2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
40 #include <net/route.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
46 #include "hyperv_net.h"
48 #define RING_SIZE_MIN 64
49 #define RETRY_US_LO 5000
50 #define RETRY_US_HI 10000
51 #define RETRY_MAX 2000 /* >10 sec */
53 #define LINKCHANGE_INT (2 * HZ)
54 #define VF_TAKEOVER_INT (HZ / 10)
56 static unsigned int ring_size __ro_after_init = 128;
57 module_param(ring_size, uint, 0444);
58 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
59 unsigned int netvsc_ring_bytes __ro_after_init;
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66 static int debug = -1;
67 module_param(debug, int, 0444);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 static LIST_HEAD(netvsc_dev_list);
72 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
92 static void netvsc_set_rx_mode(struct net_device *net)
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
107 rndis_filter_update(nvdev);
111 static int netvsc_open(struct net_device *net)
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
119 netif_carrier_off(net);
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netif_tx_wake_all_queues(net);
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
139 ret = dev_open(vf_netdev);
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 unsigned int retry = 0;
153 /* Ensure pending bytes in ring are read */
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
167 aread = hv_get_bytes_to_read(&chn->inbound);
171 aread = hv_get_bytes_to_read(&chn->outbound);
179 if (++retry > RETRY_MAX)
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
186 static int netvsc_close(struct net_device *net)
188 struct net_device_context *net_device_ctx = netdev_priv(net);
189 struct net_device *vf_netdev
190 = rtnl_dereference(net_device_ctx->vf_netdev);
191 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
194 netif_tx_disable(net);
196 /* No need to close rndis filter if it is removed already */
200 ret = rndis_filter_close(nvdev);
202 netdev_err(net, "unable to close device (ret %d).\n", ret);
206 ret = netvsc_wait_until_empty(nvdev);
208 netdev_err(net, "Ring buffer not empty after closing rndis\n");
211 dev_close(vf_netdev);
216 static inline void *init_ppi_data(struct rndis_message *msg,
217 u32 ppi_size, u32 pkt_type)
219 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
220 struct rndis_per_packet_info *ppi;
222 rndis_pkt->data_offset += ppi_size;
223 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
224 + rndis_pkt->per_pkt_info_len;
226 ppi->size = ppi_size;
227 ppi->type = pkt_type;
228 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
230 rndis_pkt->per_pkt_info_len += ppi_size;
235 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
236 * packets. We can use ethtool to change UDP hash level when necessary.
238 static inline u32 netvsc_get_hash(
240 const struct net_device_context *ndc)
242 struct flow_keys flow;
243 u32 hash, pkt_proto = 0;
244 static u32 hashrnd __read_mostly;
246 net_get_random_once(&hashrnd, sizeof(hashrnd));
248 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
251 switch (flow.basic.ip_proto) {
253 if (flow.basic.n_proto == htons(ETH_P_IP))
254 pkt_proto = HV_TCP4_L4HASH;
255 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
256 pkt_proto = HV_TCP6_L4HASH;
261 if (flow.basic.n_proto == htons(ETH_P_IP))
262 pkt_proto = HV_UDP4_L4HASH;
263 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
264 pkt_proto = HV_UDP6_L4HASH;
269 if (pkt_proto & ndc->l4_hash) {
270 return skb_get_hash(skb);
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
279 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
285 static inline int netvsc_get_tx_queue(struct net_device *ndev,
286 struct sk_buff *skb, int old_idx)
288 const struct net_device_context *ndc = netdev_priv(ndev);
289 struct sock *sk = skb->sk;
292 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
293 (VRSS_SEND_TAB_SIZE - 1)];
295 /* If queue index changed record the new value */
296 if (q_idx != old_idx &&
297 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
298 sk_tx_queue_set(sk, q_idx);
304 * Select queue for transmit.
306 * If a valid queue has already been assigned, then use that.
307 * Otherwise compute tx queue based on hash and the send table.
309 * This is basically similar to default (__netdev_pick_tx) with the added step
310 * of using the host send_table when no other queue has been assigned.
312 * TODO support XPS - but get_xps_queue not exported
314 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
316 int q_idx = sk_tx_queue_get(skb->sk);
318 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
319 /* If forwarding a packet, we use the recorded queue when
320 * available for better cache locality.
322 if (skb_rx_queue_recorded(skb))
323 q_idx = skb_get_rx_queue(skb);
325 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
331 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
332 struct net_device *sb_dev,
333 select_queue_fallback_t fallback)
335 struct net_device_context *ndc = netdev_priv(ndev);
336 struct net_device *vf_netdev;
340 vf_netdev = rcu_dereference(ndc->vf_netdev);
342 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
344 if (vf_ops->ndo_select_queue)
345 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
348 txq = fallback(vf_netdev, skb, NULL);
350 /* Record the queue selected by VF so that it can be
351 * used for common case where VF has more queues than
352 * the synthetic device.
354 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
356 txq = netvsc_pick_tx(ndev, skb);
360 while (unlikely(txq >= ndev->real_num_tx_queues))
361 txq -= ndev->real_num_tx_queues;
366 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
367 struct hv_page_buffer *pb)
371 /* Deal with compund pages by ignoring unused part
374 page += (offset >> PAGE_SHIFT);
375 offset &= ~PAGE_MASK;
380 bytes = PAGE_SIZE - offset;
383 pb[j].pfn = page_to_pfn(page);
384 pb[j].offset = offset;
390 if (offset == PAGE_SIZE && len) {
400 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
401 struct hv_netvsc_packet *packet,
402 struct hv_page_buffer *pb)
405 char *data = skb->data;
406 int frags = skb_shinfo(skb)->nr_frags;
409 /* The packet is laid out thus:
410 * 1. hdr: RNDIS header and PPI
412 * 3. skb fragment data
414 slots_used += fill_pg_buf(virt_to_page(hdr),
416 len, &pb[slots_used]);
418 packet->rmsg_size = len;
419 packet->rmsg_pgcnt = slots_used;
421 slots_used += fill_pg_buf(virt_to_page(data),
422 offset_in_page(data),
423 skb_headlen(skb), &pb[slots_used]);
425 for (i = 0; i < frags; i++) {
426 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
428 slots_used += fill_pg_buf(skb_frag_page(frag),
430 skb_frag_size(frag), &pb[slots_used]);
435 static int count_skb_frag_slots(struct sk_buff *skb)
437 int i, frags = skb_shinfo(skb)->nr_frags;
440 for (i = 0; i < frags; i++) {
441 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
442 unsigned long size = skb_frag_size(frag);
443 unsigned long offset = frag->page_offset;
445 /* Skip unused frames from start of page */
446 offset &= ~PAGE_MASK;
447 pages += PFN_UP(offset + size);
452 static int netvsc_get_slots(struct sk_buff *skb)
454 char *data = skb->data;
455 unsigned int offset = offset_in_page(data);
456 unsigned int len = skb_headlen(skb);
460 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
461 frag_slots = count_skb_frag_slots(skb);
462 return slots + frag_slots;
465 static u32 net_checksum_info(struct sk_buff *skb)
467 if (skb->protocol == htons(ETH_P_IP)) {
468 struct iphdr *ip = ip_hdr(skb);
470 if (ip->protocol == IPPROTO_TCP)
471 return TRANSPORT_INFO_IPV4_TCP;
472 else if (ip->protocol == IPPROTO_UDP)
473 return TRANSPORT_INFO_IPV4_UDP;
475 struct ipv6hdr *ip6 = ipv6_hdr(skb);
477 if (ip6->nexthdr == IPPROTO_TCP)
478 return TRANSPORT_INFO_IPV6_TCP;
479 else if (ip6->nexthdr == IPPROTO_UDP)
480 return TRANSPORT_INFO_IPV6_UDP;
483 return TRANSPORT_INFO_NOT_IP;
486 /* Send skb on the slave VF device. */
487 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
490 struct net_device_context *ndev_ctx = netdev_priv(net);
491 unsigned int len = skb->len;
494 skb->dev = vf_netdev;
495 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
497 rc = dev_queue_xmit(skb);
498 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
499 struct netvsc_vf_pcpu_stats *pcpu_stats
500 = this_cpu_ptr(ndev_ctx->vf_stats);
502 u64_stats_update_begin(&pcpu_stats->syncp);
503 pcpu_stats->tx_packets++;
504 pcpu_stats->tx_bytes += len;
505 u64_stats_update_end(&pcpu_stats->syncp);
507 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
513 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
515 struct net_device_context *net_device_ctx = netdev_priv(net);
516 struct hv_netvsc_packet *packet = NULL;
518 unsigned int num_data_pgs;
519 struct rndis_message *rndis_msg;
520 struct net_device *vf_netdev;
523 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
525 /* if VF is present and up then redirect packets
526 * already called with rcu_read_lock_bh
528 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
529 if (vf_netdev && netif_running(vf_netdev) &&
530 !netpoll_tx_running(net))
531 return netvsc_vf_xmit(net, vf_netdev, skb);
533 /* We will atmost need two pages to describe the rndis
534 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
535 * of pages in a single packet. If skb is scattered around
536 * more pages we try linearizing it.
539 num_data_pgs = netvsc_get_slots(skb) + 2;
541 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
542 ++net_device_ctx->eth_stats.tx_scattered;
544 if (skb_linearize(skb))
547 num_data_pgs = netvsc_get_slots(skb) + 2;
548 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
549 ++net_device_ctx->eth_stats.tx_too_big;
555 * Place the rndis header in the skb head room and
556 * the skb->cb will be used for hv_netvsc_packet
559 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
563 /* Use the skb control buffer for building up the packet */
564 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
565 FIELD_SIZEOF(struct sk_buff, cb));
566 packet = (struct hv_netvsc_packet *)skb->cb;
568 packet->q_idx = skb_get_queue_mapping(skb);
570 packet->total_data_buflen = skb->len;
571 packet->total_bytes = skb->len;
572 packet->total_packets = 1;
574 rndis_msg = (struct rndis_message *)skb->head;
576 /* Add the rndis header */
577 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
578 rndis_msg->msg_len = packet->total_data_buflen;
580 rndis_msg->msg.pkt = (struct rndis_packet) {
581 .data_offset = sizeof(struct rndis_packet),
582 .data_len = packet->total_data_buflen,
583 .per_pkt_info_offset = sizeof(struct rndis_packet),
586 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
588 hash = skb_get_hash_raw(skb);
589 if (hash != 0 && net->real_num_tx_queues > 1) {
592 rndis_msg_size += NDIS_HASH_PPI_SIZE;
593 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
598 if (skb_vlan_tag_present(skb)) {
599 struct ndis_pkt_8021q_info *vlan;
601 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
602 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
606 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
607 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
611 if (skb_is_gso(skb)) {
612 struct ndis_tcp_lso_info *lso_info;
614 rndis_msg_size += NDIS_LSO_PPI_SIZE;
615 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
616 TCP_LARGESEND_PKTINFO);
619 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
620 if (skb->protocol == htons(ETH_P_IP)) {
621 lso_info->lso_v2_transmit.ip_version =
622 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
623 ip_hdr(skb)->tot_len = 0;
624 ip_hdr(skb)->check = 0;
625 tcp_hdr(skb)->check =
626 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
627 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
629 lso_info->lso_v2_transmit.ip_version =
630 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
631 ipv6_hdr(skb)->payload_len = 0;
632 tcp_hdr(skb)->check =
633 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
634 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
636 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
637 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
638 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
639 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
640 struct ndis_tcp_ip_checksum_info *csum_info;
642 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
643 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
644 TCPIP_CHKSUM_PKTINFO);
646 csum_info->value = 0;
647 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
649 if (skb->protocol == htons(ETH_P_IP)) {
650 csum_info->transmit.is_ipv4 = 1;
652 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
653 csum_info->transmit.tcp_checksum = 1;
655 csum_info->transmit.udp_checksum = 1;
657 csum_info->transmit.is_ipv6 = 1;
659 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
660 csum_info->transmit.tcp_checksum = 1;
662 csum_info->transmit.udp_checksum = 1;
665 /* Can't do offload of this type of checksum */
666 if (skb_checksum_help(skb))
671 /* Start filling in the page buffers with the rndis hdr */
672 rndis_msg->msg_len += rndis_msg_size;
673 packet->total_data_buflen = rndis_msg->msg_len;
674 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
677 /* timestamp packet in software */
678 skb_tx_timestamp(skb);
680 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
681 if (likely(ret == 0))
684 if (ret == -EAGAIN) {
685 ++net_device_ctx->eth_stats.tx_busy;
686 return NETDEV_TX_BUSY;
690 ++net_device_ctx->eth_stats.tx_no_space;
693 dev_kfree_skb_any(skb);
694 net->stats.tx_dropped++;
699 ++net_device_ctx->eth_stats.tx_no_memory;
704 * netvsc_linkstatus_callback - Link up/down notification
706 void netvsc_linkstatus_callback(struct net_device *net,
707 struct rndis_message *resp)
709 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
710 struct net_device_context *ndev_ctx = netdev_priv(net);
711 struct netvsc_reconfig *event;
714 /* Update the physical link speed when changing to another vSwitch */
715 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
718 speed = *(u32 *)((void *)indicate
719 + indicate->status_buf_offset) / 10000;
720 ndev_ctx->speed = speed;
724 /* Handle these link change statuses below */
725 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
726 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
727 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
730 if (net->reg_state != NETREG_REGISTERED)
733 event = kzalloc(sizeof(*event), GFP_ATOMIC);
736 event->event = indicate->status;
738 spin_lock_irqsave(&ndev_ctx->lock, flags);
739 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
740 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
742 schedule_delayed_work(&ndev_ctx->dwork, 0);
745 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
746 struct napi_struct *napi,
747 const struct ndis_tcp_ip_checksum_info *csum_info,
748 const struct ndis_pkt_8021q_info *vlan,
749 void *data, u32 buflen)
753 skb = napi_alloc_skb(napi, buflen);
758 * Copy to skb. This copy is needed here since the memory pointed by
759 * hv_netvsc_packet cannot be deallocated
761 skb_put_data(skb, data, buflen);
763 skb->protocol = eth_type_trans(skb, net);
765 /* skb is already created with CHECKSUM_NONE */
766 skb_checksum_none_assert(skb);
769 * In Linux, the IP checksum is always checked.
770 * Do L4 checksum offload if enabled and present.
772 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
773 if (csum_info->receive.tcp_checksum_succeeded ||
774 csum_info->receive.udp_checksum_succeeded)
775 skb->ip_summed = CHECKSUM_UNNECESSARY;
779 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
781 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
789 * netvsc_recv_callback - Callback when we receive a packet from the
790 * "wire" on the specified device.
792 int netvsc_recv_callback(struct net_device *net,
793 struct netvsc_device *net_device,
794 struct vmbus_channel *channel,
796 const struct ndis_tcp_ip_checksum_info *csum_info,
797 const struct ndis_pkt_8021q_info *vlan)
799 struct net_device_context *net_device_ctx = netdev_priv(net);
800 u16 q_idx = channel->offermsg.offer.sub_channel_index;
801 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
803 struct netvsc_stats *rx_stats;
805 if (net->reg_state != NETREG_REGISTERED)
806 return NVSP_STAT_FAIL;
808 /* Allocate a skb - TODO direct I/O to pages? */
809 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
810 csum_info, vlan, data, len);
811 if (unlikely(!skb)) {
812 ++net_device_ctx->eth_stats.rx_no_memory;
814 return NVSP_STAT_FAIL;
817 skb_record_rx_queue(skb, q_idx);
820 * Even if injecting the packet, record the statistics
821 * on the synthetic device because modifying the VF device
822 * statistics will not work correctly.
824 rx_stats = &nvchan->rx_stats;
825 u64_stats_update_begin(&rx_stats->syncp);
827 rx_stats->bytes += len;
829 if (skb->pkt_type == PACKET_BROADCAST)
830 ++rx_stats->broadcast;
831 else if (skb->pkt_type == PACKET_MULTICAST)
832 ++rx_stats->multicast;
833 u64_stats_update_end(&rx_stats->syncp);
835 napi_gro_receive(&nvchan->napi, skb);
836 return NVSP_STAT_SUCCESS;
839 static void netvsc_get_drvinfo(struct net_device *net,
840 struct ethtool_drvinfo *info)
842 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
843 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
846 static void netvsc_get_channels(struct net_device *net,
847 struct ethtool_channels *channel)
849 struct net_device_context *net_device_ctx = netdev_priv(net);
850 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
853 channel->max_combined = nvdev->max_chn;
854 channel->combined_count = nvdev->num_chn;
858 static int netvsc_detach(struct net_device *ndev,
859 struct netvsc_device *nvdev)
861 struct net_device_context *ndev_ctx = netdev_priv(ndev);
862 struct hv_device *hdev = ndev_ctx->device_ctx;
865 /* Don't try continuing to try and setup sub channels */
866 if (cancel_work_sync(&nvdev->subchan_work))
869 /* If device was up (receiving) then shutdown */
870 if (netif_running(ndev)) {
871 netif_tx_disable(ndev);
873 ret = rndis_filter_close(nvdev);
876 "unable to close device (ret %d).\n", ret);
880 ret = netvsc_wait_until_empty(nvdev);
883 "Ring buffer not empty after closing rndis\n");
888 netif_device_detach(ndev);
890 rndis_filter_device_remove(hdev, nvdev);
895 static int netvsc_attach(struct net_device *ndev,
896 struct netvsc_device_info *dev_info)
898 struct net_device_context *ndev_ctx = netdev_priv(ndev);
899 struct hv_device *hdev = ndev_ctx->device_ctx;
900 struct netvsc_device *nvdev;
901 struct rndis_device *rdev;
904 nvdev = rndis_filter_device_add(hdev, dev_info);
906 return PTR_ERR(nvdev);
908 if (nvdev->num_chn > 1) {
909 ret = rndis_set_subchannel(ndev, nvdev);
911 /* if unavailable, just proceed with one queue */
918 /* In any case device is now ready */
919 netif_device_attach(ndev);
921 /* Note: enable and attach happen when sub-channels setup */
922 netif_carrier_off(ndev);
924 if (netif_running(ndev)) {
925 ret = rndis_filter_open(nvdev);
929 rdev = nvdev->extension;
930 if (!rdev->link_state)
931 netif_carrier_on(ndev);
937 static int netvsc_set_channels(struct net_device *net,
938 struct ethtool_channels *channels)
940 struct net_device_context *net_device_ctx = netdev_priv(net);
941 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
942 unsigned int orig, count = channels->combined_count;
943 struct netvsc_device_info device_info;
946 /* We do not support separate count for rx, tx, or other */
948 channels->rx_count || channels->tx_count || channels->other_count)
951 if (!nvdev || nvdev->destroy)
954 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
957 if (count > nvdev->max_chn)
960 orig = nvdev->num_chn;
962 memset(&device_info, 0, sizeof(device_info));
963 device_info.num_chn = count;
964 device_info.send_sections = nvdev->send_section_cnt;
965 device_info.send_section_size = nvdev->send_section_size;
966 device_info.recv_sections = nvdev->recv_section_cnt;
967 device_info.recv_section_size = nvdev->recv_section_size;
969 ret = netvsc_detach(net, nvdev);
973 ret = netvsc_attach(net, &device_info);
975 device_info.num_chn = orig;
976 if (netvsc_attach(net, &device_info))
977 netdev_err(net, "restoring channel setting failed\n");
984 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
986 struct ethtool_link_ksettings diff1 = *cmd;
987 struct ethtool_link_ksettings diff2 = {};
989 diff1.base.speed = 0;
990 diff1.base.duplex = 0;
991 /* advertising and cmd are usually set */
992 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
994 /* We set port to PORT_OTHER */
995 diff2.base.port = PORT_OTHER;
997 return !memcmp(&diff1, &diff2, sizeof(diff1));
1000 static void netvsc_init_settings(struct net_device *dev)
1002 struct net_device_context *ndc = netdev_priv(dev);
1004 ndc->l4_hash = HV_DEFAULT_L4HASH;
1006 ndc->speed = SPEED_UNKNOWN;
1007 ndc->duplex = DUPLEX_FULL;
1010 static int netvsc_get_link_ksettings(struct net_device *dev,
1011 struct ethtool_link_ksettings *cmd)
1013 struct net_device_context *ndc = netdev_priv(dev);
1015 cmd->base.speed = ndc->speed;
1016 cmd->base.duplex = ndc->duplex;
1017 cmd->base.port = PORT_OTHER;
1022 static int netvsc_set_link_ksettings(struct net_device *dev,
1023 const struct ethtool_link_ksettings *cmd)
1025 struct net_device_context *ndc = netdev_priv(dev);
1028 speed = cmd->base.speed;
1029 if (!ethtool_validate_speed(speed) ||
1030 !ethtool_validate_duplex(cmd->base.duplex) ||
1031 !netvsc_validate_ethtool_ss_cmd(cmd))
1035 ndc->duplex = cmd->base.duplex;
1040 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1042 struct net_device_context *ndevctx = netdev_priv(ndev);
1043 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1044 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1045 int orig_mtu = ndev->mtu;
1046 struct netvsc_device_info device_info;
1049 if (!nvdev || nvdev->destroy)
1052 /* Change MTU of underlying VF netdev first. */
1054 ret = dev_set_mtu(vf_netdev, mtu);
1059 memset(&device_info, 0, sizeof(device_info));
1060 device_info.num_chn = nvdev->num_chn;
1061 device_info.send_sections = nvdev->send_section_cnt;
1062 device_info.send_section_size = nvdev->send_section_size;
1063 device_info.recv_sections = nvdev->recv_section_cnt;
1064 device_info.recv_section_size = nvdev->recv_section_size;
1066 ret = netvsc_detach(ndev, nvdev);
1072 ret = netvsc_attach(ndev, &device_info);
1079 /* Attempt rollback to original MTU */
1080 ndev->mtu = orig_mtu;
1082 if (netvsc_attach(ndev, &device_info))
1083 netdev_err(ndev, "restoring mtu failed\n");
1086 dev_set_mtu(vf_netdev, orig_mtu);
1091 static void netvsc_get_vf_stats(struct net_device *net,
1092 struct netvsc_vf_pcpu_stats *tot)
1094 struct net_device_context *ndev_ctx = netdev_priv(net);
1097 memset(tot, 0, sizeof(*tot));
1099 for_each_possible_cpu(i) {
1100 const struct netvsc_vf_pcpu_stats *stats
1101 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1102 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1106 start = u64_stats_fetch_begin_irq(&stats->syncp);
1107 rx_packets = stats->rx_packets;
1108 tx_packets = stats->tx_packets;
1109 rx_bytes = stats->rx_bytes;
1110 tx_bytes = stats->tx_bytes;
1111 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1113 tot->rx_packets += rx_packets;
1114 tot->tx_packets += tx_packets;
1115 tot->rx_bytes += rx_bytes;
1116 tot->tx_bytes += tx_bytes;
1117 tot->tx_dropped += stats->tx_dropped;
1121 static void netvsc_get_pcpu_stats(struct net_device *net,
1122 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1124 struct net_device_context *ndev_ctx = netdev_priv(net);
1125 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1128 /* fetch percpu stats of vf */
1129 for_each_possible_cpu(i) {
1130 const struct netvsc_vf_pcpu_stats *stats =
1131 per_cpu_ptr(ndev_ctx->vf_stats, i);
1132 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1136 start = u64_stats_fetch_begin_irq(&stats->syncp);
1137 this_tot->vf_rx_packets = stats->rx_packets;
1138 this_tot->vf_tx_packets = stats->tx_packets;
1139 this_tot->vf_rx_bytes = stats->rx_bytes;
1140 this_tot->vf_tx_bytes = stats->tx_bytes;
1141 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1142 this_tot->rx_packets = this_tot->vf_rx_packets;
1143 this_tot->tx_packets = this_tot->vf_tx_packets;
1144 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1145 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1148 /* fetch percpu stats of netvsc */
1149 for (i = 0; i < nvdev->num_chn; i++) {
1150 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1151 const struct netvsc_stats *stats;
1152 struct netvsc_ethtool_pcpu_stats *this_tot =
1153 &pcpu_tot[nvchan->channel->target_cpu];
1157 stats = &nvchan->tx_stats;
1159 start = u64_stats_fetch_begin_irq(&stats->syncp);
1160 packets = stats->packets;
1161 bytes = stats->bytes;
1162 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1164 this_tot->tx_bytes += bytes;
1165 this_tot->tx_packets += packets;
1167 stats = &nvchan->rx_stats;
1169 start = u64_stats_fetch_begin_irq(&stats->syncp);
1170 packets = stats->packets;
1171 bytes = stats->bytes;
1172 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1174 this_tot->rx_bytes += bytes;
1175 this_tot->rx_packets += packets;
1179 static void netvsc_get_stats64(struct net_device *net,
1180 struct rtnl_link_stats64 *t)
1182 struct net_device_context *ndev_ctx = netdev_priv(net);
1183 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1184 struct netvsc_vf_pcpu_stats vf_tot;
1190 netdev_stats_to_stats64(t, &net->stats);
1192 netvsc_get_vf_stats(net, &vf_tot);
1193 t->rx_packets += vf_tot.rx_packets;
1194 t->tx_packets += vf_tot.tx_packets;
1195 t->rx_bytes += vf_tot.rx_bytes;
1196 t->tx_bytes += vf_tot.tx_bytes;
1197 t->tx_dropped += vf_tot.tx_dropped;
1199 for (i = 0; i < nvdev->num_chn; i++) {
1200 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1201 const struct netvsc_stats *stats;
1202 u64 packets, bytes, multicast;
1205 stats = &nvchan->tx_stats;
1207 start = u64_stats_fetch_begin_irq(&stats->syncp);
1208 packets = stats->packets;
1209 bytes = stats->bytes;
1210 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1212 t->tx_bytes += bytes;
1213 t->tx_packets += packets;
1215 stats = &nvchan->rx_stats;
1217 start = u64_stats_fetch_begin_irq(&stats->syncp);
1218 packets = stats->packets;
1219 bytes = stats->bytes;
1220 multicast = stats->multicast + stats->broadcast;
1221 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1223 t->rx_bytes += bytes;
1224 t->rx_packets += packets;
1225 t->multicast += multicast;
1229 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1231 struct net_device_context *ndc = netdev_priv(ndev);
1232 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1233 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1234 struct sockaddr *addr = p;
1237 err = eth_prepare_mac_addr_change(ndev, p);
1245 err = dev_set_mac_address(vf_netdev, addr);
1250 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1252 eth_commit_mac_addr_change(ndev, p);
1253 } else if (vf_netdev) {
1254 /* rollback change on VF */
1255 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1256 dev_set_mac_address(vf_netdev, addr);
1262 static const struct {
1263 char name[ETH_GSTRING_LEN];
1265 } netvsc_stats[] = {
1266 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1267 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1268 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1269 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1270 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1271 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1272 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1273 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1274 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1275 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1277 { "cpu%u_rx_packets",
1278 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1280 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1281 { "cpu%u_tx_packets",
1282 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1284 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1285 { "cpu%u_vf_rx_packets",
1286 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1287 { "cpu%u_vf_rx_bytes",
1288 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1289 { "cpu%u_vf_tx_packets",
1290 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1291 { "cpu%u_vf_tx_bytes",
1292 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1294 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1295 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1296 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1297 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1298 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1301 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1302 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1304 /* statistics per queue (rx/tx packets/bytes) */
1305 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1307 /* 4 statistics per queue (rx/tx packets/bytes) */
1308 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1310 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1312 struct net_device_context *ndc = netdev_priv(dev);
1313 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1318 switch (string_set) {
1320 return NETVSC_GLOBAL_STATS_LEN
1321 + NETVSC_VF_STATS_LEN
1322 + NETVSC_QUEUE_STATS_LEN(nvdev)
1323 + NETVSC_PCPU_STATS_LEN;
1329 static void netvsc_get_ethtool_stats(struct net_device *dev,
1330 struct ethtool_stats *stats, u64 *data)
1332 struct net_device_context *ndc = netdev_priv(dev);
1333 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1334 const void *nds = &ndc->eth_stats;
1335 const struct netvsc_stats *qstats;
1336 struct netvsc_vf_pcpu_stats sum;
1337 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1345 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1346 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1348 netvsc_get_vf_stats(dev, &sum);
1349 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1350 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1352 for (j = 0; j < nvdev->num_chn; j++) {
1353 qstats = &nvdev->chan_table[j].tx_stats;
1356 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1357 packets = qstats->packets;
1358 bytes = qstats->bytes;
1359 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1360 data[i++] = packets;
1363 qstats = &nvdev->chan_table[j].rx_stats;
1365 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1366 packets = qstats->packets;
1367 bytes = qstats->bytes;
1368 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1369 data[i++] = packets;
1373 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1374 sizeof(struct netvsc_ethtool_pcpu_stats),
1376 netvsc_get_pcpu_stats(dev, pcpu_sum);
1377 for_each_present_cpu(cpu) {
1378 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1380 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1381 data[i++] = *(u64 *)((void *)this_sum
1382 + pcpu_stats[j].offset);
1387 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1389 struct net_device_context *ndc = netdev_priv(dev);
1390 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1397 switch (stringset) {
1399 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1400 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1401 p += ETH_GSTRING_LEN;
1404 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1405 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1406 p += ETH_GSTRING_LEN;
1409 for (i = 0; i < nvdev->num_chn; i++) {
1410 sprintf(p, "tx_queue_%u_packets", i);
1411 p += ETH_GSTRING_LEN;
1412 sprintf(p, "tx_queue_%u_bytes", i);
1413 p += ETH_GSTRING_LEN;
1414 sprintf(p, "rx_queue_%u_packets", i);
1415 p += ETH_GSTRING_LEN;
1416 sprintf(p, "rx_queue_%u_bytes", i);
1417 p += ETH_GSTRING_LEN;
1420 for_each_present_cpu(cpu) {
1421 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1422 sprintf(p, pcpu_stats[i].name, cpu);
1423 p += ETH_GSTRING_LEN;
1432 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1433 struct ethtool_rxnfc *info)
1435 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1437 info->data = RXH_IP_SRC | RXH_IP_DST;
1439 switch (info->flow_type) {
1441 if (ndc->l4_hash & HV_TCP4_L4HASH)
1442 info->data |= l4_flag;
1447 if (ndc->l4_hash & HV_TCP6_L4HASH)
1448 info->data |= l4_flag;
1453 if (ndc->l4_hash & HV_UDP4_L4HASH)
1454 info->data |= l4_flag;
1459 if (ndc->l4_hash & HV_UDP6_L4HASH)
1460 info->data |= l4_flag;
1476 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1479 struct net_device_context *ndc = netdev_priv(dev);
1480 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1485 switch (info->cmd) {
1486 case ETHTOOL_GRXRINGS:
1487 info->data = nvdev->num_chn;
1491 return netvsc_get_rss_hash_opts(ndc, info);
1496 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1497 struct ethtool_rxnfc *info)
1499 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1500 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1501 switch (info->flow_type) {
1503 ndc->l4_hash |= HV_TCP4_L4HASH;
1507 ndc->l4_hash |= HV_TCP6_L4HASH;
1511 ndc->l4_hash |= HV_UDP4_L4HASH;
1515 ndc->l4_hash |= HV_UDP6_L4HASH;
1525 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1526 switch (info->flow_type) {
1528 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1532 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1536 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1540 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1554 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1556 struct net_device_context *ndc = netdev_priv(ndev);
1558 if (info->cmd == ETHTOOL_SRXFH)
1559 return netvsc_set_rss_hash_opts(ndc, info);
1564 #ifdef CONFIG_NET_POLL_CONTROLLER
1565 static void netvsc_poll_controller(struct net_device *dev)
1567 struct net_device_context *ndc = netdev_priv(dev);
1568 struct netvsc_device *ndev;
1572 ndev = rcu_dereference(ndc->nvdev);
1574 for (i = 0; i < ndev->num_chn; i++) {
1575 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1577 napi_schedule(&nvchan->napi);
1584 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1586 return NETVSC_HASH_KEYLEN;
1589 static u32 netvsc_rss_indir_size(struct net_device *dev)
1594 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1597 struct net_device_context *ndc = netdev_priv(dev);
1598 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1599 struct rndis_device *rndis_dev;
1606 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1608 rndis_dev = ndev->extension;
1610 for (i = 0; i < ITAB_NUM; i++)
1611 indir[i] = rndis_dev->rx_table[i];
1615 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1620 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1621 const u8 *key, const u8 hfunc)
1623 struct net_device_context *ndc = netdev_priv(dev);
1624 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1625 struct rndis_device *rndis_dev;
1631 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1634 rndis_dev = ndev->extension;
1636 for (i = 0; i < ITAB_NUM; i++)
1637 if (indir[i] >= ndev->num_chn)
1640 for (i = 0; i < ITAB_NUM; i++)
1641 rndis_dev->rx_table[i] = indir[i];
1648 key = rndis_dev->rss_key;
1651 return rndis_filter_set_rss_param(rndis_dev, key);
1654 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1655 * It does have pre-allocated receive area which is divided into sections.
1657 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1658 struct ethtool_ringparam *ring)
1662 ring->rx_pending = nvdev->recv_section_cnt;
1663 ring->tx_pending = nvdev->send_section_cnt;
1665 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1666 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1668 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1670 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1671 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1672 / nvdev->send_section_size;
1675 static void netvsc_get_ringparam(struct net_device *ndev,
1676 struct ethtool_ringparam *ring)
1678 struct net_device_context *ndevctx = netdev_priv(ndev);
1679 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1684 __netvsc_get_ringparam(nvdev, ring);
1687 static int netvsc_set_ringparam(struct net_device *ndev,
1688 struct ethtool_ringparam *ring)
1690 struct net_device_context *ndevctx = netdev_priv(ndev);
1691 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1692 struct netvsc_device_info device_info;
1693 struct ethtool_ringparam orig;
1697 if (!nvdev || nvdev->destroy)
1700 memset(&orig, 0, sizeof(orig));
1701 __netvsc_get_ringparam(nvdev, &orig);
1703 new_tx = clamp_t(u32, ring->tx_pending,
1704 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1705 new_rx = clamp_t(u32, ring->rx_pending,
1706 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1708 if (new_tx == orig.tx_pending &&
1709 new_rx == orig.rx_pending)
1710 return 0; /* no change */
1712 memset(&device_info, 0, sizeof(device_info));
1713 device_info.num_chn = nvdev->num_chn;
1714 device_info.send_sections = new_tx;
1715 device_info.send_section_size = nvdev->send_section_size;
1716 device_info.recv_sections = new_rx;
1717 device_info.recv_section_size = nvdev->recv_section_size;
1719 ret = netvsc_detach(ndev, nvdev);
1723 ret = netvsc_attach(ndev, &device_info);
1725 device_info.send_sections = orig.tx_pending;
1726 device_info.recv_sections = orig.rx_pending;
1728 if (netvsc_attach(ndev, &device_info))
1729 netdev_err(ndev, "restoring ringparam failed");
1735 static u32 netvsc_get_msglevel(struct net_device *ndev)
1737 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1739 return ndev_ctx->msg_enable;
1742 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1744 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1746 ndev_ctx->msg_enable = val;
1749 static const struct ethtool_ops ethtool_ops = {
1750 .get_drvinfo = netvsc_get_drvinfo,
1751 .get_msglevel = netvsc_get_msglevel,
1752 .set_msglevel = netvsc_set_msglevel,
1753 .get_link = ethtool_op_get_link,
1754 .get_ethtool_stats = netvsc_get_ethtool_stats,
1755 .get_sset_count = netvsc_get_sset_count,
1756 .get_strings = netvsc_get_strings,
1757 .get_channels = netvsc_get_channels,
1758 .set_channels = netvsc_set_channels,
1759 .get_ts_info = ethtool_op_get_ts_info,
1760 .get_rxnfc = netvsc_get_rxnfc,
1761 .set_rxnfc = netvsc_set_rxnfc,
1762 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1763 .get_rxfh_indir_size = netvsc_rss_indir_size,
1764 .get_rxfh = netvsc_get_rxfh,
1765 .set_rxfh = netvsc_set_rxfh,
1766 .get_link_ksettings = netvsc_get_link_ksettings,
1767 .set_link_ksettings = netvsc_set_link_ksettings,
1768 .get_ringparam = netvsc_get_ringparam,
1769 .set_ringparam = netvsc_set_ringparam,
1772 static const struct net_device_ops device_ops = {
1773 .ndo_open = netvsc_open,
1774 .ndo_stop = netvsc_close,
1775 .ndo_start_xmit = netvsc_start_xmit,
1776 .ndo_change_rx_flags = netvsc_change_rx_flags,
1777 .ndo_set_rx_mode = netvsc_set_rx_mode,
1778 .ndo_change_mtu = netvsc_change_mtu,
1779 .ndo_validate_addr = eth_validate_addr,
1780 .ndo_set_mac_address = netvsc_set_mac_addr,
1781 .ndo_select_queue = netvsc_select_queue,
1782 .ndo_get_stats64 = netvsc_get_stats64,
1783 #ifdef CONFIG_NET_POLL_CONTROLLER
1784 .ndo_poll_controller = netvsc_poll_controller,
1789 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1790 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1791 * present send GARP packet to network peers with netif_notify_peers().
1793 static void netvsc_link_change(struct work_struct *w)
1795 struct net_device_context *ndev_ctx =
1796 container_of(w, struct net_device_context, dwork.work);
1797 struct hv_device *device_obj = ndev_ctx->device_ctx;
1798 struct net_device *net = hv_get_drvdata(device_obj);
1799 struct netvsc_device *net_device;
1800 struct rndis_device *rdev;
1801 struct netvsc_reconfig *event = NULL;
1802 bool notify = false, reschedule = false;
1803 unsigned long flags, next_reconfig, delay;
1805 /* if changes are happening, comeback later */
1806 if (!rtnl_trylock()) {
1807 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1811 net_device = rtnl_dereference(ndev_ctx->nvdev);
1815 rdev = net_device->extension;
1817 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1818 if (time_is_after_jiffies(next_reconfig)) {
1819 /* link_watch only sends one notification with current state
1820 * per second, avoid doing reconfig more frequently. Handle
1823 delay = next_reconfig - jiffies;
1824 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1825 schedule_delayed_work(&ndev_ctx->dwork, delay);
1828 ndev_ctx->last_reconfig = jiffies;
1830 spin_lock_irqsave(&ndev_ctx->lock, flags);
1831 if (!list_empty(&ndev_ctx->reconfig_events)) {
1832 event = list_first_entry(&ndev_ctx->reconfig_events,
1833 struct netvsc_reconfig, list);
1834 list_del(&event->list);
1835 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1837 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1842 switch (event->event) {
1843 /* Only the following events are possible due to the check in
1844 * netvsc_linkstatus_callback()
1846 case RNDIS_STATUS_MEDIA_CONNECT:
1847 if (rdev->link_state) {
1848 rdev->link_state = false;
1849 netif_carrier_on(net);
1850 netif_tx_wake_all_queues(net);
1856 case RNDIS_STATUS_MEDIA_DISCONNECT:
1857 if (!rdev->link_state) {
1858 rdev->link_state = true;
1859 netif_carrier_off(net);
1860 netif_tx_stop_all_queues(net);
1864 case RNDIS_STATUS_NETWORK_CHANGE:
1865 /* Only makes sense if carrier is present */
1866 if (!rdev->link_state) {
1867 rdev->link_state = true;
1868 netif_carrier_off(net);
1869 netif_tx_stop_all_queues(net);
1870 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1871 spin_lock_irqsave(&ndev_ctx->lock, flags);
1872 list_add(&event->list, &ndev_ctx->reconfig_events);
1873 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1882 netdev_notify_peers(net);
1884 /* link_watch only sends one notification with current state per
1885 * second, handle next reconfig event in 2 seconds.
1888 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1896 static struct net_device *get_netvsc_bymac(const u8 *mac)
1898 struct net_device_context *ndev_ctx;
1900 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
1901 struct net_device *dev = hv_get_drvdata(ndev_ctx->device_ctx);
1903 if (ether_addr_equal(mac, dev->perm_addr))
1910 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1912 struct net_device_context *net_device_ctx;
1913 struct net_device *dev;
1915 dev = netdev_master_upper_dev_get(vf_netdev);
1916 if (!dev || dev->netdev_ops != &device_ops)
1917 return NULL; /* not a netvsc device */
1919 net_device_ctx = netdev_priv(dev);
1920 if (!rtnl_dereference(net_device_ctx->nvdev))
1921 return NULL; /* device is removed */
1926 /* Called when VF is injecting data into network stack.
1927 * Change the associated network device from VF to netvsc.
1928 * note: already called with rcu_read_lock
1930 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1932 struct sk_buff *skb = *pskb;
1933 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1934 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1935 struct netvsc_vf_pcpu_stats *pcpu_stats
1936 = this_cpu_ptr(ndev_ctx->vf_stats);
1940 u64_stats_update_begin(&pcpu_stats->syncp);
1941 pcpu_stats->rx_packets++;
1942 pcpu_stats->rx_bytes += skb->len;
1943 u64_stats_update_end(&pcpu_stats->syncp);
1945 return RX_HANDLER_ANOTHER;
1948 static int netvsc_vf_join(struct net_device *vf_netdev,
1949 struct net_device *ndev)
1951 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1954 ret = netdev_rx_handler_register(vf_netdev,
1955 netvsc_vf_handle_frame, ndev);
1957 netdev_err(vf_netdev,
1958 "can not register netvsc VF receive handler (err = %d)\n",
1960 goto rx_handler_failed;
1963 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1966 netdev_err(vf_netdev,
1967 "can not set master device %s (err = %d)\n",
1969 goto upper_link_failed;
1972 /* set slave flag before open to prevent IPv6 addrconf */
1973 vf_netdev->flags |= IFF_SLAVE;
1975 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1977 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1979 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1983 netdev_rx_handler_unregister(vf_netdev);
1988 static void __netvsc_vf_setup(struct net_device *ndev,
1989 struct net_device *vf_netdev)
1993 /* Align MTU of VF with master */
1994 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1996 netdev_warn(vf_netdev,
1997 "unable to change mtu to %u\n", ndev->mtu);
1999 /* set multicast etc flags on VF */
2000 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
2002 /* sync address list from ndev to VF */
2003 netif_addr_lock_bh(ndev);
2004 dev_uc_sync(vf_netdev, ndev);
2005 dev_mc_sync(vf_netdev, ndev);
2006 netif_addr_unlock_bh(ndev);
2008 if (netif_running(ndev)) {
2009 ret = dev_open(vf_netdev);
2011 netdev_warn(vf_netdev,
2012 "unable to open: %d\n", ret);
2016 /* Setup VF as slave of the synthetic device.
2017 * Runs in workqueue to avoid recursion in netlink callbacks.
2019 static void netvsc_vf_setup(struct work_struct *w)
2021 struct net_device_context *ndev_ctx
2022 = container_of(w, struct net_device_context, vf_takeover.work);
2023 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2024 struct net_device *vf_netdev;
2026 if (!rtnl_trylock()) {
2027 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2031 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2033 __netvsc_vf_setup(ndev, vf_netdev);
2038 static int netvsc_register_vf(struct net_device *vf_netdev)
2040 struct net_device *ndev;
2041 struct net_device_context *net_device_ctx;
2042 struct netvsc_device *netvsc_dev;
2045 if (vf_netdev->addr_len != ETH_ALEN)
2049 * We will use the MAC address to locate the synthetic interface to
2050 * associate with the VF interface. If we don't find a matching
2051 * synthetic interface, move on.
2053 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
2057 net_device_ctx = netdev_priv(ndev);
2058 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2059 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2062 /* if syntihetic interface is a different namespace,
2063 * then move the VF to that namespace; join will be
2064 * done again in that context.
2066 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2067 ret = dev_change_net_namespace(vf_netdev,
2068 dev_net(ndev), "eth%d");
2070 netdev_err(vf_netdev,
2071 "could not move to same namespace as %s: %d\n",
2074 netdev_info(vf_netdev,
2075 "VF moved to namespace with: %s\n",
2080 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2082 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2085 dev_hold(vf_netdev);
2086 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2090 /* VF up/down change detected, schedule to change data path */
2091 static int netvsc_vf_changed(struct net_device *vf_netdev)
2093 struct net_device_context *net_device_ctx;
2094 struct netvsc_device *netvsc_dev;
2095 struct net_device *ndev;
2096 bool vf_is_up = netif_running(vf_netdev);
2098 ndev = get_netvsc_byref(vf_netdev);
2102 net_device_ctx = netdev_priv(ndev);
2103 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2107 netvsc_switch_datapath(ndev, vf_is_up);
2108 netdev_info(ndev, "Data path switched %s VF: %s\n",
2109 vf_is_up ? "to" : "from", vf_netdev->name);
2114 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2116 struct net_device *ndev;
2117 struct net_device_context *net_device_ctx;
2119 ndev = get_netvsc_byref(vf_netdev);
2123 net_device_ctx = netdev_priv(ndev);
2124 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2126 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2128 netdev_rx_handler_unregister(vf_netdev);
2129 netdev_upper_dev_unlink(vf_netdev, ndev);
2130 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2136 static int netvsc_probe(struct hv_device *dev,
2137 const struct hv_vmbus_device_id *dev_id)
2139 struct net_device *net = NULL;
2140 struct net_device_context *net_device_ctx;
2141 struct netvsc_device_info device_info;
2142 struct netvsc_device *nvdev;
2145 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2150 netif_carrier_off(net);
2152 netvsc_init_settings(net);
2154 net_device_ctx = netdev_priv(net);
2155 net_device_ctx->device_ctx = dev;
2156 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2157 if (netif_msg_probe(net_device_ctx))
2158 netdev_dbg(net, "netvsc msg_enable: %d\n",
2159 net_device_ctx->msg_enable);
2161 hv_set_drvdata(dev, net);
2163 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2165 spin_lock_init(&net_device_ctx->lock);
2166 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2167 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2169 net_device_ctx->vf_stats
2170 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2171 if (!net_device_ctx->vf_stats)
2174 net->netdev_ops = &device_ops;
2175 net->ethtool_ops = ðtool_ops;
2176 SET_NETDEV_DEV(net, &dev->device);
2178 /* We always need headroom for rndis header */
2179 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2181 /* Initialize the number of queues to be 1, we may change it if more
2182 * channels are offered later.
2184 netif_set_real_num_tx_queues(net, 1);
2185 netif_set_real_num_rx_queues(net, 1);
2187 /* Notify the netvsc driver of the new device */
2188 memset(&device_info, 0, sizeof(device_info));
2189 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2190 device_info.send_sections = NETVSC_DEFAULT_TX;
2191 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2192 device_info.recv_sections = NETVSC_DEFAULT_RX;
2193 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2195 nvdev = rndis_filter_device_add(dev, &device_info);
2196 if (IS_ERR(nvdev)) {
2197 ret = PTR_ERR(nvdev);
2198 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2202 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2204 if (nvdev->num_chn > 1)
2205 schedule_work(&nvdev->subchan_work);
2207 /* hw_features computed in rndis_netdev_set_hwcaps() */
2208 net->features = net->hw_features |
2209 NETIF_F_HIGHDMA | NETIF_F_SG |
2210 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2211 net->vlan_features = net->features;
2213 netdev_lockdep_set_classes(net);
2215 /* MTU range: 68 - 1500 or 65521 */
2216 net->min_mtu = NETVSC_MTU_MIN;
2217 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2218 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2220 net->max_mtu = ETH_DATA_LEN;
2223 ret = register_netdevice(net);
2225 pr_err("Unable to register netdev.\n");
2226 goto register_failed;
2229 list_add(&net_device_ctx->list, &netvsc_dev_list);
2235 rndis_filter_device_remove(dev, nvdev);
2237 free_percpu(net_device_ctx->vf_stats);
2239 hv_set_drvdata(dev, NULL);
2245 static int netvsc_remove(struct hv_device *dev)
2247 struct net_device_context *ndev_ctx;
2248 struct net_device *vf_netdev, *net;
2249 struct netvsc_device *nvdev;
2251 net = hv_get_drvdata(dev);
2253 dev_err(&dev->device, "No net device to remove\n");
2257 ndev_ctx = netdev_priv(net);
2259 cancel_delayed_work_sync(&ndev_ctx->dwork);
2262 nvdev = rcu_dereference(ndev_ctx->nvdev);
2265 cancel_work_sync(&nvdev->subchan_work);
2268 * Call to the vsc driver to let it know that the device is being
2269 * removed. Also blocks mtu and channel changes.
2272 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2274 netvsc_unregister_vf(vf_netdev);
2277 rndis_filter_device_remove(dev, nvdev);
2279 unregister_netdevice(net);
2280 list_del(&ndev_ctx->list);
2285 hv_set_drvdata(dev, NULL);
2287 free_percpu(ndev_ctx->vf_stats);
2292 static const struct hv_vmbus_device_id id_table[] = {
2298 MODULE_DEVICE_TABLE(vmbus, id_table);
2300 /* The one and only one */
2301 static struct hv_driver netvsc_drv = {
2302 .name = KBUILD_MODNAME,
2303 .id_table = id_table,
2304 .probe = netvsc_probe,
2305 .remove = netvsc_remove,
2307 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2312 * On Hyper-V, every VF interface is matched with a corresponding
2313 * synthetic interface. The synthetic interface is presented first
2314 * to the guest. When the corresponding VF instance is registered,
2315 * we will take care of switching the data path.
2317 static int netvsc_netdev_event(struct notifier_block *this,
2318 unsigned long event, void *ptr)
2320 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2322 /* Skip our own events */
2323 if (event_dev->netdev_ops == &device_ops)
2326 /* Avoid non-Ethernet type devices */
2327 if (event_dev->type != ARPHRD_ETHER)
2330 /* Avoid Vlan dev with same MAC registering as VF */
2331 if (is_vlan_dev(event_dev))
2334 /* Avoid Bonding master dev with same MAC registering as VF */
2335 if ((event_dev->priv_flags & IFF_BONDING) &&
2336 (event_dev->flags & IFF_MASTER))
2340 case NETDEV_REGISTER:
2341 return netvsc_register_vf(event_dev);
2342 case NETDEV_UNREGISTER:
2343 return netvsc_unregister_vf(event_dev);
2346 return netvsc_vf_changed(event_dev);
2352 static struct notifier_block netvsc_netdev_notifier = {
2353 .notifier_call = netvsc_netdev_event,
2356 static void __exit netvsc_drv_exit(void)
2358 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2359 vmbus_driver_unregister(&netvsc_drv);
2362 static int __init netvsc_drv_init(void)
2366 if (ring_size < RING_SIZE_MIN) {
2367 ring_size = RING_SIZE_MIN;
2368 pr_info("Increased ring_size to %u (min allowed)\n",
2371 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2373 ret = vmbus_driver_register(&netvsc_drv);
2377 register_netdevice_notifier(&netvsc_netdev_notifier);
2381 MODULE_LICENSE("GPL");
2382 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2384 module_init(netvsc_drv_init);
2385 module_exit(netvsc_drv_exit);