]> Git Repo - linux.git/blob - arch/x86/kernel/cpu/sgx/main.c
Merge tag 'x86_cleanups_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / x86 / kernel / cpu / sgx / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/pagemap.h>
10 #include <linux/ratelimit.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/signal.h>
13 #include <linux/slab.h>
14 #include <asm/sgx.h>
15 #include "driver.h"
16 #include "encl.h"
17 #include "encls.h"
18
19 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
20 static int sgx_nr_epc_sections;
21 static struct task_struct *ksgxd_tsk;
22 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
23
24 /*
25  * These variables are part of the state of the reclaimer, and must be accessed
26  * with sgx_reclaimer_lock acquired.
27  */
28 static LIST_HEAD(sgx_active_page_list);
29 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
30
31 /* The free page list lock protected variables prepend the lock. */
32 static unsigned long sgx_nr_free_pages;
33
34 /* Nodes with one or more EPC sections. */
35 static nodemask_t sgx_numa_mask;
36
37 /*
38  * Array with one list_head for each possible NUMA node.  Each
39  * list contains all the sgx_epc_section's which are on that
40  * node.
41  */
42 static struct sgx_numa_node *sgx_numa_nodes;
43
44 static LIST_HEAD(sgx_dirty_page_list);
45
46 /*
47  * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
48  * from the input list, and made available for the page allocator. SECS pages
49  * prepending their children in the input list are left intact.
50  */
51 static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
52 {
53         struct sgx_epc_page *page;
54         LIST_HEAD(dirty);
55         int ret;
56
57         /* dirty_page_list is thread-local, no need for a lock: */
58         while (!list_empty(dirty_page_list)) {
59                 if (kthread_should_stop())
60                         return;
61
62                 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
63
64                 ret = __eremove(sgx_get_epc_virt_addr(page));
65                 if (!ret) {
66                         /*
67                          * page is now sanitized.  Make it available via the SGX
68                          * page allocator:
69                          */
70                         list_del(&page->list);
71                         sgx_free_epc_page(page);
72                 } else {
73                         /* The page is not yet clean - move to the dirty list. */
74                         list_move_tail(&page->list, &dirty);
75                 }
76
77                 cond_resched();
78         }
79
80         list_splice(&dirty, dirty_page_list);
81 }
82
83 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
84 {
85         struct sgx_encl_page *page = epc_page->owner;
86         struct sgx_encl *encl = page->encl;
87         struct sgx_encl_mm *encl_mm;
88         bool ret = true;
89         int idx;
90
91         idx = srcu_read_lock(&encl->srcu);
92
93         list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
94                 if (!mmget_not_zero(encl_mm->mm))
95                         continue;
96
97                 mmap_read_lock(encl_mm->mm);
98                 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
99                 mmap_read_unlock(encl_mm->mm);
100
101                 mmput_async(encl_mm->mm);
102
103                 if (!ret)
104                         break;
105         }
106
107         srcu_read_unlock(&encl->srcu, idx);
108
109         if (!ret)
110                 return false;
111
112         return true;
113 }
114
115 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
116 {
117         struct sgx_encl_page *page = epc_page->owner;
118         unsigned long addr = page->desc & PAGE_MASK;
119         struct sgx_encl *encl = page->encl;
120         unsigned long mm_list_version;
121         struct sgx_encl_mm *encl_mm;
122         struct vm_area_struct *vma;
123         int idx, ret;
124
125         do {
126                 mm_list_version = encl->mm_list_version;
127
128                 /* Pairs with smp_rmb() in sgx_encl_mm_add(). */
129                 smp_rmb();
130
131                 idx = srcu_read_lock(&encl->srcu);
132
133                 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
134                         if (!mmget_not_zero(encl_mm->mm))
135                                 continue;
136
137                         mmap_read_lock(encl_mm->mm);
138
139                         ret = sgx_encl_find(encl_mm->mm, addr, &vma);
140                         if (!ret && encl == vma->vm_private_data)
141                                 zap_vma_ptes(vma, addr, PAGE_SIZE);
142
143                         mmap_read_unlock(encl_mm->mm);
144
145                         mmput_async(encl_mm->mm);
146                 }
147
148                 srcu_read_unlock(&encl->srcu, idx);
149         } while (unlikely(encl->mm_list_version != mm_list_version));
150
151         mutex_lock(&encl->lock);
152
153         ret = __eblock(sgx_get_epc_virt_addr(epc_page));
154         if (encls_failed(ret))
155                 ENCLS_WARN(ret, "EBLOCK");
156
157         mutex_unlock(&encl->lock);
158 }
159
160 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
161                           struct sgx_backing *backing)
162 {
163         struct sgx_pageinfo pginfo;
164         int ret;
165
166         pginfo.addr = 0;
167         pginfo.secs = 0;
168
169         pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
170         pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
171                           backing->pcmd_offset;
172
173         ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
174
175         kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
176                                               backing->pcmd_offset));
177         kunmap_atomic((void *)(unsigned long)pginfo.contents);
178
179         return ret;
180 }
181
182 static void sgx_ipi_cb(void *info)
183 {
184 }
185
186 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
187 {
188         cpumask_t *cpumask = &encl->cpumask;
189         struct sgx_encl_mm *encl_mm;
190         int idx;
191
192         /*
193          * Can race with sgx_encl_mm_add(), but ETRACK has already been
194          * executed, which means that the CPUs running in the new mm will enter
195          * into the enclave with a fresh epoch.
196          */
197         cpumask_clear(cpumask);
198
199         idx = srcu_read_lock(&encl->srcu);
200
201         list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
202                 if (!mmget_not_zero(encl_mm->mm))
203                         continue;
204
205                 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
206
207                 mmput_async(encl_mm->mm);
208         }
209
210         srcu_read_unlock(&encl->srcu, idx);
211
212         return cpumask;
213 }
214
215 /*
216  * Swap page to the regular memory transformed to the blocked state by using
217  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
218  *
219  * The first trial just tries to write the page assuming that some other thread
220  * has reset the count for threads inside the enclave by using ETRACK, and
221  * previous thread count has been zeroed out. The second trial calls ETRACK
222  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
223  * which should be guaranteed the succeed.
224  */
225 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
226                          struct sgx_backing *backing)
227 {
228         struct sgx_encl_page *encl_page = epc_page->owner;
229         struct sgx_encl *encl = encl_page->encl;
230         struct sgx_va_page *va_page;
231         unsigned int va_offset;
232         void *va_slot;
233         int ret;
234
235         encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
236
237         va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
238                                    list);
239         va_offset = sgx_alloc_va_slot(va_page);
240         va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
241         if (sgx_va_page_full(va_page))
242                 list_move_tail(&va_page->list, &encl->va_pages);
243
244         ret = __sgx_encl_ewb(epc_page, va_slot, backing);
245         if (ret == SGX_NOT_TRACKED) {
246                 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
247                 if (ret) {
248                         if (encls_failed(ret))
249                                 ENCLS_WARN(ret, "ETRACK");
250                 }
251
252                 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
253                 if (ret == SGX_NOT_TRACKED) {
254                         /*
255                          * Slow path, send IPIs to kick cpus out of the
256                          * enclave.  Note, it's imperative that the cpu
257                          * mask is generated *after* ETRACK, else we'll
258                          * miss cpus that entered the enclave between
259                          * generating the mask and incrementing epoch.
260                          */
261                         on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
262                                          sgx_ipi_cb, NULL, 1);
263                         ret = __sgx_encl_ewb(epc_page, va_slot, backing);
264                 }
265         }
266
267         if (ret) {
268                 if (encls_failed(ret))
269                         ENCLS_WARN(ret, "EWB");
270
271                 sgx_free_va_slot(va_page, va_offset);
272         } else {
273                 encl_page->desc |= va_offset;
274                 encl_page->va_page = va_page;
275         }
276 }
277
278 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
279                                 struct sgx_backing *backing)
280 {
281         struct sgx_encl_page *encl_page = epc_page->owner;
282         struct sgx_encl *encl = encl_page->encl;
283         struct sgx_backing secs_backing;
284         int ret;
285
286         mutex_lock(&encl->lock);
287
288         sgx_encl_ewb(epc_page, backing);
289         encl_page->epc_page = NULL;
290         encl->secs_child_cnt--;
291
292         if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
293                 ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
294                                            &secs_backing);
295                 if (ret)
296                         goto out;
297
298                 sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
299
300                 sgx_encl_free_epc_page(encl->secs.epc_page);
301                 encl->secs.epc_page = NULL;
302
303                 sgx_encl_put_backing(&secs_backing, true);
304         }
305
306 out:
307         mutex_unlock(&encl->lock);
308 }
309
310 /*
311  * Take a fixed number of pages from the head of the active page pool and
312  * reclaim them to the enclave's private shmem files. Skip the pages, which have
313  * been accessed since the last scan. Move those pages to the tail of active
314  * page pool so that the pages get scanned in LRU like fashion.
315  *
316  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
317  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
318  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
319  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
320  * problematic as it would increase the lock contention too much, which would
321  * halt forward progress.
322  */
323 static void sgx_reclaim_pages(void)
324 {
325         struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
326         struct sgx_backing backing[SGX_NR_TO_SCAN];
327         struct sgx_epc_section *section;
328         struct sgx_encl_page *encl_page;
329         struct sgx_epc_page *epc_page;
330         struct sgx_numa_node *node;
331         pgoff_t page_index;
332         int cnt = 0;
333         int ret;
334         int i;
335
336         spin_lock(&sgx_reclaimer_lock);
337         for (i = 0; i < SGX_NR_TO_SCAN; i++) {
338                 if (list_empty(&sgx_active_page_list))
339                         break;
340
341                 epc_page = list_first_entry(&sgx_active_page_list,
342                                             struct sgx_epc_page, list);
343                 list_del_init(&epc_page->list);
344                 encl_page = epc_page->owner;
345
346                 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
347                         chunk[cnt++] = epc_page;
348                 else
349                         /* The owner is freeing the page. No need to add the
350                          * page back to the list of reclaimable pages.
351                          */
352                         epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
353         }
354         spin_unlock(&sgx_reclaimer_lock);
355
356         for (i = 0; i < cnt; i++) {
357                 epc_page = chunk[i];
358                 encl_page = epc_page->owner;
359
360                 if (!sgx_reclaimer_age(epc_page))
361                         goto skip;
362
363                 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
364                 ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
365                 if (ret)
366                         goto skip;
367
368                 mutex_lock(&encl_page->encl->lock);
369                 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
370                 mutex_unlock(&encl_page->encl->lock);
371                 continue;
372
373 skip:
374                 spin_lock(&sgx_reclaimer_lock);
375                 list_add_tail(&epc_page->list, &sgx_active_page_list);
376                 spin_unlock(&sgx_reclaimer_lock);
377
378                 kref_put(&encl_page->encl->refcount, sgx_encl_release);
379
380                 chunk[i] = NULL;
381         }
382
383         for (i = 0; i < cnt; i++) {
384                 epc_page = chunk[i];
385                 if (epc_page)
386                         sgx_reclaimer_block(epc_page);
387         }
388
389         for (i = 0; i < cnt; i++) {
390                 epc_page = chunk[i];
391                 if (!epc_page)
392                         continue;
393
394                 encl_page = epc_page->owner;
395                 sgx_reclaimer_write(epc_page, &backing[i]);
396                 sgx_encl_put_backing(&backing[i], true);
397
398                 kref_put(&encl_page->encl->refcount, sgx_encl_release);
399                 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
400
401                 section = &sgx_epc_sections[epc_page->section];
402                 node = section->node;
403
404                 spin_lock(&node->lock);
405                 list_add_tail(&epc_page->list, &node->free_page_list);
406                 sgx_nr_free_pages++;
407                 spin_unlock(&node->lock);
408         }
409 }
410
411 static bool sgx_should_reclaim(unsigned long watermark)
412 {
413         return sgx_nr_free_pages < watermark && !list_empty(&sgx_active_page_list);
414 }
415
416 static int ksgxd(void *p)
417 {
418         set_freezable();
419
420         /*
421          * Sanitize pages in order to recover from kexec(). The 2nd pass is
422          * required for SECS pages, whose child pages blocked EREMOVE.
423          */
424         __sgx_sanitize_pages(&sgx_dirty_page_list);
425         __sgx_sanitize_pages(&sgx_dirty_page_list);
426
427         /* sanity check: */
428         WARN_ON(!list_empty(&sgx_dirty_page_list));
429
430         while (!kthread_should_stop()) {
431                 if (try_to_freeze())
432                         continue;
433
434                 wait_event_freezable(ksgxd_waitq,
435                                      kthread_should_stop() ||
436                                      sgx_should_reclaim(SGX_NR_HIGH_PAGES));
437
438                 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
439                         sgx_reclaim_pages();
440
441                 cond_resched();
442         }
443
444         return 0;
445 }
446
447 static bool __init sgx_page_reclaimer_init(void)
448 {
449         struct task_struct *tsk;
450
451         tsk = kthread_run(ksgxd, NULL, "ksgxd");
452         if (IS_ERR(tsk))
453                 return false;
454
455         ksgxd_tsk = tsk;
456
457         return true;
458 }
459
460 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
461 {
462         struct sgx_numa_node *node = &sgx_numa_nodes[nid];
463         struct sgx_epc_page *page = NULL;
464
465         spin_lock(&node->lock);
466
467         if (list_empty(&node->free_page_list)) {
468                 spin_unlock(&node->lock);
469                 return NULL;
470         }
471
472         page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
473         list_del_init(&page->list);
474         sgx_nr_free_pages--;
475
476         spin_unlock(&node->lock);
477
478         return page;
479 }
480
481 /**
482  * __sgx_alloc_epc_page() - Allocate an EPC page
483  *
484  * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
485  * from the NUMA node, where the caller is executing.
486  *
487  * Return:
488  * - an EPC page:       A borrowed EPC pages were available.
489  * - NULL:              Out of EPC pages.
490  */
491 struct sgx_epc_page *__sgx_alloc_epc_page(void)
492 {
493         struct sgx_epc_page *page;
494         int nid_of_current = numa_node_id();
495         int nid = nid_of_current;
496
497         if (node_isset(nid_of_current, sgx_numa_mask)) {
498                 page = __sgx_alloc_epc_page_from_node(nid_of_current);
499                 if (page)
500                         return page;
501         }
502
503         /* Fall back to the non-local NUMA nodes: */
504         while (true) {
505                 nid = next_node_in(nid, sgx_numa_mask);
506                 if (nid == nid_of_current)
507                         break;
508
509                 page = __sgx_alloc_epc_page_from_node(nid);
510                 if (page)
511                         return page;
512         }
513
514         return ERR_PTR(-ENOMEM);
515 }
516
517 /**
518  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
519  * @page:       EPC page
520  *
521  * Mark a page as reclaimable and add it to the active page list. Pages
522  * are automatically removed from the active list when freed.
523  */
524 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
525 {
526         spin_lock(&sgx_reclaimer_lock);
527         page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
528         list_add_tail(&page->list, &sgx_active_page_list);
529         spin_unlock(&sgx_reclaimer_lock);
530 }
531
532 /**
533  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
534  * @page:       EPC page
535  *
536  * Clear the reclaimable flag and remove the page from the active page list.
537  *
538  * Return:
539  *   0 on success,
540  *   -EBUSY if the page is in the process of being reclaimed
541  */
542 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
543 {
544         spin_lock(&sgx_reclaimer_lock);
545         if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
546                 /* The page is being reclaimed. */
547                 if (list_empty(&page->list)) {
548                         spin_unlock(&sgx_reclaimer_lock);
549                         return -EBUSY;
550                 }
551
552                 list_del(&page->list);
553                 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
554         }
555         spin_unlock(&sgx_reclaimer_lock);
556
557         return 0;
558 }
559
560 /**
561  * sgx_alloc_epc_page() - Allocate an EPC page
562  * @owner:      the owner of the EPC page
563  * @reclaim:    reclaim pages if necessary
564  *
565  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
566  * page is no longer needed it must be released with sgx_free_epc_page(). If
567  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
568  * mm's can be locked when @reclaim is set to true.
569  *
570  * Finally, wake up ksgxd when the number of pages goes below the watermark
571  * before returning back to the caller.
572  *
573  * Return:
574  *   an EPC page,
575  *   -errno on error
576  */
577 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
578 {
579         struct sgx_epc_page *page;
580
581         for ( ; ; ) {
582                 page = __sgx_alloc_epc_page();
583                 if (!IS_ERR(page)) {
584                         page->owner = owner;
585                         break;
586                 }
587
588                 if (list_empty(&sgx_active_page_list))
589                         return ERR_PTR(-ENOMEM);
590
591                 if (!reclaim) {
592                         page = ERR_PTR(-EBUSY);
593                         break;
594                 }
595
596                 if (signal_pending(current)) {
597                         page = ERR_PTR(-ERESTARTSYS);
598                         break;
599                 }
600
601                 sgx_reclaim_pages();
602                 cond_resched();
603         }
604
605         if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
606                 wake_up(&ksgxd_waitq);
607
608         return page;
609 }
610
611 /**
612  * sgx_free_epc_page() - Free an EPC page
613  * @page:       an EPC page
614  *
615  * Put the EPC page back to the list of free pages. It's the caller's
616  * responsibility to make sure that the page is in uninitialized state. In other
617  * words, do EREMOVE, EWB or whatever operation is necessary before calling
618  * this function.
619  */
620 void sgx_free_epc_page(struct sgx_epc_page *page)
621 {
622         struct sgx_epc_section *section = &sgx_epc_sections[page->section];
623         struct sgx_numa_node *node = section->node;
624
625         spin_lock(&node->lock);
626
627         list_add_tail(&page->list, &node->free_page_list);
628         sgx_nr_free_pages++;
629
630         spin_unlock(&node->lock);
631 }
632
633 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
634                                          unsigned long index,
635                                          struct sgx_epc_section *section)
636 {
637         unsigned long nr_pages = size >> PAGE_SHIFT;
638         unsigned long i;
639
640         section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
641         if (!section->virt_addr)
642                 return false;
643
644         section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
645         if (!section->pages) {
646                 memunmap(section->virt_addr);
647                 return false;
648         }
649
650         section->phys_addr = phys_addr;
651
652         for (i = 0; i < nr_pages; i++) {
653                 section->pages[i].section = index;
654                 section->pages[i].flags = 0;
655                 section->pages[i].owner = NULL;
656                 list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
657         }
658
659         return true;
660 }
661
662 /**
663  * A section metric is concatenated in a way that @low bits 12-31 define the
664  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
665  * metric.
666  */
667 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
668 {
669         return (low & GENMASK_ULL(31, 12)) +
670                ((high & GENMASK_ULL(19, 0)) << 32);
671 }
672
673 static bool __init sgx_page_cache_init(void)
674 {
675         u32 eax, ebx, ecx, edx, type;
676         u64 pa, size;
677         int nid;
678         int i;
679
680         sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
681         if (!sgx_numa_nodes)
682                 return false;
683
684         for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
685                 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
686
687                 type = eax & SGX_CPUID_EPC_MASK;
688                 if (type == SGX_CPUID_EPC_INVALID)
689                         break;
690
691                 if (type != SGX_CPUID_EPC_SECTION) {
692                         pr_err_once("Unknown EPC section type: %u\n", type);
693                         break;
694                 }
695
696                 pa   = sgx_calc_section_metric(eax, ebx);
697                 size = sgx_calc_section_metric(ecx, edx);
698
699                 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
700
701                 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
702                         pr_err("No free memory for an EPC section\n");
703                         break;
704                 }
705
706                 nid = numa_map_to_online_node(phys_to_target_node(pa));
707                 if (nid == NUMA_NO_NODE) {
708                         /* The physical address is already printed above. */
709                         pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
710                         nid = 0;
711                 }
712
713                 if (!node_isset(nid, sgx_numa_mask)) {
714                         spin_lock_init(&sgx_numa_nodes[nid].lock);
715                         INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
716                         node_set(nid, sgx_numa_mask);
717                 }
718
719                 sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
720
721                 sgx_nr_epc_sections++;
722         }
723
724         if (!sgx_nr_epc_sections) {
725                 pr_err("There are zero EPC sections.\n");
726                 return false;
727         }
728
729         return true;
730 }
731
732 /*
733  * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
734  * Bare-metal driver requires to update them to hash of enclave's signer
735  * before EINIT. KVM needs to update them to guest's virtual MSR values
736  * before doing EINIT from guest.
737  */
738 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
739 {
740         int i;
741
742         WARN_ON_ONCE(preemptible());
743
744         for (i = 0; i < 4; i++)
745                 wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
746 }
747
748 const struct file_operations sgx_provision_fops = {
749         .owner                  = THIS_MODULE,
750 };
751
752 static struct miscdevice sgx_dev_provision = {
753         .minor = MISC_DYNAMIC_MINOR,
754         .name = "sgx_provision",
755         .nodename = "sgx_provision",
756         .fops = &sgx_provision_fops,
757 };
758
759 /**
760  * sgx_set_attribute() - Update allowed attributes given file descriptor
761  * @allowed_attributes:         Pointer to allowed enclave attributes
762  * @attribute_fd:               File descriptor for specific attribute
763  *
764  * Append enclave attribute indicated by file descriptor to allowed
765  * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
766  * /dev/sgx_provision is supported.
767  *
768  * Return:
769  * -0:          SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
770  * -EINVAL:     Invalid, or not supported file descriptor
771  */
772 int sgx_set_attribute(unsigned long *allowed_attributes,
773                       unsigned int attribute_fd)
774 {
775         struct file *file;
776
777         file = fget(attribute_fd);
778         if (!file)
779                 return -EINVAL;
780
781         if (file->f_op != &sgx_provision_fops) {
782                 fput(file);
783                 return -EINVAL;
784         }
785
786         *allowed_attributes |= SGX_ATTR_PROVISIONKEY;
787
788         fput(file);
789         return 0;
790 }
791 EXPORT_SYMBOL_GPL(sgx_set_attribute);
792
793 static int __init sgx_init(void)
794 {
795         int ret;
796         int i;
797
798         if (!cpu_feature_enabled(X86_FEATURE_SGX))
799                 return -ENODEV;
800
801         if (!sgx_page_cache_init())
802                 return -ENOMEM;
803
804         if (!sgx_page_reclaimer_init()) {
805                 ret = -ENOMEM;
806                 goto err_page_cache;
807         }
808
809         ret = misc_register(&sgx_dev_provision);
810         if (ret)
811                 goto err_kthread;
812
813         /*
814          * Always try to initialize the native *and* KVM drivers.
815          * The KVM driver is less picky than the native one and
816          * can function if the native one is not supported on the
817          * current system or fails to initialize.
818          *
819          * Error out only if both fail to initialize.
820          */
821         ret = sgx_drv_init();
822
823         if (sgx_vepc_init() && ret)
824                 goto err_provision;
825
826         return 0;
827
828 err_provision:
829         misc_deregister(&sgx_dev_provision);
830
831 err_kthread:
832         kthread_stop(ksgxd_tsk);
833
834 err_page_cache:
835         for (i = 0; i < sgx_nr_epc_sections; i++) {
836                 vfree(sgx_epc_sections[i].pages);
837                 memunmap(sgx_epc_sections[i].virt_addr);
838         }
839
840         return ret;
841 }
842
843 device_initcall(sgx_init);
This page took 0.084527 seconds and 4 git commands to generate.