4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/kmod.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/cache.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmaengine.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/of_irq.h>
28 #include <linux/clk/clk-conf.h>
29 #include <linux/slab.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/spi/spi.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device *dev)
47 struct spi_device *spi = to_spi_device(dev);
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
53 spi_master_put(spi->master);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static struct attribute *spi_dev_attrs[] = {
72 &dev_attr_modalias.attr,
75 ATTRIBUTE_GROUPS(spi_dev);
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 const struct spi_device *sdev)
85 if (!strcmp(sdev->modalias, id->name))
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
96 return spi_match_id(sdrv->id_table, sdev);
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
102 const struct spi_device *spi = to_spi_device(dev);
103 const struct spi_driver *sdrv = to_spi_driver(drv);
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev, drv))
110 if (acpi_driver_match_device(dev, drv))
114 return !!spi_match_id(sdrv->id_table, spi);
116 return strcmp(spi->modalias, drv->name) == 0;
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
121 const struct spi_device *spi = to_spi_device(dev);
124 rc = acpi_device_uevent_modalias(dev, env);
128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
132 struct bus_type spi_bus_type = {
134 .dev_groups = spi_dev_groups,
135 .match = spi_match_device,
136 .uevent = spi_uevent,
138 EXPORT_SYMBOL_GPL(spi_bus_type);
141 static int spi_drv_probe(struct device *dev)
143 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
146 ret = of_clk_set_defaults(dev->of_node, false);
150 ret = dev_pm_domain_attach(dev, true);
151 if (ret != -EPROBE_DEFER) {
152 ret = sdrv->probe(to_spi_device(dev));
154 dev_pm_domain_detach(dev, true);
160 static int spi_drv_remove(struct device *dev)
162 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
165 ret = sdrv->remove(to_spi_device(dev));
166 dev_pm_domain_detach(dev, true);
171 static void spi_drv_shutdown(struct device *dev)
173 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
175 sdrv->shutdown(to_spi_device(dev));
179 * spi_register_driver - register a SPI driver
180 * @sdrv: the driver to register
183 int spi_register_driver(struct spi_driver *sdrv)
185 sdrv->driver.bus = &spi_bus_type;
187 sdrv->driver.probe = spi_drv_probe;
189 sdrv->driver.remove = spi_drv_remove;
191 sdrv->driver.shutdown = spi_drv_shutdown;
192 return driver_register(&sdrv->driver);
194 EXPORT_SYMBOL_GPL(spi_register_driver);
196 /*-------------------------------------------------------------------------*/
198 /* SPI devices should normally not be created by SPI device drivers; that
199 * would make them board-specific. Similarly with SPI master drivers.
200 * Device registration normally goes into like arch/.../mach.../board-YYY.c
201 * with other readonly (flashable) information about mainboard devices.
205 struct list_head list;
206 struct spi_board_info board_info;
209 static LIST_HEAD(board_list);
210 static LIST_HEAD(spi_master_list);
213 * Used to protect add/del opertion for board_info list and
214 * spi_master list, and their matching process
216 static DEFINE_MUTEX(board_lock);
219 * spi_alloc_device - Allocate a new SPI device
220 * @master: Controller to which device is connected
223 * Allows a driver to allocate and initialize a spi_device without
224 * registering it immediately. This allows a driver to directly
225 * fill the spi_device with device parameters before calling
226 * spi_add_device() on it.
228 * Caller is responsible to call spi_add_device() on the returned
229 * spi_device structure to add it to the SPI master. If the caller
230 * needs to discard the spi_device without adding it, then it should
231 * call spi_dev_put() on it.
233 * Returns a pointer to the new device, or NULL.
235 struct spi_device *spi_alloc_device(struct spi_master *master)
237 struct spi_device *spi;
239 if (!spi_master_get(master))
242 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
244 spi_master_put(master);
248 spi->master = master;
249 spi->dev.parent = &master->dev;
250 spi->dev.bus = &spi_bus_type;
251 spi->dev.release = spidev_release;
252 spi->cs_gpio = -ENOENT;
253 device_initialize(&spi->dev);
256 EXPORT_SYMBOL_GPL(spi_alloc_device);
258 static void spi_dev_set_name(struct spi_device *spi)
260 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
263 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
267 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
271 static int spi_dev_check(struct device *dev, void *data)
273 struct spi_device *spi = to_spi_device(dev);
274 struct spi_device *new_spi = data;
276 if (spi->master == new_spi->master &&
277 spi->chip_select == new_spi->chip_select)
283 * spi_add_device - Add spi_device allocated with spi_alloc_device
284 * @spi: spi_device to register
286 * Companion function to spi_alloc_device. Devices allocated with
287 * spi_alloc_device can be added onto the spi bus with this function.
289 * Returns 0 on success; negative errno on failure
291 int spi_add_device(struct spi_device *spi)
293 static DEFINE_MUTEX(spi_add_lock);
294 struct spi_master *master = spi->master;
295 struct device *dev = master->dev.parent;
298 /* Chipselects are numbered 0..max; validate. */
299 if (spi->chip_select >= master->num_chipselect) {
300 dev_err(dev, "cs%d >= max %d\n",
302 master->num_chipselect);
306 /* Set the bus ID string */
307 spi_dev_set_name(spi);
309 /* We need to make sure there's no other device with this
310 * chipselect **BEFORE** we call setup(), else we'll trash
311 * its configuration. Lock against concurrent add() calls.
313 mutex_lock(&spi_add_lock);
315 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
317 dev_err(dev, "chipselect %d already in use\n",
322 if (master->cs_gpios)
323 spi->cs_gpio = master->cs_gpios[spi->chip_select];
325 /* Drivers may modify this initial i/o setup, but will
326 * normally rely on the device being setup. Devices
327 * using SPI_CS_HIGH can't coexist well otherwise...
329 status = spi_setup(spi);
331 dev_err(dev, "can't setup %s, status %d\n",
332 dev_name(&spi->dev), status);
336 /* Device may be bound to an active driver when this returns */
337 status = device_add(&spi->dev);
339 dev_err(dev, "can't add %s, status %d\n",
340 dev_name(&spi->dev), status);
342 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
345 mutex_unlock(&spi_add_lock);
348 EXPORT_SYMBOL_GPL(spi_add_device);
351 * spi_new_device - instantiate one new SPI device
352 * @master: Controller to which device is connected
353 * @chip: Describes the SPI device
356 * On typical mainboards, this is purely internal; and it's not needed
357 * after board init creates the hard-wired devices. Some development
358 * platforms may not be able to use spi_register_board_info though, and
359 * this is exported so that for example a USB or parport based adapter
360 * driver could add devices (which it would learn about out-of-band).
362 * Returns the new device, or NULL.
364 struct spi_device *spi_new_device(struct spi_master *master,
365 struct spi_board_info *chip)
367 struct spi_device *proxy;
370 /* NOTE: caller did any chip->bus_num checks necessary.
372 * Also, unless we change the return value convention to use
373 * error-or-pointer (not NULL-or-pointer), troubleshootability
374 * suggests syslogged diagnostics are best here (ugh).
377 proxy = spi_alloc_device(master);
381 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
383 proxy->chip_select = chip->chip_select;
384 proxy->max_speed_hz = chip->max_speed_hz;
385 proxy->mode = chip->mode;
386 proxy->irq = chip->irq;
387 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
388 proxy->dev.platform_data = (void *) chip->platform_data;
389 proxy->controller_data = chip->controller_data;
390 proxy->controller_state = NULL;
392 status = spi_add_device(proxy);
400 EXPORT_SYMBOL_GPL(spi_new_device);
402 static void spi_match_master_to_boardinfo(struct spi_master *master,
403 struct spi_board_info *bi)
405 struct spi_device *dev;
407 if (master->bus_num != bi->bus_num)
410 dev = spi_new_device(master, bi);
412 dev_err(master->dev.parent, "can't create new device for %s\n",
417 * spi_register_board_info - register SPI devices for a given board
418 * @info: array of chip descriptors
419 * @n: how many descriptors are provided
422 * Board-specific early init code calls this (probably during arch_initcall)
423 * with segments of the SPI device table. Any device nodes are created later,
424 * after the relevant parent SPI controller (bus_num) is defined. We keep
425 * this table of devices forever, so that reloading a controller driver will
426 * not make Linux forget about these hard-wired devices.
428 * Other code can also call this, e.g. a particular add-on board might provide
429 * SPI devices through its expansion connector, so code initializing that board
430 * would naturally declare its SPI devices.
432 * The board info passed can safely be __initdata ... but be careful of
433 * any embedded pointers (platform_data, etc), they're copied as-is.
435 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
437 struct boardinfo *bi;
443 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
447 for (i = 0; i < n; i++, bi++, info++) {
448 struct spi_master *master;
450 memcpy(&bi->board_info, info, sizeof(*info));
451 mutex_lock(&board_lock);
452 list_add_tail(&bi->list, &board_list);
453 list_for_each_entry(master, &spi_master_list, list)
454 spi_match_master_to_boardinfo(master, &bi->board_info);
455 mutex_unlock(&board_lock);
461 /*-------------------------------------------------------------------------*/
463 static void spi_set_cs(struct spi_device *spi, bool enable)
465 if (spi->mode & SPI_CS_HIGH)
468 if (spi->cs_gpio >= 0)
469 gpio_set_value(spi->cs_gpio, !enable);
470 else if (spi->master->set_cs)
471 spi->master->set_cs(spi, !enable);
474 #ifdef CONFIG_HAS_DMA
475 static int spi_map_buf(struct spi_master *master, struct device *dev,
476 struct sg_table *sgt, void *buf, size_t len,
477 enum dma_data_direction dir)
479 const bool vmalloced_buf = is_vmalloc_addr(buf);
480 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
481 const int sgs = DIV_ROUND_UP(len, desc_len);
482 struct page *vm_page;
487 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
491 for (i = 0; i < sgs; i++) {
492 min = min_t(size_t, len, desc_len);
495 vm_page = vmalloc_to_page(buf);
500 sg_set_page(&sgt->sgl[i], vm_page,
501 min, offset_in_page(buf));
504 sg_set_buf(&sgt->sgl[i], sg_buf, min);
512 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
525 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
526 struct sg_table *sgt, enum dma_data_direction dir)
528 if (sgt->orig_nents) {
529 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
534 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
536 struct device *tx_dev, *rx_dev;
537 struct spi_transfer *xfer;
540 if (!master->can_dma)
543 tx_dev = master->dma_tx->device->dev;
544 rx_dev = master->dma_rx->device->dev;
546 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
547 if (!master->can_dma(master, msg->spi, xfer))
550 if (xfer->tx_buf != NULL) {
551 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
552 (void *)xfer->tx_buf, xfer->len,
558 if (xfer->rx_buf != NULL) {
559 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
560 xfer->rx_buf, xfer->len,
563 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
570 master->cur_msg_mapped = true;
575 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
577 struct spi_transfer *xfer;
578 struct device *tx_dev, *rx_dev;
580 if (!master->cur_msg_mapped || !master->can_dma)
583 tx_dev = master->dma_tx->device->dev;
584 rx_dev = master->dma_rx->device->dev;
586 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
587 if (!master->can_dma(master, msg->spi, xfer))
590 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
591 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
596 #else /* !CONFIG_HAS_DMA */
597 static inline int __spi_map_msg(struct spi_master *master,
598 struct spi_message *msg)
603 static inline int spi_unmap_msg(struct spi_master *master,
604 struct spi_message *msg)
608 #endif /* !CONFIG_HAS_DMA */
610 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
612 struct spi_transfer *xfer;
614 unsigned int max_tx, max_rx;
616 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
620 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
621 if ((master->flags & SPI_MASTER_MUST_TX) &&
623 max_tx = max(xfer->len, max_tx);
624 if ((master->flags & SPI_MASTER_MUST_RX) &&
626 max_rx = max(xfer->len, max_rx);
630 tmp = krealloc(master->dummy_tx, max_tx,
631 GFP_KERNEL | GFP_DMA);
634 master->dummy_tx = tmp;
635 memset(tmp, 0, max_tx);
639 tmp = krealloc(master->dummy_rx, max_rx,
640 GFP_KERNEL | GFP_DMA);
643 master->dummy_rx = tmp;
646 if (max_tx || max_rx) {
647 list_for_each_entry(xfer, &msg->transfers,
650 xfer->tx_buf = master->dummy_tx;
652 xfer->rx_buf = master->dummy_rx;
657 return __spi_map_msg(master, msg);
661 * spi_transfer_one_message - Default implementation of transfer_one_message()
663 * This is a standard implementation of transfer_one_message() for
664 * drivers which impelment a transfer_one() operation. It provides
665 * standard handling of delays and chip select management.
667 static int spi_transfer_one_message(struct spi_master *master,
668 struct spi_message *msg)
670 struct spi_transfer *xfer;
671 bool keep_cs = false;
673 unsigned long ms = 1;
675 spi_set_cs(msg->spi, true);
677 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
678 trace_spi_transfer_start(msg, xfer);
680 if (xfer->tx_buf || xfer->rx_buf) {
681 reinit_completion(&master->xfer_completion);
683 ret = master->transfer_one(master, msg->spi, xfer);
685 dev_err(&msg->spi->dev,
686 "SPI transfer failed: %d\n", ret);
692 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
693 ms += ms + 100; /* some tolerance */
695 ms = wait_for_completion_timeout(&master->xfer_completion,
696 msecs_to_jiffies(ms));
700 dev_err(&msg->spi->dev,
701 "SPI transfer timed out\n");
702 msg->status = -ETIMEDOUT;
706 dev_err(&msg->spi->dev,
707 "Bufferless transfer has length %u\n",
711 trace_spi_transfer_stop(msg, xfer);
713 if (msg->status != -EINPROGRESS)
716 if (xfer->delay_usecs)
717 udelay(xfer->delay_usecs);
719 if (xfer->cs_change) {
720 if (list_is_last(&xfer->transfer_list,
724 spi_set_cs(msg->spi, false);
726 spi_set_cs(msg->spi, true);
730 msg->actual_length += xfer->len;
734 if (ret != 0 || !keep_cs)
735 spi_set_cs(msg->spi, false);
737 if (msg->status == -EINPROGRESS)
740 spi_finalize_current_message(master);
746 * spi_finalize_current_transfer - report completion of a transfer
747 * @master: the master reporting completion
749 * Called by SPI drivers using the core transfer_one_message()
750 * implementation to notify it that the current interrupt driven
751 * transfer has finished and the next one may be scheduled.
753 void spi_finalize_current_transfer(struct spi_master *master)
755 complete(&master->xfer_completion);
757 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
760 * __spi_pump_messages - function which processes spi message queue
761 * @master: master to process queue for
762 * @in_kthread: true if we are in the context of the message pump thread
764 * This function checks if there is any spi message in the queue that
765 * needs processing and if so call out to the driver to initialize hardware
766 * and transfer each message.
768 * Note that it is called both from the kthread itself and also from
769 * inside spi_sync(); the queue extraction handling at the top of the
770 * function should deal with this safely.
772 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
775 bool was_busy = false;
779 spin_lock_irqsave(&master->queue_lock, flags);
781 /* Make sure we are not already running a message */
782 if (master->cur_msg) {
783 spin_unlock_irqrestore(&master->queue_lock, flags);
787 /* If another context is idling the device then defer */
788 if (master->idling) {
789 queue_kthread_work(&master->kworker, &master->pump_messages);
790 spin_unlock_irqrestore(&master->queue_lock, flags);
794 /* Check if the queue is idle */
795 if (list_empty(&master->queue) || !master->running) {
797 spin_unlock_irqrestore(&master->queue_lock, flags);
801 /* Only do teardown in the thread */
803 queue_kthread_work(&master->kworker,
804 &master->pump_messages);
805 spin_unlock_irqrestore(&master->queue_lock, flags);
809 master->busy = false;
810 master->idling = true;
811 spin_unlock_irqrestore(&master->queue_lock, flags);
813 kfree(master->dummy_rx);
814 master->dummy_rx = NULL;
815 kfree(master->dummy_tx);
816 master->dummy_tx = NULL;
817 if (master->unprepare_transfer_hardware &&
818 master->unprepare_transfer_hardware(master))
819 dev_err(&master->dev,
820 "failed to unprepare transfer hardware\n");
821 if (master->auto_runtime_pm) {
822 pm_runtime_mark_last_busy(master->dev.parent);
823 pm_runtime_put_autosuspend(master->dev.parent);
825 trace_spi_master_idle(master);
827 spin_lock_irqsave(&master->queue_lock, flags);
828 master->idling = false;
829 spin_unlock_irqrestore(&master->queue_lock, flags);
833 /* Extract head of queue */
835 list_first_entry(&master->queue, struct spi_message, queue);
837 list_del_init(&master->cur_msg->queue);
842 spin_unlock_irqrestore(&master->queue_lock, flags);
844 if (!was_busy && master->auto_runtime_pm) {
845 ret = pm_runtime_get_sync(master->dev.parent);
847 dev_err(&master->dev, "Failed to power device: %d\n",
854 trace_spi_master_busy(master);
856 if (!was_busy && master->prepare_transfer_hardware) {
857 ret = master->prepare_transfer_hardware(master);
859 dev_err(&master->dev,
860 "failed to prepare transfer hardware\n");
862 if (master->auto_runtime_pm)
863 pm_runtime_put(master->dev.parent);
868 trace_spi_message_start(master->cur_msg);
870 if (master->prepare_message) {
871 ret = master->prepare_message(master, master->cur_msg);
873 dev_err(&master->dev,
874 "failed to prepare message: %d\n", ret);
875 master->cur_msg->status = ret;
876 spi_finalize_current_message(master);
879 master->cur_msg_prepared = true;
882 ret = spi_map_msg(master, master->cur_msg);
884 master->cur_msg->status = ret;
885 spi_finalize_current_message(master);
889 ret = master->transfer_one_message(master, master->cur_msg);
891 dev_err(&master->dev,
892 "failed to transfer one message from queue\n");
898 * spi_pump_messages - kthread work function which processes spi message queue
899 * @work: pointer to kthread work struct contained in the master struct
901 static void spi_pump_messages(struct kthread_work *work)
903 struct spi_master *master =
904 container_of(work, struct spi_master, pump_messages);
906 __spi_pump_messages(master, true);
909 static int spi_init_queue(struct spi_master *master)
911 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
913 master->running = false;
914 master->busy = false;
916 init_kthread_worker(&master->kworker);
917 master->kworker_task = kthread_run(kthread_worker_fn,
918 &master->kworker, "%s",
919 dev_name(&master->dev));
920 if (IS_ERR(master->kworker_task)) {
921 dev_err(&master->dev, "failed to create message pump task\n");
922 return PTR_ERR(master->kworker_task);
924 init_kthread_work(&master->pump_messages, spi_pump_messages);
927 * Master config will indicate if this controller should run the
928 * message pump with high (realtime) priority to reduce the transfer
929 * latency on the bus by minimising the delay between a transfer
930 * request and the scheduling of the message pump thread. Without this
931 * setting the message pump thread will remain at default priority.
934 dev_info(&master->dev,
935 "will run message pump with realtime priority\n");
936 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m);
943 * spi_get_next_queued_message() - called by driver to check for queued
945 * @master: the master to check for queued messages
947 * If there are more messages in the queue, the next message is returned from
950 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
952 struct spi_message *next;
955 /* get a pointer to the next message, if any */
956 spin_lock_irqsave(&master->queue_lock, flags);
957 next = list_first_entry_or_null(&master->queue, struct spi_message,
959 spin_unlock_irqrestore(&master->queue_lock, flags);
963 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
966 * spi_finalize_current_message() - the current message is complete
967 * @master: the master to return the message to
969 * Called by the driver to notify the core that the message in the front of the
970 * queue is complete and can be removed from the queue.
972 void spi_finalize_current_message(struct spi_master *master)
974 struct spi_message *mesg;
978 spin_lock_irqsave(&master->queue_lock, flags);
979 mesg = master->cur_msg;
980 master->cur_msg = NULL;
982 queue_kthread_work(&master->kworker, &master->pump_messages);
983 spin_unlock_irqrestore(&master->queue_lock, flags);
985 spi_unmap_msg(master, mesg);
987 if (master->cur_msg_prepared && master->unprepare_message) {
988 ret = master->unprepare_message(master, mesg);
990 dev_err(&master->dev,
991 "failed to unprepare message: %d\n", ret);
994 master->cur_msg_prepared = false;
998 mesg->complete(mesg->context);
1000 trace_spi_message_done(mesg);
1002 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1004 static int spi_start_queue(struct spi_master *master)
1006 unsigned long flags;
1008 spin_lock_irqsave(&master->queue_lock, flags);
1010 if (master->running || master->busy) {
1011 spin_unlock_irqrestore(&master->queue_lock, flags);
1015 master->running = true;
1016 master->cur_msg = NULL;
1017 spin_unlock_irqrestore(&master->queue_lock, flags);
1019 queue_kthread_work(&master->kworker, &master->pump_messages);
1024 static int spi_stop_queue(struct spi_master *master)
1026 unsigned long flags;
1027 unsigned limit = 500;
1030 spin_lock_irqsave(&master->queue_lock, flags);
1033 * This is a bit lame, but is optimized for the common execution path.
1034 * A wait_queue on the master->busy could be used, but then the common
1035 * execution path (pump_messages) would be required to call wake_up or
1036 * friends on every SPI message. Do this instead.
1038 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1039 spin_unlock_irqrestore(&master->queue_lock, flags);
1040 usleep_range(10000, 11000);
1041 spin_lock_irqsave(&master->queue_lock, flags);
1044 if (!list_empty(&master->queue) || master->busy)
1047 master->running = false;
1049 spin_unlock_irqrestore(&master->queue_lock, flags);
1052 dev_warn(&master->dev,
1053 "could not stop message queue\n");
1059 static int spi_destroy_queue(struct spi_master *master)
1063 ret = spi_stop_queue(master);
1066 * flush_kthread_worker will block until all work is done.
1067 * If the reason that stop_queue timed out is that the work will never
1068 * finish, then it does no good to call flush/stop thread, so
1072 dev_err(&master->dev, "problem destroying queue\n");
1076 flush_kthread_worker(&master->kworker);
1077 kthread_stop(master->kworker_task);
1082 static int __spi_queued_transfer(struct spi_device *spi,
1083 struct spi_message *msg,
1086 struct spi_master *master = spi->master;
1087 unsigned long flags;
1089 spin_lock_irqsave(&master->queue_lock, flags);
1091 if (!master->running) {
1092 spin_unlock_irqrestore(&master->queue_lock, flags);
1095 msg->actual_length = 0;
1096 msg->status = -EINPROGRESS;
1098 list_add_tail(&msg->queue, &master->queue);
1099 if (!master->busy && need_pump)
1100 queue_kthread_work(&master->kworker, &master->pump_messages);
1102 spin_unlock_irqrestore(&master->queue_lock, flags);
1107 * spi_queued_transfer - transfer function for queued transfers
1108 * @spi: spi device which is requesting transfer
1109 * @msg: spi message which is to handled is queued to driver queue
1111 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1113 return __spi_queued_transfer(spi, msg, true);
1116 static int spi_master_initialize_queue(struct spi_master *master)
1120 master->transfer = spi_queued_transfer;
1121 if (!master->transfer_one_message)
1122 master->transfer_one_message = spi_transfer_one_message;
1124 /* Initialize and start queue */
1125 ret = spi_init_queue(master);
1127 dev_err(&master->dev, "problem initializing queue\n");
1128 goto err_init_queue;
1130 master->queued = true;
1131 ret = spi_start_queue(master);
1133 dev_err(&master->dev, "problem starting queue\n");
1134 goto err_start_queue;
1140 spi_destroy_queue(master);
1145 /*-------------------------------------------------------------------------*/
1147 #if defined(CONFIG_OF)
1148 static struct spi_device *
1149 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1151 struct spi_device *spi;
1155 /* Alloc an spi_device */
1156 spi = spi_alloc_device(master);
1158 dev_err(&master->dev, "spi_device alloc error for %s\n",
1164 /* Select device driver */
1165 rc = of_modalias_node(nc, spi->modalias,
1166 sizeof(spi->modalias));
1168 dev_err(&master->dev, "cannot find modalias for %s\n",
1173 /* Device address */
1174 rc = of_property_read_u32(nc, "reg", &value);
1176 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1180 spi->chip_select = value;
1182 /* Mode (clock phase/polarity/etc.) */
1183 if (of_find_property(nc, "spi-cpha", NULL))
1184 spi->mode |= SPI_CPHA;
1185 if (of_find_property(nc, "spi-cpol", NULL))
1186 spi->mode |= SPI_CPOL;
1187 if (of_find_property(nc, "spi-cs-high", NULL))
1188 spi->mode |= SPI_CS_HIGH;
1189 if (of_find_property(nc, "spi-3wire", NULL))
1190 spi->mode |= SPI_3WIRE;
1191 if (of_find_property(nc, "spi-lsb-first", NULL))
1192 spi->mode |= SPI_LSB_FIRST;
1194 /* Device DUAL/QUAD mode */
1195 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1200 spi->mode |= SPI_TX_DUAL;
1203 spi->mode |= SPI_TX_QUAD;
1206 dev_warn(&master->dev,
1207 "spi-tx-bus-width %d not supported\n",
1213 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1218 spi->mode |= SPI_RX_DUAL;
1221 spi->mode |= SPI_RX_QUAD;
1224 dev_warn(&master->dev,
1225 "spi-rx-bus-width %d not supported\n",
1232 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1234 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1238 spi->max_speed_hz = value;
1241 spi->irq = irq_of_parse_and_map(nc, 0);
1243 /* Store a pointer to the node in the device structure */
1245 spi->dev.of_node = nc;
1247 /* Register the new device */
1248 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1249 rc = spi_add_device(spi);
1251 dev_err(&master->dev, "spi_device register error %s\n",
1264 * of_register_spi_devices() - Register child devices onto the SPI bus
1265 * @master: Pointer to spi_master device
1267 * Registers an spi_device for each child node of master node which has a 'reg'
1270 static void of_register_spi_devices(struct spi_master *master)
1272 struct spi_device *spi;
1273 struct device_node *nc;
1275 if (!master->dev.of_node)
1278 for_each_available_child_of_node(master->dev.of_node, nc) {
1279 spi = of_register_spi_device(master, nc);
1281 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1286 static void of_register_spi_devices(struct spi_master *master) { }
1290 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1292 struct spi_device *spi = data;
1294 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1295 struct acpi_resource_spi_serialbus *sb;
1297 sb = &ares->data.spi_serial_bus;
1298 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1299 spi->chip_select = sb->device_selection;
1300 spi->max_speed_hz = sb->connection_speed;
1302 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1303 spi->mode |= SPI_CPHA;
1304 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1305 spi->mode |= SPI_CPOL;
1306 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1307 spi->mode |= SPI_CS_HIGH;
1309 } else if (spi->irq < 0) {
1312 if (acpi_dev_resource_interrupt(ares, 0, &r))
1316 /* Always tell the ACPI core to skip this resource */
1320 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1321 void *data, void **return_value)
1323 struct spi_master *master = data;
1324 struct list_head resource_list;
1325 struct acpi_device *adev;
1326 struct spi_device *spi;
1329 if (acpi_bus_get_device(handle, &adev))
1331 if (acpi_bus_get_status(adev) || !adev->status.present)
1334 spi = spi_alloc_device(master);
1336 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1337 dev_name(&adev->dev));
1338 return AE_NO_MEMORY;
1341 ACPI_COMPANION_SET(&spi->dev, adev);
1344 INIT_LIST_HEAD(&resource_list);
1345 ret = acpi_dev_get_resources(adev, &resource_list,
1346 acpi_spi_add_resource, spi);
1347 acpi_dev_free_resource_list(&resource_list);
1349 if (ret < 0 || !spi->max_speed_hz) {
1354 adev->power.flags.ignore_parent = true;
1355 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1356 if (spi_add_device(spi)) {
1357 adev->power.flags.ignore_parent = false;
1358 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1359 dev_name(&adev->dev));
1366 static void acpi_register_spi_devices(struct spi_master *master)
1371 handle = ACPI_HANDLE(master->dev.parent);
1375 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1376 acpi_spi_add_device, NULL,
1378 if (ACPI_FAILURE(status))
1379 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1382 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1383 #endif /* CONFIG_ACPI */
1385 static void spi_master_release(struct device *dev)
1387 struct spi_master *master;
1389 master = container_of(dev, struct spi_master, dev);
1393 static struct class spi_master_class = {
1394 .name = "spi_master",
1395 .owner = THIS_MODULE,
1396 .dev_release = spi_master_release,
1402 * spi_alloc_master - allocate SPI master controller
1403 * @dev: the controller, possibly using the platform_bus
1404 * @size: how much zeroed driver-private data to allocate; the pointer to this
1405 * memory is in the driver_data field of the returned device,
1406 * accessible with spi_master_get_devdata().
1407 * Context: can sleep
1409 * This call is used only by SPI master controller drivers, which are the
1410 * only ones directly touching chip registers. It's how they allocate
1411 * an spi_master structure, prior to calling spi_register_master().
1413 * This must be called from context that can sleep. It returns the SPI
1414 * master structure on success, else NULL.
1416 * The caller is responsible for assigning the bus number and initializing
1417 * the master's methods before calling spi_register_master(); and (after errors
1418 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1421 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1423 struct spi_master *master;
1428 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1432 device_initialize(&master->dev);
1433 master->bus_num = -1;
1434 master->num_chipselect = 1;
1435 master->dev.class = &spi_master_class;
1436 master->dev.parent = get_device(dev);
1437 spi_master_set_devdata(master, &master[1]);
1441 EXPORT_SYMBOL_GPL(spi_alloc_master);
1444 static int of_spi_register_master(struct spi_master *master)
1447 struct device_node *np = master->dev.of_node;
1452 nb = of_gpio_named_count(np, "cs-gpios");
1453 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1455 /* Return error only for an incorrectly formed cs-gpios property */
1456 if (nb == 0 || nb == -ENOENT)
1461 cs = devm_kzalloc(&master->dev,
1462 sizeof(int) * master->num_chipselect,
1464 master->cs_gpios = cs;
1466 if (!master->cs_gpios)
1469 for (i = 0; i < master->num_chipselect; i++)
1472 for (i = 0; i < nb; i++)
1473 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1478 static int of_spi_register_master(struct spi_master *master)
1485 * spi_register_master - register SPI master controller
1486 * @master: initialized master, originally from spi_alloc_master()
1487 * Context: can sleep
1489 * SPI master controllers connect to their drivers using some non-SPI bus,
1490 * such as the platform bus. The final stage of probe() in that code
1491 * includes calling spi_register_master() to hook up to this SPI bus glue.
1493 * SPI controllers use board specific (often SOC specific) bus numbers,
1494 * and board-specific addressing for SPI devices combines those numbers
1495 * with chip select numbers. Since SPI does not directly support dynamic
1496 * device identification, boards need configuration tables telling which
1497 * chip is at which address.
1499 * This must be called from context that can sleep. It returns zero on
1500 * success, else a negative error code (dropping the master's refcount).
1501 * After a successful return, the caller is responsible for calling
1502 * spi_unregister_master().
1504 int spi_register_master(struct spi_master *master)
1506 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1507 struct device *dev = master->dev.parent;
1508 struct boardinfo *bi;
1509 int status = -ENODEV;
1515 status = of_spi_register_master(master);
1519 /* even if it's just one always-selected device, there must
1520 * be at least one chipselect
1522 if (master->num_chipselect == 0)
1525 if ((master->bus_num < 0) && master->dev.of_node)
1526 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1528 /* convention: dynamically assigned bus IDs count down from the max */
1529 if (master->bus_num < 0) {
1530 /* FIXME switch to an IDR based scheme, something like
1531 * I2C now uses, so we can't run out of "dynamic" IDs
1533 master->bus_num = atomic_dec_return(&dyn_bus_id);
1537 INIT_LIST_HEAD(&master->queue);
1538 spin_lock_init(&master->queue_lock);
1539 spin_lock_init(&master->bus_lock_spinlock);
1540 mutex_init(&master->bus_lock_mutex);
1541 master->bus_lock_flag = 0;
1542 init_completion(&master->xfer_completion);
1543 if (!master->max_dma_len)
1544 master->max_dma_len = INT_MAX;
1546 /* register the device, then userspace will see it.
1547 * registration fails if the bus ID is in use.
1549 dev_set_name(&master->dev, "spi%u", master->bus_num);
1550 status = device_add(&master->dev);
1553 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1554 dynamic ? " (dynamic)" : "");
1556 /* If we're using a queued driver, start the queue */
1557 if (master->transfer)
1558 dev_info(dev, "master is unqueued, this is deprecated\n");
1560 status = spi_master_initialize_queue(master);
1562 device_del(&master->dev);
1567 mutex_lock(&board_lock);
1568 list_add_tail(&master->list, &spi_master_list);
1569 list_for_each_entry(bi, &board_list, list)
1570 spi_match_master_to_boardinfo(master, &bi->board_info);
1571 mutex_unlock(&board_lock);
1573 /* Register devices from the device tree and ACPI */
1574 of_register_spi_devices(master);
1575 acpi_register_spi_devices(master);
1579 EXPORT_SYMBOL_GPL(spi_register_master);
1581 static void devm_spi_unregister(struct device *dev, void *res)
1583 spi_unregister_master(*(struct spi_master **)res);
1587 * dev_spi_register_master - register managed SPI master controller
1588 * @dev: device managing SPI master
1589 * @master: initialized master, originally from spi_alloc_master()
1590 * Context: can sleep
1592 * Register a SPI device as with spi_register_master() which will
1593 * automatically be unregister
1595 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1597 struct spi_master **ptr;
1600 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1604 ret = spi_register_master(master);
1607 devres_add(dev, ptr);
1614 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1616 static int __unregister(struct device *dev, void *null)
1618 spi_unregister_device(to_spi_device(dev));
1623 * spi_unregister_master - unregister SPI master controller
1624 * @master: the master being unregistered
1625 * Context: can sleep
1627 * This call is used only by SPI master controller drivers, which are the
1628 * only ones directly touching chip registers.
1630 * This must be called from context that can sleep.
1632 void spi_unregister_master(struct spi_master *master)
1636 if (master->queued) {
1637 if (spi_destroy_queue(master))
1638 dev_err(&master->dev, "queue remove failed\n");
1641 mutex_lock(&board_lock);
1642 list_del(&master->list);
1643 mutex_unlock(&board_lock);
1645 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1646 device_unregister(&master->dev);
1648 EXPORT_SYMBOL_GPL(spi_unregister_master);
1650 int spi_master_suspend(struct spi_master *master)
1654 /* Basically no-ops for non-queued masters */
1655 if (!master->queued)
1658 ret = spi_stop_queue(master);
1660 dev_err(&master->dev, "queue stop failed\n");
1664 EXPORT_SYMBOL_GPL(spi_master_suspend);
1666 int spi_master_resume(struct spi_master *master)
1670 if (!master->queued)
1673 ret = spi_start_queue(master);
1675 dev_err(&master->dev, "queue restart failed\n");
1679 EXPORT_SYMBOL_GPL(spi_master_resume);
1681 static int __spi_master_match(struct device *dev, const void *data)
1683 struct spi_master *m;
1684 const u16 *bus_num = data;
1686 m = container_of(dev, struct spi_master, dev);
1687 return m->bus_num == *bus_num;
1691 * spi_busnum_to_master - look up master associated with bus_num
1692 * @bus_num: the master's bus number
1693 * Context: can sleep
1695 * This call may be used with devices that are registered after
1696 * arch init time. It returns a refcounted pointer to the relevant
1697 * spi_master (which the caller must release), or NULL if there is
1698 * no such master registered.
1700 struct spi_master *spi_busnum_to_master(u16 bus_num)
1703 struct spi_master *master = NULL;
1705 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1706 __spi_master_match);
1708 master = container_of(dev, struct spi_master, dev);
1709 /* reference got in class_find_device */
1712 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1715 /*-------------------------------------------------------------------------*/
1717 /* Core methods for SPI master protocol drivers. Some of the
1718 * other core methods are currently defined as inline functions.
1722 * spi_setup - setup SPI mode and clock rate
1723 * @spi: the device whose settings are being modified
1724 * Context: can sleep, and no requests are queued to the device
1726 * SPI protocol drivers may need to update the transfer mode if the
1727 * device doesn't work with its default. They may likewise need
1728 * to update clock rates or word sizes from initial values. This function
1729 * changes those settings, and must be called from a context that can sleep.
1730 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1731 * effect the next time the device is selected and data is transferred to
1732 * or from it. When this function returns, the spi device is deselected.
1734 * Note that this call will fail if the protocol driver specifies an option
1735 * that the underlying controller or its driver does not support. For
1736 * example, not all hardware supports wire transfers using nine bit words,
1737 * LSB-first wire encoding, or active-high chipselects.
1739 int spi_setup(struct spi_device *spi)
1741 unsigned bad_bits, ugly_bits;
1744 /* check mode to prevent that DUAL and QUAD set at the same time
1746 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1747 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1749 "setup: can not select dual and quad at the same time\n");
1752 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1754 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1755 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1757 /* help drivers fail *cleanly* when they need options
1758 * that aren't supported with their current master
1760 bad_bits = spi->mode & ~spi->master->mode_bits;
1761 ugly_bits = bad_bits &
1762 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1765 "setup: ignoring unsupported mode bits %x\n",
1767 spi->mode &= ~ugly_bits;
1768 bad_bits &= ~ugly_bits;
1771 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1776 if (!spi->bits_per_word)
1777 spi->bits_per_word = 8;
1779 if (!spi->max_speed_hz)
1780 spi->max_speed_hz = spi->master->max_speed_hz;
1782 if (spi->master->setup)
1783 status = spi->master->setup(spi);
1785 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1786 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1787 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1788 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1789 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1790 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1791 spi->bits_per_word, spi->max_speed_hz,
1796 EXPORT_SYMBOL_GPL(spi_setup);
1798 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1800 struct spi_master *master = spi->master;
1801 struct spi_transfer *xfer;
1804 if (list_empty(&message->transfers))
1807 /* Half-duplex links include original MicroWire, and ones with
1808 * only one data pin like SPI_3WIRE (switches direction) or where
1809 * either MOSI or MISO is missing. They can also be caused by
1810 * software limitations.
1812 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1813 || (spi->mode & SPI_3WIRE)) {
1814 unsigned flags = master->flags;
1816 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1817 if (xfer->rx_buf && xfer->tx_buf)
1819 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1821 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1827 * Set transfer bits_per_word and max speed as spi device default if
1828 * it is not set for this transfer.
1829 * Set transfer tx_nbits and rx_nbits as single transfer default
1830 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1832 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1833 message->frame_length += xfer->len;
1834 if (!xfer->bits_per_word)
1835 xfer->bits_per_word = spi->bits_per_word;
1837 if (!xfer->speed_hz)
1838 xfer->speed_hz = spi->max_speed_hz;
1840 if (master->max_speed_hz &&
1841 xfer->speed_hz > master->max_speed_hz)
1842 xfer->speed_hz = master->max_speed_hz;
1844 if (master->bits_per_word_mask) {
1845 /* Only 32 bits fit in the mask */
1846 if (xfer->bits_per_word > 32)
1848 if (!(master->bits_per_word_mask &
1849 BIT(xfer->bits_per_word - 1)))
1854 * SPI transfer length should be multiple of SPI word size
1855 * where SPI word size should be power-of-two multiple
1857 if (xfer->bits_per_word <= 8)
1859 else if (xfer->bits_per_word <= 16)
1864 /* No partial transfers accepted */
1865 if (xfer->len % w_size)
1868 if (xfer->speed_hz && master->min_speed_hz &&
1869 xfer->speed_hz < master->min_speed_hz)
1872 if (xfer->tx_buf && !xfer->tx_nbits)
1873 xfer->tx_nbits = SPI_NBITS_SINGLE;
1874 if (xfer->rx_buf && !xfer->rx_nbits)
1875 xfer->rx_nbits = SPI_NBITS_SINGLE;
1876 /* check transfer tx/rx_nbits:
1877 * 1. check the value matches one of single, dual and quad
1878 * 2. check tx/rx_nbits match the mode in spi_device
1881 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1882 xfer->tx_nbits != SPI_NBITS_DUAL &&
1883 xfer->tx_nbits != SPI_NBITS_QUAD)
1885 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1886 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1888 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1889 !(spi->mode & SPI_TX_QUAD))
1892 /* check transfer rx_nbits */
1894 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1895 xfer->rx_nbits != SPI_NBITS_DUAL &&
1896 xfer->rx_nbits != SPI_NBITS_QUAD)
1898 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1899 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1901 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1902 !(spi->mode & SPI_RX_QUAD))
1907 message->status = -EINPROGRESS;
1912 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1914 struct spi_master *master = spi->master;
1918 trace_spi_message_submit(message);
1920 return master->transfer(spi, message);
1924 * spi_async - asynchronous SPI transfer
1925 * @spi: device with which data will be exchanged
1926 * @message: describes the data transfers, including completion callback
1927 * Context: any (irqs may be blocked, etc)
1929 * This call may be used in_irq and other contexts which can't sleep,
1930 * as well as from task contexts which can sleep.
1932 * The completion callback is invoked in a context which can't sleep.
1933 * Before that invocation, the value of message->status is undefined.
1934 * When the callback is issued, message->status holds either zero (to
1935 * indicate complete success) or a negative error code. After that
1936 * callback returns, the driver which issued the transfer request may
1937 * deallocate the associated memory; it's no longer in use by any SPI
1938 * core or controller driver code.
1940 * Note that although all messages to a spi_device are handled in
1941 * FIFO order, messages may go to different devices in other orders.
1942 * Some device might be higher priority, or have various "hard" access
1943 * time requirements, for example.
1945 * On detection of any fault during the transfer, processing of
1946 * the entire message is aborted, and the device is deselected.
1947 * Until returning from the associated message completion callback,
1948 * no other spi_message queued to that device will be processed.
1949 * (This rule applies equally to all the synchronous transfer calls,
1950 * which are wrappers around this core asynchronous primitive.)
1952 int spi_async(struct spi_device *spi, struct spi_message *message)
1954 struct spi_master *master = spi->master;
1956 unsigned long flags;
1958 ret = __spi_validate(spi, message);
1962 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1964 if (master->bus_lock_flag)
1967 ret = __spi_async(spi, message);
1969 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1973 EXPORT_SYMBOL_GPL(spi_async);
1976 * spi_async_locked - version of spi_async with exclusive bus usage
1977 * @spi: device with which data will be exchanged
1978 * @message: describes the data transfers, including completion callback
1979 * Context: any (irqs may be blocked, etc)
1981 * This call may be used in_irq and other contexts which can't sleep,
1982 * as well as from task contexts which can sleep.
1984 * The completion callback is invoked in a context which can't sleep.
1985 * Before that invocation, the value of message->status is undefined.
1986 * When the callback is issued, message->status holds either zero (to
1987 * indicate complete success) or a negative error code. After that
1988 * callback returns, the driver which issued the transfer request may
1989 * deallocate the associated memory; it's no longer in use by any SPI
1990 * core or controller driver code.
1992 * Note that although all messages to a spi_device are handled in
1993 * FIFO order, messages may go to different devices in other orders.
1994 * Some device might be higher priority, or have various "hard" access
1995 * time requirements, for example.
1997 * On detection of any fault during the transfer, processing of
1998 * the entire message is aborted, and the device is deselected.
1999 * Until returning from the associated message completion callback,
2000 * no other spi_message queued to that device will be processed.
2001 * (This rule applies equally to all the synchronous transfer calls,
2002 * which are wrappers around this core asynchronous primitive.)
2004 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2006 struct spi_master *master = spi->master;
2008 unsigned long flags;
2010 ret = __spi_validate(spi, message);
2014 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2016 ret = __spi_async(spi, message);
2018 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2023 EXPORT_SYMBOL_GPL(spi_async_locked);
2026 /*-------------------------------------------------------------------------*/
2028 /* Utility methods for SPI master protocol drivers, layered on
2029 * top of the core. Some other utility methods are defined as
2033 static void spi_complete(void *arg)
2038 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2041 DECLARE_COMPLETION_ONSTACK(done);
2043 struct spi_master *master = spi->master;
2044 unsigned long flags;
2046 status = __spi_validate(spi, message);
2050 message->complete = spi_complete;
2051 message->context = &done;
2055 mutex_lock(&master->bus_lock_mutex);
2057 /* If we're not using the legacy transfer method then we will
2058 * try to transfer in the calling context so special case.
2059 * This code would be less tricky if we could remove the
2060 * support for driver implemented message queues.
2062 if (master->transfer == spi_queued_transfer) {
2063 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2065 trace_spi_message_submit(message);
2067 status = __spi_queued_transfer(spi, message, false);
2069 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2071 status = spi_async_locked(spi, message);
2075 mutex_unlock(&master->bus_lock_mutex);
2078 /* Push out the messages in the calling context if we
2081 if (master->transfer == spi_queued_transfer)
2082 __spi_pump_messages(master, false);
2084 wait_for_completion(&done);
2085 status = message->status;
2087 message->context = NULL;
2092 * spi_sync - blocking/synchronous SPI data transfers
2093 * @spi: device with which data will be exchanged
2094 * @message: describes the data transfers
2095 * Context: can sleep
2097 * This call may only be used from a context that may sleep. The sleep
2098 * is non-interruptible, and has no timeout. Low-overhead controller
2099 * drivers may DMA directly into and out of the message buffers.
2101 * Note that the SPI device's chip select is active during the message,
2102 * and then is normally disabled between messages. Drivers for some
2103 * frequently-used devices may want to minimize costs of selecting a chip,
2104 * by leaving it selected in anticipation that the next message will go
2105 * to the same chip. (That may increase power usage.)
2107 * Also, the caller is guaranteeing that the memory associated with the
2108 * message will not be freed before this call returns.
2110 * It returns zero on success, else a negative error code.
2112 int spi_sync(struct spi_device *spi, struct spi_message *message)
2114 return __spi_sync(spi, message, 0);
2116 EXPORT_SYMBOL_GPL(spi_sync);
2119 * spi_sync_locked - version of spi_sync with exclusive bus usage
2120 * @spi: device with which data will be exchanged
2121 * @message: describes the data transfers
2122 * Context: can sleep
2124 * This call may only be used from a context that may sleep. The sleep
2125 * is non-interruptible, and has no timeout. Low-overhead controller
2126 * drivers may DMA directly into and out of the message buffers.
2128 * This call should be used by drivers that require exclusive access to the
2129 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2130 * be released by a spi_bus_unlock call when the exclusive access is over.
2132 * It returns zero on success, else a negative error code.
2134 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2136 return __spi_sync(spi, message, 1);
2138 EXPORT_SYMBOL_GPL(spi_sync_locked);
2141 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2142 * @master: SPI bus master that should be locked for exclusive bus access
2143 * Context: can sleep
2145 * This call may only be used from a context that may sleep. The sleep
2146 * is non-interruptible, and has no timeout.
2148 * This call should be used by drivers that require exclusive access to the
2149 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2150 * exclusive access is over. Data transfer must be done by spi_sync_locked
2151 * and spi_async_locked calls when the SPI bus lock is held.
2153 * It returns zero on success, else a negative error code.
2155 int spi_bus_lock(struct spi_master *master)
2157 unsigned long flags;
2159 mutex_lock(&master->bus_lock_mutex);
2161 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2162 master->bus_lock_flag = 1;
2163 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2165 /* mutex remains locked until spi_bus_unlock is called */
2169 EXPORT_SYMBOL_GPL(spi_bus_lock);
2172 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2173 * @master: SPI bus master that was locked for exclusive bus access
2174 * Context: can sleep
2176 * This call may only be used from a context that may sleep. The sleep
2177 * is non-interruptible, and has no timeout.
2179 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2182 * It returns zero on success, else a negative error code.
2184 int spi_bus_unlock(struct spi_master *master)
2186 master->bus_lock_flag = 0;
2188 mutex_unlock(&master->bus_lock_mutex);
2192 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2194 /* portable code must never pass more than 32 bytes */
2195 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2200 * spi_write_then_read - SPI synchronous write followed by read
2201 * @spi: device with which data will be exchanged
2202 * @txbuf: data to be written (need not be dma-safe)
2203 * @n_tx: size of txbuf, in bytes
2204 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2205 * @n_rx: size of rxbuf, in bytes
2206 * Context: can sleep
2208 * This performs a half duplex MicroWire style transaction with the
2209 * device, sending txbuf and then reading rxbuf. The return value
2210 * is zero for success, else a negative errno status code.
2211 * This call may only be used from a context that may sleep.
2213 * Parameters to this routine are always copied using a small buffer;
2214 * portable code should never use this for more than 32 bytes.
2215 * Performance-sensitive or bulk transfer code should instead use
2216 * spi_{async,sync}() calls with dma-safe buffers.
2218 int spi_write_then_read(struct spi_device *spi,
2219 const void *txbuf, unsigned n_tx,
2220 void *rxbuf, unsigned n_rx)
2222 static DEFINE_MUTEX(lock);
2225 struct spi_message message;
2226 struct spi_transfer x[2];
2229 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2230 * copying here, (as a pure convenience thing), but we can
2231 * keep heap costs out of the hot path unless someone else is
2232 * using the pre-allocated buffer or the transfer is too large.
2234 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2235 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2236 GFP_KERNEL | GFP_DMA);
2243 spi_message_init(&message);
2244 memset(x, 0, sizeof(x));
2247 spi_message_add_tail(&x[0], &message);
2251 spi_message_add_tail(&x[1], &message);
2254 memcpy(local_buf, txbuf, n_tx);
2255 x[0].tx_buf = local_buf;
2256 x[1].rx_buf = local_buf + n_tx;
2259 status = spi_sync(spi, &message);
2261 memcpy(rxbuf, x[1].rx_buf, n_rx);
2263 if (x[0].tx_buf == buf)
2264 mutex_unlock(&lock);
2270 EXPORT_SYMBOL_GPL(spi_write_then_read);
2272 /*-------------------------------------------------------------------------*/
2274 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2275 static int __spi_of_device_match(struct device *dev, void *data)
2277 return dev->of_node == data;
2280 /* must call put_device() when done with returned spi_device device */
2281 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2283 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2284 __spi_of_device_match);
2285 return dev ? to_spi_device(dev) : NULL;
2288 static int __spi_of_master_match(struct device *dev, const void *data)
2290 return dev->of_node == data;
2293 /* the spi masters are not using spi_bus, so we find it with another way */
2294 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2298 dev = class_find_device(&spi_master_class, NULL, node,
2299 __spi_of_master_match);
2303 /* reference got in class_find_device */
2304 return container_of(dev, struct spi_master, dev);
2307 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2310 struct of_reconfig_data *rd = arg;
2311 struct spi_master *master;
2312 struct spi_device *spi;
2314 switch (of_reconfig_get_state_change(action, arg)) {
2315 case OF_RECONFIG_CHANGE_ADD:
2316 master = of_find_spi_master_by_node(rd->dn->parent);
2318 return NOTIFY_OK; /* not for us */
2320 spi = of_register_spi_device(master, rd->dn);
2321 put_device(&master->dev);
2324 pr_err("%s: failed to create for '%s'\n",
2325 __func__, rd->dn->full_name);
2326 return notifier_from_errno(PTR_ERR(spi));
2330 case OF_RECONFIG_CHANGE_REMOVE:
2331 /* find our device by node */
2332 spi = of_find_spi_device_by_node(rd->dn);
2334 return NOTIFY_OK; /* no? not meant for us */
2336 /* unregister takes one ref away */
2337 spi_unregister_device(spi);
2339 /* and put the reference of the find */
2340 put_device(&spi->dev);
2347 static struct notifier_block spi_of_notifier = {
2348 .notifier_call = of_spi_notify,
2350 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2351 extern struct notifier_block spi_of_notifier;
2352 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2354 static int __init spi_init(void)
2358 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2364 status = bus_register(&spi_bus_type);
2368 status = class_register(&spi_master_class);
2372 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2373 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2378 bus_unregister(&spi_bus_type);
2386 /* board_info is normally registered in arch_initcall(),
2387 * but even essential drivers wait till later
2389 * REVISIT only boardinfo really needs static linking. the rest (device and
2390 * driver registration) _could_ be dynamically linked (modular) ... costs
2391 * include needing to have boardinfo data structures be much more public.
2393 postcore_initcall(spi_init);