2 * Performance events core code:
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
48 #include <asm/irq_regs.h>
50 static struct workqueue_struct *perf_wq;
52 struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
59 static void remote_function(void *data)
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
70 tfc->ret = tfc->func(tfc->info);
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
89 struct remote_function_call data = {
93 .ret = -ESRCH, /* No such (running) process */
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
107 * Calls the function @func on the remote cpu.
109 * returns: @func return value or -ENXIO when the cpu is offline
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
113 struct remote_function_call data = {
117 .ret = -ENXIO, /* No such CPU */
120 smp_call_function_single(cpu, remote_function, &data, 1);
125 #define EVENT_OWNER_KERNEL ((void *) -1)
127 static bool is_kernel_event(struct perf_event *event)
129 return event->owner == EVENT_OWNER_KERNEL;
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
138 * branch priv levels that need permission checks
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
145 EVENT_FLEXIBLE = 0x1,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
174 int sysctl_perf_event_paranoid __read_mostly = 1;
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 * max perf event sample rate
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
191 static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
194 void update_perf_cpu_limits(void)
196 u64 tmp = perf_sample_period_ns;
198 tmp *= sysctl_perf_cpu_time_max_percent;
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232 update_perf_cpu_limits();
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
246 static void perf_duration_warn(struct irq_work *w)
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
264 void perf_sample_event_took(u64 sample_len_ns)
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
286 if (avg_local_sample_len <= allowed_ns)
289 if (max_samples_per_tick <= 1)
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
296 update_perf_cpu_limits();
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
306 static atomic64_t perf_event_id;
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
318 void __weak perf_event_print_debug(void) { }
320 extern __weak const char *perf_pmu_name(void)
325 static inline u64 perf_clock(void)
327 return local_clock();
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
339 raw_spin_lock(&cpuctx->ctx.lock);
341 raw_spin_lock(&ctx->lock);
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
352 #ifdef CONFIG_CGROUP_PERF
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
358 struct perf_cgroup_info {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
381 perf_cgroup_match(struct perf_event *event)
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
386 /* @event doesn't care about cgroup */
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
404 static inline void perf_detach_cgroup(struct perf_event *event)
406 css_put(&event->cgrp->css);
410 static inline int is_cgroup_event(struct perf_event *event)
412 return event->cgrp != NULL;
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
417 struct perf_cgroup_info *t;
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
425 struct perf_cgroup_info *info;
430 info = this_cpu_ptr(cgrp->info);
432 info->time += now - info->timestamp;
433 info->timestamp = now;
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
440 __update_cgrp_time(cgrp_out);
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
445 struct perf_cgroup *cgrp;
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
451 if (!is_cgroup_event(event))
454 cgrp = perf_cgroup_from_task(current);
456 * Do not update time when cgroup is not active
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
474 if (!task || !ctx->nr_cgroups)
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
486 * reschedule events based on the cgroup constraint of task.
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
491 void perf_cgroup_switch(struct task_struct *task, int mode)
493 struct perf_cpu_context *cpuctx;
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
502 local_irq_save(flags);
505 * we reschedule only in the presence of cgroup
506 * constrained events.
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
552 local_irq_restore(flags);
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
562 * we come here when we know perf_cgroup_events > 0
564 cgrp1 = perf_cgroup_from_task(task);
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
571 cgrp2 = perf_cgroup_from_task(next);
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
589 * we come here when we know perf_cgroup_events > 0
591 cgrp1 = perf_cgroup_from_task(task);
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 &perf_event_cgrp_subsys);
624 cgrp = container_of(css, struct perf_cgroup, css);
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
650 perf_cgroup_defer_enabled(struct perf_event *event)
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
669 if (!event->cgrp_defer_enabled)
672 event->cgrp_defer_enabled = 0;
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
682 #else /* !CONFIG_CGROUP_PERF */
685 perf_cgroup_match(struct perf_event *event)
690 static inline void perf_detach_cgroup(struct perf_event *event)
693 static inline int is_cgroup_event(struct perf_event *event)
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 perf_cgroup_defer_enabled(struct perf_event *event)
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
762 * set default to be dependent on timer tick just
765 #define PERF_CPU_HRTIMER (1000 / HZ)
767 * function must be called with interrupts disbled
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
775 WARN_ON(!irqs_disabled());
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
779 rotations = perf_rotate_context(cpuctx);
782 * arm timer if needed
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
795 struct perf_cpu_context *cpuctx;
799 if (WARN_ON(cpu != smp_processor_id()))
802 local_irq_save(flags);
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
809 if (pmu->task_ctx_nr == perf_sw_context)
812 hrtimer_cancel(&cpuctx->hrtimer);
817 local_irq_restore(flags);
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
834 timer = pmu->hrtimer_interval_ms;
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
850 if (pmu->task_ctx_nr == perf_sw_context)
853 if (hrtimer_active(hr))
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
861 void perf_pmu_disable(struct pmu *pmu)
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
865 pmu->pmu_disable(pmu);
868 void perf_pmu_enable(struct pmu *pmu)
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
872 pmu->pmu_enable(pmu);
875 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
878 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879 * perf_event_task_tick() are fully serialized because they're strictly cpu
880 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881 * disabled, while perf_event_task_tick is called from IRQ context.
883 static void perf_event_ctx_activate(struct perf_event_context *ctx)
885 struct list_head *head = this_cpu_ptr(&active_ctx_list);
887 WARN_ON(!irqs_disabled());
889 WARN_ON(!list_empty(&ctx->active_ctx_list));
891 list_add(&ctx->active_ctx_list, head);
894 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
896 WARN_ON(!irqs_disabled());
898 WARN_ON(list_empty(&ctx->active_ctx_list));
900 list_del_init(&ctx->active_ctx_list);
903 static void get_ctx(struct perf_event_context *ctx)
905 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
908 static void free_ctx(struct rcu_head *head)
910 struct perf_event_context *ctx;
912 ctx = container_of(head, struct perf_event_context, rcu_head);
913 kfree(ctx->task_ctx_data);
917 static void put_ctx(struct perf_event_context *ctx)
919 if (atomic_dec_and_test(&ctx->refcount)) {
921 put_ctx(ctx->parent_ctx);
923 put_task_struct(ctx->task);
924 call_rcu(&ctx->rcu_head, free_ctx);
929 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
930 * perf_pmu_migrate_context() we need some magic.
932 * Those places that change perf_event::ctx will hold both
933 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
935 * Lock ordering is by mutex address. There is one other site where
936 * perf_event_context::mutex nests and that is put_event(). But remember that
937 * that is a parent<->child context relation, and migration does not affect
938 * children, therefore these two orderings should not interact.
940 * The change in perf_event::ctx does not affect children (as claimed above)
941 * because the sys_perf_event_open() case will install a new event and break
942 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
943 * concerned with cpuctx and that doesn't have children.
945 * The places that change perf_event::ctx will issue:
947 * perf_remove_from_context();
949 * perf_install_in_context();
951 * to affect the change. The remove_from_context() + synchronize_rcu() should
952 * quiesce the event, after which we can install it in the new location. This
953 * means that only external vectors (perf_fops, prctl) can perturb the event
954 * while in transit. Therefore all such accessors should also acquire
955 * perf_event_context::mutex to serialize against this.
957 * However; because event->ctx can change while we're waiting to acquire
958 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
962 * task_struct::perf_event_mutex
963 * perf_event_context::mutex
964 * perf_event_context::lock
965 * perf_event::child_mutex;
966 * perf_event::mmap_mutex
969 static struct perf_event_context *
970 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
972 struct perf_event_context *ctx;
976 ctx = ACCESS_ONCE(event->ctx);
977 if (!atomic_inc_not_zero(&ctx->refcount)) {
983 mutex_lock_nested(&ctx->mutex, nesting);
984 if (event->ctx != ctx) {
985 mutex_unlock(&ctx->mutex);
993 static inline struct perf_event_context *
994 perf_event_ctx_lock(struct perf_event *event)
996 return perf_event_ctx_lock_nested(event, 0);
999 static void perf_event_ctx_unlock(struct perf_event *event,
1000 struct perf_event_context *ctx)
1002 mutex_unlock(&ctx->mutex);
1007 * This must be done under the ctx->lock, such as to serialize against
1008 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1009 * calling scheduler related locks and ctx->lock nests inside those.
1011 static __must_check struct perf_event_context *
1012 unclone_ctx(struct perf_event_context *ctx)
1014 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016 lockdep_assert_held(&ctx->lock);
1019 ctx->parent_ctx = NULL;
1025 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1028 * only top level events have the pid namespace they were created in
1031 event = event->parent;
1033 return task_tgid_nr_ns(p, event->ns);
1036 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1039 * only top level events have the pid namespace they were created in
1042 event = event->parent;
1044 return task_pid_nr_ns(p, event->ns);
1048 * If we inherit events we want to return the parent event id
1051 static u64 primary_event_id(struct perf_event *event)
1056 id = event->parent->id;
1062 * Get the perf_event_context for a task and lock it.
1063 * This has to cope with with the fact that until it is locked,
1064 * the context could get moved to another task.
1066 static struct perf_event_context *
1067 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069 struct perf_event_context *ctx;
1073 * One of the few rules of preemptible RCU is that one cannot do
1074 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1075 * part of the read side critical section was preemptible -- see
1076 * rcu_read_unlock_special().
1078 * Since ctx->lock nests under rq->lock we must ensure the entire read
1079 * side critical section is non-preemptible.
1083 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1086 * If this context is a clone of another, it might
1087 * get swapped for another underneath us by
1088 * perf_event_task_sched_out, though the
1089 * rcu_read_lock() protects us from any context
1090 * getting freed. Lock the context and check if it
1091 * got swapped before we could get the lock, and retry
1092 * if so. If we locked the right context, then it
1093 * can't get swapped on us any more.
1095 raw_spin_lock_irqsave(&ctx->lock, *flags);
1096 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1097 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1103 if (!atomic_inc_not_zero(&ctx->refcount)) {
1104 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1114 * Get the context for a task and increment its pin_count so it
1115 * can't get swapped to another task. This also increments its
1116 * reference count so that the context can't get freed.
1118 static struct perf_event_context *
1119 perf_pin_task_context(struct task_struct *task, int ctxn)
1121 struct perf_event_context *ctx;
1122 unsigned long flags;
1124 ctx = perf_lock_task_context(task, ctxn, &flags);
1127 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1132 static void perf_unpin_context(struct perf_event_context *ctx)
1134 unsigned long flags;
1136 raw_spin_lock_irqsave(&ctx->lock, flags);
1138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1142 * Update the record of the current time in a context.
1144 static void update_context_time(struct perf_event_context *ctx)
1146 u64 now = perf_clock();
1148 ctx->time += now - ctx->timestamp;
1149 ctx->timestamp = now;
1152 static u64 perf_event_time(struct perf_event *event)
1154 struct perf_event_context *ctx = event->ctx;
1156 if (is_cgroup_event(event))
1157 return perf_cgroup_event_time(event);
1159 return ctx ? ctx->time : 0;
1163 * Update the total_time_enabled and total_time_running fields for a event.
1164 * The caller of this function needs to hold the ctx->lock.
1166 static void update_event_times(struct perf_event *event)
1168 struct perf_event_context *ctx = event->ctx;
1171 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1172 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1175 * in cgroup mode, time_enabled represents
1176 * the time the event was enabled AND active
1177 * tasks were in the monitored cgroup. This is
1178 * independent of the activity of the context as
1179 * there may be a mix of cgroup and non-cgroup events.
1181 * That is why we treat cgroup events differently
1184 if (is_cgroup_event(event))
1185 run_end = perf_cgroup_event_time(event);
1186 else if (ctx->is_active)
1187 run_end = ctx->time;
1189 run_end = event->tstamp_stopped;
1191 event->total_time_enabled = run_end - event->tstamp_enabled;
1193 if (event->state == PERF_EVENT_STATE_INACTIVE)
1194 run_end = event->tstamp_stopped;
1196 run_end = perf_event_time(event);
1198 event->total_time_running = run_end - event->tstamp_running;
1203 * Update total_time_enabled and total_time_running for all events in a group.
1205 static void update_group_times(struct perf_event *leader)
1207 struct perf_event *event;
1209 update_event_times(leader);
1210 list_for_each_entry(event, &leader->sibling_list, group_entry)
1211 update_event_times(event);
1214 static struct list_head *
1215 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217 if (event->attr.pinned)
1218 return &ctx->pinned_groups;
1220 return &ctx->flexible_groups;
1224 * Add a event from the lists for its context.
1225 * Must be called with ctx->mutex and ctx->lock held.
1228 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1231 event->attach_state |= PERF_ATTACH_CONTEXT;
1234 * If we're a stand alone event or group leader, we go to the context
1235 * list, group events are kept attached to the group so that
1236 * perf_group_detach can, at all times, locate all siblings.
1238 if (event->group_leader == event) {
1239 struct list_head *list;
1241 if (is_software_event(event))
1242 event->group_flags |= PERF_GROUP_SOFTWARE;
1244 list = ctx_group_list(event, ctx);
1245 list_add_tail(&event->group_entry, list);
1248 if (is_cgroup_event(event))
1251 list_add_rcu(&event->event_entry, &ctx->event_list);
1253 if (event->attr.inherit_stat)
1260 * Initialize event state based on the perf_event_attr::disabled.
1262 static inline void perf_event__state_init(struct perf_event *event)
1264 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1265 PERF_EVENT_STATE_INACTIVE;
1269 * Called at perf_event creation and when events are attached/detached from a
1272 static void perf_event__read_size(struct perf_event *event)
1274 int entry = sizeof(u64); /* value */
1278 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1279 size += sizeof(u64);
1281 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1282 size += sizeof(u64);
1284 if (event->attr.read_format & PERF_FORMAT_ID)
1285 entry += sizeof(u64);
1287 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1288 nr += event->group_leader->nr_siblings;
1289 size += sizeof(u64);
1293 event->read_size = size;
1296 static void perf_event__header_size(struct perf_event *event)
1298 struct perf_sample_data *data;
1299 u64 sample_type = event->attr.sample_type;
1302 perf_event__read_size(event);
1304 if (sample_type & PERF_SAMPLE_IP)
1305 size += sizeof(data->ip);
1307 if (sample_type & PERF_SAMPLE_ADDR)
1308 size += sizeof(data->addr);
1310 if (sample_type & PERF_SAMPLE_PERIOD)
1311 size += sizeof(data->period);
1313 if (sample_type & PERF_SAMPLE_WEIGHT)
1314 size += sizeof(data->weight);
1316 if (sample_type & PERF_SAMPLE_READ)
1317 size += event->read_size;
1319 if (sample_type & PERF_SAMPLE_DATA_SRC)
1320 size += sizeof(data->data_src.val);
1322 if (sample_type & PERF_SAMPLE_TRANSACTION)
1323 size += sizeof(data->txn);
1325 event->header_size = size;
1328 static void perf_event__id_header_size(struct perf_event *event)
1330 struct perf_sample_data *data;
1331 u64 sample_type = event->attr.sample_type;
1334 if (sample_type & PERF_SAMPLE_TID)
1335 size += sizeof(data->tid_entry);
1337 if (sample_type & PERF_SAMPLE_TIME)
1338 size += sizeof(data->time);
1340 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1341 size += sizeof(data->id);
1343 if (sample_type & PERF_SAMPLE_ID)
1344 size += sizeof(data->id);
1346 if (sample_type & PERF_SAMPLE_STREAM_ID)
1347 size += sizeof(data->stream_id);
1349 if (sample_type & PERF_SAMPLE_CPU)
1350 size += sizeof(data->cpu_entry);
1352 event->id_header_size = size;
1355 static void perf_group_attach(struct perf_event *event)
1357 struct perf_event *group_leader = event->group_leader, *pos;
1360 * We can have double attach due to group movement in perf_event_open.
1362 if (event->attach_state & PERF_ATTACH_GROUP)
1365 event->attach_state |= PERF_ATTACH_GROUP;
1367 if (group_leader == event)
1370 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1373 !is_software_event(event))
1374 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1377 group_leader->nr_siblings++;
1379 perf_event__header_size(group_leader);
1381 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1382 perf_event__header_size(pos);
1386 * Remove a event from the lists for its context.
1387 * Must be called with ctx->mutex and ctx->lock held.
1390 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392 struct perf_cpu_context *cpuctx;
1394 WARN_ON_ONCE(event->ctx != ctx);
1395 lockdep_assert_held(&ctx->lock);
1398 * We can have double detach due to exit/hot-unplug + close.
1400 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1403 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405 if (is_cgroup_event(event)) {
1407 cpuctx = __get_cpu_context(ctx);
1409 * if there are no more cgroup events
1410 * then cler cgrp to avoid stale pointer
1411 * in update_cgrp_time_from_cpuctx()
1413 if (!ctx->nr_cgroups)
1414 cpuctx->cgrp = NULL;
1418 if (event->attr.inherit_stat)
1421 list_del_rcu(&event->event_entry);
1423 if (event->group_leader == event)
1424 list_del_init(&event->group_entry);
1426 update_group_times(event);
1429 * If event was in error state, then keep it
1430 * that way, otherwise bogus counts will be
1431 * returned on read(). The only way to get out
1432 * of error state is by explicit re-enabling
1435 if (event->state > PERF_EVENT_STATE_OFF)
1436 event->state = PERF_EVENT_STATE_OFF;
1441 static void perf_group_detach(struct perf_event *event)
1443 struct perf_event *sibling, *tmp;
1444 struct list_head *list = NULL;
1447 * We can have double detach due to exit/hot-unplug + close.
1449 if (!(event->attach_state & PERF_ATTACH_GROUP))
1452 event->attach_state &= ~PERF_ATTACH_GROUP;
1455 * If this is a sibling, remove it from its group.
1457 if (event->group_leader != event) {
1458 list_del_init(&event->group_entry);
1459 event->group_leader->nr_siblings--;
1463 if (!list_empty(&event->group_entry))
1464 list = &event->group_entry;
1467 * If this was a group event with sibling events then
1468 * upgrade the siblings to singleton events by adding them
1469 * to whatever list we are on.
1471 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473 list_move_tail(&sibling->group_entry, list);
1474 sibling->group_leader = sibling;
1476 /* Inherit group flags from the previous leader */
1477 sibling->group_flags = event->group_flags;
1479 WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 perf_event__header_size(event->group_leader);
1485 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1486 perf_event__header_size(tmp);
1490 * User event without the task.
1492 static bool is_orphaned_event(struct perf_event *event)
1494 return event && !is_kernel_event(event) && !event->owner;
1498 * Event has a parent but parent's task finished and it's
1499 * alive only because of children holding refference.
1501 static bool is_orphaned_child(struct perf_event *event)
1503 return is_orphaned_event(event->parent);
1506 static void orphans_remove_work(struct work_struct *work);
1508 static void schedule_orphans_remove(struct perf_event_context *ctx)
1510 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1513 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515 ctx->orphans_remove_sched = true;
1519 static int __init perf_workqueue_init(void)
1521 perf_wq = create_singlethread_workqueue("perf");
1522 WARN(!perf_wq, "failed to create perf workqueue\n");
1523 return perf_wq ? 0 : -1;
1526 core_initcall(perf_workqueue_init);
1529 event_filter_match(struct perf_event *event)
1531 return (event->cpu == -1 || event->cpu == smp_processor_id())
1532 && perf_cgroup_match(event);
1536 event_sched_out(struct perf_event *event,
1537 struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx)
1540 u64 tstamp = perf_event_time(event);
1543 WARN_ON_ONCE(event->ctx != ctx);
1544 lockdep_assert_held(&ctx->lock);
1547 * An event which could not be activated because of
1548 * filter mismatch still needs to have its timings
1549 * maintained, otherwise bogus information is return
1550 * via read() for time_enabled, time_running:
1552 if (event->state == PERF_EVENT_STATE_INACTIVE
1553 && !event_filter_match(event)) {
1554 delta = tstamp - event->tstamp_stopped;
1555 event->tstamp_running += delta;
1556 event->tstamp_stopped = tstamp;
1559 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 perf_pmu_disable(event->pmu);
1564 event->state = PERF_EVENT_STATE_INACTIVE;
1565 if (event->pending_disable) {
1566 event->pending_disable = 0;
1567 event->state = PERF_EVENT_STATE_OFF;
1569 event->tstamp_stopped = tstamp;
1570 event->pmu->del(event, 0);
1573 if (!is_software_event(event))
1574 cpuctx->active_oncpu--;
1575 if (!--ctx->nr_active)
1576 perf_event_ctx_deactivate(ctx);
1577 if (event->attr.freq && event->attr.sample_freq)
1579 if (event->attr.exclusive || !cpuctx->active_oncpu)
1580 cpuctx->exclusive = 0;
1582 if (is_orphaned_child(event))
1583 schedule_orphans_remove(ctx);
1585 perf_pmu_enable(event->pmu);
1589 group_sched_out(struct perf_event *group_event,
1590 struct perf_cpu_context *cpuctx,
1591 struct perf_event_context *ctx)
1593 struct perf_event *event;
1594 int state = group_event->state;
1596 event_sched_out(group_event, cpuctx, ctx);
1599 * Schedule out siblings (if any):
1601 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1602 event_sched_out(event, cpuctx, ctx);
1604 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1605 cpuctx->exclusive = 0;
1608 struct remove_event {
1609 struct perf_event *event;
1614 * Cross CPU call to remove a performance event
1616 * We disable the event on the hardware level first. After that we
1617 * remove it from the context list.
1619 static int __perf_remove_from_context(void *info)
1621 struct remove_event *re = info;
1622 struct perf_event *event = re->event;
1623 struct perf_event_context *ctx = event->ctx;
1624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1626 raw_spin_lock(&ctx->lock);
1627 event_sched_out(event, cpuctx, ctx);
1628 if (re->detach_group)
1629 perf_group_detach(event);
1630 list_del_event(event, ctx);
1631 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633 cpuctx->task_ctx = NULL;
1635 raw_spin_unlock(&ctx->lock);
1642 * Remove the event from a task's (or a CPU's) list of events.
1644 * CPU events are removed with a smp call. For task events we only
1645 * call when the task is on a CPU.
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid. This is OK when called from perf_release since
1650 * that only calls us on the top-level context, which can't be a clone.
1651 * When called from perf_event_exit_task, it's OK because the
1652 * context has been detached from its task.
1654 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1656 struct perf_event_context *ctx = event->ctx;
1657 struct task_struct *task = ctx->task;
1658 struct remove_event re = {
1660 .detach_group = detach_group,
1663 lockdep_assert_held(&ctx->mutex);
1667 * Per cpu events are removed via an smp call. The removal can
1668 * fail if the CPU is currently offline, but in that case we
1669 * already called __perf_remove_from_context from
1670 * perf_event_exit_cpu.
1672 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1677 if (!task_function_call(task, __perf_remove_from_context, &re))
1680 raw_spin_lock_irq(&ctx->lock);
1682 * If we failed to find a running task, but find the context active now
1683 * that we've acquired the ctx->lock, retry.
1685 if (ctx->is_active) {
1686 raw_spin_unlock_irq(&ctx->lock);
1688 * Reload the task pointer, it might have been changed by
1689 * a concurrent perf_event_context_sched_out().
1696 * Since the task isn't running, its safe to remove the event, us
1697 * holding the ctx->lock ensures the task won't get scheduled in.
1700 perf_group_detach(event);
1701 list_del_event(event, ctx);
1702 raw_spin_unlock_irq(&ctx->lock);
1706 * Cross CPU call to disable a performance event
1708 int __perf_event_disable(void *info)
1710 struct perf_event *event = info;
1711 struct perf_event_context *ctx = event->ctx;
1712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1715 * If this is a per-task event, need to check whether this
1716 * event's task is the current task on this cpu.
1718 * Can trigger due to concurrent perf_event_context_sched_out()
1719 * flipping contexts around.
1721 if (ctx->task && cpuctx->task_ctx != ctx)
1724 raw_spin_lock(&ctx->lock);
1727 * If the event is on, turn it off.
1728 * If it is in error state, leave it in error state.
1730 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1731 update_context_time(ctx);
1732 update_cgrp_time_from_event(event);
1733 update_group_times(event);
1734 if (event == event->group_leader)
1735 group_sched_out(event, cpuctx, ctx);
1737 event_sched_out(event, cpuctx, ctx);
1738 event->state = PERF_EVENT_STATE_OFF;
1741 raw_spin_unlock(&ctx->lock);
1749 * If event->ctx is a cloned context, callers must make sure that
1750 * every task struct that event->ctx->task could possibly point to
1751 * remains valid. This condition is satisifed when called through
1752 * perf_event_for_each_child or perf_event_for_each because they
1753 * hold the top-level event's child_mutex, so any descendant that
1754 * goes to exit will block in sync_child_event.
1755 * When called from perf_pending_event it's OK because event->ctx
1756 * is the current context on this CPU and preemption is disabled,
1757 * hence we can't get into perf_event_task_sched_out for this context.
1759 static void _perf_event_disable(struct perf_event *event)
1761 struct perf_event_context *ctx = event->ctx;
1762 struct task_struct *task = ctx->task;
1766 * Disable the event on the cpu that it's on
1768 cpu_function_call(event->cpu, __perf_event_disable, event);
1773 if (!task_function_call(task, __perf_event_disable, event))
1776 raw_spin_lock_irq(&ctx->lock);
1778 * If the event is still active, we need to retry the cross-call.
1780 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1781 raw_spin_unlock_irq(&ctx->lock);
1783 * Reload the task pointer, it might have been changed by
1784 * a concurrent perf_event_context_sched_out().
1791 * Since we have the lock this context can't be scheduled
1792 * in, so we can change the state safely.
1794 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1795 update_group_times(event);
1796 event->state = PERF_EVENT_STATE_OFF;
1798 raw_spin_unlock_irq(&ctx->lock);
1802 * Strictly speaking kernel users cannot create groups and therefore this
1803 * interface does not need the perf_event_ctx_lock() magic.
1805 void perf_event_disable(struct perf_event *event)
1807 struct perf_event_context *ctx;
1809 ctx = perf_event_ctx_lock(event);
1810 _perf_event_disable(event);
1811 perf_event_ctx_unlock(event, ctx);
1813 EXPORT_SYMBOL_GPL(perf_event_disable);
1815 static void perf_set_shadow_time(struct perf_event *event,
1816 struct perf_event_context *ctx,
1820 * use the correct time source for the time snapshot
1822 * We could get by without this by leveraging the
1823 * fact that to get to this function, the caller
1824 * has most likely already called update_context_time()
1825 * and update_cgrp_time_xx() and thus both timestamp
1826 * are identical (or very close). Given that tstamp is,
1827 * already adjusted for cgroup, we could say that:
1828 * tstamp - ctx->timestamp
1830 * tstamp - cgrp->timestamp.
1832 * Then, in perf_output_read(), the calculation would
1833 * work with no changes because:
1834 * - event is guaranteed scheduled in
1835 * - no scheduled out in between
1836 * - thus the timestamp would be the same
1838 * But this is a bit hairy.
1840 * So instead, we have an explicit cgroup call to remain
1841 * within the time time source all along. We believe it
1842 * is cleaner and simpler to understand.
1844 if (is_cgroup_event(event))
1845 perf_cgroup_set_shadow_time(event, tstamp);
1847 event->shadow_ctx_time = tstamp - ctx->timestamp;
1850 #define MAX_INTERRUPTS (~0ULL)
1852 static void perf_log_throttle(struct perf_event *event, int enable);
1855 event_sched_in(struct perf_event *event,
1856 struct perf_cpu_context *cpuctx,
1857 struct perf_event_context *ctx)
1859 u64 tstamp = perf_event_time(event);
1862 lockdep_assert_held(&ctx->lock);
1864 if (event->state <= PERF_EVENT_STATE_OFF)
1867 event->state = PERF_EVENT_STATE_ACTIVE;
1868 event->oncpu = smp_processor_id();
1871 * Unthrottle events, since we scheduled we might have missed several
1872 * ticks already, also for a heavily scheduling task there is little
1873 * guarantee it'll get a tick in a timely manner.
1875 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1876 perf_log_throttle(event, 1);
1877 event->hw.interrupts = 0;
1881 * The new state must be visible before we turn it on in the hardware:
1885 perf_pmu_disable(event->pmu);
1887 event->tstamp_running += tstamp - event->tstamp_stopped;
1889 perf_set_shadow_time(event, ctx, tstamp);
1891 if (event->pmu->add(event, PERF_EF_START)) {
1892 event->state = PERF_EVENT_STATE_INACTIVE;
1898 if (!is_software_event(event))
1899 cpuctx->active_oncpu++;
1900 if (!ctx->nr_active++)
1901 perf_event_ctx_activate(ctx);
1902 if (event->attr.freq && event->attr.sample_freq)
1905 if (event->attr.exclusive)
1906 cpuctx->exclusive = 1;
1908 if (is_orphaned_child(event))
1909 schedule_orphans_remove(ctx);
1912 perf_pmu_enable(event->pmu);
1918 group_sched_in(struct perf_event *group_event,
1919 struct perf_cpu_context *cpuctx,
1920 struct perf_event_context *ctx)
1922 struct perf_event *event, *partial_group = NULL;
1923 struct pmu *pmu = ctx->pmu;
1924 u64 now = ctx->time;
1925 bool simulate = false;
1927 if (group_event->state == PERF_EVENT_STATE_OFF)
1930 pmu->start_txn(pmu);
1932 if (event_sched_in(group_event, cpuctx, ctx)) {
1933 pmu->cancel_txn(pmu);
1934 perf_cpu_hrtimer_restart(cpuctx);
1939 * Schedule in siblings as one group (if any):
1941 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1942 if (event_sched_in(event, cpuctx, ctx)) {
1943 partial_group = event;
1948 if (!pmu->commit_txn(pmu))
1953 * Groups can be scheduled in as one unit only, so undo any
1954 * partial group before returning:
1955 * The events up to the failed event are scheduled out normally,
1956 * tstamp_stopped will be updated.
1958 * The failed events and the remaining siblings need to have
1959 * their timings updated as if they had gone thru event_sched_in()
1960 * and event_sched_out(). This is required to get consistent timings
1961 * across the group. This also takes care of the case where the group
1962 * could never be scheduled by ensuring tstamp_stopped is set to mark
1963 * the time the event was actually stopped, such that time delta
1964 * calculation in update_event_times() is correct.
1966 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1967 if (event == partial_group)
1971 event->tstamp_running += now - event->tstamp_stopped;
1972 event->tstamp_stopped = now;
1974 event_sched_out(event, cpuctx, ctx);
1977 event_sched_out(group_event, cpuctx, ctx);
1979 pmu->cancel_txn(pmu);
1981 perf_cpu_hrtimer_restart(cpuctx);
1987 * Work out whether we can put this event group on the CPU now.
1989 static int group_can_go_on(struct perf_event *event,
1990 struct perf_cpu_context *cpuctx,
1994 * Groups consisting entirely of software events can always go on.
1996 if (event->group_flags & PERF_GROUP_SOFTWARE)
1999 * If an exclusive group is already on, no other hardware
2002 if (cpuctx->exclusive)
2005 * If this group is exclusive and there are already
2006 * events on the CPU, it can't go on.
2008 if (event->attr.exclusive && cpuctx->active_oncpu)
2011 * Otherwise, try to add it if all previous groups were able
2017 static void add_event_to_ctx(struct perf_event *event,
2018 struct perf_event_context *ctx)
2020 u64 tstamp = perf_event_time(event);
2022 list_add_event(event, ctx);
2023 perf_group_attach(event);
2024 event->tstamp_enabled = tstamp;
2025 event->tstamp_running = tstamp;
2026 event->tstamp_stopped = tstamp;
2029 static void task_ctx_sched_out(struct perf_event_context *ctx);
2031 ctx_sched_in(struct perf_event_context *ctx,
2032 struct perf_cpu_context *cpuctx,
2033 enum event_type_t event_type,
2034 struct task_struct *task);
2036 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2037 struct perf_event_context *ctx,
2038 struct task_struct *task)
2040 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2042 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2043 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2045 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2049 * Cross CPU call to install and enable a performance event
2051 * Must be called with ctx->mutex held
2053 static int __perf_install_in_context(void *info)
2055 struct perf_event *event = info;
2056 struct perf_event_context *ctx = event->ctx;
2057 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2058 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2059 struct task_struct *task = current;
2061 perf_ctx_lock(cpuctx, task_ctx);
2062 perf_pmu_disable(cpuctx->ctx.pmu);
2065 * If there was an active task_ctx schedule it out.
2068 task_ctx_sched_out(task_ctx);
2071 * If the context we're installing events in is not the
2072 * active task_ctx, flip them.
2074 if (ctx->task && task_ctx != ctx) {
2076 raw_spin_unlock(&task_ctx->lock);
2077 raw_spin_lock(&ctx->lock);
2082 cpuctx->task_ctx = task_ctx;
2083 task = task_ctx->task;
2086 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2088 update_context_time(ctx);
2090 * update cgrp time only if current cgrp
2091 * matches event->cgrp. Must be done before
2092 * calling add_event_to_ctx()
2094 update_cgrp_time_from_event(event);
2096 add_event_to_ctx(event, ctx);
2099 * Schedule everything back in
2101 perf_event_sched_in(cpuctx, task_ctx, task);
2103 perf_pmu_enable(cpuctx->ctx.pmu);
2104 perf_ctx_unlock(cpuctx, task_ctx);
2110 * Attach a performance event to a context
2112 * First we add the event to the list with the hardware enable bit
2113 * in event->hw_config cleared.
2115 * If the event is attached to a task which is on a CPU we use a smp
2116 * call to enable it in the task context. The task might have been
2117 * scheduled away, but we check this in the smp call again.
2120 perf_install_in_context(struct perf_event_context *ctx,
2121 struct perf_event *event,
2124 struct task_struct *task = ctx->task;
2126 lockdep_assert_held(&ctx->mutex);
2129 if (event->cpu != -1)
2134 * Per cpu events are installed via an smp call and
2135 * the install is always successful.
2137 cpu_function_call(cpu, __perf_install_in_context, event);
2142 if (!task_function_call(task, __perf_install_in_context, event))
2145 raw_spin_lock_irq(&ctx->lock);
2147 * If we failed to find a running task, but find the context active now
2148 * that we've acquired the ctx->lock, retry.
2150 if (ctx->is_active) {
2151 raw_spin_unlock_irq(&ctx->lock);
2153 * Reload the task pointer, it might have been changed by
2154 * a concurrent perf_event_context_sched_out().
2161 * Since the task isn't running, its safe to add the event, us holding
2162 * the ctx->lock ensures the task won't get scheduled in.
2164 add_event_to_ctx(event, ctx);
2165 raw_spin_unlock_irq(&ctx->lock);
2169 * Put a event into inactive state and update time fields.
2170 * Enabling the leader of a group effectively enables all
2171 * the group members that aren't explicitly disabled, so we
2172 * have to update their ->tstamp_enabled also.
2173 * Note: this works for group members as well as group leaders
2174 * since the non-leader members' sibling_lists will be empty.
2176 static void __perf_event_mark_enabled(struct perf_event *event)
2178 struct perf_event *sub;
2179 u64 tstamp = perf_event_time(event);
2181 event->state = PERF_EVENT_STATE_INACTIVE;
2182 event->tstamp_enabled = tstamp - event->total_time_enabled;
2183 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2184 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2185 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2190 * Cross CPU call to enable a performance event
2192 static int __perf_event_enable(void *info)
2194 struct perf_event *event = info;
2195 struct perf_event_context *ctx = event->ctx;
2196 struct perf_event *leader = event->group_leader;
2197 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2201 * There's a time window between 'ctx->is_active' check
2202 * in perf_event_enable function and this place having:
2204 * - ctx->lock unlocked
2206 * where the task could be killed and 'ctx' deactivated
2207 * by perf_event_exit_task.
2209 if (!ctx->is_active)
2212 raw_spin_lock(&ctx->lock);
2213 update_context_time(ctx);
2215 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2219 * set current task's cgroup time reference point
2221 perf_cgroup_set_timestamp(current, ctx);
2223 __perf_event_mark_enabled(event);
2225 if (!event_filter_match(event)) {
2226 if (is_cgroup_event(event))
2227 perf_cgroup_defer_enabled(event);
2232 * If the event is in a group and isn't the group leader,
2233 * then don't put it on unless the group is on.
2235 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2238 if (!group_can_go_on(event, cpuctx, 1)) {
2241 if (event == leader)
2242 err = group_sched_in(event, cpuctx, ctx);
2244 err = event_sched_in(event, cpuctx, ctx);
2249 * If this event can't go on and it's part of a
2250 * group, then the whole group has to come off.
2252 if (leader != event) {
2253 group_sched_out(leader, cpuctx, ctx);
2254 perf_cpu_hrtimer_restart(cpuctx);
2256 if (leader->attr.pinned) {
2257 update_group_times(leader);
2258 leader->state = PERF_EVENT_STATE_ERROR;
2263 raw_spin_unlock(&ctx->lock);
2271 * If event->ctx is a cloned context, callers must make sure that
2272 * every task struct that event->ctx->task could possibly point to
2273 * remains valid. This condition is satisfied when called through
2274 * perf_event_for_each_child or perf_event_for_each as described
2275 * for perf_event_disable.
2277 static void _perf_event_enable(struct perf_event *event)
2279 struct perf_event_context *ctx = event->ctx;
2280 struct task_struct *task = ctx->task;
2284 * Enable the event on the cpu that it's on
2286 cpu_function_call(event->cpu, __perf_event_enable, event);
2290 raw_spin_lock_irq(&ctx->lock);
2291 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2295 * If the event is in error state, clear that first.
2296 * That way, if we see the event in error state below, we
2297 * know that it has gone back into error state, as distinct
2298 * from the task having been scheduled away before the
2299 * cross-call arrived.
2301 if (event->state == PERF_EVENT_STATE_ERROR)
2302 event->state = PERF_EVENT_STATE_OFF;
2305 if (!ctx->is_active) {
2306 __perf_event_mark_enabled(event);
2310 raw_spin_unlock_irq(&ctx->lock);
2312 if (!task_function_call(task, __perf_event_enable, event))
2315 raw_spin_lock_irq(&ctx->lock);
2318 * If the context is active and the event is still off,
2319 * we need to retry the cross-call.
2321 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2323 * task could have been flipped by a concurrent
2324 * perf_event_context_sched_out()
2331 raw_spin_unlock_irq(&ctx->lock);
2335 * See perf_event_disable();
2337 void perf_event_enable(struct perf_event *event)
2339 struct perf_event_context *ctx;
2341 ctx = perf_event_ctx_lock(event);
2342 _perf_event_enable(event);
2343 perf_event_ctx_unlock(event, ctx);
2345 EXPORT_SYMBOL_GPL(perf_event_enable);
2347 static int _perf_event_refresh(struct perf_event *event, int refresh)
2350 * not supported on inherited events
2352 if (event->attr.inherit || !is_sampling_event(event))
2355 atomic_add(refresh, &event->event_limit);
2356 _perf_event_enable(event);
2362 * See perf_event_disable()
2364 int perf_event_refresh(struct perf_event *event, int refresh)
2366 struct perf_event_context *ctx;
2369 ctx = perf_event_ctx_lock(event);
2370 ret = _perf_event_refresh(event, refresh);
2371 perf_event_ctx_unlock(event, ctx);
2375 EXPORT_SYMBOL_GPL(perf_event_refresh);
2377 static void ctx_sched_out(struct perf_event_context *ctx,
2378 struct perf_cpu_context *cpuctx,
2379 enum event_type_t event_type)
2381 struct perf_event *event;
2382 int is_active = ctx->is_active;
2384 ctx->is_active &= ~event_type;
2385 if (likely(!ctx->nr_events))
2388 update_context_time(ctx);
2389 update_cgrp_time_from_cpuctx(cpuctx);
2390 if (!ctx->nr_active)
2393 perf_pmu_disable(ctx->pmu);
2394 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2395 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2396 group_sched_out(event, cpuctx, ctx);
2399 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2400 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2401 group_sched_out(event, cpuctx, ctx);
2403 perf_pmu_enable(ctx->pmu);
2407 * Test whether two contexts are equivalent, i.e. whether they have both been
2408 * cloned from the same version of the same context.
2410 * Equivalence is measured using a generation number in the context that is
2411 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2412 * and list_del_event().
2414 static int context_equiv(struct perf_event_context *ctx1,
2415 struct perf_event_context *ctx2)
2417 lockdep_assert_held(&ctx1->lock);
2418 lockdep_assert_held(&ctx2->lock);
2420 /* Pinning disables the swap optimization */
2421 if (ctx1->pin_count || ctx2->pin_count)
2424 /* If ctx1 is the parent of ctx2 */
2425 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2428 /* If ctx2 is the parent of ctx1 */
2429 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2433 * If ctx1 and ctx2 have the same parent; we flatten the parent
2434 * hierarchy, see perf_event_init_context().
2436 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2437 ctx1->parent_gen == ctx2->parent_gen)
2444 static void __perf_event_sync_stat(struct perf_event *event,
2445 struct perf_event *next_event)
2449 if (!event->attr.inherit_stat)
2453 * Update the event value, we cannot use perf_event_read()
2454 * because we're in the middle of a context switch and have IRQs
2455 * disabled, which upsets smp_call_function_single(), however
2456 * we know the event must be on the current CPU, therefore we
2457 * don't need to use it.
2459 switch (event->state) {
2460 case PERF_EVENT_STATE_ACTIVE:
2461 event->pmu->read(event);
2464 case PERF_EVENT_STATE_INACTIVE:
2465 update_event_times(event);
2473 * In order to keep per-task stats reliable we need to flip the event
2474 * values when we flip the contexts.
2476 value = local64_read(&next_event->count);
2477 value = local64_xchg(&event->count, value);
2478 local64_set(&next_event->count, value);
2480 swap(event->total_time_enabled, next_event->total_time_enabled);
2481 swap(event->total_time_running, next_event->total_time_running);
2484 * Since we swizzled the values, update the user visible data too.
2486 perf_event_update_userpage(event);
2487 perf_event_update_userpage(next_event);
2490 static void perf_event_sync_stat(struct perf_event_context *ctx,
2491 struct perf_event_context *next_ctx)
2493 struct perf_event *event, *next_event;
2498 update_context_time(ctx);
2500 event = list_first_entry(&ctx->event_list,
2501 struct perf_event, event_entry);
2503 next_event = list_first_entry(&next_ctx->event_list,
2504 struct perf_event, event_entry);
2506 while (&event->event_entry != &ctx->event_list &&
2507 &next_event->event_entry != &next_ctx->event_list) {
2509 __perf_event_sync_stat(event, next_event);
2511 event = list_next_entry(event, event_entry);
2512 next_event = list_next_entry(next_event, event_entry);
2516 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2517 struct task_struct *next)
2519 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2520 struct perf_event_context *next_ctx;
2521 struct perf_event_context *parent, *next_parent;
2522 struct perf_cpu_context *cpuctx;
2528 cpuctx = __get_cpu_context(ctx);
2529 if (!cpuctx->task_ctx)
2533 next_ctx = next->perf_event_ctxp[ctxn];
2537 parent = rcu_dereference(ctx->parent_ctx);
2538 next_parent = rcu_dereference(next_ctx->parent_ctx);
2540 /* If neither context have a parent context; they cannot be clones. */
2541 if (!parent && !next_parent)
2544 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2546 * Looks like the two contexts are clones, so we might be
2547 * able to optimize the context switch. We lock both
2548 * contexts and check that they are clones under the
2549 * lock (including re-checking that neither has been
2550 * uncloned in the meantime). It doesn't matter which
2551 * order we take the locks because no other cpu could
2552 * be trying to lock both of these tasks.
2554 raw_spin_lock(&ctx->lock);
2555 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2556 if (context_equiv(ctx, next_ctx)) {
2558 * XXX do we need a memory barrier of sorts
2559 * wrt to rcu_dereference() of perf_event_ctxp
2561 task->perf_event_ctxp[ctxn] = next_ctx;
2562 next->perf_event_ctxp[ctxn] = ctx;
2564 next_ctx->task = task;
2566 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2570 perf_event_sync_stat(ctx, next_ctx);
2572 raw_spin_unlock(&next_ctx->lock);
2573 raw_spin_unlock(&ctx->lock);
2579 raw_spin_lock(&ctx->lock);
2580 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2581 cpuctx->task_ctx = NULL;
2582 raw_spin_unlock(&ctx->lock);
2586 void perf_sched_cb_dec(struct pmu *pmu)
2588 this_cpu_dec(perf_sched_cb_usages);
2591 void perf_sched_cb_inc(struct pmu *pmu)
2593 this_cpu_inc(perf_sched_cb_usages);
2597 * This function provides the context switch callback to the lower code
2598 * layer. It is invoked ONLY when the context switch callback is enabled.
2600 static void perf_pmu_sched_task(struct task_struct *prev,
2601 struct task_struct *next,
2604 struct perf_cpu_context *cpuctx;
2606 unsigned long flags;
2611 local_irq_save(flags);
2615 list_for_each_entry_rcu(pmu, &pmus, entry) {
2616 if (pmu->sched_task) {
2617 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2619 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2621 perf_pmu_disable(pmu);
2623 pmu->sched_task(cpuctx->task_ctx, sched_in);
2625 perf_pmu_enable(pmu);
2627 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2633 local_irq_restore(flags);
2636 #define for_each_task_context_nr(ctxn) \
2637 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2640 * Called from scheduler to remove the events of the current task,
2641 * with interrupts disabled.
2643 * We stop each event and update the event value in event->count.
2645 * This does not protect us against NMI, but disable()
2646 * sets the disabled bit in the control field of event _before_
2647 * accessing the event control register. If a NMI hits, then it will
2648 * not restart the event.
2650 void __perf_event_task_sched_out(struct task_struct *task,
2651 struct task_struct *next)
2655 if (__this_cpu_read(perf_sched_cb_usages))
2656 perf_pmu_sched_task(task, next, false);
2658 for_each_task_context_nr(ctxn)
2659 perf_event_context_sched_out(task, ctxn, next);
2662 * if cgroup events exist on this CPU, then we need
2663 * to check if we have to switch out PMU state.
2664 * cgroup event are system-wide mode only
2666 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2667 perf_cgroup_sched_out(task, next);
2670 static void task_ctx_sched_out(struct perf_event_context *ctx)
2672 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2674 if (!cpuctx->task_ctx)
2677 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2680 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2681 cpuctx->task_ctx = NULL;
2685 * Called with IRQs disabled
2687 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2688 enum event_type_t event_type)
2690 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2694 ctx_pinned_sched_in(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx)
2697 struct perf_event *event;
2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2700 if (event->state <= PERF_EVENT_STATE_OFF)
2702 if (!event_filter_match(event))
2705 /* may need to reset tstamp_enabled */
2706 if (is_cgroup_event(event))
2707 perf_cgroup_mark_enabled(event, ctx);
2709 if (group_can_go_on(event, cpuctx, 1))
2710 group_sched_in(event, cpuctx, ctx);
2713 * If this pinned group hasn't been scheduled,
2714 * put it in error state.
2716 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2717 update_group_times(event);
2718 event->state = PERF_EVENT_STATE_ERROR;
2724 ctx_flexible_sched_in(struct perf_event_context *ctx,
2725 struct perf_cpu_context *cpuctx)
2727 struct perf_event *event;
2730 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2731 /* Ignore events in OFF or ERROR state */
2732 if (event->state <= PERF_EVENT_STATE_OFF)
2735 * Listen to the 'cpu' scheduling filter constraint
2738 if (!event_filter_match(event))
2741 /* may need to reset tstamp_enabled */
2742 if (is_cgroup_event(event))
2743 perf_cgroup_mark_enabled(event, ctx);
2745 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2746 if (group_sched_in(event, cpuctx, ctx))
2753 ctx_sched_in(struct perf_event_context *ctx,
2754 struct perf_cpu_context *cpuctx,
2755 enum event_type_t event_type,
2756 struct task_struct *task)
2759 int is_active = ctx->is_active;
2761 ctx->is_active |= event_type;
2762 if (likely(!ctx->nr_events))
2766 ctx->timestamp = now;
2767 perf_cgroup_set_timestamp(task, ctx);
2769 * First go through the list and put on any pinned groups
2770 * in order to give them the best chance of going on.
2772 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2773 ctx_pinned_sched_in(ctx, cpuctx);
2775 /* Then walk through the lower prio flexible groups */
2776 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2777 ctx_flexible_sched_in(ctx, cpuctx);
2780 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2781 enum event_type_t event_type,
2782 struct task_struct *task)
2784 struct perf_event_context *ctx = &cpuctx->ctx;
2786 ctx_sched_in(ctx, cpuctx, event_type, task);
2789 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2790 struct task_struct *task)
2792 struct perf_cpu_context *cpuctx;
2794 cpuctx = __get_cpu_context(ctx);
2795 if (cpuctx->task_ctx == ctx)
2798 perf_ctx_lock(cpuctx, ctx);
2799 perf_pmu_disable(ctx->pmu);
2801 * We want to keep the following priority order:
2802 * cpu pinned (that don't need to move), task pinned,
2803 * cpu flexible, task flexible.
2805 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2808 cpuctx->task_ctx = ctx;
2810 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2812 perf_pmu_enable(ctx->pmu);
2813 perf_ctx_unlock(cpuctx, ctx);
2817 * Called from scheduler to add the events of the current task
2818 * with interrupts disabled.
2820 * We restore the event value and then enable it.
2822 * This does not protect us against NMI, but enable()
2823 * sets the enabled bit in the control field of event _before_
2824 * accessing the event control register. If a NMI hits, then it will
2825 * keep the event running.
2827 void __perf_event_task_sched_in(struct task_struct *prev,
2828 struct task_struct *task)
2830 struct perf_event_context *ctx;
2833 for_each_task_context_nr(ctxn) {
2834 ctx = task->perf_event_ctxp[ctxn];
2838 perf_event_context_sched_in(ctx, task);
2841 * if cgroup events exist on this CPU, then we need
2842 * to check if we have to switch in PMU state.
2843 * cgroup event are system-wide mode only
2845 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2846 perf_cgroup_sched_in(prev, task);
2848 if (__this_cpu_read(perf_sched_cb_usages))
2849 perf_pmu_sched_task(prev, task, true);
2852 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2854 u64 frequency = event->attr.sample_freq;
2855 u64 sec = NSEC_PER_SEC;
2856 u64 divisor, dividend;
2858 int count_fls, nsec_fls, frequency_fls, sec_fls;
2860 count_fls = fls64(count);
2861 nsec_fls = fls64(nsec);
2862 frequency_fls = fls64(frequency);
2866 * We got @count in @nsec, with a target of sample_freq HZ
2867 * the target period becomes:
2870 * period = -------------------
2871 * @nsec * sample_freq
2876 * Reduce accuracy by one bit such that @a and @b converge
2877 * to a similar magnitude.
2879 #define REDUCE_FLS(a, b) \
2881 if (a##_fls > b##_fls) { \
2891 * Reduce accuracy until either term fits in a u64, then proceed with
2892 * the other, so that finally we can do a u64/u64 division.
2894 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 REDUCE_FLS(nsec, frequency);
2896 REDUCE_FLS(sec, count);
2899 if (count_fls + sec_fls > 64) {
2900 divisor = nsec * frequency;
2902 while (count_fls + sec_fls > 64) {
2903 REDUCE_FLS(count, sec);
2907 dividend = count * sec;
2909 dividend = count * sec;
2911 while (nsec_fls + frequency_fls > 64) {
2912 REDUCE_FLS(nsec, frequency);
2916 divisor = nsec * frequency;
2922 return div64_u64(dividend, divisor);
2925 static DEFINE_PER_CPU(int, perf_throttled_count);
2926 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2928 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2930 struct hw_perf_event *hwc = &event->hw;
2931 s64 period, sample_period;
2934 period = perf_calculate_period(event, nsec, count);
2936 delta = (s64)(period - hwc->sample_period);
2937 delta = (delta + 7) / 8; /* low pass filter */
2939 sample_period = hwc->sample_period + delta;
2944 hwc->sample_period = sample_period;
2946 if (local64_read(&hwc->period_left) > 8*sample_period) {
2948 event->pmu->stop(event, PERF_EF_UPDATE);
2950 local64_set(&hwc->period_left, 0);
2953 event->pmu->start(event, PERF_EF_RELOAD);
2958 * combine freq adjustment with unthrottling to avoid two passes over the
2959 * events. At the same time, make sure, having freq events does not change
2960 * the rate of unthrottling as that would introduce bias.
2962 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2965 struct perf_event *event;
2966 struct hw_perf_event *hwc;
2967 u64 now, period = TICK_NSEC;
2971 * only need to iterate over all events iff:
2972 * - context have events in frequency mode (needs freq adjust)
2973 * - there are events to unthrottle on this cpu
2975 if (!(ctx->nr_freq || needs_unthr))
2978 raw_spin_lock(&ctx->lock);
2979 perf_pmu_disable(ctx->pmu);
2981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982 if (event->state != PERF_EVENT_STATE_ACTIVE)
2985 if (!event_filter_match(event))
2988 perf_pmu_disable(event->pmu);
2992 if (hwc->interrupts == MAX_INTERRUPTS) {
2993 hwc->interrupts = 0;
2994 perf_log_throttle(event, 1);
2995 event->pmu->start(event, 0);
2998 if (!event->attr.freq || !event->attr.sample_freq)
3002 * stop the event and update event->count
3004 event->pmu->stop(event, PERF_EF_UPDATE);
3006 now = local64_read(&event->count);
3007 delta = now - hwc->freq_count_stamp;
3008 hwc->freq_count_stamp = now;
3012 * reload only if value has changed
3013 * we have stopped the event so tell that
3014 * to perf_adjust_period() to avoid stopping it
3018 perf_adjust_period(event, period, delta, false);
3020 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3022 perf_pmu_enable(event->pmu);
3025 perf_pmu_enable(ctx->pmu);
3026 raw_spin_unlock(&ctx->lock);
3030 * Round-robin a context's events:
3032 static void rotate_ctx(struct perf_event_context *ctx)
3035 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 * disabled by the inheritance code.
3038 if (!ctx->rotate_disable)
3039 list_rotate_left(&ctx->flexible_groups);
3042 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3044 struct perf_event_context *ctx = NULL;
3047 if (cpuctx->ctx.nr_events) {
3048 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3052 ctx = cpuctx->task_ctx;
3053 if (ctx && ctx->nr_events) {
3054 if (ctx->nr_events != ctx->nr_active)
3061 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3062 perf_pmu_disable(cpuctx->ctx.pmu);
3064 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3066 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3068 rotate_ctx(&cpuctx->ctx);
3072 perf_event_sched_in(cpuctx, ctx, current);
3074 perf_pmu_enable(cpuctx->ctx.pmu);
3075 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3081 #ifdef CONFIG_NO_HZ_FULL
3082 bool perf_event_can_stop_tick(void)
3084 if (atomic_read(&nr_freq_events) ||
3085 __this_cpu_read(perf_throttled_count))
3092 void perf_event_task_tick(void)
3094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 struct perf_event_context *ctx, *tmp;
3098 WARN_ON(!irqs_disabled());
3100 __this_cpu_inc(perf_throttled_seq);
3101 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3103 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104 perf_adjust_freq_unthr_context(ctx, throttled);
3107 static int event_enable_on_exec(struct perf_event *event,
3108 struct perf_event_context *ctx)
3110 if (!event->attr.enable_on_exec)
3113 event->attr.enable_on_exec = 0;
3114 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3117 __perf_event_mark_enabled(event);
3123 * Enable all of a task's events that have been marked enable-on-exec.
3124 * This expects task == current.
3126 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3128 struct perf_event_context *clone_ctx = NULL;
3129 struct perf_event *event;
3130 unsigned long flags;
3134 local_irq_save(flags);
3135 if (!ctx || !ctx->nr_events)
3139 * We must ctxsw out cgroup events to avoid conflict
3140 * when invoking perf_task_event_sched_in() later on
3141 * in this function. Otherwise we end up trying to
3142 * ctxswin cgroup events which are already scheduled
3145 perf_cgroup_sched_out(current, NULL);
3147 raw_spin_lock(&ctx->lock);
3148 task_ctx_sched_out(ctx);
3150 list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 ret = event_enable_on_exec(event, ctx);
3157 * Unclone this context if we enabled any event.
3160 clone_ctx = unclone_ctx(ctx);
3162 raw_spin_unlock(&ctx->lock);
3165 * Also calls ctxswin for cgroup events, if any:
3167 perf_event_context_sched_in(ctx, ctx->task);
3169 local_irq_restore(flags);
3175 void perf_event_exec(void)
3177 struct perf_event_context *ctx;
3181 for_each_task_context_nr(ctxn) {
3182 ctx = current->perf_event_ctxp[ctxn];
3186 perf_event_enable_on_exec(ctx);
3192 * Cross CPU call to read the hardware event
3194 static void __perf_event_read(void *info)
3196 struct perf_event *event = info;
3197 struct perf_event_context *ctx = event->ctx;
3198 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3201 * If this is a task context, we need to check whether it is
3202 * the current task context of this cpu. If not it has been
3203 * scheduled out before the smp call arrived. In that case
3204 * event->count would have been updated to a recent sample
3205 * when the event was scheduled out.
3207 if (ctx->task && cpuctx->task_ctx != ctx)
3210 raw_spin_lock(&ctx->lock);
3211 if (ctx->is_active) {
3212 update_context_time(ctx);
3213 update_cgrp_time_from_event(event);
3215 update_event_times(event);
3216 if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 event->pmu->read(event);
3218 raw_spin_unlock(&ctx->lock);
3221 static inline u64 perf_event_count(struct perf_event *event)
3223 return local64_read(&event->count) + atomic64_read(&event->child_count);
3226 static u64 perf_event_read(struct perf_event *event)
3229 * If event is enabled and currently active on a CPU, update the
3230 * value in the event structure:
3232 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 smp_call_function_single(event->oncpu,
3234 __perf_event_read, event, 1);
3235 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3236 struct perf_event_context *ctx = event->ctx;
3237 unsigned long flags;
3239 raw_spin_lock_irqsave(&ctx->lock, flags);
3241 * may read while context is not active
3242 * (e.g., thread is blocked), in that case
3243 * we cannot update context time
3245 if (ctx->is_active) {
3246 update_context_time(ctx);
3247 update_cgrp_time_from_event(event);
3249 update_event_times(event);
3250 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3253 return perf_event_count(event);
3257 * Initialize the perf_event context in a task_struct:
3259 static void __perf_event_init_context(struct perf_event_context *ctx)
3261 raw_spin_lock_init(&ctx->lock);
3262 mutex_init(&ctx->mutex);
3263 INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 INIT_LIST_HEAD(&ctx->pinned_groups);
3265 INIT_LIST_HEAD(&ctx->flexible_groups);
3266 INIT_LIST_HEAD(&ctx->event_list);
3267 atomic_set(&ctx->refcount, 1);
3268 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3271 static struct perf_event_context *
3272 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3274 struct perf_event_context *ctx;
3276 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3280 __perf_event_init_context(ctx);
3283 get_task_struct(task);
3290 static struct task_struct *
3291 find_lively_task_by_vpid(pid_t vpid)
3293 struct task_struct *task;
3300 task = find_task_by_vpid(vpid);
3302 get_task_struct(task);
3306 return ERR_PTR(-ESRCH);
3308 /* Reuse ptrace permission checks for now. */
3310 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3315 put_task_struct(task);
3316 return ERR_PTR(err);
3321 * Returns a matching context with refcount and pincount.
3323 static struct perf_event_context *
3324 find_get_context(struct pmu *pmu, struct task_struct *task,
3325 struct perf_event *event)
3327 struct perf_event_context *ctx, *clone_ctx = NULL;
3328 struct perf_cpu_context *cpuctx;
3329 void *task_ctx_data = NULL;
3330 unsigned long flags;
3332 int cpu = event->cpu;
3335 /* Must be root to operate on a CPU event: */
3336 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3337 return ERR_PTR(-EACCES);
3340 * We could be clever and allow to attach a event to an
3341 * offline CPU and activate it when the CPU comes up, but
3344 if (!cpu_online(cpu))
3345 return ERR_PTR(-ENODEV);
3347 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3356 ctxn = pmu->task_ctx_nr;
3360 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3361 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3362 if (!task_ctx_data) {
3369 ctx = perf_lock_task_context(task, ctxn, &flags);
3371 clone_ctx = unclone_ctx(ctx);
3374 if (task_ctx_data && !ctx->task_ctx_data) {
3375 ctx->task_ctx_data = task_ctx_data;
3376 task_ctx_data = NULL;
3378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 ctx = alloc_perf_context(pmu, task);
3388 if (task_ctx_data) {
3389 ctx->task_ctx_data = task_ctx_data;
3390 task_ctx_data = NULL;
3394 mutex_lock(&task->perf_event_mutex);
3396 * If it has already passed perf_event_exit_task().
3397 * we must see PF_EXITING, it takes this mutex too.
3399 if (task->flags & PF_EXITING)
3401 else if (task->perf_event_ctxp[ctxn])
3406 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3408 mutex_unlock(&task->perf_event_mutex);
3410 if (unlikely(err)) {
3419 kfree(task_ctx_data);
3423 kfree(task_ctx_data);
3424 return ERR_PTR(err);
3427 static void perf_event_free_filter(struct perf_event *event);
3429 static void free_event_rcu(struct rcu_head *head)
3431 struct perf_event *event;
3433 event = container_of(head, struct perf_event, rcu_head);
3435 put_pid_ns(event->ns);
3436 perf_event_free_filter(event);
3440 static void ring_buffer_put(struct ring_buffer *rb);
3441 static void ring_buffer_attach(struct perf_event *event,
3442 struct ring_buffer *rb);
3444 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3449 if (is_cgroup_event(event))
3450 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3453 static void unaccount_event(struct perf_event *event)
3458 if (event->attach_state & PERF_ATTACH_TASK)
3459 static_key_slow_dec_deferred(&perf_sched_events);
3460 if (event->attr.mmap || event->attr.mmap_data)
3461 atomic_dec(&nr_mmap_events);
3462 if (event->attr.comm)
3463 atomic_dec(&nr_comm_events);
3464 if (event->attr.task)
3465 atomic_dec(&nr_task_events);
3466 if (event->attr.freq)
3467 atomic_dec(&nr_freq_events);
3468 if (is_cgroup_event(event))
3469 static_key_slow_dec_deferred(&perf_sched_events);
3470 if (has_branch_stack(event))
3471 static_key_slow_dec_deferred(&perf_sched_events);
3473 unaccount_event_cpu(event, event->cpu);
3476 static void __free_event(struct perf_event *event)
3478 if (!event->parent) {
3479 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3480 put_callchain_buffers();
3484 event->destroy(event);
3487 put_ctx(event->ctx);
3490 module_put(event->pmu->module);
3492 call_rcu(&event->rcu_head, free_event_rcu);
3495 static void _free_event(struct perf_event *event)
3497 irq_work_sync(&event->pending);
3499 unaccount_event(event);
3503 * Can happen when we close an event with re-directed output.
3505 * Since we have a 0 refcount, perf_mmap_close() will skip
3506 * over us; possibly making our ring_buffer_put() the last.
3508 mutex_lock(&event->mmap_mutex);
3509 ring_buffer_attach(event, NULL);
3510 mutex_unlock(&event->mmap_mutex);
3513 if (is_cgroup_event(event))
3514 perf_detach_cgroup(event);
3516 __free_event(event);
3520 * Used to free events which have a known refcount of 1, such as in error paths
3521 * where the event isn't exposed yet and inherited events.
3523 static void free_event(struct perf_event *event)
3525 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3526 "unexpected event refcount: %ld; ptr=%p\n",
3527 atomic_long_read(&event->refcount), event)) {
3528 /* leak to avoid use-after-free */
3536 * Remove user event from the owner task.
3538 static void perf_remove_from_owner(struct perf_event *event)
3540 struct task_struct *owner;
3543 owner = ACCESS_ONCE(event->owner);
3545 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3546 * !owner it means the list deletion is complete and we can indeed
3547 * free this event, otherwise we need to serialize on
3548 * owner->perf_event_mutex.
3550 smp_read_barrier_depends();
3553 * Since delayed_put_task_struct() also drops the last
3554 * task reference we can safely take a new reference
3555 * while holding the rcu_read_lock().
3557 get_task_struct(owner);
3563 * If we're here through perf_event_exit_task() we're already
3564 * holding ctx->mutex which would be an inversion wrt. the
3565 * normal lock order.
3567 * However we can safely take this lock because its the child
3570 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3573 * We have to re-check the event->owner field, if it is cleared
3574 * we raced with perf_event_exit_task(), acquiring the mutex
3575 * ensured they're done, and we can proceed with freeing the
3579 list_del_init(&event->owner_entry);
3580 mutex_unlock(&owner->perf_event_mutex);
3581 put_task_struct(owner);
3586 * Called when the last reference to the file is gone.
3588 static void put_event(struct perf_event *event)
3590 struct perf_event_context *ctx;
3592 if (!atomic_long_dec_and_test(&event->refcount))
3595 if (!is_kernel_event(event))
3596 perf_remove_from_owner(event);
3599 * There are two ways this annotation is useful:
3601 * 1) there is a lock recursion from perf_event_exit_task
3602 * see the comment there.
3604 * 2) there is a lock-inversion with mmap_sem through
3605 * perf_event_read_group(), which takes faults while
3606 * holding ctx->mutex, however this is called after
3607 * the last filedesc died, so there is no possibility
3608 * to trigger the AB-BA case.
3610 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3611 WARN_ON_ONCE(ctx->parent_ctx);
3612 perf_remove_from_context(event, true);
3613 mutex_unlock(&ctx->mutex);
3618 int perf_event_release_kernel(struct perf_event *event)
3623 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3625 static int perf_release(struct inode *inode, struct file *file)
3627 put_event(file->private_data);
3632 * Remove all orphanes events from the context.
3634 static void orphans_remove_work(struct work_struct *work)
3636 struct perf_event_context *ctx;
3637 struct perf_event *event, *tmp;
3639 ctx = container_of(work, struct perf_event_context,
3640 orphans_remove.work);
3642 mutex_lock(&ctx->mutex);
3643 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3644 struct perf_event *parent_event = event->parent;
3646 if (!is_orphaned_child(event))
3649 perf_remove_from_context(event, true);
3651 mutex_lock(&parent_event->child_mutex);
3652 list_del_init(&event->child_list);
3653 mutex_unlock(&parent_event->child_mutex);
3656 put_event(parent_event);
3659 raw_spin_lock_irq(&ctx->lock);
3660 ctx->orphans_remove_sched = false;
3661 raw_spin_unlock_irq(&ctx->lock);
3662 mutex_unlock(&ctx->mutex);
3667 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3669 struct perf_event *child;
3675 mutex_lock(&event->child_mutex);
3676 total += perf_event_read(event);
3677 *enabled += event->total_time_enabled +
3678 atomic64_read(&event->child_total_time_enabled);
3679 *running += event->total_time_running +
3680 atomic64_read(&event->child_total_time_running);
3682 list_for_each_entry(child, &event->child_list, child_list) {
3683 total += perf_event_read(child);
3684 *enabled += child->total_time_enabled;
3685 *running += child->total_time_running;
3687 mutex_unlock(&event->child_mutex);
3691 EXPORT_SYMBOL_GPL(perf_event_read_value);
3693 static int perf_event_read_group(struct perf_event *event,
3694 u64 read_format, char __user *buf)
3696 struct perf_event *leader = event->group_leader, *sub;
3697 struct perf_event_context *ctx = leader->ctx;
3698 int n = 0, size = 0, ret;
3699 u64 count, enabled, running;
3702 lockdep_assert_held(&ctx->mutex);
3704 count = perf_event_read_value(leader, &enabled, &running);
3706 values[n++] = 1 + leader->nr_siblings;
3707 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3708 values[n++] = enabled;
3709 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3710 values[n++] = running;
3711 values[n++] = count;
3712 if (read_format & PERF_FORMAT_ID)
3713 values[n++] = primary_event_id(leader);
3715 size = n * sizeof(u64);
3717 if (copy_to_user(buf, values, size))
3722 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3725 values[n++] = perf_event_read_value(sub, &enabled, &running);
3726 if (read_format & PERF_FORMAT_ID)
3727 values[n++] = primary_event_id(sub);
3729 size = n * sizeof(u64);
3731 if (copy_to_user(buf + ret, values, size)) {
3741 static int perf_event_read_one(struct perf_event *event,
3742 u64 read_format, char __user *buf)
3744 u64 enabled, running;
3748 values[n++] = perf_event_read_value(event, &enabled, &running);
3749 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3750 values[n++] = enabled;
3751 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3752 values[n++] = running;
3753 if (read_format & PERF_FORMAT_ID)
3754 values[n++] = primary_event_id(event);
3756 if (copy_to_user(buf, values, n * sizeof(u64)))
3759 return n * sizeof(u64);
3762 static bool is_event_hup(struct perf_event *event)
3766 if (event->state != PERF_EVENT_STATE_EXIT)
3769 mutex_lock(&event->child_mutex);
3770 no_children = list_empty(&event->child_list);
3771 mutex_unlock(&event->child_mutex);
3776 * Read the performance event - simple non blocking version for now
3779 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3781 u64 read_format = event->attr.read_format;
3785 * Return end-of-file for a read on a event that is in
3786 * error state (i.e. because it was pinned but it couldn't be
3787 * scheduled on to the CPU at some point).
3789 if (event->state == PERF_EVENT_STATE_ERROR)
3792 if (count < event->read_size)
3795 WARN_ON_ONCE(event->ctx->parent_ctx);
3796 if (read_format & PERF_FORMAT_GROUP)
3797 ret = perf_event_read_group(event, read_format, buf);
3799 ret = perf_event_read_one(event, read_format, buf);
3805 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3807 struct perf_event *event = file->private_data;
3808 struct perf_event_context *ctx;
3811 ctx = perf_event_ctx_lock(event);
3812 ret = perf_read_hw(event, buf, count);
3813 perf_event_ctx_unlock(event, ctx);
3818 static unsigned int perf_poll(struct file *file, poll_table *wait)
3820 struct perf_event *event = file->private_data;
3821 struct ring_buffer *rb;
3822 unsigned int events = POLLHUP;
3824 poll_wait(file, &event->waitq, wait);
3826 if (is_event_hup(event))
3830 * Pin the event->rb by taking event->mmap_mutex; otherwise
3831 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3833 mutex_lock(&event->mmap_mutex);
3836 events = atomic_xchg(&rb->poll, 0);
3837 mutex_unlock(&event->mmap_mutex);
3841 static void _perf_event_reset(struct perf_event *event)
3843 (void)perf_event_read(event);
3844 local64_set(&event->count, 0);
3845 perf_event_update_userpage(event);
3849 * Holding the top-level event's child_mutex means that any
3850 * descendant process that has inherited this event will block
3851 * in sync_child_event if it goes to exit, thus satisfying the
3852 * task existence requirements of perf_event_enable/disable.
3854 static void perf_event_for_each_child(struct perf_event *event,
3855 void (*func)(struct perf_event *))
3857 struct perf_event *child;
3859 WARN_ON_ONCE(event->ctx->parent_ctx);
3861 mutex_lock(&event->child_mutex);
3863 list_for_each_entry(child, &event->child_list, child_list)
3865 mutex_unlock(&event->child_mutex);
3868 static void perf_event_for_each(struct perf_event *event,
3869 void (*func)(struct perf_event *))
3871 struct perf_event_context *ctx = event->ctx;
3872 struct perf_event *sibling;
3874 lockdep_assert_held(&ctx->mutex);
3876 event = event->group_leader;
3878 perf_event_for_each_child(event, func);
3879 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3880 perf_event_for_each_child(sibling, func);
3883 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3885 struct perf_event_context *ctx = event->ctx;
3886 int ret = 0, active;
3889 if (!is_sampling_event(event))
3892 if (copy_from_user(&value, arg, sizeof(value)))
3898 raw_spin_lock_irq(&ctx->lock);
3899 if (event->attr.freq) {
3900 if (value > sysctl_perf_event_sample_rate) {
3905 event->attr.sample_freq = value;
3907 event->attr.sample_period = value;
3908 event->hw.sample_period = value;
3911 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3913 perf_pmu_disable(ctx->pmu);
3914 event->pmu->stop(event, PERF_EF_UPDATE);
3917 local64_set(&event->hw.period_left, 0);
3920 event->pmu->start(event, PERF_EF_RELOAD);
3921 perf_pmu_enable(ctx->pmu);
3925 raw_spin_unlock_irq(&ctx->lock);
3930 static const struct file_operations perf_fops;
3932 static inline int perf_fget_light(int fd, struct fd *p)
3934 struct fd f = fdget(fd);
3938 if (f.file->f_op != &perf_fops) {
3946 static int perf_event_set_output(struct perf_event *event,
3947 struct perf_event *output_event);
3948 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3950 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3952 void (*func)(struct perf_event *);
3956 case PERF_EVENT_IOC_ENABLE:
3957 func = _perf_event_enable;
3959 case PERF_EVENT_IOC_DISABLE:
3960 func = _perf_event_disable;
3962 case PERF_EVENT_IOC_RESET:
3963 func = _perf_event_reset;
3966 case PERF_EVENT_IOC_REFRESH:
3967 return _perf_event_refresh(event, arg);
3969 case PERF_EVENT_IOC_PERIOD:
3970 return perf_event_period(event, (u64 __user *)arg);
3972 case PERF_EVENT_IOC_ID:
3974 u64 id = primary_event_id(event);
3976 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3981 case PERF_EVENT_IOC_SET_OUTPUT:
3985 struct perf_event *output_event;
3987 ret = perf_fget_light(arg, &output);
3990 output_event = output.file->private_data;
3991 ret = perf_event_set_output(event, output_event);
3994 ret = perf_event_set_output(event, NULL);
3999 case PERF_EVENT_IOC_SET_FILTER:
4000 return perf_event_set_filter(event, (void __user *)arg);
4006 if (flags & PERF_IOC_FLAG_GROUP)
4007 perf_event_for_each(event, func);
4009 perf_event_for_each_child(event, func);
4014 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4016 struct perf_event *event = file->private_data;
4017 struct perf_event_context *ctx;
4020 ctx = perf_event_ctx_lock(event);
4021 ret = _perf_ioctl(event, cmd, arg);
4022 perf_event_ctx_unlock(event, ctx);
4027 #ifdef CONFIG_COMPAT
4028 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4031 switch (_IOC_NR(cmd)) {
4032 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4033 case _IOC_NR(PERF_EVENT_IOC_ID):
4034 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4035 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4036 cmd &= ~IOCSIZE_MASK;
4037 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4041 return perf_ioctl(file, cmd, arg);
4044 # define perf_compat_ioctl NULL
4047 int perf_event_task_enable(void)
4049 struct perf_event_context *ctx;
4050 struct perf_event *event;
4052 mutex_lock(¤t->perf_event_mutex);
4053 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4054 ctx = perf_event_ctx_lock(event);
4055 perf_event_for_each_child(event, _perf_event_enable);
4056 perf_event_ctx_unlock(event, ctx);
4058 mutex_unlock(¤t->perf_event_mutex);
4063 int perf_event_task_disable(void)
4065 struct perf_event_context *ctx;
4066 struct perf_event *event;
4068 mutex_lock(¤t->perf_event_mutex);
4069 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4070 ctx = perf_event_ctx_lock(event);
4071 perf_event_for_each_child(event, _perf_event_disable);
4072 perf_event_ctx_unlock(event, ctx);
4074 mutex_unlock(¤t->perf_event_mutex);
4079 static int perf_event_index(struct perf_event *event)
4081 if (event->hw.state & PERF_HES_STOPPED)
4084 if (event->state != PERF_EVENT_STATE_ACTIVE)
4087 return event->pmu->event_idx(event);
4090 static void calc_timer_values(struct perf_event *event,
4097 *now = perf_clock();
4098 ctx_time = event->shadow_ctx_time + *now;
4099 *enabled = ctx_time - event->tstamp_enabled;
4100 *running = ctx_time - event->tstamp_running;
4103 static void perf_event_init_userpage(struct perf_event *event)
4105 struct perf_event_mmap_page *userpg;
4106 struct ring_buffer *rb;
4109 rb = rcu_dereference(event->rb);
4113 userpg = rb->user_page;
4115 /* Allow new userspace to detect that bit 0 is deprecated */
4116 userpg->cap_bit0_is_deprecated = 1;
4117 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4123 void __weak arch_perf_update_userpage(
4124 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4129 * Callers need to ensure there can be no nesting of this function, otherwise
4130 * the seqlock logic goes bad. We can not serialize this because the arch
4131 * code calls this from NMI context.
4133 void perf_event_update_userpage(struct perf_event *event)
4135 struct perf_event_mmap_page *userpg;
4136 struct ring_buffer *rb;
4137 u64 enabled, running, now;
4140 rb = rcu_dereference(event->rb);
4145 * compute total_time_enabled, total_time_running
4146 * based on snapshot values taken when the event
4147 * was last scheduled in.
4149 * we cannot simply called update_context_time()
4150 * because of locking issue as we can be called in
4153 calc_timer_values(event, &now, &enabled, &running);
4155 userpg = rb->user_page;
4157 * Disable preemption so as to not let the corresponding user-space
4158 * spin too long if we get preempted.
4163 userpg->index = perf_event_index(event);
4164 userpg->offset = perf_event_count(event);
4166 userpg->offset -= local64_read(&event->hw.prev_count);
4168 userpg->time_enabled = enabled +
4169 atomic64_read(&event->child_total_time_enabled);
4171 userpg->time_running = running +
4172 atomic64_read(&event->child_total_time_running);
4174 arch_perf_update_userpage(event, userpg, now);
4183 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4185 struct perf_event *event = vma->vm_file->private_data;
4186 struct ring_buffer *rb;
4187 int ret = VM_FAULT_SIGBUS;
4189 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4190 if (vmf->pgoff == 0)
4196 rb = rcu_dereference(event->rb);
4200 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4203 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4207 get_page(vmf->page);
4208 vmf->page->mapping = vma->vm_file->f_mapping;
4209 vmf->page->index = vmf->pgoff;
4218 static void ring_buffer_attach(struct perf_event *event,
4219 struct ring_buffer *rb)
4221 struct ring_buffer *old_rb = NULL;
4222 unsigned long flags;
4226 * Should be impossible, we set this when removing
4227 * event->rb_entry and wait/clear when adding event->rb_entry.
4229 WARN_ON_ONCE(event->rcu_pending);
4232 event->rcu_batches = get_state_synchronize_rcu();
4233 event->rcu_pending = 1;
4235 spin_lock_irqsave(&old_rb->event_lock, flags);
4236 list_del_rcu(&event->rb_entry);
4237 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4240 if (event->rcu_pending && rb) {
4241 cond_synchronize_rcu(event->rcu_batches);
4242 event->rcu_pending = 0;
4246 spin_lock_irqsave(&rb->event_lock, flags);
4247 list_add_rcu(&event->rb_entry, &rb->event_list);
4248 spin_unlock_irqrestore(&rb->event_lock, flags);
4251 rcu_assign_pointer(event->rb, rb);
4254 ring_buffer_put(old_rb);
4256 * Since we detached before setting the new rb, so that we
4257 * could attach the new rb, we could have missed a wakeup.
4260 wake_up_all(&event->waitq);
4264 static void ring_buffer_wakeup(struct perf_event *event)
4266 struct ring_buffer *rb;
4269 rb = rcu_dereference(event->rb);
4271 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4272 wake_up_all(&event->waitq);
4277 static void rb_free_rcu(struct rcu_head *rcu_head)
4279 struct ring_buffer *rb;
4281 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4285 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4287 struct ring_buffer *rb;
4290 rb = rcu_dereference(event->rb);
4292 if (!atomic_inc_not_zero(&rb->refcount))
4300 static void ring_buffer_put(struct ring_buffer *rb)
4302 if (!atomic_dec_and_test(&rb->refcount))
4305 WARN_ON_ONCE(!list_empty(&rb->event_list));
4307 call_rcu(&rb->rcu_head, rb_free_rcu);
4310 static void perf_mmap_open(struct vm_area_struct *vma)
4312 struct perf_event *event = vma->vm_file->private_data;
4314 atomic_inc(&event->mmap_count);
4315 atomic_inc(&event->rb->mmap_count);
4317 if (event->pmu->event_mapped)
4318 event->pmu->event_mapped(event);
4322 * A buffer can be mmap()ed multiple times; either directly through the same
4323 * event, or through other events by use of perf_event_set_output().
4325 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4326 * the buffer here, where we still have a VM context. This means we need
4327 * to detach all events redirecting to us.
4329 static void perf_mmap_close(struct vm_area_struct *vma)
4331 struct perf_event *event = vma->vm_file->private_data;
4333 struct ring_buffer *rb = ring_buffer_get(event);
4334 struct user_struct *mmap_user = rb->mmap_user;
4335 int mmap_locked = rb->mmap_locked;
4336 unsigned long size = perf_data_size(rb);
4338 if (event->pmu->event_unmapped)
4339 event->pmu->event_unmapped(event);
4341 atomic_dec(&rb->mmap_count);
4343 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4346 ring_buffer_attach(event, NULL);
4347 mutex_unlock(&event->mmap_mutex);
4349 /* If there's still other mmap()s of this buffer, we're done. */
4350 if (atomic_read(&rb->mmap_count))
4354 * No other mmap()s, detach from all other events that might redirect
4355 * into the now unreachable buffer. Somewhat complicated by the
4356 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4360 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4361 if (!atomic_long_inc_not_zero(&event->refcount)) {
4363 * This event is en-route to free_event() which will
4364 * detach it and remove it from the list.
4370 mutex_lock(&event->mmap_mutex);
4372 * Check we didn't race with perf_event_set_output() which can
4373 * swizzle the rb from under us while we were waiting to
4374 * acquire mmap_mutex.
4376 * If we find a different rb; ignore this event, a next
4377 * iteration will no longer find it on the list. We have to
4378 * still restart the iteration to make sure we're not now
4379 * iterating the wrong list.
4381 if (event->rb == rb)
4382 ring_buffer_attach(event, NULL);
4384 mutex_unlock(&event->mmap_mutex);
4388 * Restart the iteration; either we're on the wrong list or
4389 * destroyed its integrity by doing a deletion.
4396 * It could be there's still a few 0-ref events on the list; they'll
4397 * get cleaned up by free_event() -- they'll also still have their
4398 * ref on the rb and will free it whenever they are done with it.
4400 * Aside from that, this buffer is 'fully' detached and unmapped,
4401 * undo the VM accounting.
4404 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4405 vma->vm_mm->pinned_vm -= mmap_locked;
4406 free_uid(mmap_user);
4409 ring_buffer_put(rb); /* could be last */
4412 static const struct vm_operations_struct perf_mmap_vmops = {
4413 .open = perf_mmap_open,
4414 .close = perf_mmap_close,
4415 .fault = perf_mmap_fault,
4416 .page_mkwrite = perf_mmap_fault,
4419 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4421 struct perf_event *event = file->private_data;
4422 unsigned long user_locked, user_lock_limit;
4423 struct user_struct *user = current_user();
4424 unsigned long locked, lock_limit;
4425 struct ring_buffer *rb;
4426 unsigned long vma_size;
4427 unsigned long nr_pages;
4428 long user_extra, extra;
4429 int ret = 0, flags = 0;
4432 * Don't allow mmap() of inherited per-task counters. This would
4433 * create a performance issue due to all children writing to the
4436 if (event->cpu == -1 && event->attr.inherit)
4439 if (!(vma->vm_flags & VM_SHARED))
4442 vma_size = vma->vm_end - vma->vm_start;
4443 nr_pages = (vma_size / PAGE_SIZE) - 1;
4446 * If we have rb pages ensure they're a power-of-two number, so we
4447 * can do bitmasks instead of modulo.
4449 if (!is_power_of_2(nr_pages))
4452 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4455 if (vma->vm_pgoff != 0)
4458 WARN_ON_ONCE(event->ctx->parent_ctx);
4460 mutex_lock(&event->mmap_mutex);
4462 if (event->rb->nr_pages != nr_pages) {
4467 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4469 * Raced against perf_mmap_close() through
4470 * perf_event_set_output(). Try again, hope for better
4473 mutex_unlock(&event->mmap_mutex);
4480 user_extra = nr_pages + 1;
4481 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4484 * Increase the limit linearly with more CPUs:
4486 user_lock_limit *= num_online_cpus();
4488 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4491 if (user_locked > user_lock_limit)
4492 extra = user_locked - user_lock_limit;
4494 lock_limit = rlimit(RLIMIT_MEMLOCK);
4495 lock_limit >>= PAGE_SHIFT;
4496 locked = vma->vm_mm->pinned_vm + extra;
4498 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4499 !capable(CAP_IPC_LOCK)) {
4506 if (vma->vm_flags & VM_WRITE)
4507 flags |= RING_BUFFER_WRITABLE;
4509 rb = rb_alloc(nr_pages,
4510 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4518 atomic_set(&rb->mmap_count, 1);
4519 rb->mmap_locked = extra;
4520 rb->mmap_user = get_current_user();
4522 atomic_long_add(user_extra, &user->locked_vm);
4523 vma->vm_mm->pinned_vm += extra;
4525 ring_buffer_attach(event, rb);
4527 perf_event_init_userpage(event);
4528 perf_event_update_userpage(event);
4532 atomic_inc(&event->mmap_count);
4533 mutex_unlock(&event->mmap_mutex);
4536 * Since pinned accounting is per vm we cannot allow fork() to copy our
4539 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4540 vma->vm_ops = &perf_mmap_vmops;
4542 if (event->pmu->event_mapped)
4543 event->pmu->event_mapped(event);
4548 static int perf_fasync(int fd, struct file *filp, int on)
4550 struct inode *inode = file_inode(filp);
4551 struct perf_event *event = filp->private_data;
4554 mutex_lock(&inode->i_mutex);
4555 retval = fasync_helper(fd, filp, on, &event->fasync);
4556 mutex_unlock(&inode->i_mutex);
4564 static const struct file_operations perf_fops = {
4565 .llseek = no_llseek,
4566 .release = perf_release,
4569 .unlocked_ioctl = perf_ioctl,
4570 .compat_ioctl = perf_compat_ioctl,
4572 .fasync = perf_fasync,
4578 * If there's data, ensure we set the poll() state and publish everything
4579 * to user-space before waking everybody up.
4582 void perf_event_wakeup(struct perf_event *event)
4584 ring_buffer_wakeup(event);
4586 if (event->pending_kill) {
4587 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4588 event->pending_kill = 0;
4592 static void perf_pending_event(struct irq_work *entry)
4594 struct perf_event *event = container_of(entry,
4595 struct perf_event, pending);
4597 if (event->pending_disable) {
4598 event->pending_disable = 0;
4599 __perf_event_disable(event);
4602 if (event->pending_wakeup) {
4603 event->pending_wakeup = 0;
4604 perf_event_wakeup(event);
4609 * We assume there is only KVM supporting the callbacks.
4610 * Later on, we might change it to a list if there is
4611 * another virtualization implementation supporting the callbacks.
4613 struct perf_guest_info_callbacks *perf_guest_cbs;
4615 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4617 perf_guest_cbs = cbs;
4620 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4622 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4624 perf_guest_cbs = NULL;
4627 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4630 perf_output_sample_regs(struct perf_output_handle *handle,
4631 struct pt_regs *regs, u64 mask)
4635 for_each_set_bit(bit, (const unsigned long *) &mask,
4636 sizeof(mask) * BITS_PER_BYTE) {
4639 val = perf_reg_value(regs, bit);
4640 perf_output_put(handle, val);
4644 static void perf_sample_regs_user(struct perf_regs *regs_user,
4645 struct pt_regs *regs,
4646 struct pt_regs *regs_user_copy)
4648 if (user_mode(regs)) {
4649 regs_user->abi = perf_reg_abi(current);
4650 regs_user->regs = regs;
4651 } else if (current->mm) {
4652 perf_get_regs_user(regs_user, regs, regs_user_copy);
4654 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4655 regs_user->regs = NULL;
4659 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4660 struct pt_regs *regs)
4662 regs_intr->regs = regs;
4663 regs_intr->abi = perf_reg_abi(current);
4668 * Get remaining task size from user stack pointer.
4670 * It'd be better to take stack vma map and limit this more
4671 * precisly, but there's no way to get it safely under interrupt,
4672 * so using TASK_SIZE as limit.
4674 static u64 perf_ustack_task_size(struct pt_regs *regs)
4676 unsigned long addr = perf_user_stack_pointer(regs);
4678 if (!addr || addr >= TASK_SIZE)
4681 return TASK_SIZE - addr;
4685 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4686 struct pt_regs *regs)
4690 /* No regs, no stack pointer, no dump. */
4695 * Check if we fit in with the requested stack size into the:
4697 * If we don't, we limit the size to the TASK_SIZE.
4699 * - remaining sample size
4700 * If we don't, we customize the stack size to
4701 * fit in to the remaining sample size.
4704 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4705 stack_size = min(stack_size, (u16) task_size);
4707 /* Current header size plus static size and dynamic size. */
4708 header_size += 2 * sizeof(u64);
4710 /* Do we fit in with the current stack dump size? */
4711 if ((u16) (header_size + stack_size) < header_size) {
4713 * If we overflow the maximum size for the sample,
4714 * we customize the stack dump size to fit in.
4716 stack_size = USHRT_MAX - header_size - sizeof(u64);
4717 stack_size = round_up(stack_size, sizeof(u64));
4724 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4725 struct pt_regs *regs)
4727 /* Case of a kernel thread, nothing to dump */
4730 perf_output_put(handle, size);
4739 * - the size requested by user or the best one we can fit
4740 * in to the sample max size
4742 * - user stack dump data
4744 * - the actual dumped size
4748 perf_output_put(handle, dump_size);
4751 sp = perf_user_stack_pointer(regs);
4752 rem = __output_copy_user(handle, (void *) sp, dump_size);
4753 dyn_size = dump_size - rem;
4755 perf_output_skip(handle, rem);
4758 perf_output_put(handle, dyn_size);
4762 static void __perf_event_header__init_id(struct perf_event_header *header,
4763 struct perf_sample_data *data,
4764 struct perf_event *event)
4766 u64 sample_type = event->attr.sample_type;
4768 data->type = sample_type;
4769 header->size += event->id_header_size;
4771 if (sample_type & PERF_SAMPLE_TID) {
4772 /* namespace issues */
4773 data->tid_entry.pid = perf_event_pid(event, current);
4774 data->tid_entry.tid = perf_event_tid(event, current);
4777 if (sample_type & PERF_SAMPLE_TIME)
4778 data->time = perf_clock();
4780 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4781 data->id = primary_event_id(event);
4783 if (sample_type & PERF_SAMPLE_STREAM_ID)
4784 data->stream_id = event->id;
4786 if (sample_type & PERF_SAMPLE_CPU) {
4787 data->cpu_entry.cpu = raw_smp_processor_id();
4788 data->cpu_entry.reserved = 0;
4792 void perf_event_header__init_id(struct perf_event_header *header,
4793 struct perf_sample_data *data,
4794 struct perf_event *event)
4796 if (event->attr.sample_id_all)
4797 __perf_event_header__init_id(header, data, event);
4800 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4801 struct perf_sample_data *data)
4803 u64 sample_type = data->type;
4805 if (sample_type & PERF_SAMPLE_TID)
4806 perf_output_put(handle, data->tid_entry);
4808 if (sample_type & PERF_SAMPLE_TIME)
4809 perf_output_put(handle, data->time);
4811 if (sample_type & PERF_SAMPLE_ID)
4812 perf_output_put(handle, data->id);
4814 if (sample_type & PERF_SAMPLE_STREAM_ID)
4815 perf_output_put(handle, data->stream_id);
4817 if (sample_type & PERF_SAMPLE_CPU)
4818 perf_output_put(handle, data->cpu_entry);
4820 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4821 perf_output_put(handle, data->id);
4824 void perf_event__output_id_sample(struct perf_event *event,
4825 struct perf_output_handle *handle,
4826 struct perf_sample_data *sample)
4828 if (event->attr.sample_id_all)
4829 __perf_event__output_id_sample(handle, sample);
4832 static void perf_output_read_one(struct perf_output_handle *handle,
4833 struct perf_event *event,
4834 u64 enabled, u64 running)
4836 u64 read_format = event->attr.read_format;
4840 values[n++] = perf_event_count(event);
4841 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4842 values[n++] = enabled +
4843 atomic64_read(&event->child_total_time_enabled);
4845 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4846 values[n++] = running +
4847 atomic64_read(&event->child_total_time_running);
4849 if (read_format & PERF_FORMAT_ID)
4850 values[n++] = primary_event_id(event);
4852 __output_copy(handle, values, n * sizeof(u64));
4856 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4858 static void perf_output_read_group(struct perf_output_handle *handle,
4859 struct perf_event *event,
4860 u64 enabled, u64 running)
4862 struct perf_event *leader = event->group_leader, *sub;
4863 u64 read_format = event->attr.read_format;
4867 values[n++] = 1 + leader->nr_siblings;
4869 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4870 values[n++] = enabled;
4872 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4873 values[n++] = running;
4875 if (leader != event)
4876 leader->pmu->read(leader);
4878 values[n++] = perf_event_count(leader);
4879 if (read_format & PERF_FORMAT_ID)
4880 values[n++] = primary_event_id(leader);
4882 __output_copy(handle, values, n * sizeof(u64));
4884 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4887 if ((sub != event) &&
4888 (sub->state == PERF_EVENT_STATE_ACTIVE))
4889 sub->pmu->read(sub);
4891 values[n++] = perf_event_count(sub);
4892 if (read_format & PERF_FORMAT_ID)
4893 values[n++] = primary_event_id(sub);
4895 __output_copy(handle, values, n * sizeof(u64));
4899 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4900 PERF_FORMAT_TOTAL_TIME_RUNNING)
4902 static void perf_output_read(struct perf_output_handle *handle,
4903 struct perf_event *event)
4905 u64 enabled = 0, running = 0, now;
4906 u64 read_format = event->attr.read_format;
4909 * compute total_time_enabled, total_time_running
4910 * based on snapshot values taken when the event
4911 * was last scheduled in.
4913 * we cannot simply called update_context_time()
4914 * because of locking issue as we are called in
4917 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4918 calc_timer_values(event, &now, &enabled, &running);
4920 if (event->attr.read_format & PERF_FORMAT_GROUP)
4921 perf_output_read_group(handle, event, enabled, running);
4923 perf_output_read_one(handle, event, enabled, running);
4926 void perf_output_sample(struct perf_output_handle *handle,
4927 struct perf_event_header *header,
4928 struct perf_sample_data *data,
4929 struct perf_event *event)
4931 u64 sample_type = data->type;
4933 perf_output_put(handle, *header);
4935 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4936 perf_output_put(handle, data->id);
4938 if (sample_type & PERF_SAMPLE_IP)
4939 perf_output_put(handle, data->ip);
4941 if (sample_type & PERF_SAMPLE_TID)
4942 perf_output_put(handle, data->tid_entry);
4944 if (sample_type & PERF_SAMPLE_TIME)
4945 perf_output_put(handle, data->time);
4947 if (sample_type & PERF_SAMPLE_ADDR)
4948 perf_output_put(handle, data->addr);
4950 if (sample_type & PERF_SAMPLE_ID)
4951 perf_output_put(handle, data->id);
4953 if (sample_type & PERF_SAMPLE_STREAM_ID)
4954 perf_output_put(handle, data->stream_id);
4956 if (sample_type & PERF_SAMPLE_CPU)
4957 perf_output_put(handle, data->cpu_entry);
4959 if (sample_type & PERF_SAMPLE_PERIOD)
4960 perf_output_put(handle, data->period);
4962 if (sample_type & PERF_SAMPLE_READ)
4963 perf_output_read(handle, event);
4965 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4966 if (data->callchain) {
4969 if (data->callchain)
4970 size += data->callchain->nr;
4972 size *= sizeof(u64);
4974 __output_copy(handle, data->callchain, size);
4977 perf_output_put(handle, nr);
4981 if (sample_type & PERF_SAMPLE_RAW) {
4983 perf_output_put(handle, data->raw->size);
4984 __output_copy(handle, data->raw->data,
4991 .size = sizeof(u32),
4994 perf_output_put(handle, raw);
4998 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4999 if (data->br_stack) {
5002 size = data->br_stack->nr
5003 * sizeof(struct perf_branch_entry);
5005 perf_output_put(handle, data->br_stack->nr);
5006 perf_output_copy(handle, data->br_stack->entries, size);
5009 * we always store at least the value of nr
5012 perf_output_put(handle, nr);
5016 if (sample_type & PERF_SAMPLE_REGS_USER) {
5017 u64 abi = data->regs_user.abi;
5020 * If there are no regs to dump, notice it through
5021 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5023 perf_output_put(handle, abi);
5026 u64 mask = event->attr.sample_regs_user;
5027 perf_output_sample_regs(handle,
5028 data->regs_user.regs,
5033 if (sample_type & PERF_SAMPLE_STACK_USER) {
5034 perf_output_sample_ustack(handle,
5035 data->stack_user_size,
5036 data->regs_user.regs);
5039 if (sample_type & PERF_SAMPLE_WEIGHT)
5040 perf_output_put(handle, data->weight);
5042 if (sample_type & PERF_SAMPLE_DATA_SRC)
5043 perf_output_put(handle, data->data_src.val);
5045 if (sample_type & PERF_SAMPLE_TRANSACTION)
5046 perf_output_put(handle, data->txn);
5048 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5049 u64 abi = data->regs_intr.abi;
5051 * If there are no regs to dump, notice it through
5052 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5054 perf_output_put(handle, abi);
5057 u64 mask = event->attr.sample_regs_intr;
5059 perf_output_sample_regs(handle,
5060 data->regs_intr.regs,
5065 if (!event->attr.watermark) {
5066 int wakeup_events = event->attr.wakeup_events;
5068 if (wakeup_events) {
5069 struct ring_buffer *rb = handle->rb;
5070 int events = local_inc_return(&rb->events);
5072 if (events >= wakeup_events) {
5073 local_sub(wakeup_events, &rb->events);
5074 local_inc(&rb->wakeup);
5080 void perf_prepare_sample(struct perf_event_header *header,
5081 struct perf_sample_data *data,
5082 struct perf_event *event,
5083 struct pt_regs *regs)
5085 u64 sample_type = event->attr.sample_type;
5087 header->type = PERF_RECORD_SAMPLE;
5088 header->size = sizeof(*header) + event->header_size;
5091 header->misc |= perf_misc_flags(regs);
5093 __perf_event_header__init_id(header, data, event);
5095 if (sample_type & PERF_SAMPLE_IP)
5096 data->ip = perf_instruction_pointer(regs);
5098 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5101 data->callchain = perf_callchain(event, regs);
5103 if (data->callchain)
5104 size += data->callchain->nr;
5106 header->size += size * sizeof(u64);
5109 if (sample_type & PERF_SAMPLE_RAW) {
5110 int size = sizeof(u32);
5113 size += data->raw->size;
5115 size += sizeof(u32);
5117 WARN_ON_ONCE(size & (sizeof(u64)-1));
5118 header->size += size;
5121 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5122 int size = sizeof(u64); /* nr */
5123 if (data->br_stack) {
5124 size += data->br_stack->nr
5125 * sizeof(struct perf_branch_entry);
5127 header->size += size;
5130 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5131 perf_sample_regs_user(&data->regs_user, regs,
5132 &data->regs_user_copy);
5134 if (sample_type & PERF_SAMPLE_REGS_USER) {
5135 /* regs dump ABI info */
5136 int size = sizeof(u64);
5138 if (data->regs_user.regs) {
5139 u64 mask = event->attr.sample_regs_user;
5140 size += hweight64(mask) * sizeof(u64);
5143 header->size += size;
5146 if (sample_type & PERF_SAMPLE_STACK_USER) {
5148 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5149 * processed as the last one or have additional check added
5150 * in case new sample type is added, because we could eat
5151 * up the rest of the sample size.
5153 u16 stack_size = event->attr.sample_stack_user;
5154 u16 size = sizeof(u64);
5156 stack_size = perf_sample_ustack_size(stack_size, header->size,
5157 data->regs_user.regs);
5160 * If there is something to dump, add space for the dump
5161 * itself and for the field that tells the dynamic size,
5162 * which is how many have been actually dumped.
5165 size += sizeof(u64) + stack_size;
5167 data->stack_user_size = stack_size;
5168 header->size += size;
5171 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5172 /* regs dump ABI info */
5173 int size = sizeof(u64);
5175 perf_sample_regs_intr(&data->regs_intr, regs);
5177 if (data->regs_intr.regs) {
5178 u64 mask = event->attr.sample_regs_intr;
5180 size += hweight64(mask) * sizeof(u64);
5183 header->size += size;
5187 static void perf_event_output(struct perf_event *event,
5188 struct perf_sample_data *data,
5189 struct pt_regs *regs)
5191 struct perf_output_handle handle;
5192 struct perf_event_header header;
5194 /* protect the callchain buffers */
5197 perf_prepare_sample(&header, data, event, regs);
5199 if (perf_output_begin(&handle, event, header.size))
5202 perf_output_sample(&handle, &header, data, event);
5204 perf_output_end(&handle);
5214 struct perf_read_event {
5215 struct perf_event_header header;
5222 perf_event_read_event(struct perf_event *event,
5223 struct task_struct *task)
5225 struct perf_output_handle handle;
5226 struct perf_sample_data sample;
5227 struct perf_read_event read_event = {
5229 .type = PERF_RECORD_READ,
5231 .size = sizeof(read_event) + event->read_size,
5233 .pid = perf_event_pid(event, task),
5234 .tid = perf_event_tid(event, task),
5238 perf_event_header__init_id(&read_event.header, &sample, event);
5239 ret = perf_output_begin(&handle, event, read_event.header.size);
5243 perf_output_put(&handle, read_event);
5244 perf_output_read(&handle, event);
5245 perf_event__output_id_sample(event, &handle, &sample);
5247 perf_output_end(&handle);
5250 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5253 perf_event_aux_ctx(struct perf_event_context *ctx,
5254 perf_event_aux_output_cb output,
5257 struct perf_event *event;
5259 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5260 if (event->state < PERF_EVENT_STATE_INACTIVE)
5262 if (!event_filter_match(event))
5264 output(event, data);
5269 perf_event_aux(perf_event_aux_output_cb output, void *data,
5270 struct perf_event_context *task_ctx)
5272 struct perf_cpu_context *cpuctx;
5273 struct perf_event_context *ctx;
5278 list_for_each_entry_rcu(pmu, &pmus, entry) {
5279 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5280 if (cpuctx->unique_pmu != pmu)
5282 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5285 ctxn = pmu->task_ctx_nr;
5288 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5290 perf_event_aux_ctx(ctx, output, data);
5292 put_cpu_ptr(pmu->pmu_cpu_context);
5297 perf_event_aux_ctx(task_ctx, output, data);
5304 * task tracking -- fork/exit
5306 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5309 struct perf_task_event {
5310 struct task_struct *task;
5311 struct perf_event_context *task_ctx;
5314 struct perf_event_header header;
5324 static int perf_event_task_match(struct perf_event *event)
5326 return event->attr.comm || event->attr.mmap ||
5327 event->attr.mmap2 || event->attr.mmap_data ||
5331 static void perf_event_task_output(struct perf_event *event,
5334 struct perf_task_event *task_event = data;
5335 struct perf_output_handle handle;
5336 struct perf_sample_data sample;
5337 struct task_struct *task = task_event->task;
5338 int ret, size = task_event->event_id.header.size;
5340 if (!perf_event_task_match(event))
5343 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5345 ret = perf_output_begin(&handle, event,
5346 task_event->event_id.header.size);
5350 task_event->event_id.pid = perf_event_pid(event, task);
5351 task_event->event_id.ppid = perf_event_pid(event, current);
5353 task_event->event_id.tid = perf_event_tid(event, task);
5354 task_event->event_id.ptid = perf_event_tid(event, current);
5356 perf_output_put(&handle, task_event->event_id);
5358 perf_event__output_id_sample(event, &handle, &sample);
5360 perf_output_end(&handle);
5362 task_event->event_id.header.size = size;
5365 static void perf_event_task(struct task_struct *task,
5366 struct perf_event_context *task_ctx,
5369 struct perf_task_event task_event;
5371 if (!atomic_read(&nr_comm_events) &&
5372 !atomic_read(&nr_mmap_events) &&
5373 !atomic_read(&nr_task_events))
5376 task_event = (struct perf_task_event){
5378 .task_ctx = task_ctx,
5381 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5383 .size = sizeof(task_event.event_id),
5389 .time = perf_clock(),
5393 perf_event_aux(perf_event_task_output,
5398 void perf_event_fork(struct task_struct *task)
5400 perf_event_task(task, NULL, 1);
5407 struct perf_comm_event {
5408 struct task_struct *task;
5413 struct perf_event_header header;
5420 static int perf_event_comm_match(struct perf_event *event)
5422 return event->attr.comm;
5425 static void perf_event_comm_output(struct perf_event *event,
5428 struct perf_comm_event *comm_event = data;
5429 struct perf_output_handle handle;
5430 struct perf_sample_data sample;
5431 int size = comm_event->event_id.header.size;
5434 if (!perf_event_comm_match(event))
5437 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5438 ret = perf_output_begin(&handle, event,
5439 comm_event->event_id.header.size);
5444 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5445 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5447 perf_output_put(&handle, comm_event->event_id);
5448 __output_copy(&handle, comm_event->comm,
5449 comm_event->comm_size);
5451 perf_event__output_id_sample(event, &handle, &sample);
5453 perf_output_end(&handle);
5455 comm_event->event_id.header.size = size;
5458 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5460 char comm[TASK_COMM_LEN];
5463 memset(comm, 0, sizeof(comm));
5464 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5465 size = ALIGN(strlen(comm)+1, sizeof(u64));
5467 comm_event->comm = comm;
5468 comm_event->comm_size = size;
5470 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5472 perf_event_aux(perf_event_comm_output,
5477 void perf_event_comm(struct task_struct *task, bool exec)
5479 struct perf_comm_event comm_event;
5481 if (!atomic_read(&nr_comm_events))
5484 comm_event = (struct perf_comm_event){
5490 .type = PERF_RECORD_COMM,
5491 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5499 perf_event_comm_event(&comm_event);
5506 struct perf_mmap_event {
5507 struct vm_area_struct *vma;
5509 const char *file_name;
5517 struct perf_event_header header;
5527 static int perf_event_mmap_match(struct perf_event *event,
5530 struct perf_mmap_event *mmap_event = data;
5531 struct vm_area_struct *vma = mmap_event->vma;
5532 int executable = vma->vm_flags & VM_EXEC;
5534 return (!executable && event->attr.mmap_data) ||
5535 (executable && (event->attr.mmap || event->attr.mmap2));
5538 static void perf_event_mmap_output(struct perf_event *event,
5541 struct perf_mmap_event *mmap_event = data;
5542 struct perf_output_handle handle;
5543 struct perf_sample_data sample;
5544 int size = mmap_event->event_id.header.size;
5547 if (!perf_event_mmap_match(event, data))
5550 if (event->attr.mmap2) {
5551 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5552 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5553 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5554 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5555 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5556 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5557 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5560 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5561 ret = perf_output_begin(&handle, event,
5562 mmap_event->event_id.header.size);
5566 mmap_event->event_id.pid = perf_event_pid(event, current);
5567 mmap_event->event_id.tid = perf_event_tid(event, current);
5569 perf_output_put(&handle, mmap_event->event_id);
5571 if (event->attr.mmap2) {
5572 perf_output_put(&handle, mmap_event->maj);
5573 perf_output_put(&handle, mmap_event->min);
5574 perf_output_put(&handle, mmap_event->ino);
5575 perf_output_put(&handle, mmap_event->ino_generation);
5576 perf_output_put(&handle, mmap_event->prot);
5577 perf_output_put(&handle, mmap_event->flags);
5580 __output_copy(&handle, mmap_event->file_name,
5581 mmap_event->file_size);
5583 perf_event__output_id_sample(event, &handle, &sample);
5585 perf_output_end(&handle);
5587 mmap_event->event_id.header.size = size;
5590 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5592 struct vm_area_struct *vma = mmap_event->vma;
5593 struct file *file = vma->vm_file;
5594 int maj = 0, min = 0;
5595 u64 ino = 0, gen = 0;
5596 u32 prot = 0, flags = 0;
5603 struct inode *inode;
5606 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5612 * d_path() works from the end of the rb backwards, so we
5613 * need to add enough zero bytes after the string to handle
5614 * the 64bit alignment we do later.
5616 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5621 inode = file_inode(vma->vm_file);
5622 dev = inode->i_sb->s_dev;
5624 gen = inode->i_generation;
5628 if (vma->vm_flags & VM_READ)
5630 if (vma->vm_flags & VM_WRITE)
5632 if (vma->vm_flags & VM_EXEC)
5635 if (vma->vm_flags & VM_MAYSHARE)
5638 flags = MAP_PRIVATE;
5640 if (vma->vm_flags & VM_DENYWRITE)
5641 flags |= MAP_DENYWRITE;
5642 if (vma->vm_flags & VM_MAYEXEC)
5643 flags |= MAP_EXECUTABLE;
5644 if (vma->vm_flags & VM_LOCKED)
5645 flags |= MAP_LOCKED;
5646 if (vma->vm_flags & VM_HUGETLB)
5647 flags |= MAP_HUGETLB;
5651 if (vma->vm_ops && vma->vm_ops->name) {
5652 name = (char *) vma->vm_ops->name(vma);
5657 name = (char *)arch_vma_name(vma);
5661 if (vma->vm_start <= vma->vm_mm->start_brk &&
5662 vma->vm_end >= vma->vm_mm->brk) {
5666 if (vma->vm_start <= vma->vm_mm->start_stack &&
5667 vma->vm_end >= vma->vm_mm->start_stack) {
5677 strlcpy(tmp, name, sizeof(tmp));
5681 * Since our buffer works in 8 byte units we need to align our string
5682 * size to a multiple of 8. However, we must guarantee the tail end is
5683 * zero'd out to avoid leaking random bits to userspace.
5685 size = strlen(name)+1;
5686 while (!IS_ALIGNED(size, sizeof(u64)))
5687 name[size++] = '\0';
5689 mmap_event->file_name = name;
5690 mmap_event->file_size = size;
5691 mmap_event->maj = maj;
5692 mmap_event->min = min;
5693 mmap_event->ino = ino;
5694 mmap_event->ino_generation = gen;
5695 mmap_event->prot = prot;
5696 mmap_event->flags = flags;
5698 if (!(vma->vm_flags & VM_EXEC))
5699 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5701 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5703 perf_event_aux(perf_event_mmap_output,
5710 void perf_event_mmap(struct vm_area_struct *vma)
5712 struct perf_mmap_event mmap_event;
5714 if (!atomic_read(&nr_mmap_events))
5717 mmap_event = (struct perf_mmap_event){
5723 .type = PERF_RECORD_MMAP,
5724 .misc = PERF_RECORD_MISC_USER,
5729 .start = vma->vm_start,
5730 .len = vma->vm_end - vma->vm_start,
5731 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5733 /* .maj (attr_mmap2 only) */
5734 /* .min (attr_mmap2 only) */
5735 /* .ino (attr_mmap2 only) */
5736 /* .ino_generation (attr_mmap2 only) */
5737 /* .prot (attr_mmap2 only) */
5738 /* .flags (attr_mmap2 only) */
5741 perf_event_mmap_event(&mmap_event);
5745 * IRQ throttle logging
5748 static void perf_log_throttle(struct perf_event *event, int enable)
5750 struct perf_output_handle handle;
5751 struct perf_sample_data sample;
5755 struct perf_event_header header;
5759 } throttle_event = {
5761 .type = PERF_RECORD_THROTTLE,
5763 .size = sizeof(throttle_event),
5765 .time = perf_clock(),
5766 .id = primary_event_id(event),
5767 .stream_id = event->id,
5771 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5773 perf_event_header__init_id(&throttle_event.header, &sample, event);
5775 ret = perf_output_begin(&handle, event,
5776 throttle_event.header.size);
5780 perf_output_put(&handle, throttle_event);
5781 perf_event__output_id_sample(event, &handle, &sample);
5782 perf_output_end(&handle);
5786 * Generic event overflow handling, sampling.
5789 static int __perf_event_overflow(struct perf_event *event,
5790 int throttle, struct perf_sample_data *data,
5791 struct pt_regs *regs)
5793 int events = atomic_read(&event->event_limit);
5794 struct hw_perf_event *hwc = &event->hw;
5799 * Non-sampling counters might still use the PMI to fold short
5800 * hardware counters, ignore those.
5802 if (unlikely(!is_sampling_event(event)))
5805 seq = __this_cpu_read(perf_throttled_seq);
5806 if (seq != hwc->interrupts_seq) {
5807 hwc->interrupts_seq = seq;
5808 hwc->interrupts = 1;
5811 if (unlikely(throttle
5812 && hwc->interrupts >= max_samples_per_tick)) {
5813 __this_cpu_inc(perf_throttled_count);
5814 hwc->interrupts = MAX_INTERRUPTS;
5815 perf_log_throttle(event, 0);
5816 tick_nohz_full_kick();
5821 if (event->attr.freq) {
5822 u64 now = perf_clock();
5823 s64 delta = now - hwc->freq_time_stamp;
5825 hwc->freq_time_stamp = now;
5827 if (delta > 0 && delta < 2*TICK_NSEC)
5828 perf_adjust_period(event, delta, hwc->last_period, true);
5832 * XXX event_limit might not quite work as expected on inherited
5836 event->pending_kill = POLL_IN;
5837 if (events && atomic_dec_and_test(&event->event_limit)) {
5839 event->pending_kill = POLL_HUP;
5840 event->pending_disable = 1;
5841 irq_work_queue(&event->pending);
5844 if (event->overflow_handler)
5845 event->overflow_handler(event, data, regs);
5847 perf_event_output(event, data, regs);
5849 if (event->fasync && event->pending_kill) {
5850 event->pending_wakeup = 1;
5851 irq_work_queue(&event->pending);
5857 int perf_event_overflow(struct perf_event *event,
5858 struct perf_sample_data *data,
5859 struct pt_regs *regs)
5861 return __perf_event_overflow(event, 1, data, regs);
5865 * Generic software event infrastructure
5868 struct swevent_htable {
5869 struct swevent_hlist *swevent_hlist;
5870 struct mutex hlist_mutex;
5873 /* Recursion avoidance in each contexts */
5874 int recursion[PERF_NR_CONTEXTS];
5876 /* Keeps track of cpu being initialized/exited */
5880 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5883 * We directly increment event->count and keep a second value in
5884 * event->hw.period_left to count intervals. This period event
5885 * is kept in the range [-sample_period, 0] so that we can use the
5889 u64 perf_swevent_set_period(struct perf_event *event)
5891 struct hw_perf_event *hwc = &event->hw;
5892 u64 period = hwc->last_period;
5896 hwc->last_period = hwc->sample_period;
5899 old = val = local64_read(&hwc->period_left);
5903 nr = div64_u64(period + val, period);
5904 offset = nr * period;
5906 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5912 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5913 struct perf_sample_data *data,
5914 struct pt_regs *regs)
5916 struct hw_perf_event *hwc = &event->hw;
5920 overflow = perf_swevent_set_period(event);
5922 if (hwc->interrupts == MAX_INTERRUPTS)
5925 for (; overflow; overflow--) {
5926 if (__perf_event_overflow(event, throttle,
5929 * We inhibit the overflow from happening when
5930 * hwc->interrupts == MAX_INTERRUPTS.
5938 static void perf_swevent_event(struct perf_event *event, u64 nr,
5939 struct perf_sample_data *data,
5940 struct pt_regs *regs)
5942 struct hw_perf_event *hwc = &event->hw;
5944 local64_add(nr, &event->count);
5949 if (!is_sampling_event(event))
5952 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5954 return perf_swevent_overflow(event, 1, data, regs);
5956 data->period = event->hw.last_period;
5958 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5959 return perf_swevent_overflow(event, 1, data, regs);
5961 if (local64_add_negative(nr, &hwc->period_left))
5964 perf_swevent_overflow(event, 0, data, regs);
5967 static int perf_exclude_event(struct perf_event *event,
5968 struct pt_regs *regs)
5970 if (event->hw.state & PERF_HES_STOPPED)
5974 if (event->attr.exclude_user && user_mode(regs))
5977 if (event->attr.exclude_kernel && !user_mode(regs))
5984 static int perf_swevent_match(struct perf_event *event,
5985 enum perf_type_id type,
5987 struct perf_sample_data *data,
5988 struct pt_regs *regs)
5990 if (event->attr.type != type)
5993 if (event->attr.config != event_id)
5996 if (perf_exclude_event(event, regs))
6002 static inline u64 swevent_hash(u64 type, u32 event_id)
6004 u64 val = event_id | (type << 32);
6006 return hash_64(val, SWEVENT_HLIST_BITS);
6009 static inline struct hlist_head *
6010 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6012 u64 hash = swevent_hash(type, event_id);
6014 return &hlist->heads[hash];
6017 /* For the read side: events when they trigger */
6018 static inline struct hlist_head *
6019 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6021 struct swevent_hlist *hlist;
6023 hlist = rcu_dereference(swhash->swevent_hlist);
6027 return __find_swevent_head(hlist, type, event_id);
6030 /* For the event head insertion and removal in the hlist */
6031 static inline struct hlist_head *
6032 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6034 struct swevent_hlist *hlist;
6035 u32 event_id = event->attr.config;
6036 u64 type = event->attr.type;
6039 * Event scheduling is always serialized against hlist allocation
6040 * and release. Which makes the protected version suitable here.
6041 * The context lock guarantees that.
6043 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6044 lockdep_is_held(&event->ctx->lock));
6048 return __find_swevent_head(hlist, type, event_id);
6051 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6053 struct perf_sample_data *data,
6054 struct pt_regs *regs)
6056 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6057 struct perf_event *event;
6058 struct hlist_head *head;
6061 head = find_swevent_head_rcu(swhash, type, event_id);
6065 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6066 if (perf_swevent_match(event, type, event_id, data, regs))
6067 perf_swevent_event(event, nr, data, regs);
6073 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6075 int perf_swevent_get_recursion_context(void)
6077 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6079 return get_recursion_context(swhash->recursion);
6081 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6083 inline void perf_swevent_put_recursion_context(int rctx)
6085 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6087 put_recursion_context(swhash->recursion, rctx);
6090 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6092 struct perf_sample_data data;
6094 if (WARN_ON_ONCE(!regs))
6097 perf_sample_data_init(&data, addr, 0);
6098 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6101 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6105 preempt_disable_notrace();
6106 rctx = perf_swevent_get_recursion_context();
6107 if (unlikely(rctx < 0))
6110 ___perf_sw_event(event_id, nr, regs, addr);
6112 perf_swevent_put_recursion_context(rctx);
6114 preempt_enable_notrace();
6117 static void perf_swevent_read(struct perf_event *event)
6121 static int perf_swevent_add(struct perf_event *event, int flags)
6123 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6124 struct hw_perf_event *hwc = &event->hw;
6125 struct hlist_head *head;
6127 if (is_sampling_event(event)) {
6128 hwc->last_period = hwc->sample_period;
6129 perf_swevent_set_period(event);
6132 hwc->state = !(flags & PERF_EF_START);
6134 head = find_swevent_head(swhash, event);
6137 * We can race with cpu hotplug code. Do not
6138 * WARN if the cpu just got unplugged.
6140 WARN_ON_ONCE(swhash->online);
6144 hlist_add_head_rcu(&event->hlist_entry, head);
6145 perf_event_update_userpage(event);
6150 static void perf_swevent_del(struct perf_event *event, int flags)
6152 hlist_del_rcu(&event->hlist_entry);
6155 static void perf_swevent_start(struct perf_event *event, int flags)
6157 event->hw.state = 0;
6160 static void perf_swevent_stop(struct perf_event *event, int flags)
6162 event->hw.state = PERF_HES_STOPPED;
6165 /* Deref the hlist from the update side */
6166 static inline struct swevent_hlist *
6167 swevent_hlist_deref(struct swevent_htable *swhash)
6169 return rcu_dereference_protected(swhash->swevent_hlist,
6170 lockdep_is_held(&swhash->hlist_mutex));
6173 static void swevent_hlist_release(struct swevent_htable *swhash)
6175 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6180 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6181 kfree_rcu(hlist, rcu_head);
6184 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6186 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6188 mutex_lock(&swhash->hlist_mutex);
6190 if (!--swhash->hlist_refcount)
6191 swevent_hlist_release(swhash);
6193 mutex_unlock(&swhash->hlist_mutex);
6196 static void swevent_hlist_put(struct perf_event *event)
6200 for_each_possible_cpu(cpu)
6201 swevent_hlist_put_cpu(event, cpu);
6204 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6206 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6209 mutex_lock(&swhash->hlist_mutex);
6211 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6212 struct swevent_hlist *hlist;
6214 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6219 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6221 swhash->hlist_refcount++;
6223 mutex_unlock(&swhash->hlist_mutex);
6228 static int swevent_hlist_get(struct perf_event *event)
6231 int cpu, failed_cpu;
6234 for_each_possible_cpu(cpu) {
6235 err = swevent_hlist_get_cpu(event, cpu);
6245 for_each_possible_cpu(cpu) {
6246 if (cpu == failed_cpu)
6248 swevent_hlist_put_cpu(event, cpu);
6255 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6257 static void sw_perf_event_destroy(struct perf_event *event)
6259 u64 event_id = event->attr.config;
6261 WARN_ON(event->parent);
6263 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6264 swevent_hlist_put(event);
6267 static int perf_swevent_init(struct perf_event *event)
6269 u64 event_id = event->attr.config;
6271 if (event->attr.type != PERF_TYPE_SOFTWARE)
6275 * no branch sampling for software events
6277 if (has_branch_stack(event))
6281 case PERF_COUNT_SW_CPU_CLOCK:
6282 case PERF_COUNT_SW_TASK_CLOCK:
6289 if (event_id >= PERF_COUNT_SW_MAX)
6292 if (!event->parent) {
6295 err = swevent_hlist_get(event);
6299 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6300 event->destroy = sw_perf_event_destroy;
6306 static struct pmu perf_swevent = {
6307 .task_ctx_nr = perf_sw_context,
6309 .event_init = perf_swevent_init,
6310 .add = perf_swevent_add,
6311 .del = perf_swevent_del,
6312 .start = perf_swevent_start,
6313 .stop = perf_swevent_stop,
6314 .read = perf_swevent_read,
6317 #ifdef CONFIG_EVENT_TRACING
6319 static int perf_tp_filter_match(struct perf_event *event,
6320 struct perf_sample_data *data)
6322 void *record = data->raw->data;
6324 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6329 static int perf_tp_event_match(struct perf_event *event,
6330 struct perf_sample_data *data,
6331 struct pt_regs *regs)
6333 if (event->hw.state & PERF_HES_STOPPED)
6336 * All tracepoints are from kernel-space.
6338 if (event->attr.exclude_kernel)
6341 if (!perf_tp_filter_match(event, data))
6347 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6348 struct pt_regs *regs, struct hlist_head *head, int rctx,
6349 struct task_struct *task)
6351 struct perf_sample_data data;
6352 struct perf_event *event;
6354 struct perf_raw_record raw = {
6359 perf_sample_data_init(&data, addr, 0);
6362 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6363 if (perf_tp_event_match(event, &data, regs))
6364 perf_swevent_event(event, count, &data, regs);
6368 * If we got specified a target task, also iterate its context and
6369 * deliver this event there too.
6371 if (task && task != current) {
6372 struct perf_event_context *ctx;
6373 struct trace_entry *entry = record;
6376 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6381 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6383 if (event->attr.config != entry->type)
6385 if (perf_tp_event_match(event, &data, regs))
6386 perf_swevent_event(event, count, &data, regs);
6392 perf_swevent_put_recursion_context(rctx);
6394 EXPORT_SYMBOL_GPL(perf_tp_event);
6396 static void tp_perf_event_destroy(struct perf_event *event)
6398 perf_trace_destroy(event);
6401 static int perf_tp_event_init(struct perf_event *event)
6405 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6409 * no branch sampling for tracepoint events
6411 if (has_branch_stack(event))
6414 err = perf_trace_init(event);
6418 event->destroy = tp_perf_event_destroy;
6423 static struct pmu perf_tracepoint = {
6424 .task_ctx_nr = perf_sw_context,
6426 .event_init = perf_tp_event_init,
6427 .add = perf_trace_add,
6428 .del = perf_trace_del,
6429 .start = perf_swevent_start,
6430 .stop = perf_swevent_stop,
6431 .read = perf_swevent_read,
6434 static inline void perf_tp_register(void)
6436 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6439 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6444 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6447 filter_str = strndup_user(arg, PAGE_SIZE);
6448 if (IS_ERR(filter_str))
6449 return PTR_ERR(filter_str);
6451 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6457 static void perf_event_free_filter(struct perf_event *event)
6459 ftrace_profile_free_filter(event);
6464 static inline void perf_tp_register(void)
6468 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6473 static void perf_event_free_filter(struct perf_event *event)
6477 #endif /* CONFIG_EVENT_TRACING */
6479 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6480 void perf_bp_event(struct perf_event *bp, void *data)
6482 struct perf_sample_data sample;
6483 struct pt_regs *regs = data;
6485 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6487 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6488 perf_swevent_event(bp, 1, &sample, regs);
6493 * hrtimer based swevent callback
6496 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6498 enum hrtimer_restart ret = HRTIMER_RESTART;
6499 struct perf_sample_data data;
6500 struct pt_regs *regs;
6501 struct perf_event *event;
6504 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6506 if (event->state != PERF_EVENT_STATE_ACTIVE)
6507 return HRTIMER_NORESTART;
6509 event->pmu->read(event);
6511 perf_sample_data_init(&data, 0, event->hw.last_period);
6512 regs = get_irq_regs();
6514 if (regs && !perf_exclude_event(event, regs)) {
6515 if (!(event->attr.exclude_idle && is_idle_task(current)))
6516 if (__perf_event_overflow(event, 1, &data, regs))
6517 ret = HRTIMER_NORESTART;
6520 period = max_t(u64, 10000, event->hw.sample_period);
6521 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6526 static void perf_swevent_start_hrtimer(struct perf_event *event)
6528 struct hw_perf_event *hwc = &event->hw;
6531 if (!is_sampling_event(event))
6534 period = local64_read(&hwc->period_left);
6539 local64_set(&hwc->period_left, 0);
6541 period = max_t(u64, 10000, hwc->sample_period);
6543 __hrtimer_start_range_ns(&hwc->hrtimer,
6544 ns_to_ktime(period), 0,
6545 HRTIMER_MODE_REL_PINNED, 0);
6548 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6550 struct hw_perf_event *hwc = &event->hw;
6552 if (is_sampling_event(event)) {
6553 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6554 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6556 hrtimer_cancel(&hwc->hrtimer);
6560 static void perf_swevent_init_hrtimer(struct perf_event *event)
6562 struct hw_perf_event *hwc = &event->hw;
6564 if (!is_sampling_event(event))
6567 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6568 hwc->hrtimer.function = perf_swevent_hrtimer;
6571 * Since hrtimers have a fixed rate, we can do a static freq->period
6572 * mapping and avoid the whole period adjust feedback stuff.
6574 if (event->attr.freq) {
6575 long freq = event->attr.sample_freq;
6577 event->attr.sample_period = NSEC_PER_SEC / freq;
6578 hwc->sample_period = event->attr.sample_period;
6579 local64_set(&hwc->period_left, hwc->sample_period);
6580 hwc->last_period = hwc->sample_period;
6581 event->attr.freq = 0;
6586 * Software event: cpu wall time clock
6589 static void cpu_clock_event_update(struct perf_event *event)
6594 now = local_clock();
6595 prev = local64_xchg(&event->hw.prev_count, now);
6596 local64_add(now - prev, &event->count);
6599 static void cpu_clock_event_start(struct perf_event *event, int flags)
6601 local64_set(&event->hw.prev_count, local_clock());
6602 perf_swevent_start_hrtimer(event);
6605 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6607 perf_swevent_cancel_hrtimer(event);
6608 cpu_clock_event_update(event);
6611 static int cpu_clock_event_add(struct perf_event *event, int flags)
6613 if (flags & PERF_EF_START)
6614 cpu_clock_event_start(event, flags);
6615 perf_event_update_userpage(event);
6620 static void cpu_clock_event_del(struct perf_event *event, int flags)
6622 cpu_clock_event_stop(event, flags);
6625 static void cpu_clock_event_read(struct perf_event *event)
6627 cpu_clock_event_update(event);
6630 static int cpu_clock_event_init(struct perf_event *event)
6632 if (event->attr.type != PERF_TYPE_SOFTWARE)
6635 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6639 * no branch sampling for software events
6641 if (has_branch_stack(event))
6644 perf_swevent_init_hrtimer(event);
6649 static struct pmu perf_cpu_clock = {
6650 .task_ctx_nr = perf_sw_context,
6652 .event_init = cpu_clock_event_init,
6653 .add = cpu_clock_event_add,
6654 .del = cpu_clock_event_del,
6655 .start = cpu_clock_event_start,
6656 .stop = cpu_clock_event_stop,
6657 .read = cpu_clock_event_read,
6661 * Software event: task time clock
6664 static void task_clock_event_update(struct perf_event *event, u64 now)
6669 prev = local64_xchg(&event->hw.prev_count, now);
6671 local64_add(delta, &event->count);
6674 static void task_clock_event_start(struct perf_event *event, int flags)
6676 local64_set(&event->hw.prev_count, event->ctx->time);
6677 perf_swevent_start_hrtimer(event);
6680 static void task_clock_event_stop(struct perf_event *event, int flags)
6682 perf_swevent_cancel_hrtimer(event);
6683 task_clock_event_update(event, event->ctx->time);
6686 static int task_clock_event_add(struct perf_event *event, int flags)
6688 if (flags & PERF_EF_START)
6689 task_clock_event_start(event, flags);
6690 perf_event_update_userpage(event);
6695 static void task_clock_event_del(struct perf_event *event, int flags)
6697 task_clock_event_stop(event, PERF_EF_UPDATE);
6700 static void task_clock_event_read(struct perf_event *event)
6702 u64 now = perf_clock();
6703 u64 delta = now - event->ctx->timestamp;
6704 u64 time = event->ctx->time + delta;
6706 task_clock_event_update(event, time);
6709 static int task_clock_event_init(struct perf_event *event)
6711 if (event->attr.type != PERF_TYPE_SOFTWARE)
6714 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6718 * no branch sampling for software events
6720 if (has_branch_stack(event))
6723 perf_swevent_init_hrtimer(event);
6728 static struct pmu perf_task_clock = {
6729 .task_ctx_nr = perf_sw_context,
6731 .event_init = task_clock_event_init,
6732 .add = task_clock_event_add,
6733 .del = task_clock_event_del,
6734 .start = task_clock_event_start,
6735 .stop = task_clock_event_stop,
6736 .read = task_clock_event_read,
6739 static void perf_pmu_nop_void(struct pmu *pmu)
6743 static int perf_pmu_nop_int(struct pmu *pmu)
6748 static void perf_pmu_start_txn(struct pmu *pmu)
6750 perf_pmu_disable(pmu);
6753 static int perf_pmu_commit_txn(struct pmu *pmu)
6755 perf_pmu_enable(pmu);
6759 static void perf_pmu_cancel_txn(struct pmu *pmu)
6761 perf_pmu_enable(pmu);
6764 static int perf_event_idx_default(struct perf_event *event)
6770 * Ensures all contexts with the same task_ctx_nr have the same
6771 * pmu_cpu_context too.
6773 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6780 list_for_each_entry(pmu, &pmus, entry) {
6781 if (pmu->task_ctx_nr == ctxn)
6782 return pmu->pmu_cpu_context;
6788 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6792 for_each_possible_cpu(cpu) {
6793 struct perf_cpu_context *cpuctx;
6795 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6797 if (cpuctx->unique_pmu == old_pmu)
6798 cpuctx->unique_pmu = pmu;
6802 static void free_pmu_context(struct pmu *pmu)
6806 mutex_lock(&pmus_lock);
6808 * Like a real lame refcount.
6810 list_for_each_entry(i, &pmus, entry) {
6811 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6812 update_pmu_context(i, pmu);
6817 free_percpu(pmu->pmu_cpu_context);
6819 mutex_unlock(&pmus_lock);
6821 static struct idr pmu_idr;
6824 type_show(struct device *dev, struct device_attribute *attr, char *page)
6826 struct pmu *pmu = dev_get_drvdata(dev);
6828 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6830 static DEVICE_ATTR_RO(type);
6833 perf_event_mux_interval_ms_show(struct device *dev,
6834 struct device_attribute *attr,
6837 struct pmu *pmu = dev_get_drvdata(dev);
6839 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6843 perf_event_mux_interval_ms_store(struct device *dev,
6844 struct device_attribute *attr,
6845 const char *buf, size_t count)
6847 struct pmu *pmu = dev_get_drvdata(dev);
6848 int timer, cpu, ret;
6850 ret = kstrtoint(buf, 0, &timer);
6857 /* same value, noting to do */
6858 if (timer == pmu->hrtimer_interval_ms)
6861 pmu->hrtimer_interval_ms = timer;
6863 /* update all cpuctx for this PMU */
6864 for_each_possible_cpu(cpu) {
6865 struct perf_cpu_context *cpuctx;
6866 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6867 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6869 if (hrtimer_active(&cpuctx->hrtimer))
6870 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6875 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6877 static struct attribute *pmu_dev_attrs[] = {
6878 &dev_attr_type.attr,
6879 &dev_attr_perf_event_mux_interval_ms.attr,
6882 ATTRIBUTE_GROUPS(pmu_dev);
6884 static int pmu_bus_running;
6885 static struct bus_type pmu_bus = {
6886 .name = "event_source",
6887 .dev_groups = pmu_dev_groups,
6890 static void pmu_dev_release(struct device *dev)
6895 static int pmu_dev_alloc(struct pmu *pmu)
6899 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6903 pmu->dev->groups = pmu->attr_groups;
6904 device_initialize(pmu->dev);
6905 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6909 dev_set_drvdata(pmu->dev, pmu);
6910 pmu->dev->bus = &pmu_bus;
6911 pmu->dev->release = pmu_dev_release;
6912 ret = device_add(pmu->dev);
6920 put_device(pmu->dev);
6924 static struct lock_class_key cpuctx_mutex;
6925 static struct lock_class_key cpuctx_lock;
6927 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6931 mutex_lock(&pmus_lock);
6933 pmu->pmu_disable_count = alloc_percpu(int);
6934 if (!pmu->pmu_disable_count)
6943 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6951 if (pmu_bus_running) {
6952 ret = pmu_dev_alloc(pmu);
6958 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6959 if (pmu->pmu_cpu_context)
6960 goto got_cpu_context;
6963 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6964 if (!pmu->pmu_cpu_context)
6967 for_each_possible_cpu(cpu) {
6968 struct perf_cpu_context *cpuctx;
6970 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6971 __perf_event_init_context(&cpuctx->ctx);
6972 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6973 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6974 cpuctx->ctx.pmu = pmu;
6976 __perf_cpu_hrtimer_init(cpuctx, cpu);
6978 cpuctx->unique_pmu = pmu;
6982 if (!pmu->start_txn) {
6983 if (pmu->pmu_enable) {
6985 * If we have pmu_enable/pmu_disable calls, install
6986 * transaction stubs that use that to try and batch
6987 * hardware accesses.
6989 pmu->start_txn = perf_pmu_start_txn;
6990 pmu->commit_txn = perf_pmu_commit_txn;
6991 pmu->cancel_txn = perf_pmu_cancel_txn;
6993 pmu->start_txn = perf_pmu_nop_void;
6994 pmu->commit_txn = perf_pmu_nop_int;
6995 pmu->cancel_txn = perf_pmu_nop_void;
6999 if (!pmu->pmu_enable) {
7000 pmu->pmu_enable = perf_pmu_nop_void;
7001 pmu->pmu_disable = perf_pmu_nop_void;
7004 if (!pmu->event_idx)
7005 pmu->event_idx = perf_event_idx_default;
7007 list_add_rcu(&pmu->entry, &pmus);
7010 mutex_unlock(&pmus_lock);
7015 device_del(pmu->dev);
7016 put_device(pmu->dev);
7019 if (pmu->type >= PERF_TYPE_MAX)
7020 idr_remove(&pmu_idr, pmu->type);
7023 free_percpu(pmu->pmu_disable_count);
7026 EXPORT_SYMBOL_GPL(perf_pmu_register);
7028 void perf_pmu_unregister(struct pmu *pmu)
7030 mutex_lock(&pmus_lock);
7031 list_del_rcu(&pmu->entry);
7032 mutex_unlock(&pmus_lock);
7035 * We dereference the pmu list under both SRCU and regular RCU, so
7036 * synchronize against both of those.
7038 synchronize_srcu(&pmus_srcu);
7041 free_percpu(pmu->pmu_disable_count);
7042 if (pmu->type >= PERF_TYPE_MAX)
7043 idr_remove(&pmu_idr, pmu->type);
7044 device_del(pmu->dev);
7045 put_device(pmu->dev);
7046 free_pmu_context(pmu);
7048 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7050 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7054 if (!try_module_get(pmu->module))
7057 ret = pmu->event_init(event);
7059 module_put(pmu->module);
7064 struct pmu *perf_init_event(struct perf_event *event)
7066 struct pmu *pmu = NULL;
7070 idx = srcu_read_lock(&pmus_srcu);
7073 pmu = idr_find(&pmu_idr, event->attr.type);
7076 ret = perf_try_init_event(pmu, event);
7082 list_for_each_entry_rcu(pmu, &pmus, entry) {
7083 ret = perf_try_init_event(pmu, event);
7087 if (ret != -ENOENT) {
7092 pmu = ERR_PTR(-ENOENT);
7094 srcu_read_unlock(&pmus_srcu, idx);
7099 static void account_event_cpu(struct perf_event *event, int cpu)
7104 if (is_cgroup_event(event))
7105 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7108 static void account_event(struct perf_event *event)
7113 if (event->attach_state & PERF_ATTACH_TASK)
7114 static_key_slow_inc(&perf_sched_events.key);
7115 if (event->attr.mmap || event->attr.mmap_data)
7116 atomic_inc(&nr_mmap_events);
7117 if (event->attr.comm)
7118 atomic_inc(&nr_comm_events);
7119 if (event->attr.task)
7120 atomic_inc(&nr_task_events);
7121 if (event->attr.freq) {
7122 if (atomic_inc_return(&nr_freq_events) == 1)
7123 tick_nohz_full_kick_all();
7125 if (has_branch_stack(event))
7126 static_key_slow_inc(&perf_sched_events.key);
7127 if (is_cgroup_event(event))
7128 static_key_slow_inc(&perf_sched_events.key);
7130 account_event_cpu(event, event->cpu);
7134 * Allocate and initialize a event structure
7136 static struct perf_event *
7137 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7138 struct task_struct *task,
7139 struct perf_event *group_leader,
7140 struct perf_event *parent_event,
7141 perf_overflow_handler_t overflow_handler,
7145 struct perf_event *event;
7146 struct hw_perf_event *hwc;
7149 if ((unsigned)cpu >= nr_cpu_ids) {
7150 if (!task || cpu != -1)
7151 return ERR_PTR(-EINVAL);
7154 event = kzalloc(sizeof(*event), GFP_KERNEL);
7156 return ERR_PTR(-ENOMEM);
7159 * Single events are their own group leaders, with an
7160 * empty sibling list:
7163 group_leader = event;
7165 mutex_init(&event->child_mutex);
7166 INIT_LIST_HEAD(&event->child_list);
7168 INIT_LIST_HEAD(&event->group_entry);
7169 INIT_LIST_HEAD(&event->event_entry);
7170 INIT_LIST_HEAD(&event->sibling_list);
7171 INIT_LIST_HEAD(&event->rb_entry);
7172 INIT_LIST_HEAD(&event->active_entry);
7173 INIT_HLIST_NODE(&event->hlist_entry);
7176 init_waitqueue_head(&event->waitq);
7177 init_irq_work(&event->pending, perf_pending_event);
7179 mutex_init(&event->mmap_mutex);
7181 atomic_long_set(&event->refcount, 1);
7183 event->attr = *attr;
7184 event->group_leader = group_leader;
7188 event->parent = parent_event;
7190 event->ns = get_pid_ns(task_active_pid_ns(current));
7191 event->id = atomic64_inc_return(&perf_event_id);
7193 event->state = PERF_EVENT_STATE_INACTIVE;
7196 event->attach_state = PERF_ATTACH_TASK;
7198 if (attr->type == PERF_TYPE_TRACEPOINT)
7199 event->hw.tp_target = task;
7200 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7202 * hw_breakpoint is a bit difficult here..
7204 else if (attr->type == PERF_TYPE_BREAKPOINT)
7205 event->hw.bp_target = task;
7209 if (!overflow_handler && parent_event) {
7210 overflow_handler = parent_event->overflow_handler;
7211 context = parent_event->overflow_handler_context;
7214 event->overflow_handler = overflow_handler;
7215 event->overflow_handler_context = context;
7217 perf_event__state_init(event);
7222 hwc->sample_period = attr->sample_period;
7223 if (attr->freq && attr->sample_freq)
7224 hwc->sample_period = 1;
7225 hwc->last_period = hwc->sample_period;
7227 local64_set(&hwc->period_left, hwc->sample_period);
7230 * we currently do not support PERF_FORMAT_GROUP on inherited events
7232 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7235 if (!has_branch_stack(event))
7236 event->attr.branch_sample_type = 0;
7238 pmu = perf_init_event(event);
7241 else if (IS_ERR(pmu)) {
7246 if (!event->parent) {
7247 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7248 err = get_callchain_buffers();
7258 event->destroy(event);
7259 module_put(pmu->module);
7262 put_pid_ns(event->ns);
7265 return ERR_PTR(err);
7268 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7269 struct perf_event_attr *attr)
7274 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7278 * zero the full structure, so that a short copy will be nice.
7280 memset(attr, 0, sizeof(*attr));
7282 ret = get_user(size, &uattr->size);
7286 if (size > PAGE_SIZE) /* silly large */
7289 if (!size) /* abi compat */
7290 size = PERF_ATTR_SIZE_VER0;
7292 if (size < PERF_ATTR_SIZE_VER0)
7296 * If we're handed a bigger struct than we know of,
7297 * ensure all the unknown bits are 0 - i.e. new
7298 * user-space does not rely on any kernel feature
7299 * extensions we dont know about yet.
7301 if (size > sizeof(*attr)) {
7302 unsigned char __user *addr;
7303 unsigned char __user *end;
7306 addr = (void __user *)uattr + sizeof(*attr);
7307 end = (void __user *)uattr + size;
7309 for (; addr < end; addr++) {
7310 ret = get_user(val, addr);
7316 size = sizeof(*attr);
7319 ret = copy_from_user(attr, uattr, size);
7323 if (attr->__reserved_1)
7326 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7329 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7332 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7333 u64 mask = attr->branch_sample_type;
7335 /* only using defined bits */
7336 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7339 /* at least one branch bit must be set */
7340 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7343 /* propagate priv level, when not set for branch */
7344 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7346 /* exclude_kernel checked on syscall entry */
7347 if (!attr->exclude_kernel)
7348 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7350 if (!attr->exclude_user)
7351 mask |= PERF_SAMPLE_BRANCH_USER;
7353 if (!attr->exclude_hv)
7354 mask |= PERF_SAMPLE_BRANCH_HV;
7356 * adjust user setting (for HW filter setup)
7358 attr->branch_sample_type = mask;
7360 /* privileged levels capture (kernel, hv): check permissions */
7361 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7362 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7366 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7367 ret = perf_reg_validate(attr->sample_regs_user);
7372 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7373 if (!arch_perf_have_user_stack_dump())
7377 * We have __u32 type for the size, but so far
7378 * we can only use __u16 as maximum due to the
7379 * __u16 sample size limit.
7381 if (attr->sample_stack_user >= USHRT_MAX)
7383 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7387 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7388 ret = perf_reg_validate(attr->sample_regs_intr);
7393 put_user(sizeof(*attr), &uattr->size);
7399 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7401 struct ring_buffer *rb = NULL;
7407 /* don't allow circular references */
7408 if (event == output_event)
7412 * Don't allow cross-cpu buffers
7414 if (output_event->cpu != event->cpu)
7418 * If its not a per-cpu rb, it must be the same task.
7420 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7424 mutex_lock(&event->mmap_mutex);
7425 /* Can't redirect output if we've got an active mmap() */
7426 if (atomic_read(&event->mmap_count))
7430 /* get the rb we want to redirect to */
7431 rb = ring_buffer_get(output_event);
7436 ring_buffer_attach(event, rb);
7440 mutex_unlock(&event->mmap_mutex);
7446 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7452 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7456 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7458 * @attr_uptr: event_id type attributes for monitoring/sampling
7461 * @group_fd: group leader event fd
7463 SYSCALL_DEFINE5(perf_event_open,
7464 struct perf_event_attr __user *, attr_uptr,
7465 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7467 struct perf_event *group_leader = NULL, *output_event = NULL;
7468 struct perf_event *event, *sibling;
7469 struct perf_event_attr attr;
7470 struct perf_event_context *ctx, *uninitialized_var(gctx);
7471 struct file *event_file = NULL;
7472 struct fd group = {NULL, 0};
7473 struct task_struct *task = NULL;
7478 int f_flags = O_RDWR;
7480 /* for future expandability... */
7481 if (flags & ~PERF_FLAG_ALL)
7484 err = perf_copy_attr(attr_uptr, &attr);
7488 if (!attr.exclude_kernel) {
7489 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7494 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7497 if (attr.sample_period & (1ULL << 63))
7502 * In cgroup mode, the pid argument is used to pass the fd
7503 * opened to the cgroup directory in cgroupfs. The cpu argument
7504 * designates the cpu on which to monitor threads from that
7507 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7510 if (flags & PERF_FLAG_FD_CLOEXEC)
7511 f_flags |= O_CLOEXEC;
7513 event_fd = get_unused_fd_flags(f_flags);
7517 if (group_fd != -1) {
7518 err = perf_fget_light(group_fd, &group);
7521 group_leader = group.file->private_data;
7522 if (flags & PERF_FLAG_FD_OUTPUT)
7523 output_event = group_leader;
7524 if (flags & PERF_FLAG_FD_NO_GROUP)
7525 group_leader = NULL;
7528 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7529 task = find_lively_task_by_vpid(pid);
7531 err = PTR_ERR(task);
7536 if (task && group_leader &&
7537 group_leader->attr.inherit != attr.inherit) {
7544 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7546 if (IS_ERR(event)) {
7547 err = PTR_ERR(event);
7551 if (flags & PERF_FLAG_PID_CGROUP) {
7552 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7554 __free_event(event);
7559 if (is_sampling_event(event)) {
7560 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7566 account_event(event);
7569 * Special case software events and allow them to be part of
7570 * any hardware group.
7575 (is_software_event(event) != is_software_event(group_leader))) {
7576 if (is_software_event(event)) {
7578 * If event and group_leader are not both a software
7579 * event, and event is, then group leader is not.
7581 * Allow the addition of software events to !software
7582 * groups, this is safe because software events never
7585 pmu = group_leader->pmu;
7586 } else if (is_software_event(group_leader) &&
7587 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7589 * In case the group is a pure software group, and we
7590 * try to add a hardware event, move the whole group to
7591 * the hardware context.
7598 * Get the target context (task or percpu):
7600 ctx = find_get_context(pmu, task, event);
7607 put_task_struct(task);
7612 * Look up the group leader (we will attach this event to it):
7618 * Do not allow a recursive hierarchy (this new sibling
7619 * becoming part of another group-sibling):
7621 if (group_leader->group_leader != group_leader)
7624 * Do not allow to attach to a group in a different
7625 * task or CPU context:
7629 * Make sure we're both on the same task, or both
7632 if (group_leader->ctx->task != ctx->task)
7636 * Make sure we're both events for the same CPU;
7637 * grouping events for different CPUs is broken; since
7638 * you can never concurrently schedule them anyhow.
7640 if (group_leader->cpu != event->cpu)
7643 if (group_leader->ctx != ctx)
7648 * Only a group leader can be exclusive or pinned
7650 if (attr.exclusive || attr.pinned)
7655 err = perf_event_set_output(event, output_event);
7660 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7662 if (IS_ERR(event_file)) {
7663 err = PTR_ERR(event_file);
7668 gctx = group_leader->ctx;
7671 * See perf_event_ctx_lock() for comments on the details
7672 * of swizzling perf_event::ctx.
7674 mutex_lock_double(&gctx->mutex, &ctx->mutex);
7676 perf_remove_from_context(group_leader, false);
7678 list_for_each_entry(sibling, &group_leader->sibling_list,
7680 perf_remove_from_context(sibling, false);
7684 mutex_lock(&ctx->mutex);
7687 WARN_ON_ONCE(ctx->parent_ctx);
7691 * Wait for everybody to stop referencing the events through
7692 * the old lists, before installing it on new lists.
7697 * Install the group siblings before the group leader.
7699 * Because a group leader will try and install the entire group
7700 * (through the sibling list, which is still in-tact), we can
7701 * end up with siblings installed in the wrong context.
7703 * By installing siblings first we NO-OP because they're not
7704 * reachable through the group lists.
7706 list_for_each_entry(sibling, &group_leader->sibling_list,
7708 perf_event__state_init(sibling);
7709 perf_install_in_context(ctx, sibling, sibling->cpu);
7714 * Removing from the context ends up with disabled
7715 * event. What we want here is event in the initial
7716 * startup state, ready to be add into new context.
7718 perf_event__state_init(group_leader);
7719 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7723 perf_install_in_context(ctx, event, event->cpu);
7724 perf_unpin_context(ctx);
7727 mutex_unlock(&gctx->mutex);
7730 mutex_unlock(&ctx->mutex);
7734 event->owner = current;
7736 mutex_lock(¤t->perf_event_mutex);
7737 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
7738 mutex_unlock(¤t->perf_event_mutex);
7741 * Precalculate sample_data sizes
7743 perf_event__header_size(event);
7744 perf_event__id_header_size(event);
7747 * Drop the reference on the group_event after placing the
7748 * new event on the sibling_list. This ensures destruction
7749 * of the group leader will find the pointer to itself in
7750 * perf_group_detach().
7753 fd_install(event_fd, event_file);
7757 perf_unpin_context(ctx);
7765 put_task_struct(task);
7769 put_unused_fd(event_fd);
7774 * perf_event_create_kernel_counter
7776 * @attr: attributes of the counter to create
7777 * @cpu: cpu in which the counter is bound
7778 * @task: task to profile (NULL for percpu)
7781 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7782 struct task_struct *task,
7783 perf_overflow_handler_t overflow_handler,
7786 struct perf_event_context *ctx;
7787 struct perf_event *event;
7791 * Get the target context (task or percpu):
7794 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7795 overflow_handler, context);
7796 if (IS_ERR(event)) {
7797 err = PTR_ERR(event);
7801 /* Mark owner so we could distinguish it from user events. */
7802 event->owner = EVENT_OWNER_KERNEL;
7804 account_event(event);
7806 ctx = find_get_context(event->pmu, task, event);
7812 WARN_ON_ONCE(ctx->parent_ctx);
7813 mutex_lock(&ctx->mutex);
7814 perf_install_in_context(ctx, event, cpu);
7815 perf_unpin_context(ctx);
7816 mutex_unlock(&ctx->mutex);
7823 return ERR_PTR(err);
7825 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7827 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7829 struct perf_event_context *src_ctx;
7830 struct perf_event_context *dst_ctx;
7831 struct perf_event *event, *tmp;
7834 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7835 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7838 * See perf_event_ctx_lock() for comments on the details
7839 * of swizzling perf_event::ctx.
7841 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7842 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7844 perf_remove_from_context(event, false);
7845 unaccount_event_cpu(event, src_cpu);
7847 list_add(&event->migrate_entry, &events);
7851 * Wait for the events to quiesce before re-instating them.
7856 * Re-instate events in 2 passes.
7858 * Skip over group leaders and only install siblings on this first
7859 * pass, siblings will not get enabled without a leader, however a
7860 * leader will enable its siblings, even if those are still on the old
7863 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7864 if (event->group_leader == event)
7867 list_del(&event->migrate_entry);
7868 if (event->state >= PERF_EVENT_STATE_OFF)
7869 event->state = PERF_EVENT_STATE_INACTIVE;
7870 account_event_cpu(event, dst_cpu);
7871 perf_install_in_context(dst_ctx, event, dst_cpu);
7876 * Once all the siblings are setup properly, install the group leaders
7879 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7880 list_del(&event->migrate_entry);
7881 if (event->state >= PERF_EVENT_STATE_OFF)
7882 event->state = PERF_EVENT_STATE_INACTIVE;
7883 account_event_cpu(event, dst_cpu);
7884 perf_install_in_context(dst_ctx, event, dst_cpu);
7887 mutex_unlock(&dst_ctx->mutex);
7888 mutex_unlock(&src_ctx->mutex);
7890 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7892 static void sync_child_event(struct perf_event *child_event,
7893 struct task_struct *child)
7895 struct perf_event *parent_event = child_event->parent;
7898 if (child_event->attr.inherit_stat)
7899 perf_event_read_event(child_event, child);
7901 child_val = perf_event_count(child_event);
7904 * Add back the child's count to the parent's count:
7906 atomic64_add(child_val, &parent_event->child_count);
7907 atomic64_add(child_event->total_time_enabled,
7908 &parent_event->child_total_time_enabled);
7909 atomic64_add(child_event->total_time_running,
7910 &parent_event->child_total_time_running);
7913 * Remove this event from the parent's list
7915 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7916 mutex_lock(&parent_event->child_mutex);
7917 list_del_init(&child_event->child_list);
7918 mutex_unlock(&parent_event->child_mutex);
7921 * Make sure user/parent get notified, that we just
7924 perf_event_wakeup(parent_event);
7927 * Release the parent event, if this was the last
7930 put_event(parent_event);
7934 __perf_event_exit_task(struct perf_event *child_event,
7935 struct perf_event_context *child_ctx,
7936 struct task_struct *child)
7939 * Do not destroy the 'original' grouping; because of the context
7940 * switch optimization the original events could've ended up in a
7941 * random child task.
7943 * If we were to destroy the original group, all group related
7944 * operations would cease to function properly after this random
7947 * Do destroy all inherited groups, we don't care about those
7948 * and being thorough is better.
7950 perf_remove_from_context(child_event, !!child_event->parent);
7953 * It can happen that the parent exits first, and has events
7954 * that are still around due to the child reference. These
7955 * events need to be zapped.
7957 if (child_event->parent) {
7958 sync_child_event(child_event, child);
7959 free_event(child_event);
7961 child_event->state = PERF_EVENT_STATE_EXIT;
7962 perf_event_wakeup(child_event);
7966 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7968 struct perf_event *child_event, *next;
7969 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7970 unsigned long flags;
7972 if (likely(!child->perf_event_ctxp[ctxn])) {
7973 perf_event_task(child, NULL, 0);
7977 local_irq_save(flags);
7979 * We can't reschedule here because interrupts are disabled,
7980 * and either child is current or it is a task that can't be
7981 * scheduled, so we are now safe from rescheduling changing
7984 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7987 * Take the context lock here so that if find_get_context is
7988 * reading child->perf_event_ctxp, we wait until it has
7989 * incremented the context's refcount before we do put_ctx below.
7991 raw_spin_lock(&child_ctx->lock);
7992 task_ctx_sched_out(child_ctx);
7993 child->perf_event_ctxp[ctxn] = NULL;
7996 * If this context is a clone; unclone it so it can't get
7997 * swapped to another process while we're removing all
7998 * the events from it.
8000 clone_ctx = unclone_ctx(child_ctx);
8001 update_context_time(child_ctx);
8002 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8008 * Report the task dead after unscheduling the events so that we
8009 * won't get any samples after PERF_RECORD_EXIT. We can however still
8010 * get a few PERF_RECORD_READ events.
8012 perf_event_task(child, child_ctx, 0);
8015 * We can recurse on the same lock type through:
8017 * __perf_event_exit_task()
8018 * sync_child_event()
8020 * mutex_lock(&ctx->mutex)
8022 * But since its the parent context it won't be the same instance.
8024 mutex_lock(&child_ctx->mutex);
8026 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8027 __perf_event_exit_task(child_event, child_ctx, child);
8029 mutex_unlock(&child_ctx->mutex);
8035 * When a child task exits, feed back event values to parent events.
8037 void perf_event_exit_task(struct task_struct *child)
8039 struct perf_event *event, *tmp;
8042 mutex_lock(&child->perf_event_mutex);
8043 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8045 list_del_init(&event->owner_entry);
8048 * Ensure the list deletion is visible before we clear
8049 * the owner, closes a race against perf_release() where
8050 * we need to serialize on the owner->perf_event_mutex.
8053 event->owner = NULL;
8055 mutex_unlock(&child->perf_event_mutex);
8057 for_each_task_context_nr(ctxn)
8058 perf_event_exit_task_context(child, ctxn);
8061 static void perf_free_event(struct perf_event *event,
8062 struct perf_event_context *ctx)
8064 struct perf_event *parent = event->parent;
8066 if (WARN_ON_ONCE(!parent))
8069 mutex_lock(&parent->child_mutex);
8070 list_del_init(&event->child_list);
8071 mutex_unlock(&parent->child_mutex);
8075 raw_spin_lock_irq(&ctx->lock);
8076 perf_group_detach(event);
8077 list_del_event(event, ctx);
8078 raw_spin_unlock_irq(&ctx->lock);
8083 * Free an unexposed, unused context as created by inheritance by
8084 * perf_event_init_task below, used by fork() in case of fail.
8086 * Not all locks are strictly required, but take them anyway to be nice and
8087 * help out with the lockdep assertions.
8089 void perf_event_free_task(struct task_struct *task)
8091 struct perf_event_context *ctx;
8092 struct perf_event *event, *tmp;
8095 for_each_task_context_nr(ctxn) {
8096 ctx = task->perf_event_ctxp[ctxn];
8100 mutex_lock(&ctx->mutex);
8102 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8104 perf_free_event(event, ctx);
8106 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8108 perf_free_event(event, ctx);
8110 if (!list_empty(&ctx->pinned_groups) ||
8111 !list_empty(&ctx->flexible_groups))
8114 mutex_unlock(&ctx->mutex);
8120 void perf_event_delayed_put(struct task_struct *task)
8124 for_each_task_context_nr(ctxn)
8125 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8129 * inherit a event from parent task to child task:
8131 static struct perf_event *
8132 inherit_event(struct perf_event *parent_event,
8133 struct task_struct *parent,
8134 struct perf_event_context *parent_ctx,
8135 struct task_struct *child,
8136 struct perf_event *group_leader,
8137 struct perf_event_context *child_ctx)
8139 enum perf_event_active_state parent_state = parent_event->state;
8140 struct perf_event *child_event;
8141 unsigned long flags;
8144 * Instead of creating recursive hierarchies of events,
8145 * we link inherited events back to the original parent,
8146 * which has a filp for sure, which we use as the reference
8149 if (parent_event->parent)
8150 parent_event = parent_event->parent;
8152 child_event = perf_event_alloc(&parent_event->attr,
8155 group_leader, parent_event,
8157 if (IS_ERR(child_event))
8160 if (is_orphaned_event(parent_event) ||
8161 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8162 free_event(child_event);
8169 * Make the child state follow the state of the parent event,
8170 * not its attr.disabled bit. We hold the parent's mutex,
8171 * so we won't race with perf_event_{en, dis}able_family.
8173 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8174 child_event->state = PERF_EVENT_STATE_INACTIVE;
8176 child_event->state = PERF_EVENT_STATE_OFF;
8178 if (parent_event->attr.freq) {
8179 u64 sample_period = parent_event->hw.sample_period;
8180 struct hw_perf_event *hwc = &child_event->hw;
8182 hwc->sample_period = sample_period;
8183 hwc->last_period = sample_period;
8185 local64_set(&hwc->period_left, sample_period);
8188 child_event->ctx = child_ctx;
8189 child_event->overflow_handler = parent_event->overflow_handler;
8190 child_event->overflow_handler_context
8191 = parent_event->overflow_handler_context;
8194 * Precalculate sample_data sizes
8196 perf_event__header_size(child_event);
8197 perf_event__id_header_size(child_event);
8200 * Link it up in the child's context:
8202 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8203 add_event_to_ctx(child_event, child_ctx);
8204 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8207 * Link this into the parent event's child list
8209 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8210 mutex_lock(&parent_event->child_mutex);
8211 list_add_tail(&child_event->child_list, &parent_event->child_list);
8212 mutex_unlock(&parent_event->child_mutex);
8217 static int inherit_group(struct perf_event *parent_event,
8218 struct task_struct *parent,
8219 struct perf_event_context *parent_ctx,
8220 struct task_struct *child,
8221 struct perf_event_context *child_ctx)
8223 struct perf_event *leader;
8224 struct perf_event *sub;
8225 struct perf_event *child_ctr;
8227 leader = inherit_event(parent_event, parent, parent_ctx,
8228 child, NULL, child_ctx);
8230 return PTR_ERR(leader);
8231 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8232 child_ctr = inherit_event(sub, parent, parent_ctx,
8233 child, leader, child_ctx);
8234 if (IS_ERR(child_ctr))
8235 return PTR_ERR(child_ctr);
8241 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8242 struct perf_event_context *parent_ctx,
8243 struct task_struct *child, int ctxn,
8247 struct perf_event_context *child_ctx;
8249 if (!event->attr.inherit) {
8254 child_ctx = child->perf_event_ctxp[ctxn];
8257 * This is executed from the parent task context, so
8258 * inherit events that have been marked for cloning.
8259 * First allocate and initialize a context for the
8263 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8267 child->perf_event_ctxp[ctxn] = child_ctx;
8270 ret = inherit_group(event, parent, parent_ctx,
8280 * Initialize the perf_event context in task_struct
8282 static int perf_event_init_context(struct task_struct *child, int ctxn)
8284 struct perf_event_context *child_ctx, *parent_ctx;
8285 struct perf_event_context *cloned_ctx;
8286 struct perf_event *event;
8287 struct task_struct *parent = current;
8288 int inherited_all = 1;
8289 unsigned long flags;
8292 if (likely(!parent->perf_event_ctxp[ctxn]))
8296 * If the parent's context is a clone, pin it so it won't get
8299 parent_ctx = perf_pin_task_context(parent, ctxn);
8304 * No need to check if parent_ctx != NULL here; since we saw
8305 * it non-NULL earlier, the only reason for it to become NULL
8306 * is if we exit, and since we're currently in the middle of
8307 * a fork we can't be exiting at the same time.
8311 * Lock the parent list. No need to lock the child - not PID
8312 * hashed yet and not running, so nobody can access it.
8314 mutex_lock(&parent_ctx->mutex);
8317 * We dont have to disable NMIs - we are only looking at
8318 * the list, not manipulating it:
8320 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8321 ret = inherit_task_group(event, parent, parent_ctx,
8322 child, ctxn, &inherited_all);
8328 * We can't hold ctx->lock when iterating the ->flexible_group list due
8329 * to allocations, but we need to prevent rotation because
8330 * rotate_ctx() will change the list from interrupt context.
8332 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8333 parent_ctx->rotate_disable = 1;
8334 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8336 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8337 ret = inherit_task_group(event, parent, parent_ctx,
8338 child, ctxn, &inherited_all);
8343 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8344 parent_ctx->rotate_disable = 0;
8346 child_ctx = child->perf_event_ctxp[ctxn];
8348 if (child_ctx && inherited_all) {
8350 * Mark the child context as a clone of the parent
8351 * context, or of whatever the parent is a clone of.
8353 * Note that if the parent is a clone, the holding of
8354 * parent_ctx->lock avoids it from being uncloned.
8356 cloned_ctx = parent_ctx->parent_ctx;
8358 child_ctx->parent_ctx = cloned_ctx;
8359 child_ctx->parent_gen = parent_ctx->parent_gen;
8361 child_ctx->parent_ctx = parent_ctx;
8362 child_ctx->parent_gen = parent_ctx->generation;
8364 get_ctx(child_ctx->parent_ctx);
8367 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8368 mutex_unlock(&parent_ctx->mutex);
8370 perf_unpin_context(parent_ctx);
8371 put_ctx(parent_ctx);
8377 * Initialize the perf_event context in task_struct
8379 int perf_event_init_task(struct task_struct *child)
8383 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8384 mutex_init(&child->perf_event_mutex);
8385 INIT_LIST_HEAD(&child->perf_event_list);
8387 for_each_task_context_nr(ctxn) {
8388 ret = perf_event_init_context(child, ctxn);
8390 perf_event_free_task(child);
8398 static void __init perf_event_init_all_cpus(void)
8400 struct swevent_htable *swhash;
8403 for_each_possible_cpu(cpu) {
8404 swhash = &per_cpu(swevent_htable, cpu);
8405 mutex_init(&swhash->hlist_mutex);
8406 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8410 static void perf_event_init_cpu(int cpu)
8412 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8414 mutex_lock(&swhash->hlist_mutex);
8415 swhash->online = true;
8416 if (swhash->hlist_refcount > 0) {
8417 struct swevent_hlist *hlist;
8419 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8421 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8423 mutex_unlock(&swhash->hlist_mutex);
8426 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8427 static void __perf_event_exit_context(void *__info)
8429 struct remove_event re = { .detach_group = true };
8430 struct perf_event_context *ctx = __info;
8433 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8434 __perf_remove_from_context(&re);
8438 static void perf_event_exit_cpu_context(int cpu)
8440 struct perf_event_context *ctx;
8444 idx = srcu_read_lock(&pmus_srcu);
8445 list_for_each_entry_rcu(pmu, &pmus, entry) {
8446 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8448 mutex_lock(&ctx->mutex);
8449 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8450 mutex_unlock(&ctx->mutex);
8452 srcu_read_unlock(&pmus_srcu, idx);
8455 static void perf_event_exit_cpu(int cpu)
8457 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8459 perf_event_exit_cpu_context(cpu);
8461 mutex_lock(&swhash->hlist_mutex);
8462 swhash->online = false;
8463 swevent_hlist_release(swhash);
8464 mutex_unlock(&swhash->hlist_mutex);
8467 static inline void perf_event_exit_cpu(int cpu) { }
8471 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8475 for_each_online_cpu(cpu)
8476 perf_event_exit_cpu(cpu);
8482 * Run the perf reboot notifier at the very last possible moment so that
8483 * the generic watchdog code runs as long as possible.
8485 static struct notifier_block perf_reboot_notifier = {
8486 .notifier_call = perf_reboot,
8487 .priority = INT_MIN,
8491 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8493 unsigned int cpu = (long)hcpu;
8495 switch (action & ~CPU_TASKS_FROZEN) {
8497 case CPU_UP_PREPARE:
8498 case CPU_DOWN_FAILED:
8499 perf_event_init_cpu(cpu);
8502 case CPU_UP_CANCELED:
8503 case CPU_DOWN_PREPARE:
8504 perf_event_exit_cpu(cpu);
8513 void __init perf_event_init(void)
8519 perf_event_init_all_cpus();
8520 init_srcu_struct(&pmus_srcu);
8521 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8522 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8523 perf_pmu_register(&perf_task_clock, NULL, -1);
8525 perf_cpu_notifier(perf_cpu_notify);
8526 register_reboot_notifier(&perf_reboot_notifier);
8528 ret = init_hw_breakpoint();
8529 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8531 /* do not patch jump label more than once per second */
8532 jump_label_rate_limit(&perf_sched_events, HZ);
8535 * Build time assertion that we keep the data_head at the intended
8536 * location. IOW, validation we got the __reserved[] size right.
8538 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8542 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8545 struct perf_pmu_events_attr *pmu_attr =
8546 container_of(attr, struct perf_pmu_events_attr, attr);
8548 if (pmu_attr->event_str)
8549 return sprintf(page, "%s\n", pmu_attr->event_str);
8554 static int __init perf_event_sysfs_init(void)
8559 mutex_lock(&pmus_lock);
8561 ret = bus_register(&pmu_bus);
8565 list_for_each_entry(pmu, &pmus, entry) {
8566 if (!pmu->name || pmu->type < 0)
8569 ret = pmu_dev_alloc(pmu);
8570 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8572 pmu_bus_running = 1;
8576 mutex_unlock(&pmus_lock);
8580 device_initcall(perf_event_sysfs_init);
8582 #ifdef CONFIG_CGROUP_PERF
8583 static struct cgroup_subsys_state *
8584 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8586 struct perf_cgroup *jc;
8588 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8590 return ERR_PTR(-ENOMEM);
8592 jc->info = alloc_percpu(struct perf_cgroup_info);
8595 return ERR_PTR(-ENOMEM);
8601 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8603 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8605 free_percpu(jc->info);
8609 static int __perf_cgroup_move(void *info)
8611 struct task_struct *task = info;
8612 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8616 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8617 struct cgroup_taskset *tset)
8619 struct task_struct *task;
8621 cgroup_taskset_for_each(task, tset)
8622 task_function_call(task, __perf_cgroup_move, task);
8625 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8626 struct cgroup_subsys_state *old_css,
8627 struct task_struct *task)
8630 * cgroup_exit() is called in the copy_process() failure path.
8631 * Ignore this case since the task hasn't ran yet, this avoids
8632 * trying to poke a half freed task state from generic code.
8634 if (!(task->flags & PF_EXITING))
8637 task_function_call(task, __perf_cgroup_move, task);
8640 struct cgroup_subsys perf_event_cgrp_subsys = {
8641 .css_alloc = perf_cgroup_css_alloc,
8642 .css_free = perf_cgroup_css_free,
8643 .exit = perf_cgroup_exit,
8644 .attach = perf_cgroup_attach,
8646 #endif /* CONFIG_CGROUP_PERF */