1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
17 static int afs_writepages_region(struct address_space *mapping,
18 struct writeback_control *wbc,
19 loff_t start, loff_t end, loff_t *_next,
22 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
23 loff_t i_size, bool caching);
25 #ifdef CONFIG_AFS_FSCACHE
27 * Mark a page as having been made dirty and thus needing writeback. We also
28 * need to pin the cache object to write back to.
30 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
32 return fscache_dirty_folio(mapping, folio,
33 afs_vnode_cache(AFS_FS_I(mapping->host)));
35 static void afs_folio_start_fscache(bool caching, struct folio *folio)
38 folio_start_fscache(folio);
41 static void afs_folio_start_fscache(bool caching, struct folio *folio)
47 * Flush out a conflicting write. This may extend the write to the surrounding
48 * pages if also dirty and contiguous to the conflicting region..
50 static int afs_flush_conflicting_write(struct address_space *mapping,
53 struct writeback_control wbc = {
54 .sync_mode = WB_SYNC_ALL,
55 .nr_to_write = LONG_MAX,
56 .range_start = folio_pos(folio),
57 .range_end = LLONG_MAX,
61 return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX,
66 * prepare to perform part of a write to a page
68 int afs_write_begin(struct file *file, struct address_space *mapping,
69 loff_t pos, unsigned len,
70 struct page **_page, void **fsdata)
72 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
80 _enter("{%llx:%llu},%llx,%x",
81 vnode->fid.vid, vnode->fid.vnode, pos, len);
83 /* Prefetch area to be written into the cache if we're caching this
84 * file. We need to do this before we get a lock on the page in case
85 * there's more than one writer competing for the same cache block.
87 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata);
91 index = folio_index(folio);
92 from = pos - index * PAGE_SIZE;
96 /* See if this page is already partially written in a way that we can
97 * merge the new write with.
99 if (folio_test_private(folio)) {
100 priv = (unsigned long)folio_get_private(folio);
101 f = afs_folio_dirty_from(folio, priv);
102 t = afs_folio_dirty_to(folio, priv);
105 if (folio_test_writeback(folio)) {
106 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
108 goto wait_for_writeback;
110 /* If the file is being filled locally, allow inter-write
111 * spaces to be merged into writes. If it's not, only write
112 * back what the user gives us.
114 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
115 (to < f || from > t))
116 goto flush_conflicting_write;
119 *_page = folio_file_page(folio, pos / PAGE_SIZE);
123 /* The previous write and this write aren't adjacent or overlapping, so
124 * flush the page out.
126 flush_conflicting_write:
127 trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio);
130 ret = afs_flush_conflicting_write(mapping, folio);
135 ret = folio_wait_writeback_killable(folio);
139 ret = folio_lock_killable(folio);
146 _leave(" = %d", ret);
151 * finalise part of a write to a page
153 int afs_write_end(struct file *file, struct address_space *mapping,
154 loff_t pos, unsigned len, unsigned copied,
155 struct page *subpage, void *fsdata)
157 struct folio *folio = page_folio(subpage);
158 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
160 unsigned int f, from = offset_in_folio(folio, pos);
161 unsigned int t, to = from + copied;
162 loff_t i_size, write_end_pos;
164 _enter("{%llx:%llu},{%lx}",
165 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
167 if (!folio_test_uptodate(folio)) {
173 folio_mark_uptodate(folio);
179 write_end_pos = pos + copied;
181 i_size = i_size_read(&vnode->netfs.inode);
182 if (write_end_pos > i_size) {
183 write_seqlock(&vnode->cb_lock);
184 i_size = i_size_read(&vnode->netfs.inode);
185 if (write_end_pos > i_size)
186 afs_set_i_size(vnode, write_end_pos);
187 write_sequnlock(&vnode->cb_lock);
188 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
191 if (folio_test_private(folio)) {
192 priv = (unsigned long)folio_get_private(folio);
193 f = afs_folio_dirty_from(folio, priv);
194 t = afs_folio_dirty_to(folio, priv);
199 priv = afs_folio_dirty(folio, f, t);
200 folio_change_private(folio, (void *)priv);
201 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
203 priv = afs_folio_dirty(folio, from, to);
204 folio_attach_private(folio, (void *)priv);
205 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
208 if (folio_mark_dirty(folio))
209 _debug("dirtied %lx", folio_index(folio));
218 * kill all the pages in the given range
220 static void afs_kill_pages(struct address_space *mapping,
221 loff_t start, loff_t len)
223 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
225 pgoff_t index = start / PAGE_SIZE;
226 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
228 _enter("{%llx:%llu},%llx @%llx",
229 vnode->fid.vid, vnode->fid.vnode, len, start);
232 _debug("kill %lx (to %lx)", index, last);
234 folio = filemap_get_folio(mapping, index);
240 next = folio_next_index(folio);
242 folio_clear_uptodate(folio);
243 folio_end_writeback(folio);
245 generic_error_remove_page(mapping, &folio->page);
249 } while (index = next, index <= last);
255 * Redirty all the pages in a given range.
257 static void afs_redirty_pages(struct writeback_control *wbc,
258 struct address_space *mapping,
259 loff_t start, loff_t len)
261 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
263 pgoff_t index = start / PAGE_SIZE;
264 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
266 _enter("{%llx:%llu},%llx @%llx",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
270 _debug("redirty %llx @%llx", len, start);
272 folio = filemap_get_folio(mapping, index);
278 next = index + folio_nr_pages(folio);
279 folio_redirty_for_writepage(wbc, folio);
280 folio_end_writeback(folio);
282 } while (index = next, index <= last);
288 * completion of write to server
290 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
292 struct address_space *mapping = vnode->netfs.inode.i_mapping;
296 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
298 _enter("{%llx:%llu},{%x @%llx}",
299 vnode->fid.vid, vnode->fid.vnode, len, start);
303 end = (start + len - 1) / PAGE_SIZE;
304 xas_for_each(&xas, folio, end) {
305 if (!folio_test_writeback(folio)) {
306 kdebug("bad %x @%llx page %lx %lx",
307 len, start, folio_index(folio), end);
308 ASSERT(folio_test_writeback(folio));
311 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
312 folio_detach_private(folio);
313 folio_end_writeback(folio);
318 afs_prune_wb_keys(vnode);
323 * Find a key to use for the writeback. We cached the keys used to author the
324 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
325 * and we need to start from there if it's set.
327 static int afs_get_writeback_key(struct afs_vnode *vnode,
328 struct afs_wb_key **_wbk)
330 struct afs_wb_key *wbk = NULL;
332 int ret = -ENOKEY, ret2;
334 spin_lock(&vnode->wb_lock);
336 p = (*_wbk)->vnode_link.next;
338 p = vnode->wb_keys.next;
340 while (p != &vnode->wb_keys) {
341 wbk = list_entry(p, struct afs_wb_key, vnode_link);
342 _debug("wbk %u", key_serial(wbk->key));
343 ret2 = key_validate(wbk->key);
345 refcount_inc(&wbk->usage);
346 _debug("USE WB KEY %u", key_serial(wbk->key));
356 spin_unlock(&vnode->wb_lock);
358 afs_put_wb_key(*_wbk);
363 static void afs_store_data_success(struct afs_operation *op)
365 struct afs_vnode *vnode = op->file[0].vnode;
367 op->ctime = op->file[0].scb.status.mtime_client;
368 afs_vnode_commit_status(op, &op->file[0]);
369 if (op->error == 0) {
370 if (!op->store.laundering)
371 afs_pages_written_back(vnode, op->store.pos, op->store.size);
372 afs_stat_v(vnode, n_stores);
373 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
377 static const struct afs_operation_ops afs_store_data_operation = {
378 .issue_afs_rpc = afs_fs_store_data,
379 .issue_yfs_rpc = yfs_fs_store_data,
380 .success = afs_store_data_success,
386 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
389 struct afs_operation *op;
390 struct afs_wb_key *wbk = NULL;
391 loff_t size = iov_iter_count(iter);
394 _enter("%s{%llx:%llu.%u},%llx,%llx",
401 ret = afs_get_writeback_key(vnode, &wbk);
403 _leave(" = %d [no keys]", ret);
407 op = afs_alloc_operation(wbk->key, vnode->volume);
413 afs_op_set_vnode(op, 0, vnode);
414 op->file[0].dv_delta = 1;
415 op->file[0].modification = true;
416 op->store.write_iter = iter;
418 op->store.size = size;
419 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size);
420 op->store.laundering = laundering;
421 op->mtime = vnode->netfs.inode.i_mtime;
422 op->flags |= AFS_OPERATION_UNINTR;
423 op->ops = &afs_store_data_operation;
426 afs_begin_vnode_operation(op);
427 afs_wait_for_operation(op);
438 ret = afs_get_writeback_key(vnode, &wbk);
441 op->key = key_get(wbk->key);
448 _leave(" = %d", op->error);
449 return afs_put_operation(op);
453 * Extend the region to be written back to include subsequent contiguously
454 * dirty pages if possible, but don't sleep while doing so.
456 * If this page holds new content, then we can include filler zeros in the
459 static void afs_extend_writeback(struct address_space *mapping,
460 struct afs_vnode *vnode,
471 unsigned int psize, filler = 0;
474 pgoff_t index = (start + len) / PAGE_SIZE;
478 XA_STATE(xas, &mapping->i_pages, index);
482 /* Firstly, we gather up a batch of contiguous dirty pages
483 * under the RCU read lock - but we can't clear the dirty flags
484 * there if any of those pages are mapped.
488 xas_for_each(&xas, folio, ULONG_MAX) {
490 if (xas_retry(&xas, folio))
492 if (xa_is_value(folio))
494 if (folio_index(folio) != index)
497 if (!folio_try_get_rcu(folio)) {
502 /* Has the page moved or been split? */
503 if (unlikely(folio != xas_reload(&xas))) {
508 if (!folio_trylock(folio)) {
512 if (!folio_test_dirty(folio) ||
513 folio_test_writeback(folio) ||
514 folio_test_fscache(folio)) {
520 psize = folio_size(folio);
521 priv = (unsigned long)folio_get_private(folio);
522 f = afs_folio_dirty_from(folio, priv);
523 t = afs_folio_dirty_to(folio, priv);
524 if (f != 0 && !new_content) {
532 if (len >= max_len || *_count <= 0)
534 else if (t == psize || new_content)
537 index += folio_nr_pages(folio);
538 if (!pagevec_add(&pvec, &folio->page))
548 /* Now, if we obtained any pages, we can shift them to being
549 * writable and mark them for caching.
551 if (!pagevec_count(&pvec))
554 for (i = 0; i < pagevec_count(&pvec); i++) {
555 folio = page_folio(pvec.pages[i]);
556 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
558 if (!folio_clear_dirty_for_io(folio))
560 if (folio_start_writeback(folio))
562 afs_folio_start_fscache(caching, folio);
564 *_count -= folio_nr_pages(folio);
568 pagevec_release(&pvec);
576 * Synchronously write back the locked page and any subsequent non-locked dirty
579 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
580 struct writeback_control *wbc,
582 loff_t start, loff_t end)
584 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
585 struct iov_iter iter;
587 unsigned int offset, to, len, max_len;
588 loff_t i_size = i_size_read(&vnode->netfs.inode);
589 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
590 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
591 long count = wbc->nr_to_write;
594 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
596 if (folio_start_writeback(folio))
598 afs_folio_start_fscache(caching, folio);
600 count -= folio_nr_pages(folio);
602 /* Find all consecutive lockable dirty pages that have contiguous
603 * written regions, stopping when we find a page that is not
604 * immediately lockable, is not dirty or is missing, or we reach the
607 priv = (unsigned long)folio_get_private(folio);
608 offset = afs_folio_dirty_from(folio, priv);
609 to = afs_folio_dirty_to(folio, priv);
610 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
614 if (start < i_size) {
615 /* Trim the write to the EOF; the extra data is ignored. Also
616 * put an upper limit on the size of a single storedata op.
618 max_len = 65536 * 4096;
619 max_len = min_t(unsigned long long, max_len, end - start + 1);
620 max_len = min_t(unsigned long long, max_len, i_size - start);
623 (to == folio_size(folio) || new_content))
624 afs_extend_writeback(mapping, vnode, &count,
625 start, max_len, new_content,
627 len = min_t(loff_t, len, max_len);
630 /* We now have a contiguous set of dirty pages, each with writeback
631 * set; the first page is still locked at this point, but all the rest
632 * have been unlocked.
636 if (start < i_size) {
637 _debug("write back %x @%llx [%llx]", len, start, i_size);
639 /* Speculatively write to the cache. We have to fix this up
640 * later if the store fails.
642 afs_write_to_cache(vnode, start, len, i_size, caching);
644 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len);
645 ret = afs_store_data(vnode, &iter, start, false);
647 _debug("write discard %x @%llx [%llx]", len, start, i_size);
649 /* The dirty region was entirely beyond the EOF. */
650 fscache_clear_page_bits(mapping, start, len, caching);
651 afs_pages_written_back(vnode, start, len);
657 wbc->nr_to_write = count;
662 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
671 afs_redirty_pages(wbc, mapping, start, len);
672 mapping_set_error(mapping, ret);
677 afs_redirty_pages(wbc, mapping, start, len);
678 mapping_set_error(mapping, -ENOSPC);
688 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
689 afs_kill_pages(mapping, start, len);
690 mapping_set_error(mapping, ret);
694 _leave(" = %d", ret);
699 * write a region of pages back to the server
701 static int afs_writepages_region(struct address_space *mapping,
702 struct writeback_control *wbc,
703 loff_t start, loff_t end, loff_t *_next,
707 struct page *head_page;
711 _enter("%llx,%llx,", start, end);
714 pgoff_t index = start / PAGE_SIZE;
716 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
717 PAGECACHE_TAG_DIRTY, 1, &head_page);
721 folio = page_folio(head_page);
722 start = folio_pos(folio); /* May regress with THPs */
724 _debug("wback %lx", folio_index(folio));
726 /* At this point we hold neither the i_pages lock nor the
727 * page lock: the page may be truncated or invalidated
728 * (changing page->mapping to NULL), or even swizzled
729 * back from swapper_space to tmpfs file mapping
731 if (wbc->sync_mode != WB_SYNC_NONE) {
732 ret = folio_lock_killable(folio);
738 if (!folio_trylock(folio)) {
744 if (folio_mapping(folio) != mapping ||
745 !folio_test_dirty(folio)) {
746 start += folio_size(folio);
752 if (folio_test_writeback(folio) ||
753 folio_test_fscache(folio)) {
755 if (wbc->sync_mode != WB_SYNC_NONE) {
756 folio_wait_writeback(folio);
757 #ifdef CONFIG_AFS_FSCACHE
758 folio_wait_fscache(folio);
761 start += folio_size(folio);
764 if (wbc->sync_mode == WB_SYNC_NONE) {
765 if (skips >= 5 || need_resched())
772 if (!folio_clear_dirty_for_io(folio))
774 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
777 _leave(" = %zd", ret);
787 } while (wbc->nr_to_write > 0);
790 _leave(" = 0 [%llx]", *_next);
795 * write some of the pending data back to the server
797 int afs_writepages(struct address_space *mapping,
798 struct writeback_control *wbc)
800 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
806 /* We have to be careful as we can end up racing with setattr()
807 * truncating the pagecache since the caller doesn't take a lock here
810 if (wbc->sync_mode == WB_SYNC_ALL)
811 down_read(&vnode->validate_lock);
812 else if (!down_read_trylock(&vnode->validate_lock))
815 if (wbc->range_cyclic) {
816 start = mapping->writeback_index * PAGE_SIZE;
817 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX,
820 mapping->writeback_index = next / PAGE_SIZE;
821 if (start > 0 && wbc->nr_to_write > 0) {
822 ret = afs_writepages_region(mapping, wbc, 0,
823 start, &next, false);
825 mapping->writeback_index =
829 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
830 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX,
832 if (wbc->nr_to_write > 0 && ret == 0)
833 mapping->writeback_index = next / PAGE_SIZE;
835 ret = afs_writepages_region(mapping, wbc,
836 wbc->range_start, wbc->range_end,
840 up_read(&vnode->validate_lock);
841 _leave(" = %d", ret);
846 * write to an AFS file
848 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
850 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
851 struct afs_file *af = iocb->ki_filp->private_data;
853 size_t count = iov_iter_count(from);
855 _enter("{%llx:%llu},{%zu},",
856 vnode->fid.vid, vnode->fid.vnode, count);
858 if (IS_SWAPFILE(&vnode->netfs.inode)) {
860 "AFS: Attempt to write to active swap file!\n");
867 result = afs_validate(vnode, af->key);
871 result = generic_file_write_iter(iocb, from);
873 _leave(" = %zd", result);
878 * flush any dirty pages for this process, and check for write errors.
879 * - the return status from this call provides a reliable indication of
880 * whether any write errors occurred for this process.
882 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
884 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
885 struct afs_file *af = file->private_data;
888 _enter("{%llx:%llu},{n=%pD},%d",
889 vnode->fid.vid, vnode->fid.vnode, file,
892 ret = afs_validate(vnode, af->key);
896 return file_write_and_wait_range(file, start, end);
900 * notification that a previously read-only page is about to become writable
901 * - if it returns an error, the caller will deliver a bus error signal
903 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
905 struct folio *folio = page_folio(vmf->page);
906 struct file *file = vmf->vma->vm_file;
907 struct inode *inode = file_inode(file);
908 struct afs_vnode *vnode = AFS_FS_I(inode);
909 struct afs_file *af = file->private_data;
911 vm_fault_t ret = VM_FAULT_RETRY;
913 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
915 afs_validate(vnode, af->key);
917 sb_start_pagefault(inode->i_sb);
919 /* Wait for the page to be written to the cache before we allow it to
920 * be modified. We then assume the entire page will need writing back.
922 #ifdef CONFIG_AFS_FSCACHE
923 if (folio_test_fscache(folio) &&
924 folio_wait_fscache_killable(folio) < 0)
928 if (folio_wait_writeback_killable(folio))
931 if (folio_lock_killable(folio) < 0)
934 /* We mustn't change folio->private until writeback is complete as that
935 * details the portion of the page we need to write back and we might
936 * need to redirty the page if there's a problem.
938 if (folio_wait_writeback_killable(folio) < 0) {
943 priv = afs_folio_dirty(folio, 0, folio_size(folio));
944 priv = afs_folio_dirty_mmapped(priv);
945 if (folio_test_private(folio)) {
946 folio_change_private(folio, (void *)priv);
947 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
949 folio_attach_private(folio, (void *)priv);
950 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
952 file_update_time(file);
954 ret = VM_FAULT_LOCKED;
956 sb_end_pagefault(inode->i_sb);
961 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
963 void afs_prune_wb_keys(struct afs_vnode *vnode)
965 LIST_HEAD(graveyard);
966 struct afs_wb_key *wbk, *tmp;
968 /* Discard unused keys */
969 spin_lock(&vnode->wb_lock);
971 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
972 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
973 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
974 if (refcount_read(&wbk->usage) == 1)
975 list_move(&wbk->vnode_link, &graveyard);
979 spin_unlock(&vnode->wb_lock);
981 while (!list_empty(&graveyard)) {
982 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
983 list_del(&wbk->vnode_link);
989 * Clean up a page during invalidation.
991 int afs_launder_folio(struct folio *folio)
993 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
994 struct iov_iter iter;
995 struct bio_vec bv[1];
1000 _enter("{%lx}", folio->index);
1002 priv = (unsigned long)folio_get_private(folio);
1003 if (folio_clear_dirty_for_io(folio)) {
1005 t = folio_size(folio);
1006 if (folio_test_private(folio)) {
1007 f = afs_folio_dirty_from(folio, priv);
1008 t = afs_folio_dirty_to(folio, priv);
1011 bv[0].bv_page = &folio->page;
1012 bv[0].bv_offset = f;
1013 bv[0].bv_len = t - f;
1014 iov_iter_bvec(&iter, ITER_SOURCE, bv, 1, bv[0].bv_len);
1016 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1017 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1020 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1021 folio_detach_private(folio);
1022 folio_wait_fscache(folio);
1027 * Deal with the completion of writing the data to the cache.
1029 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1032 struct afs_vnode *vnode = priv;
1034 if (IS_ERR_VALUE(transferred_or_error) &&
1035 transferred_or_error != -ENOBUFS)
1036 afs_invalidate_cache(vnode, 0);
1040 * Save the write to the cache also.
1042 static void afs_write_to_cache(struct afs_vnode *vnode,
1043 loff_t start, size_t len, loff_t i_size,
1046 fscache_write_to_cache(afs_vnode_cache(vnode),
1047 vnode->netfs.inode.i_mapping, start, len, i_size,
1048 afs_write_to_cache_done, vnode, caching);