 if (!cfg80211_parse_ap_info(entry, pos, length,
650 ssid_elem, s_ssid_tmp)) {
652 list_add_tail(&entry->list, &ap_list);
662 cfg80211_free_coloc_ap_list(&ap_list);
666 list_splice_tail(&ap_list, list);
670 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
671 struct ieee80211_channel *chan,
675 u32 n_channels = request->n_channels;
676 struct cfg80211_scan_6ghz_params *params =
677 &request->scan_6ghz_params[request->n_6ghz_params];
679 for (i = 0; i < n_channels; i++) {
680 if (request->channels[i] == chan) {
682 params->channel_idx = i;
687 request->channels[n_channels] = chan;
689 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
692 request->n_channels++;
695 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
696 struct cfg80211_scan_request *request)
701 for (i = 0; i < request->n_ssids; i++) {
702 /* wildcard ssid in the scan request */
703 if (!request->ssids[i].ssid_len) {
704 if (ap->multi_bss && !ap->transmitted_bssid)
711 ap->ssid_len == request->ssids[i].ssid_len) {
712 if (!memcmp(request->ssids[i].ssid, ap->ssid,
715 } else if (ap->short_ssid_valid) {
716 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
717 request->ssids[i].ssid_len);
719 if (ap->short_ssid == s_ssid)
727 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
730 struct cfg80211_colocated_ap *ap;
731 int n_channels, count = 0, err;
732 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
733 LIST_HEAD(coloc_ap_list);
734 bool need_scan_psc = true;
735 const struct ieee80211_sband_iftype_data *iftd;
737 rdev_req->scan_6ghz = true;
739 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
742 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
743 rdev_req->wdev->iftype);
744 if (!iftd || !iftd->he_cap.has_he)
747 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
749 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
750 struct cfg80211_internal_bss *intbss;
752 spin_lock_bh(&rdev->bss_lock);
753 list_for_each_entry(intbss, &rdev->bss_list, list) {
754 struct cfg80211_bss *res = &intbss->pub;
755 const struct cfg80211_bss_ies *ies;
757 ies = rcu_access_pointer(res->ies);
758 count += cfg80211_parse_colocated_ap(ies,
761 spin_unlock_bh(&rdev->bss_lock);
764 request = kzalloc(struct_size(request, channels, n_channels) +
765 sizeof(*request->scan_6ghz_params) * count +
766 sizeof(*request->ssids) * rdev_req->n_ssids,
769 cfg80211_free_coloc_ap_list(&coloc_ap_list);
773 *request = *rdev_req;
774 request->n_channels = 0;
775 request->scan_6ghz_params =
776 (void *)&request->channels[n_channels];
779 * PSC channels should not be scanned in case of direct scan with 1 SSID
780 * and at least one of the reported co-located APs with same SSID
781 * indicating that all APs in the same ESS are co-located
783 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
784 list_for_each_entry(ap, &coloc_ap_list, list) {
785 if (ap->colocated_ess &&
786 cfg80211_find_ssid_match(ap, request)) {
787 need_scan_psc = false;
794 * add to the scan request the channels that need to be scanned
795 * regardless of the collocated APs (PSC channels or all channels
796 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
798 for (i = 0; i < rdev_req->n_channels; i++) {
799 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
801 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
802 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
803 cfg80211_scan_req_add_chan(request,
804 rdev_req->channels[i],
809 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
812 list_for_each_entry(ap, &coloc_ap_list, list) {
814 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
815 &request->scan_6ghz_params[request->n_6ghz_params];
816 struct ieee80211_channel *chan =
817 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
819 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
822 for (i = 0; i < rdev_req->n_channels; i++) {
823 if (rdev_req->channels[i] == chan)
830 if (request->n_ssids > 0 &&
831 !cfg80211_find_ssid_match(ap, request))
834 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
837 cfg80211_scan_req_add_chan(request, chan, true);
838 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
839 scan_6ghz_params->short_ssid = ap->short_ssid;
840 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
841 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
844 * If a PSC channel is added to the scan and 'need_scan_psc' is
845 * set to false, then all the APs that the scan logic is
846 * interested with on the channel are collocated and thus there
847 * is no need to perform the initial PSC channel listen.
849 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
850 scan_6ghz_params->psc_no_listen = true;
852 request->n_6ghz_params++;
856 cfg80211_free_coloc_ap_list(&coloc_ap_list);
858 if (request->n_channels) {
859 struct cfg80211_scan_request *old = rdev->int_scan_req;
860 rdev->int_scan_req = request;
863 * Add the ssids from the parent scan request to the new scan
864 * request, so the driver would be able to use them in its
865 * probe requests to discover hidden APs on PSC channels.
867 request->ssids = (void *)&request->channels[request->n_channels];
868 request->n_ssids = rdev_req->n_ssids;
869 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
873 * If this scan follows a previous scan, save the scan start
874 * info from the first part of the scan
877 rdev->int_scan_req->info = old->info;
879 err = rdev_scan(rdev, request);
881 rdev->int_scan_req = old;
894 int cfg80211_scan(struct cfg80211_registered_device *rdev)
896 struct cfg80211_scan_request *request;
897 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
898 u32 n_channels = 0, idx, i;
900 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
901 return rdev_scan(rdev, rdev_req);
903 for (i = 0; i < rdev_req->n_channels; i++) {
904 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
909 return cfg80211_scan_6ghz(rdev);
911 request = kzalloc(struct_size(request, channels, n_channels),
916 *request = *rdev_req;
917 request->n_channels = n_channels;
919 for (i = idx = 0; i < rdev_req->n_channels; i++) {
920 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
921 request->channels[idx++] = rdev_req->channels[i];
924 rdev_req->scan_6ghz = false;
925 rdev->int_scan_req = request;
926 return rdev_scan(rdev, request);
929 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
932 struct cfg80211_scan_request *request, *rdev_req;
933 struct wireless_dev *wdev;
935 #ifdef CONFIG_CFG80211_WEXT
936 union iwreq_data wrqu;
939 lockdep_assert_held(&rdev->wiphy.mtx);
941 if (rdev->scan_msg) {
942 nl80211_send_scan_msg(rdev, rdev->scan_msg);
943 rdev->scan_msg = NULL;
947 rdev_req = rdev->scan_req;
951 wdev = rdev_req->wdev;
952 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
954 if (wdev_running(wdev) &&
955 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
956 !rdev_req->scan_6ghz && !request->info.aborted &&
957 !cfg80211_scan_6ghz(rdev))
961 * This must be before sending the other events!
962 * Otherwise, wpa_supplicant gets completely confused with
966 cfg80211_sme_scan_done(wdev->netdev);
968 if (!request->info.aborted &&
969 request->flags & NL80211_SCAN_FLAG_FLUSH) {
970 /* flush entries from previous scans */
971 spin_lock_bh(&rdev->bss_lock);
972 __cfg80211_bss_expire(rdev, request->scan_start);
973 spin_unlock_bh(&rdev->bss_lock);
976 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
978 #ifdef CONFIG_CFG80211_WEXT
979 if (wdev->netdev && !request->info.aborted) {
980 memset(&wrqu, 0, sizeof(wrqu));
982 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
986 dev_put(wdev->netdev);
988 kfree(rdev->int_scan_req);
989 rdev->int_scan_req = NULL;
991 kfree(rdev->scan_req);
992 rdev->scan_req = NULL;
995 rdev->scan_msg = msg;
997 nl80211_send_scan_msg(rdev, msg);
1000 void __cfg80211_scan_done(struct work_struct *wk)
1002 struct cfg80211_registered_device *rdev;
1004 rdev = container_of(wk, struct cfg80211_registered_device,
1007 wiphy_lock(&rdev->wiphy);
1008 ___cfg80211_scan_done(rdev, true);
1009 wiphy_unlock(&rdev->wiphy);
1012 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1013 struct cfg80211_scan_info *info)
1015 struct cfg80211_scan_info old_info = request->info;
1017 trace_cfg80211_scan_done(request, info);
1018 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1019 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1021 request->info = *info;
1024 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1025 * be of the first part. In such a case old_info.scan_start_tsf should
1028 if (request->scan_6ghz && old_info.scan_start_tsf) {
1029 request->info.scan_start_tsf = old_info.scan_start_tsf;
1030 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1031 sizeof(request->info.tsf_bssid));
1034 request->notified = true;
1035 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1037 EXPORT_SYMBOL(cfg80211_scan_done);
1039 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1040 struct cfg80211_sched_scan_request *req)
1042 lockdep_assert_held(&rdev->wiphy.mtx);
1044 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1047 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1048 struct cfg80211_sched_scan_request *req)
1050 lockdep_assert_held(&rdev->wiphy.mtx);
1052 list_del_rcu(&req->list);
1053 kfree_rcu(req, rcu_head);
1056 static struct cfg80211_sched_scan_request *
1057 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1059 struct cfg80211_sched_scan_request *pos;
1061 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1062 lockdep_is_held(&rdev->wiphy.mtx)) {
1063 if (pos->reqid == reqid)
1070 * Determines if a scheduled scan request can be handled. When a legacy
1071 * scheduled scan is running no other scheduled scan is allowed regardless
1072 * whether the request is for legacy or multi-support scan. When a multi-support
1073 * scheduled scan is running a request for legacy scan is not allowed. In this
1074 * case a request for multi-support scan can be handled if resources are
1075 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1077 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1080 struct cfg80211_sched_scan_request *pos;
1083 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1084 /* request id zero means legacy in progress */
1085 if (!i && !pos->reqid)
1086 return -EINPROGRESS;
1091 /* no legacy allowed when multi request(s) are active */
1093 return -EINPROGRESS;
1095 /* resource limit reached */
1096 if (i == rdev->wiphy.max_sched_scan_reqs)
1102 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1104 struct cfg80211_registered_device *rdev;
1105 struct cfg80211_sched_scan_request *req, *tmp;
1107 rdev = container_of(work, struct cfg80211_registered_device,
1110 wiphy_lock(&rdev->wiphy);
1111 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1112 if (req->report_results) {
1113 req->report_results = false;
1114 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1115 /* flush entries from previous scans */
1116 spin_lock_bh(&rdev->bss_lock);
1117 __cfg80211_bss_expire(rdev, req->scan_start);
1118 spin_unlock_bh(&rdev->bss_lock);
1119 req->scan_start = jiffies;
1121 nl80211_send_sched_scan(req,
1122 NL80211_CMD_SCHED_SCAN_RESULTS);
1125 wiphy_unlock(&rdev->wiphy);
1128 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1130 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1131 struct cfg80211_sched_scan_request *request;
1133 trace_cfg80211_sched_scan_results(wiphy, reqid);
1134 /* ignore if we're not scanning */
1137 request = cfg80211_find_sched_scan_req(rdev, reqid);
1139 request->report_results = true;
1140 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1144 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1146 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1148 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1150 lockdep_assert_held(&wiphy->mtx);
1152 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1154 __cfg80211_stop_sched_scan(rdev, reqid, true);
1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1158 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1161 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1162 wiphy_unlock(wiphy);
1164 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1166 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1167 struct cfg80211_sched_scan_request *req,
1168 bool driver_initiated)
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1172 if (!driver_initiated) {
1173 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1178 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1180 cfg80211_del_sched_scan_req(rdev, req);
1185 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1186 u64 reqid, bool driver_initiated)
1188 struct cfg80211_sched_scan_request *sched_scan_req;
1190 lockdep_assert_held(&rdev->wiphy.mtx);
1192 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1193 if (!sched_scan_req)
1196 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1200 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1201 unsigned long age_secs)
1203 struct cfg80211_internal_bss *bss;
1204 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1206 spin_lock_bh(&rdev->bss_lock);
1207 list_for_each_entry(bss, &rdev->bss_list, list)
1208 bss->ts -= age_jiffies;
1209 spin_unlock_bh(&rdev->bss_lock);
1212 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1214 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1217 void cfg80211_bss_flush(struct wiphy *wiphy)
1219 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1221 spin_lock_bh(&rdev->bss_lock);
1222 __cfg80211_bss_expire(rdev, jiffies);
1223 spin_unlock_bh(&rdev->bss_lock);
1225 EXPORT_SYMBOL(cfg80211_bss_flush);
1227 const struct element *
1228 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1229 const u8 *match, unsigned int match_len,
1230 unsigned int match_offset)
1232 const struct element *elem;
1234 for_each_element_id(elem, eid, ies, len) {
1235 if (elem->datalen >= match_offset + match_len &&
1236 !memcmp(elem->data + match_offset, match, match_len))
1242 EXPORT_SYMBOL(cfg80211_find_elem_match);
1244 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1248 const struct element *elem;
1249 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1250 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1252 if (WARN_ON(oui_type > 0xff))
1255 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1256 match, match_len, 0);
1258 if (!elem || elem->datalen < 4)
1263 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1266 * enum bss_compare_mode - BSS compare mode
1267 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1268 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1269 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1271 enum bss_compare_mode {
1277 static int cmp_bss(struct cfg80211_bss *a,
1278 struct cfg80211_bss *b,
1279 enum bss_compare_mode mode)
1281 const struct cfg80211_bss_ies *a_ies, *b_ies;
1282 const u8 *ie1 = NULL;
1283 const u8 *ie2 = NULL;
1286 if (a->channel != b->channel)
1287 return b->channel->center_freq - a->channel->center_freq;
1289 a_ies = rcu_access_pointer(a->ies);
1292 b_ies = rcu_access_pointer(b->ies);
1296 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1297 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1298 a_ies->data, a_ies->len);
1299 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1300 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1301 b_ies->data, b_ies->len);
1305 if (ie1[1] == ie2[1])
1306 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1308 mesh_id_cmp = ie2[1] - ie1[1];
1310 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1311 a_ies->data, a_ies->len);
1312 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1313 b_ies->data, b_ies->len);
1317 if (ie1[1] != ie2[1])
1318 return ie2[1] - ie1[1];
1319 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1323 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1327 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1328 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1334 * Note that with "hide_ssid", the function returns a match if
1335 * the already-present BSS ("b") is a hidden SSID beacon for
1336 * the new BSS ("a").
1339 /* sort missing IE before (left of) present IE */
1346 case BSS_CMP_HIDE_ZLEN:
1348 * In ZLEN mode we assume the BSS entry we're
1349 * looking for has a zero-length SSID. So if
1350 * the one we're looking at right now has that,
1351 * return 0. Otherwise, return the difference
1352 * in length, but since we're looking for the
1353 * 0-length it's really equivalent to returning
1354 * the length of the one we're looking at.
1356 * No content comparison is needed as we assume
1357 * the content length is zero.
1360 case BSS_CMP_REGULAR:
1362 /* sort by length first, then by contents */
1363 if (ie1[1] != ie2[1])
1364 return ie2[1] - ie1[1];
1365 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1366 case BSS_CMP_HIDE_NUL:
1367 if (ie1[1] != ie2[1])
1368 return ie2[1] - ie1[1];
1369 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1370 for (i = 0; i < ie2[1]; i++)
1377 static bool cfg80211_bss_type_match(u16 capability,
1378 enum nl80211_band band,
1379 enum ieee80211_bss_type bss_type)
1384 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1387 if (band == NL80211_BAND_60GHZ) {
1388 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1390 case IEEE80211_BSS_TYPE_ESS:
1391 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1393 case IEEE80211_BSS_TYPE_PBSS:
1394 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1396 case IEEE80211_BSS_TYPE_IBSS:
1397 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1403 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1405 case IEEE80211_BSS_TYPE_ESS:
1406 val = WLAN_CAPABILITY_ESS;
1408 case IEEE80211_BSS_TYPE_IBSS:
1409 val = WLAN_CAPABILITY_IBSS;
1411 case IEEE80211_BSS_TYPE_MBSS:
1419 ret = ((capability & mask) == val);
1423 /* Returned bss is reference counted and must be cleaned up appropriately. */
1424 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1425 struct ieee80211_channel *channel,
1427 const u8 *ssid, size_t ssid_len,
1428 enum ieee80211_bss_type bss_type,
1429 enum ieee80211_privacy privacy)
1431 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1432 struct cfg80211_internal_bss *bss, *res = NULL;
1433 unsigned long now = jiffies;
1436 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1439 spin_lock_bh(&rdev->bss_lock);
1441 list_for_each_entry(bss, &rdev->bss_list, list) {
1442 if (!cfg80211_bss_type_match(bss->pub.capability,
1443 bss->pub.channel->band, bss_type))
1446 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1447 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1448 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1450 if (channel && bss->pub.channel != channel)
1452 if (!is_valid_ether_addr(bss->pub.bssid))
1454 /* Don't get expired BSS structs */
1455 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1456 !atomic_read(&bss->hold))
1458 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1460 bss_ref_get(rdev, res);
1465 spin_unlock_bh(&rdev->bss_lock);
1468 trace_cfg80211_return_bss(&res->pub);
1471 EXPORT_SYMBOL(cfg80211_get_bss);
1473 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1474 struct cfg80211_internal_bss *bss)
1476 struct rb_node **p = &rdev->bss_tree.rb_node;
1477 struct rb_node *parent = NULL;
1478 struct cfg80211_internal_bss *tbss;
1483 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1485 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1487 if (WARN_ON(!cmp)) {
1488 /* will sort of leak this BSS */
1495 p = &(*p)->rb_right;
1498 rb_link_node(&bss->rbn, parent, p);
1499 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1502 static struct cfg80211_internal_bss *
1503 rb_find_bss(struct cfg80211_registered_device *rdev,
1504 struct cfg80211_internal_bss *res,
1505 enum bss_compare_mode mode)
1507 struct rb_node *n = rdev->bss_tree.rb_node;
1508 struct cfg80211_internal_bss *bss;
1512 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1513 r = cmp_bss(&res->pub, &bss->pub, mode);
1526 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1527 struct cfg80211_internal_bss *new)
1529 const struct cfg80211_bss_ies *ies;
1530 struct cfg80211_internal_bss *bss;
1536 ies = rcu_access_pointer(new->pub.beacon_ies);
1540 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1547 for (i = 0; i < ssidlen; i++)
1551 /* not a hidden SSID */
1555 /* This is the bad part ... */
1557 list_for_each_entry(bss, &rdev->bss_list, list) {
1559 * we're iterating all the entries anyway, so take the
1560 * opportunity to validate the list length accounting
1564 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1566 if (bss->pub.channel != new->pub.channel)
1568 if (bss->pub.scan_width != new->pub.scan_width)
1570 if (rcu_access_pointer(bss->pub.beacon_ies))
1572 ies = rcu_access_pointer(bss->pub.ies);
1575 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1578 if (ssidlen && ie[1] != ssidlen)
1580 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1582 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1583 list_del(&bss->hidden_list);
1585 list_add(&bss->hidden_list, &new->hidden_list);
1586 bss->pub.hidden_beacon_bss = &new->pub;
1587 new->refcount += bss->refcount;
1588 rcu_assign_pointer(bss->pub.beacon_ies,
1589 new->pub.beacon_ies);
1592 WARN_ONCE(n_entries != rdev->bss_entries,
1593 "rdev bss entries[%d]/list[len:%d] corruption\n",
1594 rdev->bss_entries, n_entries);
1599 struct cfg80211_non_tx_bss {
1600 struct cfg80211_bss *tx_bss;
1601 u8 max_bssid_indicator;
1606 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1607 struct cfg80211_internal_bss *known,
1608 struct cfg80211_internal_bss *new,
1611 lockdep_assert_held(&rdev->bss_lock);
1614 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1615 const struct cfg80211_bss_ies *old;
1617 old = rcu_access_pointer(known->pub.proberesp_ies);
1619 rcu_assign_pointer(known->pub.proberesp_ies,
1620 new->pub.proberesp_ies);
1621 /* Override possible earlier Beacon frame IEs */
1622 rcu_assign_pointer(known->pub.ies,
1623 new->pub.proberesp_ies);
1625 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1626 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1627 const struct cfg80211_bss_ies *old;
1628 struct cfg80211_internal_bss *bss;
1630 if (known->pub.hidden_beacon_bss &&
1631 !list_empty(&known->hidden_list)) {
1632 const struct cfg80211_bss_ies *f;
1634 /* The known BSS struct is one of the probe
1635 * response members of a group, but we're
1636 * receiving a beacon (beacon_ies in the new
1637 * bss is used). This can only mean that the
1638 * AP changed its beacon from not having an
1639 * SSID to showing it, which is confusing so
1640 * drop this information.
1643 f = rcu_access_pointer(new->pub.beacon_ies);
1644 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1648 old = rcu_access_pointer(known->pub.beacon_ies);
1650 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1652 /* Override IEs if they were from a beacon before */
1653 if (old == rcu_access_pointer(known->pub.ies))
1654 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1656 /* Assign beacon IEs to all sub entries */
1657 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1658 const struct cfg80211_bss_ies *ies;
1660 ies = rcu_access_pointer(bss->pub.beacon_ies);
1661 WARN_ON(ies != old);
1663 rcu_assign_pointer(bss->pub.beacon_ies,
1664 new->pub.beacon_ies);
1668 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1671 known->pub.beacon_interval = new->pub.beacon_interval;
1673 /* don't update the signal if beacon was heard on
1677 known->pub.signal = new->pub.signal;
1678 known->pub.capability = new->pub.capability;
1679 known->ts = new->ts;
1680 known->ts_boottime = new->ts_boottime;
1681 known->parent_tsf = new->parent_tsf;
1682 known->pub.chains = new->pub.chains;
1683 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1684 IEEE80211_MAX_CHAINS);
1685 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1686 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1687 known->pub.bssid_index = new->pub.bssid_index;
1692 /* Returned bss is reference counted and must be cleaned up appropriately. */
1693 struct cfg80211_internal_bss *
1694 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1695 struct cfg80211_internal_bss *tmp,
1696 bool signal_valid, unsigned long ts)
1698 struct cfg80211_internal_bss *found = NULL;
1700 if (WARN_ON(!tmp->pub.channel))
1705 spin_lock_bh(&rdev->bss_lock);
1707 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1708 spin_unlock_bh(&rdev->bss_lock);
1712 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1715 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1718 struct cfg80211_internal_bss *new;
1719 struct cfg80211_internal_bss *hidden;
1720 struct cfg80211_bss_ies *ies;
1723 * create a copy -- the "res" variable that is passed in
1724 * is allocated on the stack since it's not needed in the
1725 * more common case of an update
1727 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1730 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1732 kfree_rcu(ies, rcu_head);
1733 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1735 kfree_rcu(ies, rcu_head);
1738 memcpy(new, tmp, sizeof(*new));
1740 INIT_LIST_HEAD(&new->hidden_list);
1741 INIT_LIST_HEAD(&new->pub.nontrans_list);
1743 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1744 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1746 hidden = rb_find_bss(rdev, tmp,
1749 new->pub.hidden_beacon_bss = &hidden->pub;
1750 list_add(&new->hidden_list,
1751 &hidden->hidden_list);
1753 rcu_assign_pointer(new->pub.beacon_ies,
1754 hidden->pub.beacon_ies);
1758 * Ok so we found a beacon, and don't have an entry. If
1759 * it's a beacon with hidden SSID, we might be in for an
1760 * expensive search for any probe responses that should
1761 * be grouped with this beacon for updates ...
1763 if (!cfg80211_combine_bsses(rdev, new)) {
1764 bss_ref_put(rdev, new);
1769 if (rdev->bss_entries >= bss_entries_limit &&
1770 !cfg80211_bss_expire_oldest(rdev)) {
1771 bss_ref_put(rdev, new);
1775 /* This must be before the call to bss_ref_get */
1776 if (tmp->pub.transmitted_bss) {
1777 struct cfg80211_internal_bss *pbss =
1778 container_of(tmp->pub.transmitted_bss,
1779 struct cfg80211_internal_bss,
1782 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1783 bss_ref_get(rdev, pbss);
1786 list_add_tail(&new->list, &rdev->bss_list);
1787 rdev->bss_entries++;
1788 rb_insert_bss(rdev, new);
1792 rdev->bss_generation++;
1793 bss_ref_get(rdev, found);
1794 spin_unlock_bh(&rdev->bss_lock);
1798 spin_unlock_bh(&rdev->bss_lock);
1802 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1803 enum nl80211_band band,
1804 enum cfg80211_bss_frame_type ftype)
1806 const struct element *tmp;
1808 if (band == NL80211_BAND_6GHZ) {
1809 struct ieee80211_he_operation *he_oper;
1811 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1813 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1814 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1815 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1817 he_oper = (void *)&tmp->data[1];
1819 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1823 if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1824 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1825 return he_6ghz_oper->primary;
1827 } else if (band == NL80211_BAND_S1GHZ) {
1828 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1829 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1830 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1832 return s1gop->oper_ch;
1835 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1836 if (tmp && tmp->datalen == 1)
1837 return tmp->data[0];
1839 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1841 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1842 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1844 return htop->primary_chan;
1850 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1853 * Update RX channel information based on the available frame payload
1854 * information. This is mainly for the 2.4 GHz band where frames can be received
1855 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1856 * element to indicate the current (transmitting) channel, but this might also
1857 * be needed on other bands if RX frequency does not match with the actual
1858 * operating channel of a BSS, or if the AP reports a different primary channel.
1860 static struct ieee80211_channel *
1861 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1862 struct ieee80211_channel *channel,
1863 enum nl80211_bss_scan_width scan_width,
1864 enum cfg80211_bss_frame_type ftype)
1868 struct ieee80211_channel *alt_channel;
1870 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1871 channel->band, ftype);
1873 if (channel_number < 0) {
1874 /* No channel information in frame payload */
1878 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1881 * In 6GHz, duplicated beacon indication is relevant for
1884 if (channel->band == NL80211_BAND_6GHZ &&
1885 (freq == channel->center_freq ||
1886 abs(freq - channel->center_freq) > 80))
1889 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1891 if (channel->band == NL80211_BAND_2GHZ) {
1893 * Better not allow unexpected channels when that could
1894 * be going beyond the 1-11 range (e.g., discovering
1895 * BSS on channel 12 when radio is configured for
1901 /* No match for the payload channel number - ignore it */
1905 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1906 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1908 * Ignore channel number in 5 and 10 MHz channels where there
1909 * may not be an n:1 or 1:n mapping between frequencies and
1916 * Use the channel determined through the payload channel number
1917 * instead of the RX channel reported by the driver.
1919 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1924 /* Returned bss is reference counted and must be cleaned up appropriately. */
1925 static struct cfg80211_bss *
1926 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1927 struct cfg80211_inform_bss *data,
1928 enum cfg80211_bss_frame_type ftype,
1929 const u8 *bssid, u64 tsf, u16 capability,
1930 u16 beacon_interval, const u8 *ie, size_t ielen,
1931 struct cfg80211_non_tx_bss *non_tx_data,
1934 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1935 struct cfg80211_bss_ies *ies;
1936 struct ieee80211_channel *channel;
1937 struct cfg80211_internal_bss tmp = {}, *res;
1942 if (WARN_ON(!wiphy))
1945 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1946 (data->signal < 0 || data->signal > 100)))
1949 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1950 data->scan_width, ftype);
1954 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1955 tmp.pub.channel = channel;
1956 tmp.pub.scan_width = data->scan_width;
1957 tmp.pub.signal = data->signal;
1958 tmp.pub.beacon_interval = beacon_interval;
1959 tmp.pub.capability = capability;
1960 tmp.ts_boottime = data->boottime_ns;
1961 tmp.parent_tsf = data->parent_tsf;
1962 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1965 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1966 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1967 tmp.pub.bssid_index = non_tx_data->bssid_index;
1968 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1974 * If we do not know here whether the IEs are from a Beacon or Probe
1975 * Response frame, we need to pick one of the options and only use it
1976 * with the driver that does not provide the full Beacon/Probe Response
1977 * frame. Use Beacon frame pointer to avoid indicating that this should
1978 * override the IEs pointer should we have received an earlier
1979 * indication of Probe Response data.
1981 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1986 ies->from_beacon = false;
1987 memcpy(ies->data, ie, ielen);
1990 case CFG80211_BSS_FTYPE_BEACON:
1991 ies->from_beacon = true;
1993 case CFG80211_BSS_FTYPE_UNKNOWN:
1994 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1996 case CFG80211_BSS_FTYPE_PRESP:
1997 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2000 rcu_assign_pointer(tmp.pub.ies, ies);
2002 signal_valid = data->chan == channel;
2003 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2007 if (channel->band == NL80211_BAND_60GHZ) {
2008 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2009 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2010 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2011 regulatory_hint_found_beacon(wiphy, channel, gfp);
2013 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2014 regulatory_hint_found_beacon(wiphy, channel, gfp);
2018 /* this is a nontransmitting bss, we need to add it to
2019 * transmitting bss' list if it is not there
2021 spin_lock_bh(&rdev->bss_lock);
2022 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2024 if (__cfg80211_unlink_bss(rdev, res))
2025 rdev->bss_generation++;
2027 spin_unlock_bh(&rdev->bss_lock);
2030 trace_cfg80211_return_bss(&res->pub);
2031 /* cfg80211_bss_update gives us a referenced result */
2035 static const struct element
2036 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2037 const struct element *mbssid_elem,
2038 const struct element *sub_elem)
2040 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2041 const struct element *next_mbssid;
2042 const struct element *next_sub;
2044 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2046 ielen - (mbssid_end - ie));
2049 * If it is not the last subelement in current MBSSID IE or there isn't
2050 * a next MBSSID IE - profile is complete.
2052 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2056 /* For any length error, just return NULL */
2058 if (next_mbssid->datalen < 4)
2061 next_sub = (void *)&next_mbssid->data[1];
2063 if (next_mbssid->data + next_mbssid->datalen <
2064 next_sub->data + next_sub->datalen)
2067 if (next_sub->id != 0 || next_sub->datalen < 2)
2071 * Check if the first element in the next sub element is a start
2074 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2078 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2079 const struct element *mbssid_elem,
2080 const struct element *sub_elem,
2081 u8 *merged_ie, size_t max_copy_len)
2083 size_t copied_len = sub_elem->datalen;
2084 const struct element *next_mbssid;
2086 if (sub_elem->datalen > max_copy_len)
2089 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2091 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2094 const struct element *next_sub = (void *)&next_mbssid->data[1];
2096 if (copied_len + next_sub->datalen > max_copy_len)
2098 memcpy(merged_ie + copied_len, next_sub->data,
2100 copied_len += next_sub->datalen;
2105 EXPORT_SYMBOL(cfg80211_merge_profile);
2107 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2108 struct cfg80211_inform_bss *data,
2109 enum cfg80211_bss_frame_type ftype,
2110 const u8 *bssid, u64 tsf,
2111 u16 beacon_interval, const u8 *ie,
2113 struct cfg80211_non_tx_bss *non_tx_data,
2116 const u8 *mbssid_index_ie;
2117 const struct element *elem, *sub;
2119 u8 new_bssid[ETH_ALEN];
2120 u8 *new_ie, *profile;
2121 u64 seen_indices = 0;
2123 struct cfg80211_bss *bss;
2127 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2129 if (!wiphy->support_mbssid)
2131 if (wiphy->support_only_he_mbssid &&
2132 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2135 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2139 profile = kmalloc(ielen, gfp);
2143 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2144 if (elem->datalen < 4)
2146 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2149 if (sub->id != 0 || sub->datalen < 4) {
2150 /* not a valid BSS profile */
2154 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2155 sub->data[1] != 2) {
2156 /* The first element within the Nontransmitted
2157 * BSSID Profile is not the Nontransmitted
2158 * BSSID Capability element.
2163 memset(profile, 0, ielen);
2164 profile_len = cfg80211_merge_profile(ie, ielen,
2170 /* found a Nontransmitted BSSID Profile */
2171 mbssid_index_ie = cfg80211_find_ie
2172 (WLAN_EID_MULTI_BSSID_IDX,
2173 profile, profile_len);
2174 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2175 mbssid_index_ie[2] == 0 ||
2176 mbssid_index_ie[2] > 46) {
2177 /* No valid Multiple BSSID-Index element */
2181 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2182 /* We don't support legacy split of a profile */
2183 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2184 mbssid_index_ie[2]);
2186 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2188 non_tx_data->bssid_index = mbssid_index_ie[2];
2189 non_tx_data->max_bssid_indicator = elem->data[0];
2191 cfg80211_gen_new_bssid(bssid,
2192 non_tx_data->max_bssid_indicator,
2193 non_tx_data->bssid_index,
2195 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2196 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2198 profile_len, new_ie,
2203 capability = get_unaligned_le16(profile + 2);
2204 bss = cfg80211_inform_single_bss_data(wiphy, data,
2215 cfg80211_put_bss(wiphy, bss);
2224 struct cfg80211_bss *
2225 cfg80211_inform_bss_data(struct wiphy *wiphy,
2226 struct cfg80211_inform_bss *data,
2227 enum cfg80211_bss_frame_type ftype,
2228 const u8 *bssid, u64 tsf, u16 capability,
2229 u16 beacon_interval, const u8 *ie, size_t ielen,
2232 struct cfg80211_bss *res;
2233 struct cfg80211_non_tx_bss non_tx_data;
2235 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2236 capability, beacon_interval, ie,
2240 non_tx_data.tx_bss = res;
2241 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2242 beacon_interval, ie, ielen, &non_tx_data,
2246 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2249 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2250 struct cfg80211_inform_bss *data,
2251 struct ieee80211_mgmt *mgmt, size_t len,
2252 struct cfg80211_non_tx_bss *non_tx_data,
2255 enum cfg80211_bss_frame_type ftype;
2256 const u8 *ie = mgmt->u.probe_resp.variable;
2257 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2258 u.probe_resp.variable);
2260 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2261 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2263 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2264 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2265 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2266 ie, ielen, non_tx_data, gfp);
2270 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2271 struct cfg80211_bss *nontrans_bss,
2272 struct ieee80211_mgmt *mgmt, size_t len)
2274 u8 *ie, *new_ie, *pos;
2275 const struct element *nontrans_ssid;
2276 const u8 *trans_ssid, *mbssid;
2277 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2278 u.probe_resp.variable);
2280 struct cfg80211_bss_ies *new_ies;
2281 const struct cfg80211_bss_ies *old;
2284 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2286 ie = mgmt->u.probe_resp.variable;
2289 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2292 new_ie_len -= trans_ssid[1];
2293 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2295 * It's not valid to have the MBSSID element before SSID
2296 * ignore if that happens - the code below assumes it is
2297 * after (while copying things inbetween).
2299 if (!mbssid || mbssid < trans_ssid)
2301 new_ie_len -= mbssid[1];
2303 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2307 new_ie_len += nontrans_ssid->datalen;
2309 /* generate new ie for nontrans BSS
2310 * 1. replace SSID with nontrans BSS' SSID
2313 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2317 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2323 /* copy the nontransmitted SSID */
2324 cpy_len = nontrans_ssid->datalen + 2;
2325 memcpy(pos, nontrans_ssid, cpy_len);
2327 /* copy the IEs between SSID and MBSSID */
2328 cpy_len = trans_ssid[1] + 2;
2329 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2330 pos += (mbssid - (trans_ssid + cpy_len));
2331 /* copy the IEs after MBSSID */
2332 cpy_len = mbssid[1] + 2;
2333 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2336 new_ies->len = new_ie_len;
2337 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2338 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2339 memcpy(new_ies->data, new_ie, new_ie_len);
2340 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2341 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2342 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2343 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2345 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2347 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2348 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2349 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2351 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2358 /* cfg80211_inform_bss_width_frame helper */
2359 static struct cfg80211_bss *
2360 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2361 struct cfg80211_inform_bss *data,
2362 struct ieee80211_mgmt *mgmt, size_t len,
2365 struct cfg80211_internal_bss tmp = {}, *res;
2366 struct cfg80211_bss_ies *ies;
2367 struct ieee80211_channel *channel;
2369 struct ieee80211_ext *ext = NULL;
2370 u8 *bssid, *variable;
2371 u16 capability, beacon_int;
2372 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2373 u.probe_resp.variable);
2375 enum cfg80211_bss_frame_type ftype;
2377 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2378 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2380 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2385 if (WARN_ON(!wiphy))
2388 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2389 (data->signal < 0 || data->signal > 100)))
2392 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2393 ext = (void *) mgmt;
2394 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2395 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2396 min_hdr_len = offsetof(struct ieee80211_ext,
2397 u.s1g_short_beacon.variable);
2400 if (WARN_ON(len < min_hdr_len))
2403 ielen = len - min_hdr_len;
2404 variable = mgmt->u.probe_resp.variable;
2406 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2407 variable = ext->u.s1g_short_beacon.variable;
2409 variable = ext->u.s1g_beacon.variable;
2412 if (ieee80211_is_beacon(mgmt->frame_control))
2413 ftype = CFG80211_BSS_FTYPE_BEACON;
2414 else if (ieee80211_is_probe_resp(mgmt->frame_control))
2415 ftype = CFG80211_BSS_FTYPE_PRESP;
2417 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2419 channel = cfg80211_get_bss_channel(wiphy, variable,
2420 ielen, data->chan, data->scan_width,
2426 const struct ieee80211_s1g_bcn_compat_ie *compat;
2427 const struct element *elem;
2429 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2433 if (elem->datalen < sizeof(*compat))
2435 compat = (void *)elem->data;
2436 bssid = ext->u.s1g_beacon.sa;
2437 capability = le16_to_cpu(compat->compat_info);
2438 beacon_int = le16_to_cpu(compat->beacon_int);
2440 bssid = mgmt->bssid;
2441 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2442 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2445 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2449 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2450 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2451 ieee80211_is_s1g_beacon(mgmt->frame_control);
2452 memcpy(ies->data, variable, ielen);
2454 if (ieee80211_is_probe_resp(mgmt->frame_control))
2455 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2457 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2458 rcu_assign_pointer(tmp.pub.ies, ies);
2460 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2461 tmp.pub.beacon_interval = beacon_int;
2462 tmp.pub.capability = capability;
2463 tmp.pub.channel = channel;
2464 tmp.pub.scan_width = data->scan_width;
2465 tmp.pub.signal = data->signal;
2466 tmp.ts_boottime = data->boottime_ns;
2467 tmp.parent_tsf = data->parent_tsf;
2468 tmp.pub.chains = data->chains;
2469 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2470 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2472 signal_valid = data->chan == channel;
2473 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2478 if (channel->band == NL80211_BAND_60GHZ) {
2479 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2480 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2481 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2482 regulatory_hint_found_beacon(wiphy, channel, gfp);
2484 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2485 regulatory_hint_found_beacon(wiphy, channel, gfp);
2488 trace_cfg80211_return_bss(&res->pub);
2489 /* cfg80211_bss_update gives us a referenced result */
2493 struct cfg80211_bss *
2494 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2495 struct cfg80211_inform_bss *data,
2496 struct ieee80211_mgmt *mgmt, size_t len,
2499 struct cfg80211_bss *res, *tmp_bss;
2500 const u8 *ie = mgmt->u.probe_resp.variable;
2501 const struct cfg80211_bss_ies *ies1, *ies2;
2502 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2503 u.probe_resp.variable);
2504 struct cfg80211_non_tx_bss non_tx_data;
2506 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2508 if (!res || !wiphy->support_mbssid ||
2509 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2511 if (wiphy->support_only_he_mbssid &&
2512 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2515 non_tx_data.tx_bss = res;
2516 /* process each non-transmitting bss */
2517 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2520 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2522 /* check if the res has other nontransmitting bss which is not
2525 ies1 = rcu_access_pointer(res->ies);
2527 /* go through nontrans_list, if the timestamp of the BSS is
2528 * earlier than the timestamp of the transmitting BSS then
2531 list_for_each_entry(tmp_bss, &res->nontrans_list,
2533 ies2 = rcu_access_pointer(tmp_bss->ies);
2534 if (ies2->tsf < ies1->tsf)
2535 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2538 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2542 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2544 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2546 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2547 struct cfg80211_internal_bss *bss;
2552 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2554 spin_lock_bh(&rdev->bss_lock);
2555 bss_ref_get(rdev, bss);
2556 spin_unlock_bh(&rdev->bss_lock);
2558 EXPORT_SYMBOL(cfg80211_ref_bss);
2560 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2562 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2563 struct cfg80211_internal_bss *bss;
2568 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2570 spin_lock_bh(&rdev->bss_lock);
2571 bss_ref_put(rdev, bss);
2572 spin_unlock_bh(&rdev->bss_lock);
2574 EXPORT_SYMBOL(cfg80211_put_bss);
2576 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2578 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2579 struct cfg80211_internal_bss *bss, *tmp1;
2580 struct cfg80211_bss *nontrans_bss, *tmp;
2585 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2587 spin_lock_bh(&rdev->bss_lock);
2588 if (list_empty(&bss->list))
2591 list_for_each_entry_safe(nontrans_bss, tmp,
2592 &pub->nontrans_list,
2594 tmp1 = container_of(nontrans_bss,
2595 struct cfg80211_internal_bss, pub);
2596 if (__cfg80211_unlink_bss(rdev, tmp1))
2597 rdev->bss_generation++;
2600 if (__cfg80211_unlink_bss(rdev, bss))
2601 rdev->bss_generation++;
2603 spin_unlock_bh(&rdev->bss_lock);
2605 EXPORT_SYMBOL(cfg80211_unlink_bss);
2607 void cfg80211_bss_iter(struct wiphy *wiphy,
2608 struct cfg80211_chan_def *chandef,
2609 void (*iter)(struct wiphy *wiphy,
2610 struct cfg80211_bss *bss,
2614 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2615 struct cfg80211_internal_bss *bss;
2617 spin_lock_bh(&rdev->bss_lock);
2619 list_for_each_entry(bss, &rdev->bss_list, list) {
2620 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2622 iter(wiphy, &bss->pub, iter_data);
2625 spin_unlock_bh(&rdev->bss_lock);
2627 EXPORT_SYMBOL(cfg80211_bss_iter);
2629 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2630 unsigned int link_id,
2631 struct ieee80211_channel *chan)
2633 struct wiphy *wiphy = wdev->wiphy;
2634 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2635 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2636 struct cfg80211_internal_bss *new = NULL;
2637 struct cfg80211_internal_bss *bss;
2638 struct cfg80211_bss *nontrans_bss;
2639 struct cfg80211_bss *tmp;
2641 spin_lock_bh(&rdev->bss_lock);
2644 * Some APs use CSA also for bandwidth changes, i.e., without actually
2645 * changing the control channel, so no need to update in such a case.
2647 if (cbss->pub.channel == chan)
2650 /* use transmitting bss */
2651 if (cbss->pub.transmitted_bss)
2652 cbss = container_of(cbss->pub.transmitted_bss,
2653 struct cfg80211_internal_bss,
2656 cbss->pub.channel = chan;
2658 list_for_each_entry(bss, &rdev->bss_list, list) {
2659 if (!cfg80211_bss_type_match(bss->pub.capability,
2660 bss->pub.channel->band,
2661 wdev->conn_bss_type))
2667 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2674 /* to save time, update IEs for transmitting bss only */
2675 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2676 new->pub.proberesp_ies = NULL;
2677 new->pub.beacon_ies = NULL;
2680 list_for_each_entry_safe(nontrans_bss, tmp,
2681 &new->pub.nontrans_list,
2683 bss = container_of(nontrans_bss,
2684 struct cfg80211_internal_bss, pub);
2685 if (__cfg80211_unlink_bss(rdev, bss))
2686 rdev->bss_generation++;
2689 WARN_ON(atomic_read(&new->hold));
2690 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2691 rdev->bss_generation++;
2694 rb_erase(&cbss->rbn, &rdev->bss_tree);
2695 rb_insert_bss(rdev, cbss);
2696 rdev->bss_generation++;
2698 list_for_each_entry_safe(nontrans_bss, tmp,
2699 &cbss->pub.nontrans_list,
2701 bss = container_of(nontrans_bss,
2702 struct cfg80211_internal_bss, pub);
2703 bss->pub.channel = chan;
2704 rb_erase(&bss->rbn, &rdev->bss_tree);
2705 rb_insert_bss(rdev, bss);
2706 rdev->bss_generation++;
2710 spin_unlock_bh(&rdev->bss_lock);
2713 #ifdef CONFIG_CFG80211_WEXT
2714 static struct cfg80211_registered_device *
2715 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2717 struct cfg80211_registered_device *rdev;
2718 struct net_device *dev;
2722 dev = dev_get_by_index(net, ifindex);
2724 return ERR_PTR(-ENODEV);
2725 if (dev->ieee80211_ptr)
2726 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2728 rdev = ERR_PTR(-ENODEV);
2733 int cfg80211_wext_siwscan(struct net_device *dev,
2734 struct iw_request_info *info,
2735 union iwreq_data *wrqu, char *extra)
2737 struct cfg80211_registered_device *rdev;
2738 struct wiphy *wiphy;
2739 struct iw_scan_req *wreq = NULL;
2740 struct cfg80211_scan_request *creq;
2741 int i, err, n_channels = 0;
2742 enum nl80211_band band;
2744 if (!netif_running(dev))
2747 if (wrqu->data.length == sizeof(struct iw_scan_req))
2748 wreq = (struct iw_scan_req *)extra;
2750 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2753 return PTR_ERR(rdev);
2755 if (rdev->scan_req || rdev->scan_msg)
2758 wiphy = &rdev->wiphy;
2760 /* Determine number of channels, needed to allocate creq */
2761 if (wreq && wreq->num_channels)
2762 n_channels = wreq->num_channels;
2764 n_channels = ieee80211_get_num_supported_channels(wiphy);
2766 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2767 n_channels * sizeof(void *),
2772 creq->wiphy = wiphy;
2773 creq->wdev = dev->ieee80211_ptr;
2774 /* SSIDs come after channels */
2775 creq->ssids = (void *)&creq->channels[n_channels];
2776 creq->n_channels = n_channels;
2778 creq->scan_start = jiffies;
2780 /* translate "Scan on frequencies" request */
2782 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2785 if (!wiphy->bands[band])
2788 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2789 /* ignore disabled channels */
2790 if (wiphy->bands[band]->channels[j].flags &
2791 IEEE80211_CHAN_DISABLED)
2794 /* If we have a wireless request structure and the
2795 * wireless request specifies frequencies, then search
2796 * for the matching hardware channel.
2798 if (wreq && wreq->num_channels) {
2800 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2801 for (k = 0; k < wreq->num_channels; k++) {
2802 struct iw_freq *freq =
2803 &wreq->channel_list[k];
2805 cfg80211_wext_freq(freq);
2807 if (wext_freq == wiphy_freq)
2808 goto wext_freq_found;
2810 goto wext_freq_not_found;
2814 creq->channels[i] = &wiphy->bands[band]->channels[j];
2816 wext_freq_not_found: ;
2819 /* No channels found? */
2825 /* Set real number of channels specified in creq->channels[] */
2826 creq->n_channels = i;
2828 /* translate "Scan for SSID" request */
2830 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2831 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2835 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2836 creq->ssids[0].ssid_len = wreq->essid_len;
2838 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2842 for (i = 0; i < NUM_NL80211_BANDS; i++)
2843 if (wiphy->bands[i])
2844 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2846 eth_broadcast_addr(creq->bssid);
2848 wiphy_lock(&rdev->wiphy);
2850 rdev->scan_req = creq;
2851 err = rdev_scan(rdev, creq);
2853 rdev->scan_req = NULL;
2854 /* creq will be freed below */
2856 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2857 /* creq now owned by driver */
2861 wiphy_unlock(&rdev->wiphy);
2866 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2868 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2869 const struct cfg80211_bss_ies *ies,
2870 char *current_ev, char *end_buf)
2872 const u8 *pos, *end, *next;
2873 struct iw_event iwe;
2879 * If needed, fragment the IEs buffer (at IE boundaries) into short
2880 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2883 end = pos + ies->len;
2885 while (end - pos > IW_GENERIC_IE_MAX) {
2886 next = pos + 2 + pos[1];
2887 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2888 next = next + 2 + next[1];
2890 memset(&iwe, 0, sizeof(iwe));
2891 iwe.cmd = IWEVGENIE;
2892 iwe.u.data.length = next - pos;
2893 current_ev = iwe_stream_add_point_check(info, current_ev,
2896 if (IS_ERR(current_ev))
2902 memset(&iwe, 0, sizeof(iwe));
2903 iwe.cmd = IWEVGENIE;
2904 iwe.u.data.length = end - pos;
2905 current_ev = iwe_stream_add_point_check(info, current_ev,
2908 if (IS_ERR(current_ev))
2916 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2917 struct cfg80211_internal_bss *bss, char *current_ev,
2920 const struct cfg80211_bss_ies *ies;
2921 struct iw_event iwe;
2926 bool ismesh = false;
2928 memset(&iwe, 0, sizeof(iwe));
2929 iwe.cmd = SIOCGIWAP;
2930 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2931 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2932 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2934 if (IS_ERR(current_ev))
2937 memset(&iwe, 0, sizeof(iwe));
2938 iwe.cmd = SIOCGIWFREQ;
2939 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2941 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2943 if (IS_ERR(current_ev))
2946 memset(&iwe, 0, sizeof(iwe));
2947 iwe.cmd = SIOCGIWFREQ;
2948 iwe.u.freq.m = bss->pub.channel->center_freq;
2950 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2952 if (IS_ERR(current_ev))
2955 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2956 memset(&iwe, 0, sizeof(iwe));
2958 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2959 IW_QUAL_NOISE_INVALID |
2960 IW_QUAL_QUAL_UPDATED;
2961 switch (wiphy->signal_type) {
2962 case CFG80211_SIGNAL_TYPE_MBM:
2963 sig = bss->pub.signal / 100;
2964 iwe.u.qual.level = sig;
2965 iwe.u.qual.updated |= IW_QUAL_DBM;
2966 if (sig < -110) /* rather bad */
2968 else if (sig > -40) /* perfect */
2970 /* will give a range of 0 .. 70 */
2971 iwe.u.qual.qual = sig + 110;
2973 case CFG80211_SIGNAL_TYPE_UNSPEC:
2974 iwe.u.qual.level = bss->pub.signal;
2975 /* will give range 0 .. 100 */
2976 iwe.u.qual.qual = bss->pub.signal;
2982 current_ev = iwe_stream_add_event_check(info, current_ev,
2985 if (IS_ERR(current_ev))
2989 memset(&iwe, 0, sizeof(iwe));
2990 iwe.cmd = SIOCGIWENCODE;
2991 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2992 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2994 iwe.u.data.flags = IW_ENCODE_DISABLED;
2995 iwe.u.data.length = 0;
2996 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2998 if (IS_ERR(current_ev))
3002 ies = rcu_dereference(bss->pub.ies);
3008 if (ie[1] > rem - 2)
3013 memset(&iwe, 0, sizeof(iwe));
3014 iwe.cmd = SIOCGIWESSID;
3015 iwe.u.data.length = ie[1];
3016 iwe.u.data.flags = 1;
3017 current_ev = iwe_stream_add_point_check(info,
3021 if (IS_ERR(current_ev))
3024 case WLAN_EID_MESH_ID:
3025 memset(&iwe, 0, sizeof(iwe));
3026 iwe.cmd = SIOCGIWESSID;
3027 iwe.u.data.length = ie[1];
3028 iwe.u.data.flags = 1;
3029 current_ev = iwe_stream_add_point_check(info,
3033 if (IS_ERR(current_ev))
3036 case WLAN_EID_MESH_CONFIG:
3038 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3041 memset(&iwe, 0, sizeof(iwe));
3042 iwe.cmd = IWEVCUSTOM;
3043 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3045 iwe.u.data.length = strlen(buf);
3046 current_ev = iwe_stream_add_point_check(info,
3050 if (IS_ERR(current_ev))
3052 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3054 iwe.u.data.length = strlen(buf);
3055 current_ev = iwe_stream_add_point_check(info,
3059 if (IS_ERR(current_ev))
3061 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3063 iwe.u.data.length = strlen(buf);
3064 current_ev = iwe_stream_add_point_check(info,
3068 if (IS_ERR(current_ev))
3070 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3071 iwe.u.data.length = strlen(buf);
3072 current_ev = iwe_stream_add_point_check(info,
3076 if (IS_ERR(current_ev))
3078 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3079 iwe.u.data.length = strlen(buf);
3080 current_ev = iwe_stream_add_point_check(info,
3084 if (IS_ERR(current_ev))
3086 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3087 iwe.u.data.length = strlen(buf);
3088 current_ev = iwe_stream_add_point_check(info,
3092 if (IS_ERR(current_ev))
3094 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3095 iwe.u.data.length = strlen(buf);
3096 current_ev = iwe_stream_add_point_check(info,
3100 if (IS_ERR(current_ev))
3103 case WLAN_EID_SUPP_RATES:
3104 case WLAN_EID_EXT_SUPP_RATES:
3105 /* display all supported rates in readable format */
3106 p = current_ev + iwe_stream_lcp_len(info);
3108 memset(&iwe, 0, sizeof(iwe));
3109 iwe.cmd = SIOCGIWRATE;
3110 /* Those two flags are ignored... */
3111 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3113 for (i = 0; i < ie[1]; i++) {
3114 iwe.u.bitrate.value =
3115 ((ie[i + 2] & 0x7f) * 500000);
3117 p = iwe_stream_add_value(info, current_ev, p,
3121 current_ev = ERR_PTR(-E2BIG);
3132 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3134 memset(&iwe, 0, sizeof(iwe));
3135 iwe.cmd = SIOCGIWMODE;
3137 iwe.u.mode = IW_MODE_MESH;
3138 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3139 iwe.u.mode = IW_MODE_MASTER;
3141 iwe.u.mode = IW_MODE_ADHOC;
3142 current_ev = iwe_stream_add_event_check(info, current_ev,
3145 if (IS_ERR(current_ev))
3149 memset(&iwe, 0, sizeof(iwe));
3150 iwe.cmd = IWEVCUSTOM;
3151 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3152 iwe.u.data.length = strlen(buf);
3153 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3155 if (IS_ERR(current_ev))
3157 memset(&iwe, 0, sizeof(iwe));
3158 iwe.cmd = IWEVCUSTOM;
3159 sprintf(buf, " Last beacon: %ums ago",
3160 elapsed_jiffies_msecs(bss->ts));
3161 iwe.u.data.length = strlen(buf);
3162 current_ev = iwe_stream_add_point_check(info, current_ev,
3163 end_buf, &iwe, buf);
3164 if (IS_ERR(current_ev))
3167 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3175 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3176 struct iw_request_info *info,
3177 char *buf, size_t len)
3179 char *current_ev = buf;
3180 char *end_buf = buf + len;
3181 struct cfg80211_internal_bss *bss;
3184 spin_lock_bh(&rdev->bss_lock);
3185 cfg80211_bss_expire(rdev);
3187 list_for_each_entry(bss, &rdev->bss_list, list) {
3188 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3192 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3193 current_ev, end_buf);
3194 if (IS_ERR(current_ev)) {
3195 err = PTR_ERR(current_ev);
3199 spin_unlock_bh(&rdev->bss_lock);
3203 return current_ev - buf;
3207 int cfg80211_wext_giwscan(struct net_device *dev,
3208 struct iw_request_info *info,
3209 struct iw_point *data, char *extra)
3211 struct cfg80211_registered_device *rdev;
3214 if (!netif_running(dev))
3217 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3220 return PTR_ERR(rdev);
3222 if (rdev->scan_req || rdev->scan_msg)
3225 res = ieee80211_scan_results(rdev, info, extra, data->length);
3234 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);