]> Git Repo - linux.git/blob - fs/nfs/dir.c
ftrace: cleanup ftrace_graph_caller enable and disable
[linux.git] / fs / nfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996  Added silly rename for unlink   --okir
10  * 28 Sep 1996  Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine [email protected] 
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
19  */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct page*);
59
60 const struct file_operations nfs_dir_operations = {
61         .llseek         = nfs_llseek_dir,
62         .read           = generic_read_dir,
63         .iterate_shared = nfs_readdir,
64         .open           = nfs_opendir,
65         .release        = nfs_closedir,
66         .fsync          = nfs_fsync_dir,
67 };
68
69 const struct address_space_operations nfs_dir_aops = {
70         .freepage = nfs_readdir_clear_array,
71 };
72
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78         struct nfs_inode *nfsi = NFS_I(dir);
79         struct nfs_open_dir_context *ctx;
80
81         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82         if (ctx != NULL) {
83                 ctx->attr_gencount = nfsi->attr_gencount;
84                 ctx->dtsize = NFS_INIT_DTSIZE;
85                 spin_lock(&dir->i_lock);
86                 if (list_empty(&nfsi->open_files) &&
87                     (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88                         nfs_set_cache_invalid(dir,
89                                               NFS_INO_INVALID_DATA |
90                                                       NFS_INO_REVAL_FORCED);
91                 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92                 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93                 spin_unlock(&dir->i_lock);
94                 return ctx;
95         }
96         return  ERR_PTR(-ENOMEM);
97 }
98
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101         spin_lock(&dir->i_lock);
102         list_del_rcu(&ctx->list);
103         spin_unlock(&dir->i_lock);
104         kfree_rcu(ctx, rcu_head);
105 }
106
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113         int res = 0;
114         struct nfs_open_dir_context *ctx;
115
116         dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118         nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120         ctx = alloc_nfs_open_dir_context(inode);
121         if (IS_ERR(ctx)) {
122                 res = PTR_ERR(ctx);
123                 goto out;
124         }
125         filp->private_data = ctx;
126 out:
127         return res;
128 }
129
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133         put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134         return 0;
135 }
136
137 struct nfs_cache_array_entry {
138         u64 cookie;
139         u64 ino;
140         const char *name;
141         unsigned int name_len;
142         unsigned char d_type;
143 };
144
145 struct nfs_cache_array {
146         u64 change_attr;
147         u64 last_cookie;
148         unsigned int size;
149         unsigned char page_full : 1,
150                       page_is_eof : 1,
151                       cookies_are_ordered : 1;
152         struct nfs_cache_array_entry array[];
153 };
154
155 struct nfs_readdir_descriptor {
156         struct file     *file;
157         struct page     *page;
158         struct dir_context *ctx;
159         pgoff_t         page_index;
160         pgoff_t         page_index_max;
161         u64             dir_cookie;
162         u64             last_cookie;
163         loff_t          current_index;
164
165         __be32          verf[NFS_DIR_VERIFIER_SIZE];
166         unsigned long   dir_verifier;
167         unsigned long   timestamp;
168         unsigned long   gencount;
169         unsigned long   attr_gencount;
170         unsigned int    cache_entry_index;
171         unsigned int    buffer_fills;
172         unsigned int    dtsize;
173         bool clear_cache;
174         bool plus;
175         bool eob;
176         bool eof;
177 };
178
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181         struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182         unsigned int maxsize = server->dtsize;
183
184         if (sz > maxsize)
185                 sz = maxsize;
186         if (sz < NFS_MIN_FILE_IO_SIZE)
187                 sz = NFS_MIN_FILE_IO_SIZE;
188         desc->dtsize = sz;
189 }
190
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193         nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198         nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202                                         u64 change_attr)
203 {
204         struct nfs_cache_array *array;
205
206         array = kmap_atomic(page);
207         array->change_attr = change_attr;
208         array->last_cookie = last_cookie;
209         array->size = 0;
210         array->page_full = 0;
211         array->page_is_eof = 0;
212         array->cookies_are_ordered = 1;
213         kunmap_atomic(array);
214 }
215
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221         struct nfs_cache_array *array;
222         unsigned int i;
223
224         array = kmap_atomic(page);
225         for (i = 0; i < array->size; i++)
226                 kfree(array->array[i].name);
227         array->size = 0;
228         kunmap_atomic(array);
229 }
230
231 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
232                                           u64 change_attr)
233 {
234         nfs_readdir_clear_array(page);
235         nfs_readdir_page_init_array(page, last_cookie, change_attr);
236 }
237
238 static struct page *
239 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241         struct page *page = alloc_page(gfp_flags);
242         if (page)
243                 nfs_readdir_page_init_array(page, last_cookie, 0);
244         return page;
245 }
246
247 static void nfs_readdir_page_array_free(struct page *page)
248 {
249         if (page) {
250                 nfs_readdir_clear_array(page);
251                 put_page(page);
252         }
253 }
254
255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257         return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259
260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262         array->page_is_eof = 1;
263         array->page_full = 1;
264 }
265
266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268         return array->page_full;
269 }
270
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278         const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279
280         /*
281          * Avoid a kmemleak false positive. The pointer to the name is stored
282          * in a page cache page which kmemleak does not scan.
283          */
284         if (ret != NULL)
285                 kmemleak_not_leak(ret);
286         return ret;
287 }
288
289 static size_t nfs_readdir_array_maxentries(void)
290 {
291         return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292                sizeof(struct nfs_cache_array_entry);
293 }
294
295 /*
296  * Check that the next array entry lies entirely within the page bounds
297  */
298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300         if (array->page_full)
301                 return -ENOSPC;
302         if (array->size == nfs_readdir_array_maxentries()) {
303                 array->page_full = 1;
304                 return -ENOSPC;
305         }
306         return 0;
307 }
308
309 static int nfs_readdir_page_array_append(struct page *page,
310                                          const struct nfs_entry *entry,
311                                          u64 *cookie)
312 {
313         struct nfs_cache_array *array;
314         struct nfs_cache_array_entry *cache_entry;
315         const char *name;
316         int ret = -ENOMEM;
317
318         name = nfs_readdir_copy_name(entry->name, entry->len);
319
320         array = kmap_atomic(page);
321         if (!name)
322                 goto out;
323         ret = nfs_readdir_array_can_expand(array);
324         if (ret) {
325                 kfree(name);
326                 goto out;
327         }
328
329         cache_entry = &array->array[array->size];
330         cache_entry->cookie = array->last_cookie;
331         cache_entry->ino = entry->ino;
332         cache_entry->d_type = entry->d_type;
333         cache_entry->name_len = entry->len;
334         cache_entry->name = name;
335         array->last_cookie = entry->cookie;
336         if (array->last_cookie <= cache_entry->cookie)
337                 array->cookies_are_ordered = 0;
338         array->size++;
339         if (entry->eof != 0)
340                 nfs_readdir_array_set_eof(array);
341 out:
342         *cookie = array->last_cookie;
343         kunmap_atomic(array);
344         return ret;
345 }
346
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349  * Hash algorithm allowing content addressible access to sequences
350  * of directory cookies. Content is addressed by the value of the
351  * cookie index of the first readdir entry in a page.
352  *
353  * We select only the first 18 bits to avoid issues with excessive
354  * memory use for the page cache XArray. 18 bits should allow the caching
355  * of 262144 pages of sequences of readdir entries. Since each page holds
356  * 127 readdir entries for a typical 64-bit system, that works out to a
357  * cache of ~ 33 million entries per directory.
358  */
359 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
360 {
361         if (cookie == 0)
362                 return 0;
363         return hash_64(cookie, 18);
364 }
365
366 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
367                                       u64 change_attr)
368 {
369         struct nfs_cache_array *array = kmap_atomic(page);
370         int ret = true;
371
372         if (array->change_attr != change_attr)
373                 ret = false;
374         if (nfs_readdir_array_index_cookie(array) != last_cookie)
375                 ret = false;
376         kunmap_atomic(array);
377         return ret;
378 }
379
380 static void nfs_readdir_page_unlock_and_put(struct page *page)
381 {
382         unlock_page(page);
383         put_page(page);
384 }
385
386 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
387                                                u64 change_attr)
388 {
389         if (PageUptodate(page)) {
390                 if (nfs_readdir_page_validate(page, cookie, change_attr))
391                         return;
392                 nfs_readdir_clear_array(page);
393         }
394         nfs_readdir_page_init_array(page, cookie, change_attr);
395         SetPageUptodate(page);
396 }
397
398 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
399                                                 u64 cookie, u64 change_attr)
400 {
401         pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
402         struct page *page;
403
404         page = grab_cache_page(mapping, index);
405         if (!page)
406                 return NULL;
407         nfs_readdir_page_init_and_validate(page, cookie, change_attr);
408         return page;
409 }
410
411 static u64 nfs_readdir_page_last_cookie(struct page *page)
412 {
413         struct nfs_cache_array *array;
414         u64 ret;
415
416         array = kmap_atomic(page);
417         ret = array->last_cookie;
418         kunmap_atomic(array);
419         return ret;
420 }
421
422 static bool nfs_readdir_page_needs_filling(struct page *page)
423 {
424         struct nfs_cache_array *array;
425         bool ret;
426
427         array = kmap_atomic(page);
428         ret = !nfs_readdir_array_is_full(array);
429         kunmap_atomic(array);
430         return ret;
431 }
432
433 static void nfs_readdir_page_set_eof(struct page *page)
434 {
435         struct nfs_cache_array *array;
436
437         array = kmap_atomic(page);
438         nfs_readdir_array_set_eof(array);
439         kunmap_atomic(array);
440 }
441
442 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
443                                               u64 cookie, u64 change_attr)
444 {
445         pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
446         struct page *page;
447
448         page = grab_cache_page_nowait(mapping, index);
449         if (!page)
450                 return NULL;
451         nfs_readdir_page_init_and_validate(page, cookie, change_attr);
452         if (nfs_readdir_page_last_cookie(page) != cookie)
453                 nfs_readdir_page_reinit_array(page, cookie, change_attr);
454         return page;
455 }
456
457 static inline
458 int is_32bit_api(void)
459 {
460 #ifdef CONFIG_COMPAT
461         return in_compat_syscall();
462 #else
463         return (BITS_PER_LONG == 32);
464 #endif
465 }
466
467 static
468 bool nfs_readdir_use_cookie(const struct file *filp)
469 {
470         if ((filp->f_mode & FMODE_32BITHASH) ||
471             (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
472                 return false;
473         return true;
474 }
475
476 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
477                                         struct nfs_readdir_descriptor *desc)
478 {
479         if (array->page_full) {
480                 desc->last_cookie = array->last_cookie;
481                 desc->current_index += array->size;
482                 desc->cache_entry_index = 0;
483                 desc->page_index++;
484         } else
485                 desc->last_cookie = nfs_readdir_array_index_cookie(array);
486 }
487
488 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
489 {
490         desc->current_index = 0;
491         desc->last_cookie = 0;
492         desc->page_index = 0;
493 }
494
495 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
496                                       struct nfs_readdir_descriptor *desc)
497 {
498         loff_t diff = desc->ctx->pos - desc->current_index;
499         unsigned int index;
500
501         if (diff < 0)
502                 goto out_eof;
503         if (diff >= array->size) {
504                 if (array->page_is_eof)
505                         goto out_eof;
506                 nfs_readdir_seek_next_array(array, desc);
507                 return -EAGAIN;
508         }
509
510         index = (unsigned int)diff;
511         desc->dir_cookie = array->array[index].cookie;
512         desc->cache_entry_index = index;
513         return 0;
514 out_eof:
515         desc->eof = true;
516         return -EBADCOOKIE;
517 }
518
519 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
520                                               u64 cookie)
521 {
522         if (!array->cookies_are_ordered)
523                 return true;
524         /* Optimisation for monotonically increasing cookies */
525         if (cookie >= array->last_cookie)
526                 return false;
527         if (array->size && cookie < array->array[0].cookie)
528                 return false;
529         return true;
530 }
531
532 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
533                                          struct nfs_readdir_descriptor *desc)
534 {
535         unsigned int i;
536         int status = -EAGAIN;
537
538         if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
539                 goto check_eof;
540
541         for (i = 0; i < array->size; i++) {
542                 if (array->array[i].cookie == desc->dir_cookie) {
543                         if (nfs_readdir_use_cookie(desc->file))
544                                 desc->ctx->pos = desc->dir_cookie;
545                         else
546                                 desc->ctx->pos = desc->current_index + i;
547                         desc->cache_entry_index = i;
548                         return 0;
549                 }
550         }
551 check_eof:
552         if (array->page_is_eof) {
553                 status = -EBADCOOKIE;
554                 if (desc->dir_cookie == array->last_cookie)
555                         desc->eof = true;
556         } else
557                 nfs_readdir_seek_next_array(array, desc);
558         return status;
559 }
560
561 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
562 {
563         struct nfs_cache_array *array;
564         int status;
565
566         array = kmap_atomic(desc->page);
567
568         if (desc->dir_cookie == 0)
569                 status = nfs_readdir_search_for_pos(array, desc);
570         else
571                 status = nfs_readdir_search_for_cookie(array, desc);
572
573         kunmap_atomic(array);
574         return status;
575 }
576
577 /* Fill a page with xdr information before transferring to the cache page */
578 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
579                                   __be32 *verf, u64 cookie,
580                                   struct page **pages, size_t bufsize,
581                                   __be32 *verf_res)
582 {
583         struct inode *inode = file_inode(desc->file);
584         struct nfs_readdir_arg arg = {
585                 .dentry = file_dentry(desc->file),
586                 .cred = desc->file->f_cred,
587                 .verf = verf,
588                 .cookie = cookie,
589                 .pages = pages,
590                 .page_len = bufsize,
591                 .plus = desc->plus,
592         };
593         struct nfs_readdir_res res = {
594                 .verf = verf_res,
595         };
596         unsigned long   timestamp, gencount;
597         int             error;
598
599  again:
600         timestamp = jiffies;
601         gencount = nfs_inc_attr_generation_counter();
602         desc->dir_verifier = nfs_save_change_attribute(inode);
603         error = NFS_PROTO(inode)->readdir(&arg, &res);
604         if (error < 0) {
605                 /* We requested READDIRPLUS, but the server doesn't grok it */
606                 if (error == -ENOTSUPP && desc->plus) {
607                         NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
608                         desc->plus = arg.plus = false;
609                         goto again;
610                 }
611                 goto error;
612         }
613         desc->timestamp = timestamp;
614         desc->gencount = gencount;
615 error:
616         return error;
617 }
618
619 static int xdr_decode(struct nfs_readdir_descriptor *desc,
620                       struct nfs_entry *entry, struct xdr_stream *xdr)
621 {
622         struct inode *inode = file_inode(desc->file);
623         int error;
624
625         error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
626         if (error)
627                 return error;
628         entry->fattr->time_start = desc->timestamp;
629         entry->fattr->gencount = desc->gencount;
630         return 0;
631 }
632
633 /* Match file and dirent using either filehandle or fileid
634  * Note: caller is responsible for checking the fsid
635  */
636 static
637 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
638 {
639         struct inode *inode;
640         struct nfs_inode *nfsi;
641
642         if (d_really_is_negative(dentry))
643                 return 0;
644
645         inode = d_inode(dentry);
646         if (is_bad_inode(inode) || NFS_STALE(inode))
647                 return 0;
648
649         nfsi = NFS_I(inode);
650         if (entry->fattr->fileid != nfsi->fileid)
651                 return 0;
652         if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
653                 return 0;
654         return 1;
655 }
656
657 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
658
659 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
660                                 unsigned int cache_hits,
661                                 unsigned int cache_misses)
662 {
663         if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
664                 return false;
665         if (ctx->pos == 0 ||
666             cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
667                 return true;
668         return false;
669 }
670
671 /*
672  * This function is called by the getattr code to request the
673  * use of readdirplus to accelerate any future lookups in the same
674  * directory.
675  */
676 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
677 {
678         struct nfs_inode *nfsi = NFS_I(dir);
679         struct nfs_open_dir_context *ctx;
680
681         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
682             S_ISDIR(dir->i_mode)) {
683                 rcu_read_lock();
684                 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
685                         atomic_inc(&ctx->cache_hits);
686                 rcu_read_unlock();
687         }
688 }
689
690 /*
691  * This function is mainly for use by nfs_getattr().
692  *
693  * If this is an 'ls -l', we want to force use of readdirplus.
694  */
695 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
696 {
697         struct nfs_inode *nfsi = NFS_I(dir);
698         struct nfs_open_dir_context *ctx;
699
700         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
701             S_ISDIR(dir->i_mode)) {
702                 rcu_read_lock();
703                 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
704                         atomic_inc(&ctx->cache_misses);
705                 rcu_read_unlock();
706         }
707 }
708
709 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
710                                                 unsigned int flags)
711 {
712         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
713                 return;
714         if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
715                 return;
716         nfs_readdir_record_entry_cache_miss(dir);
717 }
718
719 static
720 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
721                 unsigned long dir_verifier)
722 {
723         struct qstr filename = QSTR_INIT(entry->name, entry->len);
724         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
725         struct dentry *dentry;
726         struct dentry *alias;
727         struct inode *inode;
728         int status;
729
730         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
731                 return;
732         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
733                 return;
734         if (filename.len == 0)
735                 return;
736         /* Validate that the name doesn't contain any illegal '\0' */
737         if (strnlen(filename.name, filename.len) != filename.len)
738                 return;
739         /* ...or '/' */
740         if (strnchr(filename.name, filename.len, '/'))
741                 return;
742         if (filename.name[0] == '.') {
743                 if (filename.len == 1)
744                         return;
745                 if (filename.len == 2 && filename.name[1] == '.')
746                         return;
747         }
748         filename.hash = full_name_hash(parent, filename.name, filename.len);
749
750         dentry = d_lookup(parent, &filename);
751 again:
752         if (!dentry) {
753                 dentry = d_alloc_parallel(parent, &filename, &wq);
754                 if (IS_ERR(dentry))
755                         return;
756         }
757         if (!d_in_lookup(dentry)) {
758                 /* Is there a mountpoint here? If so, just exit */
759                 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
760                                         &entry->fattr->fsid))
761                         goto out;
762                 if (nfs_same_file(dentry, entry)) {
763                         if (!entry->fh->size)
764                                 goto out;
765                         nfs_set_verifier(dentry, dir_verifier);
766                         status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
767                         if (!status)
768                                 nfs_setsecurity(d_inode(dentry), entry->fattr);
769                         trace_nfs_readdir_lookup_revalidate(d_inode(parent),
770                                                             dentry, 0, status);
771                         goto out;
772                 } else {
773                         trace_nfs_readdir_lookup_revalidate_failed(
774                                 d_inode(parent), dentry, 0);
775                         d_invalidate(dentry);
776                         dput(dentry);
777                         dentry = NULL;
778                         goto again;
779                 }
780         }
781         if (!entry->fh->size) {
782                 d_lookup_done(dentry);
783                 goto out;
784         }
785
786         inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
787         alias = d_splice_alias(inode, dentry);
788         d_lookup_done(dentry);
789         if (alias) {
790                 if (IS_ERR(alias))
791                         goto out;
792                 dput(dentry);
793                 dentry = alias;
794         }
795         nfs_set_verifier(dentry, dir_verifier);
796         trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
797 out:
798         dput(dentry);
799 }
800
801 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
802                                     struct nfs_entry *entry,
803                                     struct xdr_stream *stream)
804 {
805         int ret;
806
807         if (entry->fattr->label)
808                 entry->fattr->label->len = NFS4_MAXLABELLEN;
809         ret = xdr_decode(desc, entry, stream);
810         if (ret || !desc->plus)
811                 return ret;
812         nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
813         return 0;
814 }
815
816 /* Perform conversion from xdr to cache array */
817 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
818                                    struct nfs_entry *entry,
819                                    struct page **xdr_pages, unsigned int buflen,
820                                    struct page **arrays, size_t narrays,
821                                    u64 change_attr)
822 {
823         struct address_space *mapping = desc->file->f_mapping;
824         struct xdr_stream stream;
825         struct xdr_buf buf;
826         struct page *scratch, *new, *page = *arrays;
827         u64 cookie;
828         int status;
829
830         scratch = alloc_page(GFP_KERNEL);
831         if (scratch == NULL)
832                 return -ENOMEM;
833
834         xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
835         xdr_set_scratch_page(&stream, scratch);
836
837         do {
838                 status = nfs_readdir_entry_decode(desc, entry, &stream);
839                 if (status != 0)
840                         break;
841
842                 status = nfs_readdir_page_array_append(page, entry, &cookie);
843                 if (status != -ENOSPC)
844                         continue;
845
846                 if (page->mapping != mapping) {
847                         if (!--narrays)
848                                 break;
849                         new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
850                         if (!new)
851                                 break;
852                         arrays++;
853                         *arrays = page = new;
854                 } else {
855                         new = nfs_readdir_page_get_next(mapping, cookie,
856                                                         change_attr);
857                         if (!new)
858                                 break;
859                         if (page != *arrays)
860                                 nfs_readdir_page_unlock_and_put(page);
861                         page = new;
862                 }
863                 desc->page_index_max++;
864                 status = nfs_readdir_page_array_append(page, entry, &cookie);
865         } while (!status && !entry->eof);
866
867         switch (status) {
868         case -EBADCOOKIE:
869                 if (!entry->eof)
870                         break;
871                 nfs_readdir_page_set_eof(page);
872                 fallthrough;
873         case -EAGAIN:
874                 status = 0;
875                 break;
876         case -ENOSPC:
877                 status = 0;
878                 if (!desc->plus)
879                         break;
880                 while (!nfs_readdir_entry_decode(desc, entry, &stream))
881                         ;
882         }
883
884         if (page != *arrays)
885                 nfs_readdir_page_unlock_and_put(page);
886
887         put_page(scratch);
888         return status;
889 }
890
891 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
892 {
893         while (npages--)
894                 put_page(pages[npages]);
895         kfree(pages);
896 }
897
898 /*
899  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
900  * to nfs_readdir_free_pages()
901  */
902 static struct page **nfs_readdir_alloc_pages(size_t npages)
903 {
904         struct page **pages;
905         size_t i;
906
907         pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
908         if (!pages)
909                 return NULL;
910         for (i = 0; i < npages; i++) {
911                 struct page *page = alloc_page(GFP_KERNEL);
912                 if (page == NULL)
913                         goto out_freepages;
914                 pages[i] = page;
915         }
916         return pages;
917
918 out_freepages:
919         nfs_readdir_free_pages(pages, i);
920         return NULL;
921 }
922
923 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
924                                     __be32 *verf_arg, __be32 *verf_res,
925                                     struct page **arrays, size_t narrays)
926 {
927         u64 change_attr;
928         struct page **pages;
929         struct page *page = *arrays;
930         struct nfs_entry *entry;
931         size_t array_size;
932         struct inode *inode = file_inode(desc->file);
933         unsigned int dtsize = desc->dtsize;
934         unsigned int pglen;
935         int status = -ENOMEM;
936
937         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
938         if (!entry)
939                 return -ENOMEM;
940         entry->cookie = nfs_readdir_page_last_cookie(page);
941         entry->fh = nfs_alloc_fhandle();
942         entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
943         entry->server = NFS_SERVER(inode);
944         if (entry->fh == NULL || entry->fattr == NULL)
945                 goto out;
946
947         array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
948         pages = nfs_readdir_alloc_pages(array_size);
949         if (!pages)
950                 goto out;
951
952         change_attr = inode_peek_iversion_raw(inode);
953         status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
954                                         dtsize, verf_res);
955         if (status < 0)
956                 goto free_pages;
957
958         pglen = status;
959         if (pglen != 0)
960                 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
961                                                  arrays, narrays, change_attr);
962         else
963                 nfs_readdir_page_set_eof(page);
964         desc->buffer_fills++;
965
966 free_pages:
967         nfs_readdir_free_pages(pages, array_size);
968 out:
969         nfs_free_fattr(entry->fattr);
970         nfs_free_fhandle(entry->fh);
971         kfree(entry);
972         return status;
973 }
974
975 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
976 {
977         put_page(desc->page);
978         desc->page = NULL;
979 }
980
981 static void
982 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
983 {
984         unlock_page(desc->page);
985         nfs_readdir_page_put(desc);
986 }
987
988 static struct page *
989 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
990 {
991         struct address_space *mapping = desc->file->f_mapping;
992         u64 change_attr = inode_peek_iversion_raw(mapping->host);
993         u64 cookie = desc->last_cookie;
994         struct page *page;
995
996         page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
997         if (!page)
998                 return NULL;
999         if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1000                 nfs_readdir_page_reinit_array(page, cookie, change_attr);
1001         return page;
1002 }
1003
1004 /*
1005  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1006  * and locks the page to prevent removal from the page cache.
1007  */
1008 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1009 {
1010         struct inode *inode = file_inode(desc->file);
1011         struct nfs_inode *nfsi = NFS_I(inode);
1012         __be32 verf[NFS_DIR_VERIFIER_SIZE];
1013         int res;
1014
1015         desc->page = nfs_readdir_page_get_cached(desc);
1016         if (!desc->page)
1017                 return -ENOMEM;
1018         if (nfs_readdir_page_needs_filling(desc->page)) {
1019                 /* Grow the dtsize if we had to go back for more pages */
1020                 if (desc->page_index == desc->page_index_max)
1021                         nfs_grow_dtsize(desc);
1022                 desc->page_index_max = desc->page_index;
1023                 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1024                                              desc->last_cookie,
1025                                              desc->page->index, desc->dtsize);
1026                 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1027                                                &desc->page, 1);
1028                 if (res < 0) {
1029                         nfs_readdir_page_unlock_and_put_cached(desc);
1030                         trace_nfs_readdir_cache_fill_done(inode, res);
1031                         if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1032                                 invalidate_inode_pages2(desc->file->f_mapping);
1033                                 nfs_readdir_rewind_search(desc);
1034                                 trace_nfs_readdir_invalidate_cache_range(
1035                                         inode, 0, MAX_LFS_FILESIZE);
1036                                 return -EAGAIN;
1037                         }
1038                         return res;
1039                 }
1040                 /*
1041                  * Set the cookie verifier if the page cache was empty
1042                  */
1043                 if (desc->last_cookie == 0 &&
1044                     memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1045                         memcpy(nfsi->cookieverf, verf,
1046                                sizeof(nfsi->cookieverf));
1047                         invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1048                                                       -1);
1049                         trace_nfs_readdir_invalidate_cache_range(
1050                                 inode, 1, MAX_LFS_FILESIZE);
1051                 }
1052                 desc->clear_cache = false;
1053         }
1054         res = nfs_readdir_search_array(desc);
1055         if (res == 0)
1056                 return 0;
1057         nfs_readdir_page_unlock_and_put_cached(desc);
1058         return res;
1059 }
1060
1061 /* Search for desc->dir_cookie from the beginning of the page cache */
1062 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1063 {
1064         int res;
1065
1066         do {
1067                 res = find_and_lock_cache_page(desc);
1068         } while (res == -EAGAIN);
1069         return res;
1070 }
1071
1072 /*
1073  * Once we've found the start of the dirent within a page: fill 'er up...
1074  */
1075 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1076                            const __be32 *verf)
1077 {
1078         struct file     *file = desc->file;
1079         struct nfs_cache_array *array;
1080         unsigned int i;
1081
1082         array = kmap(desc->page);
1083         for (i = desc->cache_entry_index; i < array->size; i++) {
1084                 struct nfs_cache_array_entry *ent;
1085
1086                 ent = &array->array[i];
1087                 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1088                     nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1089                         desc->eob = true;
1090                         break;
1091                 }
1092                 memcpy(desc->verf, verf, sizeof(desc->verf));
1093                 if (i == array->size - 1) {
1094                         desc->dir_cookie = array->last_cookie;
1095                         nfs_readdir_seek_next_array(array, desc);
1096                 } else {
1097                         desc->dir_cookie = array->array[i + 1].cookie;
1098                         desc->last_cookie = array->array[0].cookie;
1099                 }
1100                 if (nfs_readdir_use_cookie(file))
1101                         desc->ctx->pos = desc->dir_cookie;
1102                 else
1103                         desc->ctx->pos++;
1104         }
1105         if (array->page_is_eof)
1106                 desc->eof = !desc->eob;
1107
1108         kunmap(desc->page);
1109         dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1110                         (unsigned long long)desc->dir_cookie);
1111 }
1112
1113 /*
1114  * If we cannot find a cookie in our cache, we suspect that this is
1115  * because it points to a deleted file, so we ask the server to return
1116  * whatever it thinks is the next entry. We then feed this to filldir.
1117  * If all goes well, we should then be able to find our way round the
1118  * cache on the next call to readdir_search_pagecache();
1119  *
1120  * NOTE: we cannot add the anonymous page to the pagecache because
1121  *       the data it contains might not be page aligned. Besides,
1122  *       we should already have a complete representation of the
1123  *       directory in the page cache by the time we get here.
1124  */
1125 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1126 {
1127         struct page     **arrays;
1128         size_t          i, sz = 512;
1129         __be32          verf[NFS_DIR_VERIFIER_SIZE];
1130         int             status = -ENOMEM;
1131
1132         dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1133                         (unsigned long long)desc->dir_cookie);
1134
1135         arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1136         if (!arrays)
1137                 goto out;
1138         arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1139         if (!arrays[0])
1140                 goto out;
1141
1142         desc->page_index = 0;
1143         desc->cache_entry_index = 0;
1144         desc->last_cookie = desc->dir_cookie;
1145         desc->page_index_max = 0;
1146
1147         trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1148                                    -1, desc->dtsize);
1149
1150         status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1151         if (status < 0) {
1152                 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1153                 goto out_free;
1154         }
1155
1156         for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1157                 desc->page = arrays[i];
1158                 nfs_do_filldir(desc, verf);
1159         }
1160         desc->page = NULL;
1161
1162         /*
1163          * Grow the dtsize if we have to go back for more pages,
1164          * or shrink it if we're reading too many.
1165          */
1166         if (!desc->eof) {
1167                 if (!desc->eob)
1168                         nfs_grow_dtsize(desc);
1169                 else if (desc->buffer_fills == 1 &&
1170                          i < (desc->page_index_max >> 1))
1171                         nfs_shrink_dtsize(desc);
1172         }
1173 out_free:
1174         for (i = 0; i < sz && arrays[i]; i++)
1175                 nfs_readdir_page_array_free(arrays[i]);
1176 out:
1177         if (!nfs_readdir_use_cookie(desc->file))
1178                 nfs_readdir_rewind_search(desc);
1179         desc->page_index_max = -1;
1180         kfree(arrays);
1181         dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1182         return status;
1183 }
1184
1185 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1186
1187 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1188                                             struct nfs_readdir_descriptor *desc,
1189                                             unsigned int cache_misses,
1190                                             bool force_clear)
1191 {
1192         if (desc->ctx->pos == 0 || !desc->plus)
1193                 return false;
1194         if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1195                 return false;
1196         trace_nfs_readdir_force_readdirplus(inode);
1197         return true;
1198 }
1199
1200 /* The file offset position represents the dirent entry number.  A
1201    last cookie cache takes care of the common case of reading the
1202    whole directory.
1203  */
1204 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1205 {
1206         struct dentry   *dentry = file_dentry(file);
1207         struct inode    *inode = d_inode(dentry);
1208         struct nfs_inode *nfsi = NFS_I(inode);
1209         struct nfs_open_dir_context *dir_ctx = file->private_data;
1210         struct nfs_readdir_descriptor *desc;
1211         unsigned int cache_hits, cache_misses;
1212         bool force_clear;
1213         int res;
1214
1215         dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1216                         file, (long long)ctx->pos);
1217         nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1218
1219         /*
1220          * ctx->pos points to the dirent entry number.
1221          * *desc->dir_cookie has the cookie for the next entry. We have
1222          * to either find the entry with the appropriate number or
1223          * revalidate the cookie.
1224          */
1225         nfs_revalidate_mapping(inode, file->f_mapping);
1226
1227         res = -ENOMEM;
1228         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1229         if (!desc)
1230                 goto out;
1231         desc->file = file;
1232         desc->ctx = ctx;
1233         desc->page_index_max = -1;
1234
1235         spin_lock(&file->f_lock);
1236         desc->dir_cookie = dir_ctx->dir_cookie;
1237         desc->page_index = dir_ctx->page_index;
1238         desc->last_cookie = dir_ctx->last_cookie;
1239         desc->attr_gencount = dir_ctx->attr_gencount;
1240         desc->eof = dir_ctx->eof;
1241         nfs_set_dtsize(desc, dir_ctx->dtsize);
1242         memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1243         cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1244         cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1245         force_clear = dir_ctx->force_clear;
1246         spin_unlock(&file->f_lock);
1247
1248         if (desc->eof) {
1249                 res = 0;
1250                 goto out_free;
1251         }
1252
1253         desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1254         force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1255                                                       force_clear);
1256         desc->clear_cache = force_clear;
1257
1258         do {
1259                 res = readdir_search_pagecache(desc);
1260
1261                 if (res == -EBADCOOKIE) {
1262                         res = 0;
1263                         /* This means either end of directory */
1264                         if (desc->dir_cookie && !desc->eof) {
1265                                 /* Or that the server has 'lost' a cookie */
1266                                 res = uncached_readdir(desc);
1267                                 if (res == 0)
1268                                         continue;
1269                                 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1270                                         res = 0;
1271                         }
1272                         break;
1273                 }
1274                 if (res == -ETOOSMALL && desc->plus) {
1275                         nfs_zap_caches(inode);
1276                         desc->plus = false;
1277                         desc->eof = false;
1278                         continue;
1279                 }
1280                 if (res < 0)
1281                         break;
1282
1283                 nfs_do_filldir(desc, nfsi->cookieverf);
1284                 nfs_readdir_page_unlock_and_put_cached(desc);
1285                 if (desc->page_index == desc->page_index_max)
1286                         desc->clear_cache = force_clear;
1287         } while (!desc->eob && !desc->eof);
1288
1289         spin_lock(&file->f_lock);
1290         dir_ctx->dir_cookie = desc->dir_cookie;
1291         dir_ctx->last_cookie = desc->last_cookie;
1292         dir_ctx->attr_gencount = desc->attr_gencount;
1293         dir_ctx->page_index = desc->page_index;
1294         dir_ctx->force_clear = force_clear;
1295         dir_ctx->eof = desc->eof;
1296         dir_ctx->dtsize = desc->dtsize;
1297         memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1298         spin_unlock(&file->f_lock);
1299 out_free:
1300         kfree(desc);
1301
1302 out:
1303         dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1304         return res;
1305 }
1306
1307 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1308 {
1309         struct nfs_open_dir_context *dir_ctx = filp->private_data;
1310
1311         dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1312                         filp, offset, whence);
1313
1314         switch (whence) {
1315         default:
1316                 return -EINVAL;
1317         case SEEK_SET:
1318                 if (offset < 0)
1319                         return -EINVAL;
1320                 spin_lock(&filp->f_lock);
1321                 break;
1322         case SEEK_CUR:
1323                 if (offset == 0)
1324                         return filp->f_pos;
1325                 spin_lock(&filp->f_lock);
1326                 offset += filp->f_pos;
1327                 if (offset < 0) {
1328                         spin_unlock(&filp->f_lock);
1329                         return -EINVAL;
1330                 }
1331         }
1332         if (offset != filp->f_pos) {
1333                 filp->f_pos = offset;
1334                 dir_ctx->page_index = 0;
1335                 if (!nfs_readdir_use_cookie(filp)) {
1336                         dir_ctx->dir_cookie = 0;
1337                         dir_ctx->last_cookie = 0;
1338                 } else {
1339                         dir_ctx->dir_cookie = offset;
1340                         dir_ctx->last_cookie = offset;
1341                 }
1342                 dir_ctx->eof = false;
1343         }
1344         spin_unlock(&filp->f_lock);
1345         return offset;
1346 }
1347
1348 /*
1349  * All directory operations under NFS are synchronous, so fsync()
1350  * is a dummy operation.
1351  */
1352 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1353                          int datasync)
1354 {
1355         dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1356
1357         nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1358         return 0;
1359 }
1360
1361 /**
1362  * nfs_force_lookup_revalidate - Mark the directory as having changed
1363  * @dir: pointer to directory inode
1364  *
1365  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1366  * full lookup on all child dentries of 'dir' whenever a change occurs
1367  * on the server that might have invalidated our dcache.
1368  *
1369  * Note that we reserve bit '0' as a tag to let us know when a dentry
1370  * was revalidated while holding a delegation on its inode.
1371  *
1372  * The caller should be holding dir->i_lock
1373  */
1374 void nfs_force_lookup_revalidate(struct inode *dir)
1375 {
1376         NFS_I(dir)->cache_change_attribute += 2;
1377 }
1378 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1379
1380 /**
1381  * nfs_verify_change_attribute - Detects NFS remote directory changes
1382  * @dir: pointer to parent directory inode
1383  * @verf: previously saved change attribute
1384  *
1385  * Return "false" if the verifiers doesn't match the change attribute.
1386  * This would usually indicate that the directory contents have changed on
1387  * the server, and that any dentries need revalidating.
1388  */
1389 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1390 {
1391         return (verf & ~1UL) == nfs_save_change_attribute(dir);
1392 }
1393
1394 static void nfs_set_verifier_delegated(unsigned long *verf)
1395 {
1396         *verf |= 1UL;
1397 }
1398
1399 #if IS_ENABLED(CONFIG_NFS_V4)
1400 static void nfs_unset_verifier_delegated(unsigned long *verf)
1401 {
1402         *verf &= ~1UL;
1403 }
1404 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1405
1406 static bool nfs_test_verifier_delegated(unsigned long verf)
1407 {
1408         return verf & 1;
1409 }
1410
1411 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1412 {
1413         return nfs_test_verifier_delegated(dentry->d_time);
1414 }
1415
1416 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1417 {
1418         struct inode *inode = d_inode(dentry);
1419         struct inode *dir = d_inode(dentry->d_parent);
1420
1421         if (!nfs_verify_change_attribute(dir, verf))
1422                 return;
1423         if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1424                 nfs_set_verifier_delegated(&verf);
1425         dentry->d_time = verf;
1426 }
1427
1428 /**
1429  * nfs_set_verifier - save a parent directory verifier in the dentry
1430  * @dentry: pointer to dentry
1431  * @verf: verifier to save
1432  *
1433  * Saves the parent directory verifier in @dentry. If the inode has
1434  * a delegation, we also tag the dentry as having been revalidated
1435  * while holding a delegation so that we know we don't have to
1436  * look it up again after a directory change.
1437  */
1438 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1439 {
1440
1441         spin_lock(&dentry->d_lock);
1442         nfs_set_verifier_locked(dentry, verf);
1443         spin_unlock(&dentry->d_lock);
1444 }
1445 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1446
1447 #if IS_ENABLED(CONFIG_NFS_V4)
1448 /**
1449  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1450  * @inode: pointer to inode
1451  *
1452  * Iterates through the dentries in the inode alias list and clears
1453  * the tag used to indicate that the dentry has been revalidated
1454  * while holding a delegation.
1455  * This function is intended for use when the delegation is being
1456  * returned or revoked.
1457  */
1458 void nfs_clear_verifier_delegated(struct inode *inode)
1459 {
1460         struct dentry *alias;
1461
1462         if (!inode)
1463                 return;
1464         spin_lock(&inode->i_lock);
1465         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1466                 spin_lock(&alias->d_lock);
1467                 nfs_unset_verifier_delegated(&alias->d_time);
1468                 spin_unlock(&alias->d_lock);
1469         }
1470         spin_unlock(&inode->i_lock);
1471 }
1472 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1473 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1474
1475 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1476 {
1477         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1478             d_really_is_negative(dentry))
1479                 return dentry->d_time == inode_peek_iversion_raw(dir);
1480         return nfs_verify_change_attribute(dir, dentry->d_time);
1481 }
1482
1483 /*
1484  * A check for whether or not the parent directory has changed.
1485  * In the case it has, we assume that the dentries are untrustworthy
1486  * and may need to be looked up again.
1487  * If rcu_walk prevents us from performing a full check, return 0.
1488  */
1489 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1490                               int rcu_walk)
1491 {
1492         if (IS_ROOT(dentry))
1493                 return 1;
1494         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1495                 return 0;
1496         if (!nfs_dentry_verify_change(dir, dentry))
1497                 return 0;
1498         /* Revalidate nfsi->cache_change_attribute before we declare a match */
1499         if (nfs_mapping_need_revalidate_inode(dir)) {
1500                 if (rcu_walk)
1501                         return 0;
1502                 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1503                         return 0;
1504         }
1505         if (!nfs_dentry_verify_change(dir, dentry))
1506                 return 0;
1507         return 1;
1508 }
1509
1510 /*
1511  * Use intent information to check whether or not we're going to do
1512  * an O_EXCL create using this path component.
1513  */
1514 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1515 {
1516         if (NFS_PROTO(dir)->version == 2)
1517                 return 0;
1518         return flags & LOOKUP_EXCL;
1519 }
1520
1521 /*
1522  * Inode and filehandle revalidation for lookups.
1523  *
1524  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1525  * or if the intent information indicates that we're about to open this
1526  * particular file and the "nocto" mount flag is not set.
1527  *
1528  */
1529 static
1530 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1531 {
1532         struct nfs_server *server = NFS_SERVER(inode);
1533         int ret;
1534
1535         if (IS_AUTOMOUNT(inode))
1536                 return 0;
1537
1538         if (flags & LOOKUP_OPEN) {
1539                 switch (inode->i_mode & S_IFMT) {
1540                 case S_IFREG:
1541                         /* A NFSv4 OPEN will revalidate later */
1542                         if (server->caps & NFS_CAP_ATOMIC_OPEN)
1543                                 goto out;
1544                         fallthrough;
1545                 case S_IFDIR:
1546                         if (server->flags & NFS_MOUNT_NOCTO)
1547                                 break;
1548                         /* NFS close-to-open cache consistency validation */
1549                         goto out_force;
1550                 }
1551         }
1552
1553         /* VFS wants an on-the-wire revalidation */
1554         if (flags & LOOKUP_REVAL)
1555                 goto out_force;
1556 out:
1557         if (inode->i_nlink > 0 ||
1558             (inode->i_nlink == 0 &&
1559              test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1560                 return 0;
1561         else
1562                 return -ESTALE;
1563 out_force:
1564         if (flags & LOOKUP_RCU)
1565                 return -ECHILD;
1566         ret = __nfs_revalidate_inode(server, inode);
1567         if (ret != 0)
1568                 return ret;
1569         goto out;
1570 }
1571
1572 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1573 {
1574         spin_lock(&inode->i_lock);
1575         nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1576         spin_unlock(&inode->i_lock);
1577 }
1578
1579 /*
1580  * We judge how long we want to trust negative
1581  * dentries by looking at the parent inode mtime.
1582  *
1583  * If parent mtime has changed, we revalidate, else we wait for a
1584  * period corresponding to the parent's attribute cache timeout value.
1585  *
1586  * If LOOKUP_RCU prevents us from performing a full check, return 1
1587  * suggesting a reval is needed.
1588  *
1589  * Note that when creating a new file, or looking up a rename target,
1590  * then it shouldn't be necessary to revalidate a negative dentry.
1591  */
1592 static inline
1593 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1594                        unsigned int flags)
1595 {
1596         if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1597                 return 0;
1598         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1599                 return 1;
1600         /* Case insensitive server? Revalidate negative dentries */
1601         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1602                 return 1;
1603         return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1604 }
1605
1606 static int
1607 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1608                            struct inode *inode, int error)
1609 {
1610         switch (error) {
1611         case 1:
1612                 break;
1613         case 0:
1614                 /*
1615                  * We can't d_drop the root of a disconnected tree:
1616                  * its d_hash is on the s_anon list and d_drop() would hide
1617                  * it from shrink_dcache_for_unmount(), leading to busy
1618                  * inodes on unmount and further oopses.
1619                  */
1620                 if (inode && IS_ROOT(dentry))
1621                         error = 1;
1622                 break;
1623         }
1624         trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1625         return error;
1626 }
1627
1628 static int
1629 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1630                                unsigned int flags)
1631 {
1632         int ret = 1;
1633         if (nfs_neg_need_reval(dir, dentry, flags)) {
1634                 if (flags & LOOKUP_RCU)
1635                         return -ECHILD;
1636                 ret = 0;
1637         }
1638         return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1639 }
1640
1641 static int
1642 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1643                                 struct inode *inode)
1644 {
1645         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1646         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1647 }
1648
1649 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1650                                         struct dentry *dentry,
1651                                         struct inode *inode, unsigned int flags)
1652 {
1653         struct nfs_fh *fhandle;
1654         struct nfs_fattr *fattr;
1655         unsigned long dir_verifier;
1656         int ret;
1657
1658         trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1659
1660         ret = -ENOMEM;
1661         fhandle = nfs_alloc_fhandle();
1662         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1663         if (fhandle == NULL || fattr == NULL)
1664                 goto out;
1665
1666         dir_verifier = nfs_save_change_attribute(dir);
1667         ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1668         if (ret < 0) {
1669                 switch (ret) {
1670                 case -ESTALE:
1671                 case -ENOENT:
1672                         ret = 0;
1673                         break;
1674                 case -ETIMEDOUT:
1675                         if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1676                                 ret = 1;
1677                 }
1678                 goto out;
1679         }
1680
1681         /* Request help from readdirplus */
1682         nfs_lookup_advise_force_readdirplus(dir, flags);
1683
1684         ret = 0;
1685         if (nfs_compare_fh(NFS_FH(inode), fhandle))
1686                 goto out;
1687         if (nfs_refresh_inode(inode, fattr) < 0)
1688                 goto out;
1689
1690         nfs_setsecurity(inode, fattr);
1691         nfs_set_verifier(dentry, dir_verifier);
1692
1693         ret = 1;
1694 out:
1695         nfs_free_fattr(fattr);
1696         nfs_free_fhandle(fhandle);
1697
1698         /*
1699          * If the lookup failed despite the dentry change attribute being
1700          * a match, then we should revalidate the directory cache.
1701          */
1702         if (!ret && nfs_dentry_verify_change(dir, dentry))
1703                 nfs_mark_dir_for_revalidate(dir);
1704         return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1705 }
1706
1707 /*
1708  * This is called every time the dcache has a lookup hit,
1709  * and we should check whether we can really trust that
1710  * lookup.
1711  *
1712  * NOTE! The hit can be a negative hit too, don't assume
1713  * we have an inode!
1714  *
1715  * If the parent directory is seen to have changed, we throw out the
1716  * cached dentry and do a new lookup.
1717  */
1718 static int
1719 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1720                          unsigned int flags)
1721 {
1722         struct inode *inode;
1723         int error;
1724
1725         nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1726         inode = d_inode(dentry);
1727
1728         if (!inode)
1729                 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1730
1731         if (is_bad_inode(inode)) {
1732                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1733                                 __func__, dentry);
1734                 goto out_bad;
1735         }
1736
1737         if (nfs_verifier_is_delegated(dentry))
1738                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1739
1740         /* Force a full look up iff the parent directory has changed */
1741         if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1742             nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1743                 error = nfs_lookup_verify_inode(inode, flags);
1744                 if (error) {
1745                         if (error == -ESTALE)
1746                                 nfs_mark_dir_for_revalidate(dir);
1747                         goto out_bad;
1748                 }
1749                 goto out_valid;
1750         }
1751
1752         if (flags & LOOKUP_RCU)
1753                 return -ECHILD;
1754
1755         if (NFS_STALE(inode))
1756                 goto out_bad;
1757
1758         return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1759 out_valid:
1760         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1761 out_bad:
1762         if (flags & LOOKUP_RCU)
1763                 return -ECHILD;
1764         return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1765 }
1766
1767 static int
1768 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1769                         int (*reval)(struct inode *, struct dentry *, unsigned int))
1770 {
1771         struct dentry *parent;
1772         struct inode *dir;
1773         int ret;
1774
1775         if (flags & LOOKUP_RCU) {
1776                 parent = READ_ONCE(dentry->d_parent);
1777                 dir = d_inode_rcu(parent);
1778                 if (!dir)
1779                         return -ECHILD;
1780                 ret = reval(dir, dentry, flags);
1781                 if (parent != READ_ONCE(dentry->d_parent))
1782                         return -ECHILD;
1783         } else {
1784                 parent = dget_parent(dentry);
1785                 ret = reval(d_inode(parent), dentry, flags);
1786                 dput(parent);
1787         }
1788         return ret;
1789 }
1790
1791 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1792 {
1793         return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1794 }
1795
1796 /*
1797  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1798  * when we don't really care about the dentry name. This is called when a
1799  * pathwalk ends on a dentry that was not found via a normal lookup in the
1800  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1801  *
1802  * In this situation, we just want to verify that the inode itself is OK
1803  * since the dentry might have changed on the server.
1804  */
1805 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1806 {
1807         struct inode *inode = d_inode(dentry);
1808         int error = 0;
1809
1810         /*
1811          * I believe we can only get a negative dentry here in the case of a
1812          * procfs-style symlink. Just assume it's correct for now, but we may
1813          * eventually need to do something more here.
1814          */
1815         if (!inode) {
1816                 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1817                                 __func__, dentry);
1818                 return 1;
1819         }
1820
1821         if (is_bad_inode(inode)) {
1822                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1823                                 __func__, dentry);
1824                 return 0;
1825         }
1826
1827         error = nfs_lookup_verify_inode(inode, flags);
1828         dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1829                         __func__, inode->i_ino, error ? "invalid" : "valid");
1830         return !error;
1831 }
1832
1833 /*
1834  * This is called from dput() when d_count is going to 0.
1835  */
1836 static int nfs_dentry_delete(const struct dentry *dentry)
1837 {
1838         dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1839                 dentry, dentry->d_flags);
1840
1841         /* Unhash any dentry with a stale inode */
1842         if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1843                 return 1;
1844
1845         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1846                 /* Unhash it, so that ->d_iput() would be called */
1847                 return 1;
1848         }
1849         if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1850                 /* Unhash it, so that ancestors of killed async unlink
1851                  * files will be cleaned up during umount */
1852                 return 1;
1853         }
1854         return 0;
1855
1856 }
1857
1858 /* Ensure that we revalidate inode->i_nlink */
1859 static void nfs_drop_nlink(struct inode *inode)
1860 {
1861         spin_lock(&inode->i_lock);
1862         /* drop the inode if we're reasonably sure this is the last link */
1863         if (inode->i_nlink > 0)
1864                 drop_nlink(inode);
1865         NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1866         nfs_set_cache_invalid(
1867                 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1868                                NFS_INO_INVALID_NLINK);
1869         spin_unlock(&inode->i_lock);
1870 }
1871
1872 /*
1873  * Called when the dentry loses inode.
1874  * We use it to clean up silly-renamed files.
1875  */
1876 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1877 {
1878         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1879                 nfs_complete_unlink(dentry, inode);
1880                 nfs_drop_nlink(inode);
1881         }
1882         iput(inode);
1883 }
1884
1885 static void nfs_d_release(struct dentry *dentry)
1886 {
1887         /* free cached devname value, if it survived that far */
1888         if (unlikely(dentry->d_fsdata)) {
1889                 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1890                         WARN_ON(1);
1891                 else
1892                         kfree(dentry->d_fsdata);
1893         }
1894 }
1895
1896 const struct dentry_operations nfs_dentry_operations = {
1897         .d_revalidate   = nfs_lookup_revalidate,
1898         .d_weak_revalidate      = nfs_weak_revalidate,
1899         .d_delete       = nfs_dentry_delete,
1900         .d_iput         = nfs_dentry_iput,
1901         .d_automount    = nfs_d_automount,
1902         .d_release      = nfs_d_release,
1903 };
1904 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1905
1906 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1907 {
1908         struct dentry *res;
1909         struct inode *inode = NULL;
1910         struct nfs_fh *fhandle = NULL;
1911         struct nfs_fattr *fattr = NULL;
1912         unsigned long dir_verifier;
1913         int error;
1914
1915         dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1916         nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1917
1918         if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1919                 return ERR_PTR(-ENAMETOOLONG);
1920
1921         /*
1922          * If we're doing an exclusive create, optimize away the lookup
1923          * but don't hash the dentry.
1924          */
1925         if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1926                 return NULL;
1927
1928         res = ERR_PTR(-ENOMEM);
1929         fhandle = nfs_alloc_fhandle();
1930         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1931         if (fhandle == NULL || fattr == NULL)
1932                 goto out;
1933
1934         dir_verifier = nfs_save_change_attribute(dir);
1935         trace_nfs_lookup_enter(dir, dentry, flags);
1936         error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1937         if (error == -ENOENT) {
1938                 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1939                         dir_verifier = inode_peek_iversion_raw(dir);
1940                 goto no_entry;
1941         }
1942         if (error < 0) {
1943                 res = ERR_PTR(error);
1944                 goto out;
1945         }
1946         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1947         res = ERR_CAST(inode);
1948         if (IS_ERR(res))
1949                 goto out;
1950
1951         /* Notify readdir to use READDIRPLUS */
1952         nfs_lookup_advise_force_readdirplus(dir, flags);
1953
1954 no_entry:
1955         res = d_splice_alias(inode, dentry);
1956         if (res != NULL) {
1957                 if (IS_ERR(res))
1958                         goto out;
1959                 dentry = res;
1960         }
1961         nfs_set_verifier(dentry, dir_verifier);
1962 out:
1963         trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1964         nfs_free_fattr(fattr);
1965         nfs_free_fhandle(fhandle);
1966         return res;
1967 }
1968 EXPORT_SYMBOL_GPL(nfs_lookup);
1969
1970 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1971 {
1972         /* Case insensitive server? Revalidate dentries */
1973         if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1974                 d_prune_aliases(inode);
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1977
1978 #if IS_ENABLED(CONFIG_NFS_V4)
1979 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1980
1981 const struct dentry_operations nfs4_dentry_operations = {
1982         .d_revalidate   = nfs4_lookup_revalidate,
1983         .d_weak_revalidate      = nfs_weak_revalidate,
1984         .d_delete       = nfs_dentry_delete,
1985         .d_iput         = nfs_dentry_iput,
1986         .d_automount    = nfs_d_automount,
1987         .d_release      = nfs_d_release,
1988 };
1989 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1990
1991 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1992 {
1993         return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1994 }
1995
1996 static int do_open(struct inode *inode, struct file *filp)
1997 {
1998         nfs_fscache_open_file(inode, filp);
1999         return 0;
2000 }
2001
2002 static int nfs_finish_open(struct nfs_open_context *ctx,
2003                            struct dentry *dentry,
2004                            struct file *file, unsigned open_flags)
2005 {
2006         int err;
2007
2008         err = finish_open(file, dentry, do_open);
2009         if (err)
2010                 goto out;
2011         if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
2012                 nfs_file_set_open_context(file, ctx);
2013         else
2014                 err = -EOPENSTALE;
2015 out:
2016         return err;
2017 }
2018
2019 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2020                     struct file *file, unsigned open_flags,
2021                     umode_t mode)
2022 {
2023         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2024         struct nfs_open_context *ctx;
2025         struct dentry *res;
2026         struct iattr attr = { .ia_valid = ATTR_OPEN };
2027         struct inode *inode;
2028         unsigned int lookup_flags = 0;
2029         unsigned long dir_verifier;
2030         bool switched = false;
2031         int created = 0;
2032         int err;
2033
2034         /* Expect a negative dentry */
2035         BUG_ON(d_inode(dentry));
2036
2037         dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2038                         dir->i_sb->s_id, dir->i_ino, dentry);
2039
2040         err = nfs_check_flags(open_flags);
2041         if (err)
2042                 return err;
2043
2044         /* NFS only supports OPEN on regular files */
2045         if ((open_flags & O_DIRECTORY)) {
2046                 if (!d_in_lookup(dentry)) {
2047                         /*
2048                          * Hashed negative dentry with O_DIRECTORY: dentry was
2049                          * revalidated and is fine, no need to perform lookup
2050                          * again
2051                          */
2052                         return -ENOENT;
2053                 }
2054                 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2055                 goto no_open;
2056         }
2057
2058         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2059                 return -ENAMETOOLONG;
2060
2061         if (open_flags & O_CREAT) {
2062                 struct nfs_server *server = NFS_SERVER(dir);
2063
2064                 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2065                         mode &= ~current_umask();
2066
2067                 attr.ia_valid |= ATTR_MODE;
2068                 attr.ia_mode = mode;
2069         }
2070         if (open_flags & O_TRUNC) {
2071                 attr.ia_valid |= ATTR_SIZE;
2072                 attr.ia_size = 0;
2073         }
2074
2075         if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2076                 d_drop(dentry);
2077                 switched = true;
2078                 dentry = d_alloc_parallel(dentry->d_parent,
2079                                           &dentry->d_name, &wq);
2080                 if (IS_ERR(dentry))
2081                         return PTR_ERR(dentry);
2082                 if (unlikely(!d_in_lookup(dentry)))
2083                         return finish_no_open(file, dentry);
2084         }
2085
2086         ctx = create_nfs_open_context(dentry, open_flags, file);
2087         err = PTR_ERR(ctx);
2088         if (IS_ERR(ctx))
2089                 goto out;
2090
2091         trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2092         inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2093         if (created)
2094                 file->f_mode |= FMODE_CREATED;
2095         if (IS_ERR(inode)) {
2096                 err = PTR_ERR(inode);
2097                 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2098                 put_nfs_open_context(ctx);
2099                 d_drop(dentry);
2100                 switch (err) {
2101                 case -ENOENT:
2102                         d_splice_alias(NULL, dentry);
2103                         if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2104                                 dir_verifier = inode_peek_iversion_raw(dir);
2105                         else
2106                                 dir_verifier = nfs_save_change_attribute(dir);
2107                         nfs_set_verifier(dentry, dir_verifier);
2108                         break;
2109                 case -EISDIR:
2110                 case -ENOTDIR:
2111                         goto no_open;
2112                 case -ELOOP:
2113                         if (!(open_flags & O_NOFOLLOW))
2114                                 goto no_open;
2115                         break;
2116                         /* case -EINVAL: */
2117                 default:
2118                         break;
2119                 }
2120                 goto out;
2121         }
2122
2123         err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2124         trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2125         put_nfs_open_context(ctx);
2126 out:
2127         if (unlikely(switched)) {
2128                 d_lookup_done(dentry);
2129                 dput(dentry);
2130         }
2131         return err;
2132
2133 no_open:
2134         res = nfs_lookup(dir, dentry, lookup_flags);
2135         if (!res) {
2136                 inode = d_inode(dentry);
2137                 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2138                     !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2139                         res = ERR_PTR(-ENOTDIR);
2140                 else if (inode && S_ISREG(inode->i_mode))
2141                         res = ERR_PTR(-EOPENSTALE);
2142         } else if (!IS_ERR(res)) {
2143                 inode = d_inode(res);
2144                 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2145                     !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2146                         dput(res);
2147                         res = ERR_PTR(-ENOTDIR);
2148                 } else if (inode && S_ISREG(inode->i_mode)) {
2149                         dput(res);
2150                         res = ERR_PTR(-EOPENSTALE);
2151                 }
2152         }
2153         if (switched) {
2154                 d_lookup_done(dentry);
2155                 if (!res)
2156                         res = dentry;
2157                 else
2158                         dput(dentry);
2159         }
2160         if (IS_ERR(res))
2161                 return PTR_ERR(res);
2162         return finish_no_open(file, res);
2163 }
2164 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2165
2166 static int
2167 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2168                           unsigned int flags)
2169 {
2170         struct inode *inode;
2171
2172         if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2173                 goto full_reval;
2174         if (d_mountpoint(dentry))
2175                 goto full_reval;
2176
2177         inode = d_inode(dentry);
2178
2179         /* We can't create new files in nfs_open_revalidate(), so we
2180          * optimize away revalidation of negative dentries.
2181          */
2182         if (inode == NULL)
2183                 goto full_reval;
2184
2185         if (nfs_verifier_is_delegated(dentry))
2186                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2187
2188         /* NFS only supports OPEN on regular files */
2189         if (!S_ISREG(inode->i_mode))
2190                 goto full_reval;
2191
2192         /* We cannot do exclusive creation on a positive dentry */
2193         if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2194                 goto reval_dentry;
2195
2196         /* Check if the directory changed */
2197         if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2198                 goto reval_dentry;
2199
2200         /* Let f_op->open() actually open (and revalidate) the file */
2201         return 1;
2202 reval_dentry:
2203         if (flags & LOOKUP_RCU)
2204                 return -ECHILD;
2205         return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2206
2207 full_reval:
2208         return nfs_do_lookup_revalidate(dir, dentry, flags);
2209 }
2210
2211 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2212 {
2213         return __nfs_lookup_revalidate(dentry, flags,
2214                         nfs4_do_lookup_revalidate);
2215 }
2216
2217 #endif /* CONFIG_NFSV4 */
2218
2219 struct dentry *
2220 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2221                                 struct nfs_fattr *fattr)
2222 {
2223         struct dentry *parent = dget_parent(dentry);
2224         struct inode *dir = d_inode(parent);
2225         struct inode *inode;
2226         struct dentry *d;
2227         int error;
2228
2229         d_drop(dentry);
2230
2231         if (fhandle->size == 0) {
2232                 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2233                 if (error)
2234                         goto out_error;
2235         }
2236         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2237         if (!(fattr->valid & NFS_ATTR_FATTR)) {
2238                 struct nfs_server *server = NFS_SB(dentry->d_sb);
2239                 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2240                                 fattr, NULL);
2241                 if (error < 0)
2242                         goto out_error;
2243         }
2244         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2245         d = d_splice_alias(inode, dentry);
2246 out:
2247         dput(parent);
2248         return d;
2249 out_error:
2250         d = ERR_PTR(error);
2251         goto out;
2252 }
2253 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2254
2255 /*
2256  * Code common to create, mkdir, and mknod.
2257  */
2258 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2259                                 struct nfs_fattr *fattr)
2260 {
2261         struct dentry *d;
2262
2263         d = nfs_add_or_obtain(dentry, fhandle, fattr);
2264         if (IS_ERR(d))
2265                 return PTR_ERR(d);
2266
2267         /* Callers don't care */
2268         dput(d);
2269         return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(nfs_instantiate);
2272
2273 /*
2274  * Following a failed create operation, we drop the dentry rather
2275  * than retain a negative dentry. This avoids a problem in the event
2276  * that the operation succeeded on the server, but an error in the
2277  * reply path made it appear to have failed.
2278  */
2279 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2280                struct dentry *dentry, umode_t mode, bool excl)
2281 {
2282         struct iattr attr;
2283         int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2284         int error;
2285
2286         dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2287                         dir->i_sb->s_id, dir->i_ino, dentry);
2288
2289         attr.ia_mode = mode;
2290         attr.ia_valid = ATTR_MODE;
2291
2292         trace_nfs_create_enter(dir, dentry, open_flags);
2293         error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2294         trace_nfs_create_exit(dir, dentry, open_flags, error);
2295         if (error != 0)
2296                 goto out_err;
2297         return 0;
2298 out_err:
2299         d_drop(dentry);
2300         return error;
2301 }
2302 EXPORT_SYMBOL_GPL(nfs_create);
2303
2304 /*
2305  * See comments for nfs_proc_create regarding failed operations.
2306  */
2307 int
2308 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2309           struct dentry *dentry, umode_t mode, dev_t rdev)
2310 {
2311         struct iattr attr;
2312         int status;
2313
2314         dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2315                         dir->i_sb->s_id, dir->i_ino, dentry);
2316
2317         attr.ia_mode = mode;
2318         attr.ia_valid = ATTR_MODE;
2319
2320         trace_nfs_mknod_enter(dir, dentry);
2321         status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2322         trace_nfs_mknod_exit(dir, dentry, status);
2323         if (status != 0)
2324                 goto out_err;
2325         return 0;
2326 out_err:
2327         d_drop(dentry);
2328         return status;
2329 }
2330 EXPORT_SYMBOL_GPL(nfs_mknod);
2331
2332 /*
2333  * See comments for nfs_proc_create regarding failed operations.
2334  */
2335 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2336               struct dentry *dentry, umode_t mode)
2337 {
2338         struct iattr attr;
2339         int error;
2340
2341         dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2342                         dir->i_sb->s_id, dir->i_ino, dentry);
2343
2344         attr.ia_valid = ATTR_MODE;
2345         attr.ia_mode = mode | S_IFDIR;
2346
2347         trace_nfs_mkdir_enter(dir, dentry);
2348         error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2349         trace_nfs_mkdir_exit(dir, dentry, error);
2350         if (error != 0)
2351                 goto out_err;
2352         return 0;
2353 out_err:
2354         d_drop(dentry);
2355         return error;
2356 }
2357 EXPORT_SYMBOL_GPL(nfs_mkdir);
2358
2359 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2360 {
2361         if (simple_positive(dentry))
2362                 d_delete(dentry);
2363 }
2364
2365 static void nfs_dentry_remove_handle_error(struct inode *dir,
2366                                            struct dentry *dentry, int error)
2367 {
2368         switch (error) {
2369         case -ENOENT:
2370                 d_delete(dentry);
2371                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2372                 break;
2373         case 0:
2374                 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2375                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2376         }
2377 }
2378
2379 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2380 {
2381         int error;
2382
2383         dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2384                         dir->i_sb->s_id, dir->i_ino, dentry);
2385
2386         trace_nfs_rmdir_enter(dir, dentry);
2387         if (d_really_is_positive(dentry)) {
2388                 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2389                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2390                 /* Ensure the VFS deletes this inode */
2391                 switch (error) {
2392                 case 0:
2393                         clear_nlink(d_inode(dentry));
2394                         break;
2395                 case -ENOENT:
2396                         nfs_dentry_handle_enoent(dentry);
2397                 }
2398                 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2399         } else
2400                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2401         nfs_dentry_remove_handle_error(dir, dentry, error);
2402         trace_nfs_rmdir_exit(dir, dentry, error);
2403
2404         return error;
2405 }
2406 EXPORT_SYMBOL_GPL(nfs_rmdir);
2407
2408 /*
2409  * Remove a file after making sure there are no pending writes,
2410  * and after checking that the file has only one user. 
2411  *
2412  * We invalidate the attribute cache and free the inode prior to the operation
2413  * to avoid possible races if the server reuses the inode.
2414  */
2415 static int nfs_safe_remove(struct dentry *dentry)
2416 {
2417         struct inode *dir = d_inode(dentry->d_parent);
2418         struct inode *inode = d_inode(dentry);
2419         int error = -EBUSY;
2420                 
2421         dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2422
2423         /* If the dentry was sillyrenamed, we simply call d_delete() */
2424         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2425                 error = 0;
2426                 goto out;
2427         }
2428
2429         trace_nfs_remove_enter(dir, dentry);
2430         if (inode != NULL) {
2431                 error = NFS_PROTO(dir)->remove(dir, dentry);
2432                 if (error == 0)
2433                         nfs_drop_nlink(inode);
2434         } else
2435                 error = NFS_PROTO(dir)->remove(dir, dentry);
2436         if (error == -ENOENT)
2437                 nfs_dentry_handle_enoent(dentry);
2438         trace_nfs_remove_exit(dir, dentry, error);
2439 out:
2440         return error;
2441 }
2442
2443 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2444  *  belongs to an active ".nfs..." file and we return -EBUSY.
2445  *
2446  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2447  */
2448 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2449 {
2450         int error;
2451         int need_rehash = 0;
2452
2453         dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2454                 dir->i_ino, dentry);
2455
2456         trace_nfs_unlink_enter(dir, dentry);
2457         spin_lock(&dentry->d_lock);
2458         if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2459                                              &NFS_I(d_inode(dentry))->flags)) {
2460                 spin_unlock(&dentry->d_lock);
2461                 /* Start asynchronous writeout of the inode */
2462                 write_inode_now(d_inode(dentry), 0);
2463                 error = nfs_sillyrename(dir, dentry);
2464                 goto out;
2465         }
2466         if (!d_unhashed(dentry)) {
2467                 __d_drop(dentry);
2468                 need_rehash = 1;
2469         }
2470         spin_unlock(&dentry->d_lock);
2471         error = nfs_safe_remove(dentry);
2472         nfs_dentry_remove_handle_error(dir, dentry, error);
2473         if (need_rehash)
2474                 d_rehash(dentry);
2475 out:
2476         trace_nfs_unlink_exit(dir, dentry, error);
2477         return error;
2478 }
2479 EXPORT_SYMBOL_GPL(nfs_unlink);
2480
2481 /*
2482  * To create a symbolic link, most file systems instantiate a new inode,
2483  * add a page to it containing the path, then write it out to the disk
2484  * using prepare_write/commit_write.
2485  *
2486  * Unfortunately the NFS client can't create the in-core inode first
2487  * because it needs a file handle to create an in-core inode (see
2488  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2489  * symlink request has completed on the server.
2490  *
2491  * So instead we allocate a raw page, copy the symname into it, then do
2492  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2493  * now have a new file handle and can instantiate an in-core NFS inode
2494  * and move the raw page into its mapping.
2495  */
2496 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2497                 struct dentry *dentry, const char *symname)
2498 {
2499         struct page *page;
2500         char *kaddr;
2501         struct iattr attr;
2502         unsigned int pathlen = strlen(symname);
2503         int error;
2504
2505         dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2506                 dir->i_ino, dentry, symname);
2507
2508         if (pathlen > PAGE_SIZE)
2509                 return -ENAMETOOLONG;
2510
2511         attr.ia_mode = S_IFLNK | S_IRWXUGO;
2512         attr.ia_valid = ATTR_MODE;
2513
2514         page = alloc_page(GFP_USER);
2515         if (!page)
2516                 return -ENOMEM;
2517
2518         kaddr = page_address(page);
2519         memcpy(kaddr, symname, pathlen);
2520         if (pathlen < PAGE_SIZE)
2521                 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2522
2523         trace_nfs_symlink_enter(dir, dentry);
2524         error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2525         trace_nfs_symlink_exit(dir, dentry, error);
2526         if (error != 0) {
2527                 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2528                         dir->i_sb->s_id, dir->i_ino,
2529                         dentry, symname, error);
2530                 d_drop(dentry);
2531                 __free_page(page);
2532                 return error;
2533         }
2534
2535         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2536
2537         /*
2538          * No big deal if we can't add this page to the page cache here.
2539          * READLINK will get the missing page from the server if needed.
2540          */
2541         if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2542                                                         GFP_KERNEL)) {
2543                 SetPageUptodate(page);
2544                 unlock_page(page);
2545                 /*
2546                  * add_to_page_cache_lru() grabs an extra page refcount.
2547                  * Drop it here to avoid leaking this page later.
2548                  */
2549                 put_page(page);
2550         } else
2551                 __free_page(page);
2552
2553         return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(nfs_symlink);
2556
2557 int
2558 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2559 {
2560         struct inode *inode = d_inode(old_dentry);
2561         int error;
2562
2563         dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2564                 old_dentry, dentry);
2565
2566         trace_nfs_link_enter(inode, dir, dentry);
2567         d_drop(dentry);
2568         if (S_ISREG(inode->i_mode))
2569                 nfs_sync_inode(inode);
2570         error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2571         if (error == 0) {
2572                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2573                 ihold(inode);
2574                 d_add(dentry, inode);
2575         }
2576         trace_nfs_link_exit(inode, dir, dentry, error);
2577         return error;
2578 }
2579 EXPORT_SYMBOL_GPL(nfs_link);
2580
2581 /*
2582  * RENAME
2583  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2584  * different file handle for the same inode after a rename (e.g. when
2585  * moving to a different directory). A fail-safe method to do so would
2586  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2587  * rename the old file using the sillyrename stuff. This way, the original
2588  * file in old_dir will go away when the last process iput()s the inode.
2589  *
2590  * FIXED.
2591  * 
2592  * It actually works quite well. One needs to have the possibility for
2593  * at least one ".nfs..." file in each directory the file ever gets
2594  * moved or linked to which happens automagically with the new
2595  * implementation that only depends on the dcache stuff instead of
2596  * using the inode layer
2597  *
2598  * Unfortunately, things are a little more complicated than indicated
2599  * above. For a cross-directory move, we want to make sure we can get
2600  * rid of the old inode after the operation.  This means there must be
2601  * no pending writes (if it's a file), and the use count must be 1.
2602  * If these conditions are met, we can drop the dentries before doing
2603  * the rename.
2604  */
2605 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2606                struct dentry *old_dentry, struct inode *new_dir,
2607                struct dentry *new_dentry, unsigned int flags)
2608 {
2609         struct inode *old_inode = d_inode(old_dentry);
2610         struct inode *new_inode = d_inode(new_dentry);
2611         struct dentry *dentry = NULL, *rehash = NULL;
2612         struct rpc_task *task;
2613         int error = -EBUSY;
2614
2615         if (flags)
2616                 return -EINVAL;
2617
2618         dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2619                  old_dentry, new_dentry,
2620                  d_count(new_dentry));
2621
2622         trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2623         /*
2624          * For non-directories, check whether the target is busy and if so,
2625          * make a copy of the dentry and then do a silly-rename. If the
2626          * silly-rename succeeds, the copied dentry is hashed and becomes
2627          * the new target.
2628          */
2629         if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2630                 /*
2631                  * To prevent any new references to the target during the
2632                  * rename, we unhash the dentry in advance.
2633                  */
2634                 if (!d_unhashed(new_dentry)) {
2635                         d_drop(new_dentry);
2636                         rehash = new_dentry;
2637                 }
2638
2639                 if (d_count(new_dentry) > 2) {
2640                         int err;
2641
2642                         /* copy the target dentry's name */
2643                         dentry = d_alloc(new_dentry->d_parent,
2644                                          &new_dentry->d_name);
2645                         if (!dentry)
2646                                 goto out;
2647
2648                         /* silly-rename the existing target ... */
2649                         err = nfs_sillyrename(new_dir, new_dentry);
2650                         if (err)
2651                                 goto out;
2652
2653                         new_dentry = dentry;
2654                         rehash = NULL;
2655                         new_inode = NULL;
2656                 }
2657         }
2658
2659         if (S_ISREG(old_inode->i_mode))
2660                 nfs_sync_inode(old_inode);
2661         task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2662         if (IS_ERR(task)) {
2663                 error = PTR_ERR(task);
2664                 goto out;
2665         }
2666
2667         error = rpc_wait_for_completion_task(task);
2668         if (error != 0) {
2669                 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2670                 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2671                 smp_wmb();
2672         } else
2673                 error = task->tk_status;
2674         rpc_put_task(task);
2675         /* Ensure the inode attributes are revalidated */
2676         if (error == 0) {
2677                 spin_lock(&old_inode->i_lock);
2678                 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2679                 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2680                                                          NFS_INO_INVALID_CTIME |
2681                                                          NFS_INO_REVAL_FORCED);
2682                 spin_unlock(&old_inode->i_lock);
2683         }
2684 out:
2685         if (rehash)
2686                 d_rehash(rehash);
2687         trace_nfs_rename_exit(old_dir, old_dentry,
2688                         new_dir, new_dentry, error);
2689         if (!error) {
2690                 if (new_inode != NULL)
2691                         nfs_drop_nlink(new_inode);
2692                 /*
2693                  * The d_move() should be here instead of in an async RPC completion
2694                  * handler because we need the proper locks to move the dentry.  If
2695                  * we're interrupted by a signal, the async RPC completion handler
2696                  * should mark the directories for revalidation.
2697                  */
2698                 d_move(old_dentry, new_dentry);
2699                 nfs_set_verifier(old_dentry,
2700                                         nfs_save_change_attribute(new_dir));
2701         } else if (error == -ENOENT)
2702                 nfs_dentry_handle_enoent(old_dentry);
2703
2704         /* new dentry created? */
2705         if (dentry)
2706                 dput(dentry);
2707         return error;
2708 }
2709 EXPORT_SYMBOL_GPL(nfs_rename);
2710
2711 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2712 static LIST_HEAD(nfs_access_lru_list);
2713 static atomic_long_t nfs_access_nr_entries;
2714
2715 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2716 module_param(nfs_access_max_cachesize, ulong, 0644);
2717 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2718
2719 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2720 {
2721         put_group_info(entry->group_info);
2722         kfree_rcu(entry, rcu_head);
2723         smp_mb__before_atomic();
2724         atomic_long_dec(&nfs_access_nr_entries);
2725         smp_mb__after_atomic();
2726 }
2727
2728 static void nfs_access_free_list(struct list_head *head)
2729 {
2730         struct nfs_access_entry *cache;
2731
2732         while (!list_empty(head)) {
2733                 cache = list_entry(head->next, struct nfs_access_entry, lru);
2734                 list_del(&cache->lru);
2735                 nfs_access_free_entry(cache);
2736         }
2737 }
2738
2739 static unsigned long
2740 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2741 {
2742         LIST_HEAD(head);
2743         struct nfs_inode *nfsi, *next;
2744         struct nfs_access_entry *cache;
2745         long freed = 0;
2746
2747         spin_lock(&nfs_access_lru_lock);
2748         list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2749                 struct inode *inode;
2750
2751                 if (nr_to_scan-- == 0)
2752                         break;
2753                 inode = &nfsi->vfs_inode;
2754                 spin_lock(&inode->i_lock);
2755                 if (list_empty(&nfsi->access_cache_entry_lru))
2756                         goto remove_lru_entry;
2757                 cache = list_entry(nfsi->access_cache_entry_lru.next,
2758                                 struct nfs_access_entry, lru);
2759                 list_move(&cache->lru, &head);
2760                 rb_erase(&cache->rb_node, &nfsi->access_cache);
2761                 freed++;
2762                 if (!list_empty(&nfsi->access_cache_entry_lru))
2763                         list_move_tail(&nfsi->access_cache_inode_lru,
2764                                         &nfs_access_lru_list);
2765                 else {
2766 remove_lru_entry:
2767                         list_del_init(&nfsi->access_cache_inode_lru);
2768                         smp_mb__before_atomic();
2769                         clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2770                         smp_mb__after_atomic();
2771                 }
2772                 spin_unlock(&inode->i_lock);
2773         }
2774         spin_unlock(&nfs_access_lru_lock);
2775         nfs_access_free_list(&head);
2776         return freed;
2777 }
2778
2779 unsigned long
2780 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2781 {
2782         int nr_to_scan = sc->nr_to_scan;
2783         gfp_t gfp_mask = sc->gfp_mask;
2784
2785         if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2786                 return SHRINK_STOP;
2787         return nfs_do_access_cache_scan(nr_to_scan);
2788 }
2789
2790
2791 unsigned long
2792 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2793 {
2794         return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2795 }
2796
2797 static void
2798 nfs_access_cache_enforce_limit(void)
2799 {
2800         long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2801         unsigned long diff;
2802         unsigned int nr_to_scan;
2803
2804         if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2805                 return;
2806         nr_to_scan = 100;
2807         diff = nr_entries - nfs_access_max_cachesize;
2808         if (diff < nr_to_scan)
2809                 nr_to_scan = diff;
2810         nfs_do_access_cache_scan(nr_to_scan);
2811 }
2812
2813 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2814 {
2815         struct rb_root *root_node = &nfsi->access_cache;
2816         struct rb_node *n;
2817         struct nfs_access_entry *entry;
2818
2819         /* Unhook entries from the cache */
2820         while ((n = rb_first(root_node)) != NULL) {
2821                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2822                 rb_erase(n, root_node);
2823                 list_move(&entry->lru, head);
2824         }
2825         nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2826 }
2827
2828 void nfs_access_zap_cache(struct inode *inode)
2829 {
2830         LIST_HEAD(head);
2831
2832         if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2833                 return;
2834         /* Remove from global LRU init */
2835         spin_lock(&nfs_access_lru_lock);
2836         if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2837                 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2838
2839         spin_lock(&inode->i_lock);
2840         __nfs_access_zap_cache(NFS_I(inode), &head);
2841         spin_unlock(&inode->i_lock);
2842         spin_unlock(&nfs_access_lru_lock);
2843         nfs_access_free_list(&head);
2844 }
2845 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2846
2847 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2848 {
2849         struct group_info *ga, *gb;
2850         int g;
2851
2852         if (uid_lt(a->fsuid, b->fsuid))
2853                 return -1;
2854         if (uid_gt(a->fsuid, b->fsuid))
2855                 return 1;
2856
2857         if (gid_lt(a->fsgid, b->fsgid))
2858                 return -1;
2859         if (gid_gt(a->fsgid, b->fsgid))
2860                 return 1;
2861
2862         ga = a->group_info;
2863         gb = b->group_info;
2864         if (ga == gb)
2865                 return 0;
2866         if (ga == NULL)
2867                 return -1;
2868         if (gb == NULL)
2869                 return 1;
2870         if (ga->ngroups < gb->ngroups)
2871                 return -1;
2872         if (ga->ngroups > gb->ngroups)
2873                 return 1;
2874
2875         for (g = 0; g < ga->ngroups; g++) {
2876                 if (gid_lt(ga->gid[g], gb->gid[g]))
2877                         return -1;
2878                 if (gid_gt(ga->gid[g], gb->gid[g]))
2879                         return 1;
2880         }
2881         return 0;
2882 }
2883
2884 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2885 {
2886         struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2887
2888         while (n != NULL) {
2889                 struct nfs_access_entry *entry =
2890                         rb_entry(n, struct nfs_access_entry, rb_node);
2891                 int cmp = access_cmp(cred, entry);
2892
2893                 if (cmp < 0)
2894                         n = n->rb_left;
2895                 else if (cmp > 0)
2896                         n = n->rb_right;
2897                 else
2898                         return entry;
2899         }
2900         return NULL;
2901 }
2902
2903 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2904 {
2905         struct nfs_inode *nfsi = NFS_I(inode);
2906         struct nfs_access_entry *cache;
2907         bool retry = true;
2908         int err;
2909
2910         spin_lock(&inode->i_lock);
2911         for(;;) {
2912                 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2913                         goto out_zap;
2914                 cache = nfs_access_search_rbtree(inode, cred);
2915                 err = -ENOENT;
2916                 if (cache == NULL)
2917                         goto out;
2918                 /* Found an entry, is our attribute cache valid? */
2919                 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2920                         break;
2921                 if (!retry)
2922                         break;
2923                 err = -ECHILD;
2924                 if (!may_block)
2925                         goto out;
2926                 spin_unlock(&inode->i_lock);
2927                 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2928                 if (err)
2929                         return err;
2930                 spin_lock(&inode->i_lock);
2931                 retry = false;
2932         }
2933         *mask = cache->mask;
2934         list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2935         err = 0;
2936 out:
2937         spin_unlock(&inode->i_lock);
2938         return err;
2939 out_zap:
2940         spin_unlock(&inode->i_lock);
2941         nfs_access_zap_cache(inode);
2942         return -ENOENT;
2943 }
2944
2945 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2946 {
2947         /* Only check the most recently returned cache entry,
2948          * but do it without locking.
2949          */
2950         struct nfs_inode *nfsi = NFS_I(inode);
2951         struct nfs_access_entry *cache;
2952         int err = -ECHILD;
2953         struct list_head *lh;
2954
2955         rcu_read_lock();
2956         if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2957                 goto out;
2958         lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2959         cache = list_entry(lh, struct nfs_access_entry, lru);
2960         if (lh == &nfsi->access_cache_entry_lru ||
2961             access_cmp(cred, cache) != 0)
2962                 cache = NULL;
2963         if (cache == NULL)
2964                 goto out;
2965         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2966                 goto out;
2967         *mask = cache->mask;
2968         err = 0;
2969 out:
2970         rcu_read_unlock();
2971         return err;
2972 }
2973
2974 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2975                           u32 *mask, bool may_block)
2976 {
2977         int status;
2978
2979         status = nfs_access_get_cached_rcu(inode, cred, mask);
2980         if (status != 0)
2981                 status = nfs_access_get_cached_locked(inode, cred, mask,
2982                     may_block);
2983
2984         return status;
2985 }
2986 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2987
2988 static void nfs_access_add_rbtree(struct inode *inode,
2989                                   struct nfs_access_entry *set,
2990                                   const struct cred *cred)
2991 {
2992         struct nfs_inode *nfsi = NFS_I(inode);
2993         struct rb_root *root_node = &nfsi->access_cache;
2994         struct rb_node **p = &root_node->rb_node;
2995         struct rb_node *parent = NULL;
2996         struct nfs_access_entry *entry;
2997         int cmp;
2998
2999         spin_lock(&inode->i_lock);
3000         while (*p != NULL) {
3001                 parent = *p;
3002                 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3003                 cmp = access_cmp(cred, entry);
3004
3005                 if (cmp < 0)
3006                         p = &parent->rb_left;
3007                 else if (cmp > 0)
3008                         p = &parent->rb_right;
3009                 else
3010                         goto found;
3011         }
3012         rb_link_node(&set->rb_node, parent, p);
3013         rb_insert_color(&set->rb_node, root_node);
3014         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3015         spin_unlock(&inode->i_lock);
3016         return;
3017 found:
3018         rb_replace_node(parent, &set->rb_node, root_node);
3019         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3020         list_del(&entry->lru);
3021         spin_unlock(&inode->i_lock);
3022         nfs_access_free_entry(entry);
3023 }
3024
3025 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3026                           const struct cred *cred)
3027 {
3028         struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3029         if (cache == NULL)
3030                 return;
3031         RB_CLEAR_NODE(&cache->rb_node);
3032         cache->fsuid = cred->fsuid;
3033         cache->fsgid = cred->fsgid;
3034         cache->group_info = get_group_info(cred->group_info);
3035         cache->mask = set->mask;
3036
3037         /* The above field assignments must be visible
3038          * before this item appears on the lru.  We cannot easily
3039          * use rcu_assign_pointer, so just force the memory barrier.
3040          */
3041         smp_wmb();
3042         nfs_access_add_rbtree(inode, cache, cred);
3043
3044         /* Update accounting */
3045         smp_mb__before_atomic();
3046         atomic_long_inc(&nfs_access_nr_entries);
3047         smp_mb__after_atomic();
3048
3049         /* Add inode to global LRU list */
3050         if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3051                 spin_lock(&nfs_access_lru_lock);
3052                 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3053                         list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3054                                         &nfs_access_lru_list);
3055                 spin_unlock(&nfs_access_lru_lock);
3056         }
3057         nfs_access_cache_enforce_limit();
3058 }
3059 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3060
3061 #define NFS_MAY_READ (NFS_ACCESS_READ)
3062 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3063                 NFS_ACCESS_EXTEND | \
3064                 NFS_ACCESS_DELETE)
3065 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3066                 NFS_ACCESS_EXTEND)
3067 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3068 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3069 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3070 static int
3071 nfs_access_calc_mask(u32 access_result, umode_t umode)
3072 {
3073         int mask = 0;
3074
3075         if (access_result & NFS_MAY_READ)
3076                 mask |= MAY_READ;
3077         if (S_ISDIR(umode)) {
3078                 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3079                         mask |= MAY_WRITE;
3080                 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3081                         mask |= MAY_EXEC;
3082         } else if (S_ISREG(umode)) {
3083                 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3084                         mask |= MAY_WRITE;
3085                 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3086                         mask |= MAY_EXEC;
3087         } else if (access_result & NFS_MAY_WRITE)
3088                         mask |= MAY_WRITE;
3089         return mask;
3090 }
3091
3092 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3093 {
3094         entry->mask = access_result;
3095 }
3096 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3097
3098 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3099 {
3100         struct nfs_access_entry cache;
3101         bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3102         int cache_mask = -1;
3103         int status;
3104
3105         trace_nfs_access_enter(inode);
3106
3107         status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3108         if (status == 0)
3109                 goto out_cached;
3110
3111         status = -ECHILD;
3112         if (!may_block)
3113                 goto out;
3114
3115         /*
3116          * Determine which access bits we want to ask for...
3117          */
3118         cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3119                      nfs_access_xattr_mask(NFS_SERVER(inode));
3120         if (S_ISDIR(inode->i_mode))
3121                 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3122         else
3123                 cache.mask |= NFS_ACCESS_EXECUTE;
3124         status = NFS_PROTO(inode)->access(inode, &cache, cred);
3125         if (status != 0) {
3126                 if (status == -ESTALE) {
3127                         if (!S_ISDIR(inode->i_mode))
3128                                 nfs_set_inode_stale(inode);
3129                         else
3130                                 nfs_zap_caches(inode);
3131                 }
3132                 goto out;
3133         }
3134         nfs_access_add_cache(inode, &cache, cred);
3135 out_cached:
3136         cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3137         if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3138                 status = -EACCES;
3139 out:
3140         trace_nfs_access_exit(inode, mask, cache_mask, status);
3141         return status;
3142 }
3143
3144 static int nfs_open_permission_mask(int openflags)
3145 {
3146         int mask = 0;
3147
3148         if (openflags & __FMODE_EXEC) {
3149                 /* ONLY check exec rights */
3150                 mask = MAY_EXEC;
3151         } else {
3152                 if ((openflags & O_ACCMODE) != O_WRONLY)
3153                         mask |= MAY_READ;
3154                 if ((openflags & O_ACCMODE) != O_RDONLY)
3155                         mask |= MAY_WRITE;
3156         }
3157
3158         return mask;
3159 }
3160
3161 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3162 {
3163         return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3164 }
3165 EXPORT_SYMBOL_GPL(nfs_may_open);
3166
3167 static int nfs_execute_ok(struct inode *inode, int mask)
3168 {
3169         struct nfs_server *server = NFS_SERVER(inode);
3170         int ret = 0;
3171
3172         if (S_ISDIR(inode->i_mode))
3173                 return 0;
3174         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3175                 if (mask & MAY_NOT_BLOCK)
3176                         return -ECHILD;
3177                 ret = __nfs_revalidate_inode(server, inode);
3178         }
3179         if (ret == 0 && !execute_ok(inode))
3180                 ret = -EACCES;
3181         return ret;
3182 }
3183
3184 int nfs_permission(struct user_namespace *mnt_userns,
3185                    struct inode *inode,
3186                    int mask)
3187 {
3188         const struct cred *cred = current_cred();
3189         int res = 0;
3190
3191         nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3192
3193         if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3194                 goto out;
3195         /* Is this sys_access() ? */
3196         if (mask & (MAY_ACCESS | MAY_CHDIR))
3197                 goto force_lookup;
3198
3199         switch (inode->i_mode & S_IFMT) {
3200                 case S_IFLNK:
3201                         goto out;
3202                 case S_IFREG:
3203                         if ((mask & MAY_OPEN) &&
3204                            nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3205                                 return 0;
3206                         break;
3207                 case S_IFDIR:
3208                         /*
3209                          * Optimize away all write operations, since the server
3210                          * will check permissions when we perform the op.
3211                          */
3212                         if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3213                                 goto out;
3214         }
3215
3216 force_lookup:
3217         if (!NFS_PROTO(inode)->access)
3218                 goto out_notsup;
3219
3220         res = nfs_do_access(inode, cred, mask);
3221 out:
3222         if (!res && (mask & MAY_EXEC))
3223                 res = nfs_execute_ok(inode, mask);
3224
3225         dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3226                 inode->i_sb->s_id, inode->i_ino, mask, res);
3227         return res;
3228 out_notsup:
3229         if (mask & MAY_NOT_BLOCK)
3230                 return -ECHILD;
3231
3232         res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3233                                                   NFS_INO_INVALID_OTHER);
3234         if (res == 0)
3235                 res = generic_permission(&init_user_ns, inode, mask);
3236         goto out;
3237 }
3238 EXPORT_SYMBOL_GPL(nfs_permission);
This page took 0.20985 seconds and 4 git commands to generate.