2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
37 #include "extent_map.h"
39 #include "transaction.h"
40 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
61 #define RBIO_CACHE_SIZE 1024
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
79 struct list_head hash_list;
82 * LRU list for the stripe cache
84 struct list_head stripe_cache;
87 * for scheduling work in the helper threads
89 struct btrfs_work work;
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
105 struct list_head plug_list;
108 * flags that tell us if it is safe to
109 * merge with this bio
113 /* size of each individual stripe on disk */
116 /* number of data stripes (no p/q) */
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
128 enum btrfs_rbio_ops operation;
130 /* first bad stripe */
133 /* second bad stripe (for raid6 use) */
138 * number of pages needed to represent the full
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
154 atomic_t stripes_pending;
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
166 struct page **stripe_pages;
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
172 struct page **bio_pages;
175 * bitmap to record which horizontal stripe has data
177 unsigned long *dbitmap;
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
210 if (info->stripe_hash_table)
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
223 table = vzalloc(table_size);
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
233 for (i = 0; i < num_entries; i++) {
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
252 * once the caching is done, we set the cache ready
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
262 ret = alloc_rbio_pages(rbio);
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
273 memcpy(d, s, PAGE_SIZE);
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
283 * we hash on the first logical address of the stripe
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
287 u64 num = rbio->bbio->raid_map[0];
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
295 * shifting off the lower bits fixes things.
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
319 d = dest->stripe_pages[i];
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
333 * must be called with dest->rbio_list_lock held
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
356 * check the bit again under the hash table lock.
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
373 spin_lock(&rbio->bio_list_lock);
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 atomic_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
402 __free_raid_bio(rbio);
406 * prune a given rbio from the cache
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
410 struct btrfs_stripe_hash_table *table;
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
416 table = rbio->fs_info->stripe_hash_table;
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
424 * remove everything in the cache
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
428 struct btrfs_stripe_hash_table *table;
430 struct btrfs_raid_bio *rbio;
432 table = info->stripe_hash_table;
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
439 __remove_rbio_from_cache(rbio);
441 spin_unlock_irqrestore(&table->cache_lock, flags);
445 * remove all cached entries and free the hash table
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
450 if (!info->stripe_hash_table)
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
465 * If the size of the rbio cache is too big, we
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
470 struct btrfs_stripe_hash_table *table;
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
476 table = rbio->fs_info->stripe_hash_table;
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 atomic_inc(&rbio->refs);
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
492 spin_unlock(&rbio->bio_list_lock);
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
502 __remove_rbio_from_cache(found);
505 spin_unlock_irqrestore(&table->cache_lock, flags);
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
517 void *dest = pages[src_cnt];
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
537 unsigned long size = rbio->bio_list_bytes;
540 if (size != rbio->nr_data * rbio->stripe_len)
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbios though, other functions
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
615 return stripe * rbio->stripe_npages + index;
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
629 * helper to index into the pstripe
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
633 return rbio_stripe_page(rbio, rbio->nr_data, index);
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
642 if (rbio->nr_data + 1 == rbio->real_stripes)
644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
677 struct btrfs_raid_bio *freeit = NULL;
678 struct btrfs_raid_bio *cache_drop = NULL;
681 spin_lock_irqsave(&h->lock, flags);
682 list_for_each_entry(cur, &h->hash_list, hash_list) {
683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 spin_lock(&cur->bio_list_lock);
686 /* can we steal this cached rbio's pages? */
687 if (bio_list_empty(&cur->bio_list) &&
688 list_empty(&cur->plug_list) &&
689 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 list_del_init(&cur->hash_list);
692 atomic_dec(&cur->refs);
694 steal_rbio(cur, rbio);
696 spin_unlock(&cur->bio_list_lock);
701 /* can we merge into the lock owner? */
702 if (rbio_can_merge(cur, rbio)) {
703 merge_rbio(cur, rbio);
704 spin_unlock(&cur->bio_list_lock);
712 * we couldn't merge with the running
713 * rbio, see if we can merge with the
714 * pending ones. We don't have to
715 * check for rmw_locked because there
716 * is no way they are inside finish_rmw
719 list_for_each_entry(pending, &cur->plug_list,
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
730 /* no merging, put us on the tail of the plug list,
731 * our rbio will be started with the currently
732 * running rbio unlocks
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
741 atomic_inc(&rbio->refs);
742 list_add(&rbio->hash_list, &h->hash_list);
744 spin_unlock_irqrestore(&h->lock, flags);
746 remove_rbio_from_cache(cache_drop);
748 __free_raid_bio(freeit);
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
759 struct btrfs_stripe_hash *h;
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
766 if (list_empty(&rbio->plug_list))
769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
772 if (!list_empty(&rbio->hash_list)) {
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
786 list_del_init(&rbio->hash_list);
787 atomic_dec(&rbio->refs);
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
798 next = list_entry(head, struct btrfs_raid_bio,
801 list_del_init(&rbio->plug_list);
803 list_add(&next->hash_list, &h->hash_list);
804 atomic_inc(&next->refs);
805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 async_read_rebuild(next);
810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 async_read_rebuild(next);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
814 steal_rbio(rbio, next);
815 async_rmw_stripe(next);
816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 async_scrub_parity(next);
823 * The barrier for this waitqueue_active is not needed,
824 * we're protected by h->lock and can't miss a wakeup.
826 } else if (waitqueue_active(&h->wait)) {
827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
834 spin_unlock(&rbio->bio_list_lock);
835 spin_unlock_irqrestore(&h->lock, flags);
839 remove_rbio_from_cache(rbio);
842 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
846 WARN_ON(atomic_read(&rbio->refs) < 0);
847 if (!atomic_dec_and_test(&rbio->refs))
850 WARN_ON(!list_empty(&rbio->stripe_cache));
851 WARN_ON(!list_empty(&rbio->hash_list));
852 WARN_ON(!bio_list_empty(&rbio->bio_list));
854 for (i = 0; i < rbio->nr_pages; i++) {
855 if (rbio->stripe_pages[i]) {
856 __free_page(rbio->stripe_pages[i]);
857 rbio->stripe_pages[i] = NULL;
861 btrfs_put_bbio(rbio->bbio);
865 static void free_raid_bio(struct btrfs_raid_bio *rbio)
868 __free_raid_bio(rbio);
872 * this frees the rbio and runs through all the bios in the
873 * bio_list and calls end_io on them
875 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
877 struct bio *cur = bio_list_get(&rbio->bio_list);
880 if (rbio->generic_bio_cnt)
881 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
895 * end io function used by finish_rmw. When we finally
896 * get here, we've written a full stripe
898 static void raid_write_end_io(struct bio *bio)
900 struct btrfs_raid_bio *rbio = bio->bi_private;
901 int err = bio->bi_error;
905 fail_bio_stripe(rbio, bio);
909 if (!atomic_dec_and_test(&rbio->stripes_pending))
914 /* OK, we have read all the stripes we need to. */
915 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
916 0 : rbio->bbio->max_errors;
917 if (atomic_read(&rbio->error) > max_errors)
920 rbio_orig_end_io(rbio, err);
924 * the read/modify/write code wants to use the original bio for
925 * any pages it included, and then use the rbio for everything
926 * else. This function decides if a given index (stripe number)
927 * and page number in that stripe fall inside the original bio
930 * if you set bio_list_only, you'll get a NULL back for any ranges
931 * that are outside the bio_list
933 * This doesn't take any refs on anything, you get a bare page pointer
934 * and the caller must bump refs as required.
936 * You must call index_rbio_pages once before you can trust
937 * the answers from this function.
939 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
940 int index, int pagenr, int bio_list_only)
943 struct page *p = NULL;
945 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
947 spin_lock_irq(&rbio->bio_list_lock);
948 p = rbio->bio_pages[chunk_page];
949 spin_unlock_irq(&rbio->bio_list_lock);
951 if (p || bio_list_only)
954 return rbio->stripe_pages[chunk_page];
958 * number of pages we need for the entire stripe across all the
961 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
963 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
967 * allocation and initial setup for the btrfs_raid_bio. Not
968 * this does not allocate any pages for rbio->pages.
970 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
971 struct btrfs_bio *bbio,
974 struct btrfs_raid_bio *rbio;
976 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
977 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
978 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
981 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
982 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
983 sizeof(long), GFP_NOFS);
985 return ERR_PTR(-ENOMEM);
987 bio_list_init(&rbio->bio_list);
988 INIT_LIST_HEAD(&rbio->plug_list);
989 spin_lock_init(&rbio->bio_list_lock);
990 INIT_LIST_HEAD(&rbio->stripe_cache);
991 INIT_LIST_HEAD(&rbio->hash_list);
993 rbio->fs_info = fs_info;
994 rbio->stripe_len = stripe_len;
995 rbio->nr_pages = num_pages;
996 rbio->real_stripes = real_stripes;
997 rbio->stripe_npages = stripe_npages;
1000 atomic_set(&rbio->refs, 1);
1001 atomic_set(&rbio->error, 0);
1002 atomic_set(&rbio->stripes_pending, 0);
1005 * the stripe_pages and bio_pages array point to the extra
1006 * memory we allocated past the end of the rbio
1009 rbio->stripe_pages = p;
1010 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1011 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1014 nr_data = real_stripes - 1;
1015 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1016 nr_data = real_stripes - 2;
1020 rbio->nr_data = nr_data;
1024 /* allocate pages for all the stripes in the bio, including parity */
1025 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1030 for (i = 0; i < rbio->nr_pages; i++) {
1031 if (rbio->stripe_pages[i])
1033 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1036 rbio->stripe_pages[i] = page;
1041 /* only allocate pages for p/q stripes */
1042 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1047 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1049 for (; i < rbio->nr_pages; i++) {
1050 if (rbio->stripe_pages[i])
1052 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1055 rbio->stripe_pages[i] = page;
1061 * add a single page from a specific stripe into our list of bios for IO
1062 * this will try to merge into existing bios if possible, and returns
1063 * zero if all went well.
1065 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1066 struct bio_list *bio_list,
1069 unsigned long page_index,
1070 unsigned long bio_max_len)
1072 struct bio *last = bio_list->tail;
1076 struct btrfs_bio_stripe *stripe;
1079 stripe = &rbio->bbio->stripes[stripe_nr];
1080 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1082 /* if the device is missing, just fail this stripe */
1083 if (!stripe->dev->bdev)
1084 return fail_rbio_index(rbio, stripe_nr);
1086 /* see if we can add this page onto our existing bio */
1088 last_end = (u64)last->bi_iter.bi_sector << 9;
1089 last_end += last->bi_iter.bi_size;
1092 * we can't merge these if they are from different
1093 * devices or if they are not contiguous
1095 if (last_end == disk_start && stripe->dev->bdev &&
1097 last->bi_bdev == stripe->dev->bdev) {
1098 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1099 if (ret == PAGE_SIZE)
1104 /* put a new bio on the list */
1105 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1109 bio->bi_iter.bi_size = 0;
1110 bio->bi_bdev = stripe->dev->bdev;
1111 bio->bi_iter.bi_sector = disk_start >> 9;
1113 bio_add_page(bio, page, PAGE_SIZE, 0);
1114 bio_list_add(bio_list, bio);
1119 * while we're doing the read/modify/write cycle, we could
1120 * have errors in reading pages off the disk. This checks
1121 * for errors and if we're not able to read the page it'll
1122 * trigger parity reconstruction. The rmw will be finished
1123 * after we've reconstructed the failed stripes
1125 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127 if (rbio->faila >= 0 || rbio->failb >= 0) {
1128 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1129 __raid56_parity_recover(rbio);
1136 * helper function to walk our bio list and populate the bio_pages array with
1137 * the result. This seems expensive, but it is faster than constantly
1138 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * This must be called before you trust the answers from page_in_rbio
1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1146 struct bio_vec *bvec;
1148 unsigned long stripe_offset;
1149 unsigned long page_index;
1152 spin_lock_irq(&rbio->bio_list_lock);
1153 bio_list_for_each(bio, &rbio->bio_list) {
1154 start = (u64)bio->bi_iter.bi_sector << 9;
1155 stripe_offset = start - rbio->bbio->raid_map[0];
1156 page_index = stripe_offset >> PAGE_SHIFT;
1158 bio_for_each_segment_all(bvec, bio, i)
1159 rbio->bio_pages[page_index + i] = bvec->bv_page;
1161 spin_unlock_irq(&rbio->bio_list_lock);
1165 * this is called from one of two situations. We either
1166 * have a full stripe from the higher layers, or we've read all
1167 * the missing bits off disk.
1169 * This will calculate the parity and then send down any
1172 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174 struct btrfs_bio *bbio = rbio->bbio;
1175 void *pointers[rbio->real_stripes];
1176 int nr_data = rbio->nr_data;
1181 struct bio_list bio_list;
1185 bio_list_init(&bio_list);
1187 if (rbio->real_stripes - rbio->nr_data == 1) {
1188 p_stripe = rbio->real_stripes - 1;
1189 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1190 p_stripe = rbio->real_stripes - 2;
1191 q_stripe = rbio->real_stripes - 1;
1196 /* at this point we either have a full stripe,
1197 * or we've read the full stripe from the drive.
1198 * recalculate the parity and write the new results.
1200 * We're not allowed to add any new bios to the
1201 * bio list here, anyone else that wants to
1202 * change this stripe needs to do their own rmw.
1204 spin_lock_irq(&rbio->bio_list_lock);
1205 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1206 spin_unlock_irq(&rbio->bio_list_lock);
1208 atomic_set(&rbio->error, 0);
1211 * now that we've set rmw_locked, run through the
1212 * bio list one last time and map the page pointers
1214 * We don't cache full rbios because we're assuming
1215 * the higher layers are unlikely to use this area of
1216 * the disk again soon. If they do use it again,
1217 * hopefully they will send another full bio.
1219 index_rbio_pages(rbio);
1220 if (!rbio_is_full(rbio))
1221 cache_rbio_pages(rbio);
1223 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1225 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1227 /* first collect one page from each data stripe */
1228 for (stripe = 0; stripe < nr_data; stripe++) {
1229 p = page_in_rbio(rbio, stripe, pagenr, 0);
1230 pointers[stripe] = kmap(p);
1233 /* then add the parity stripe */
1234 p = rbio_pstripe_page(rbio, pagenr);
1236 pointers[stripe++] = kmap(p);
1238 if (q_stripe != -1) {
1241 * raid6, add the qstripe and call the
1242 * library function to fill in our p/q
1244 p = rbio_qstripe_page(rbio, pagenr);
1246 pointers[stripe++] = kmap(p);
1248 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1253 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1258 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1262 * time to start writing. Make bios for everything from the
1263 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1266 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1267 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1269 if (stripe < rbio->nr_data) {
1270 page = page_in_rbio(rbio, stripe, pagenr, 1);
1274 page = rbio_stripe_page(rbio, stripe, pagenr);
1277 ret = rbio_add_io_page(rbio, &bio_list,
1278 page, stripe, pagenr, rbio->stripe_len);
1284 if (likely(!bbio->num_tgtdevs))
1287 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1288 if (!bbio->tgtdev_map[stripe])
1291 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1293 if (stripe < rbio->nr_data) {
1294 page = page_in_rbio(rbio, stripe, pagenr, 1);
1298 page = rbio_stripe_page(rbio, stripe, pagenr);
1301 ret = rbio_add_io_page(rbio, &bio_list, page,
1302 rbio->bbio->tgtdev_map[stripe],
1303 pagenr, rbio->stripe_len);
1310 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1311 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1314 bio = bio_list_pop(&bio_list);
1318 bio->bi_private = rbio;
1319 bio->bi_end_io = raid_write_end_io;
1320 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1327 rbio_orig_end_io(rbio, -EIO);
1331 * helper to find the stripe number for a given bio. Used to figure out which
1332 * stripe has failed. This expects the bio to correspond to a physical disk,
1333 * so it looks up based on physical sector numbers.
1335 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338 u64 physical = bio->bi_iter.bi_sector;
1341 struct btrfs_bio_stripe *stripe;
1345 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1346 stripe = &rbio->bbio->stripes[i];
1347 stripe_start = stripe->physical;
1348 if (physical >= stripe_start &&
1349 physical < stripe_start + rbio->stripe_len &&
1350 bio->bi_bdev == stripe->dev->bdev) {
1358 * helper to find the stripe number for a given
1359 * bio (before mapping). Used to figure out which stripe has
1360 * failed. This looks up based on logical block numbers.
1362 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1365 u64 logical = bio->bi_iter.bi_sector;
1371 for (i = 0; i < rbio->nr_data; i++) {
1372 stripe_start = rbio->bbio->raid_map[i];
1373 if (logical >= stripe_start &&
1374 logical < stripe_start + rbio->stripe_len) {
1382 * returns -EIO if we had too many failures
1384 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386 unsigned long flags;
1389 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391 /* we already know this stripe is bad, move on */
1392 if (rbio->faila == failed || rbio->failb == failed)
1395 if (rbio->faila == -1) {
1396 /* first failure on this rbio */
1397 rbio->faila = failed;
1398 atomic_inc(&rbio->error);
1399 } else if (rbio->failb == -1) {
1400 /* second failure on this rbio */
1401 rbio->failb = failed;
1402 atomic_inc(&rbio->error);
1407 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1413 * helper to fail a stripe based on a physical disk
1416 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1419 int failed = find_bio_stripe(rbio, bio);
1424 return fail_rbio_index(rbio, failed);
1428 * this sets each page in the bio uptodate. It should only be used on private
1429 * rbio pages, nothing that comes in from the higher layers
1431 static void set_bio_pages_uptodate(struct bio *bio)
1433 struct bio_vec *bvec;
1436 bio_for_each_segment_all(bvec, bio, i)
1437 SetPageUptodate(bvec->bv_page);
1441 * end io for the read phase of the rmw cycle. All the bios here are physical
1442 * stripe bios we've read from the disk so we can recalculate the parity of the
1445 * This will usually kick off finish_rmw once all the bios are read in, but it
1446 * may trigger parity reconstruction if we had any errors along the way
1448 static void raid_rmw_end_io(struct bio *bio)
1450 struct btrfs_raid_bio *rbio = bio->bi_private;
1453 fail_bio_stripe(rbio, bio);
1455 set_bio_pages_uptodate(bio);
1459 if (!atomic_dec_and_test(&rbio->stripes_pending))
1462 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466 * this will normally call finish_rmw to start our write
1467 * but if there are any failed stripes we'll reconstruct
1470 validate_rbio_for_rmw(rbio);
1475 rbio_orig_end_io(rbio, -EIO);
1478 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1480 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1481 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1484 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1486 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1487 read_rebuild_work, NULL, NULL);
1489 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1493 * the stripe must be locked by the caller. It will
1494 * unlock after all the writes are done
1496 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1498 int bios_to_read = 0;
1499 struct bio_list bio_list;
1505 bio_list_init(&bio_list);
1507 ret = alloc_rbio_pages(rbio);
1511 index_rbio_pages(rbio);
1513 atomic_set(&rbio->error, 0);
1515 * build a list of bios to read all the missing parts of this
1518 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1519 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1522 * we want to find all the pages missing from
1523 * the rbio and read them from the disk. If
1524 * page_in_rbio finds a page in the bio list
1525 * we don't need to read it off the stripe.
1527 page = page_in_rbio(rbio, stripe, pagenr, 1);
1531 page = rbio_stripe_page(rbio, stripe, pagenr);
1533 * the bio cache may have handed us an uptodate
1534 * page. If so, be happy and use it
1536 if (PageUptodate(page))
1539 ret = rbio_add_io_page(rbio, &bio_list, page,
1540 stripe, pagenr, rbio->stripe_len);
1546 bios_to_read = bio_list_size(&bio_list);
1547 if (!bios_to_read) {
1549 * this can happen if others have merged with
1550 * us, it means there is nothing left to read.
1551 * But if there are missing devices it may not be
1552 * safe to do the full stripe write yet.
1558 * the bbio may be freed once we submit the last bio. Make sure
1559 * not to touch it after that
1561 atomic_set(&rbio->stripes_pending, bios_to_read);
1563 bio = bio_list_pop(&bio_list);
1567 bio->bi_private = rbio;
1568 bio->bi_end_io = raid_rmw_end_io;
1569 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1571 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1575 /* the actual write will happen once the reads are done */
1579 rbio_orig_end_io(rbio, -EIO);
1583 validate_rbio_for_rmw(rbio);
1588 * if the upper layers pass in a full stripe, we thank them by only allocating
1589 * enough pages to hold the parity, and sending it all down quickly.
1591 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1595 ret = alloc_rbio_parity_pages(rbio);
1597 __free_raid_bio(rbio);
1601 ret = lock_stripe_add(rbio);
1608 * partial stripe writes get handed over to async helpers.
1609 * We're really hoping to merge a few more writes into this
1610 * rbio before calculating new parity
1612 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1616 ret = lock_stripe_add(rbio);
1618 async_rmw_stripe(rbio);
1623 * sometimes while we were reading from the drive to
1624 * recalculate parity, enough new bios come into create
1625 * a full stripe. So we do a check here to see if we can
1626 * go directly to finish_rmw
1628 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1630 /* head off into rmw land if we don't have a full stripe */
1631 if (!rbio_is_full(rbio))
1632 return partial_stripe_write(rbio);
1633 return full_stripe_write(rbio);
1637 * We use plugging call backs to collect full stripes.
1638 * Any time we get a partial stripe write while plugged
1639 * we collect it into a list. When the unplug comes down,
1640 * we sort the list by logical block number and merge
1641 * everything we can into the same rbios
1643 struct btrfs_plug_cb {
1644 struct blk_plug_cb cb;
1645 struct btrfs_fs_info *info;
1646 struct list_head rbio_list;
1647 struct btrfs_work work;
1651 * rbios on the plug list are sorted for easier merging.
1653 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1655 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1657 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1659 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1660 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1662 if (a_sector < b_sector)
1664 if (a_sector > b_sector)
1669 static void run_plug(struct btrfs_plug_cb *plug)
1671 struct btrfs_raid_bio *cur;
1672 struct btrfs_raid_bio *last = NULL;
1675 * sort our plug list then try to merge
1676 * everything we can in hopes of creating full
1679 list_sort(NULL, &plug->rbio_list, plug_cmp);
1680 while (!list_empty(&plug->rbio_list)) {
1681 cur = list_entry(plug->rbio_list.next,
1682 struct btrfs_raid_bio, plug_list);
1683 list_del_init(&cur->plug_list);
1685 if (rbio_is_full(cur)) {
1686 /* we have a full stripe, send it down */
1687 full_stripe_write(cur);
1691 if (rbio_can_merge(last, cur)) {
1692 merge_rbio(last, cur);
1693 __free_raid_bio(cur);
1697 __raid56_parity_write(last);
1702 __raid56_parity_write(last);
1708 * if the unplug comes from schedule, we have to push the
1709 * work off to a helper thread
1711 static void unplug_work(struct btrfs_work *work)
1713 struct btrfs_plug_cb *plug;
1714 plug = container_of(work, struct btrfs_plug_cb, work);
1718 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1720 struct btrfs_plug_cb *plug;
1721 plug = container_of(cb, struct btrfs_plug_cb, cb);
1723 if (from_schedule) {
1724 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1725 unplug_work, NULL, NULL);
1726 btrfs_queue_work(plug->info->rmw_workers,
1734 * our main entry point for writes from the rest of the FS.
1736 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1737 struct btrfs_bio *bbio, u64 stripe_len)
1739 struct btrfs_raid_bio *rbio;
1740 struct btrfs_plug_cb *plug = NULL;
1741 struct blk_plug_cb *cb;
1744 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1746 btrfs_put_bbio(bbio);
1747 return PTR_ERR(rbio);
1749 bio_list_add(&rbio->bio_list, bio);
1750 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1751 rbio->operation = BTRFS_RBIO_WRITE;
1753 btrfs_bio_counter_inc_noblocked(fs_info);
1754 rbio->generic_bio_cnt = 1;
1757 * don't plug on full rbios, just get them out the door
1758 * as quickly as we can
1760 if (rbio_is_full(rbio)) {
1761 ret = full_stripe_write(rbio);
1763 btrfs_bio_counter_dec(fs_info);
1767 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1769 plug = container_of(cb, struct btrfs_plug_cb, cb);
1771 plug->info = fs_info;
1772 INIT_LIST_HEAD(&plug->rbio_list);
1774 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1777 ret = __raid56_parity_write(rbio);
1779 btrfs_bio_counter_dec(fs_info);
1785 * all parity reconstruction happens here. We've read in everything
1786 * we can find from the drives and this does the heavy lifting of
1787 * sorting the good from the bad.
1789 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1793 int faila = -1, failb = -1;
1798 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1804 faila = rbio->faila;
1805 failb = rbio->failb;
1807 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1808 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1809 spin_lock_irq(&rbio->bio_list_lock);
1810 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1811 spin_unlock_irq(&rbio->bio_list_lock);
1814 index_rbio_pages(rbio);
1816 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1818 * Now we just use bitmap to mark the horizontal stripes in
1819 * which we have data when doing parity scrub.
1821 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1822 !test_bit(pagenr, rbio->dbitmap))
1825 /* setup our array of pointers with pages
1828 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1830 * if we're rebuilding a read, we have to use
1831 * pages from the bio list
1833 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1835 (stripe == faila || stripe == failb)) {
1836 page = page_in_rbio(rbio, stripe, pagenr, 0);
1838 page = rbio_stripe_page(rbio, stripe, pagenr);
1840 pointers[stripe] = kmap(page);
1843 /* all raid6 handling here */
1844 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1846 * single failure, rebuild from parity raid5
1850 if (faila == rbio->nr_data) {
1852 * Just the P stripe has failed, without
1853 * a bad data or Q stripe.
1854 * TODO, we should redo the xor here.
1860 * a single failure in raid6 is rebuilt
1861 * in the pstripe code below
1866 /* make sure our ps and qs are in order */
1867 if (faila > failb) {
1873 /* if the q stripe is failed, do a pstripe reconstruction
1875 * If both the q stripe and the P stripe are failed, we're
1876 * here due to a crc mismatch and we can't give them the
1879 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1880 if (rbio->bbio->raid_map[faila] ==
1886 * otherwise we have one bad data stripe and
1887 * a good P stripe. raid5!
1892 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1893 raid6_datap_recov(rbio->real_stripes,
1894 PAGE_SIZE, faila, pointers);
1896 raid6_2data_recov(rbio->real_stripes,
1897 PAGE_SIZE, faila, failb,
1903 /* rebuild from P stripe here (raid5 or raid6) */
1904 BUG_ON(failb != -1);
1906 /* Copy parity block into failed block to start with */
1907 memcpy(pointers[faila],
1908 pointers[rbio->nr_data],
1911 /* rearrange the pointer array */
1912 p = pointers[faila];
1913 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1914 pointers[stripe] = pointers[stripe + 1];
1915 pointers[rbio->nr_data - 1] = p;
1917 /* xor in the rest */
1918 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1920 /* if we're doing this rebuild as part of an rmw, go through
1921 * and set all of our private rbio pages in the
1922 * failed stripes as uptodate. This way finish_rmw will
1923 * know they can be trusted. If this was a read reconstruction,
1924 * other endio functions will fiddle the uptodate bits
1926 if (rbio->operation == BTRFS_RBIO_WRITE) {
1927 for (i = 0; i < rbio->stripe_npages; i++) {
1929 page = rbio_stripe_page(rbio, faila, i);
1930 SetPageUptodate(page);
1933 page = rbio_stripe_page(rbio, failb, i);
1934 SetPageUptodate(page);
1938 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1940 * if we're rebuilding a read, we have to use
1941 * pages from the bio list
1943 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1944 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1945 (stripe == faila || stripe == failb)) {
1946 page = page_in_rbio(rbio, stripe, pagenr, 0);
1948 page = rbio_stripe_page(rbio, stripe, pagenr);
1959 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1961 cache_rbio_pages(rbio);
1963 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1965 rbio_orig_end_io(rbio, err);
1966 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1967 rbio_orig_end_io(rbio, err);
1968 } else if (err == 0) {
1972 if (rbio->operation == BTRFS_RBIO_WRITE)
1974 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1975 finish_parity_scrub(rbio, 0);
1979 rbio_orig_end_io(rbio, err);
1984 * This is called only for stripes we've read from disk to
1985 * reconstruct the parity.
1987 static void raid_recover_end_io(struct bio *bio)
1989 struct btrfs_raid_bio *rbio = bio->bi_private;
1992 * we only read stripe pages off the disk, set them
1993 * up to date if there were no errors
1996 fail_bio_stripe(rbio, bio);
1998 set_bio_pages_uptodate(bio);
2001 if (!atomic_dec_and_test(&rbio->stripes_pending))
2004 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2005 rbio_orig_end_io(rbio, -EIO);
2007 __raid_recover_end_io(rbio);
2011 * reads everything we need off the disk to reconstruct
2012 * the parity. endio handlers trigger final reconstruction
2013 * when the IO is done.
2015 * This is used both for reads from the higher layers and for
2016 * parity construction required to finish a rmw cycle.
2018 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2020 int bios_to_read = 0;
2021 struct bio_list bio_list;
2027 bio_list_init(&bio_list);
2029 ret = alloc_rbio_pages(rbio);
2033 atomic_set(&rbio->error, 0);
2036 * read everything that hasn't failed. Thanks to the
2037 * stripe cache, it is possible that some or all of these
2038 * pages are going to be uptodate.
2040 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2041 if (rbio->faila == stripe || rbio->failb == stripe) {
2042 atomic_inc(&rbio->error);
2046 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2050 * the rmw code may have already read this
2053 p = rbio_stripe_page(rbio, stripe, pagenr);
2054 if (PageUptodate(p))
2057 ret = rbio_add_io_page(rbio, &bio_list,
2058 rbio_stripe_page(rbio, stripe, pagenr),
2059 stripe, pagenr, rbio->stripe_len);
2065 bios_to_read = bio_list_size(&bio_list);
2066 if (!bios_to_read) {
2068 * we might have no bios to read just because the pages
2069 * were up to date, or we might have no bios to read because
2070 * the devices were gone.
2072 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2073 __raid_recover_end_io(rbio);
2081 * the bbio may be freed once we submit the last bio. Make sure
2082 * not to touch it after that
2084 atomic_set(&rbio->stripes_pending, bios_to_read);
2086 bio = bio_list_pop(&bio_list);
2090 bio->bi_private = rbio;
2091 bio->bi_end_io = raid_recover_end_io;
2092 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2094 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2102 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2103 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2104 rbio_orig_end_io(rbio, -EIO);
2109 * the main entry point for reads from the higher layers. This
2110 * is really only called when the normal read path had a failure,
2111 * so we assume the bio they send down corresponds to a failed part
2114 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2115 struct btrfs_bio *bbio, u64 stripe_len,
2116 int mirror_num, int generic_io)
2118 struct btrfs_raid_bio *rbio;
2121 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2124 btrfs_put_bbio(bbio);
2125 return PTR_ERR(rbio);
2128 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2129 bio_list_add(&rbio->bio_list, bio);
2130 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2132 rbio->faila = find_logical_bio_stripe(rbio, bio);
2133 if (rbio->faila == -1) {
2135 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2136 __func__, (u64)bio->bi_iter.bi_sector << 9,
2137 (u64)bio->bi_iter.bi_size, bbio->map_type);
2139 btrfs_put_bbio(bbio);
2145 btrfs_bio_counter_inc_noblocked(fs_info);
2146 rbio->generic_bio_cnt = 1;
2148 btrfs_get_bbio(bbio);
2152 * reconstruct from the q stripe if they are
2153 * asking for mirror 3
2155 if (mirror_num == 3)
2156 rbio->failb = rbio->real_stripes - 2;
2158 ret = lock_stripe_add(rbio);
2161 * __raid56_parity_recover will end the bio with
2162 * any errors it hits. We don't want to return
2163 * its error value up the stack because our caller
2164 * will end up calling bio_endio with any nonzero
2168 __raid56_parity_recover(rbio);
2170 * our rbio has been added to the list of
2171 * rbios that will be handled after the
2172 * currently lock owner is done
2178 static void rmw_work(struct btrfs_work *work)
2180 struct btrfs_raid_bio *rbio;
2182 rbio = container_of(work, struct btrfs_raid_bio, work);
2183 raid56_rmw_stripe(rbio);
2186 static void read_rebuild_work(struct btrfs_work *work)
2188 struct btrfs_raid_bio *rbio;
2190 rbio = container_of(work, struct btrfs_raid_bio, work);
2191 __raid56_parity_recover(rbio);
2195 * The following code is used to scrub/replace the parity stripe
2197 * Note: We need make sure all the pages that add into the scrub/replace
2198 * raid bio are correct and not be changed during the scrub/replace. That
2199 * is those pages just hold metadata or file data with checksum.
2202 struct btrfs_raid_bio *
2203 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2204 struct btrfs_bio *bbio, u64 stripe_len,
2205 struct btrfs_device *scrub_dev,
2206 unsigned long *dbitmap, int stripe_nsectors)
2208 struct btrfs_raid_bio *rbio;
2211 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2214 bio_list_add(&rbio->bio_list, bio);
2216 * This is a special bio which is used to hold the completion handler
2217 * and make the scrub rbio is similar to the other types
2219 ASSERT(!bio->bi_iter.bi_size);
2220 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2222 for (i = 0; i < rbio->real_stripes; i++) {
2223 if (bbio->stripes[i].dev == scrub_dev) {
2229 /* Now we just support the sectorsize equals to page size */
2230 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2231 ASSERT(rbio->stripe_npages == stripe_nsectors);
2232 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2237 /* Used for both parity scrub and missing. */
2238 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244 ASSERT(logical >= rbio->bbio->raid_map[0]);
2245 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2246 rbio->stripe_len * rbio->nr_data);
2247 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2248 index = stripe_offset >> PAGE_SHIFT;
2249 rbio->bio_pages[index] = page;
2253 * We just scrub the parity that we have correct data on the same horizontal,
2254 * so we needn't allocate all pages for all the stripes.
2256 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2263 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2264 for (i = 0; i < rbio->real_stripes; i++) {
2265 index = i * rbio->stripe_npages + bit;
2266 if (rbio->stripe_pages[index])
2269 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2272 rbio->stripe_pages[index] = page;
2278 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2281 struct btrfs_bio *bbio = rbio->bbio;
2282 void *pointers[rbio->real_stripes];
2283 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2284 int nr_data = rbio->nr_data;
2289 struct page *p_page = NULL;
2290 struct page *q_page = NULL;
2291 struct bio_list bio_list;
2296 bio_list_init(&bio_list);
2298 if (rbio->real_stripes - rbio->nr_data == 1) {
2299 p_stripe = rbio->real_stripes - 1;
2300 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2301 p_stripe = rbio->real_stripes - 2;
2302 q_stripe = rbio->real_stripes - 1;
2307 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2309 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2313 * Because the higher layers(scrubber) are unlikely to
2314 * use this area of the disk again soon, so don't cache
2317 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2322 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2325 SetPageUptodate(p_page);
2327 if (q_stripe != -1) {
2328 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2330 __free_page(p_page);
2333 SetPageUptodate(q_page);
2336 atomic_set(&rbio->error, 0);
2338 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2341 /* first collect one page from each data stripe */
2342 for (stripe = 0; stripe < nr_data; stripe++) {
2343 p = page_in_rbio(rbio, stripe, pagenr, 0);
2344 pointers[stripe] = kmap(p);
2347 /* then add the parity stripe */
2348 pointers[stripe++] = kmap(p_page);
2350 if (q_stripe != -1) {
2353 * raid6, add the qstripe and call the
2354 * library function to fill in our p/q
2356 pointers[stripe++] = kmap(q_page);
2358 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2362 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2363 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2366 /* Check scrubbing parity and repair it */
2367 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2369 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2370 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2372 /* Parity is right, needn't writeback */
2373 bitmap_clear(rbio->dbitmap, pagenr, 1);
2376 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2377 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2380 __free_page(p_page);
2382 __free_page(q_page);
2386 * time to start writing. Make bios for everything from the
2387 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2390 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2393 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2394 ret = rbio_add_io_page(rbio, &bio_list,
2395 page, rbio->scrubp, pagenr, rbio->stripe_len);
2403 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2406 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2407 ret = rbio_add_io_page(rbio, &bio_list, page,
2408 bbio->tgtdev_map[rbio->scrubp],
2409 pagenr, rbio->stripe_len);
2415 nr_data = bio_list_size(&bio_list);
2417 /* Every parity is right */
2418 rbio_orig_end_io(rbio, 0);
2422 atomic_set(&rbio->stripes_pending, nr_data);
2425 bio = bio_list_pop(&bio_list);
2429 bio->bi_private = rbio;
2430 bio->bi_end_io = raid_write_end_io;
2431 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2438 rbio_orig_end_io(rbio, -EIO);
2441 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2443 if (stripe >= 0 && stripe < rbio->nr_data)
2449 * While we're doing the parity check and repair, we could have errors
2450 * in reading pages off the disk. This checks for errors and if we're
2451 * not able to read the page it'll trigger parity reconstruction. The
2452 * parity scrub will be finished after we've reconstructed the failed
2455 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2457 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2460 if (rbio->faila >= 0 || rbio->failb >= 0) {
2461 int dfail = 0, failp = -1;
2463 if (is_data_stripe(rbio, rbio->faila))
2465 else if (is_parity_stripe(rbio->faila))
2466 failp = rbio->faila;
2468 if (is_data_stripe(rbio, rbio->failb))
2470 else if (is_parity_stripe(rbio->failb))
2471 failp = rbio->failb;
2474 * Because we can not use a scrubbing parity to repair
2475 * the data, so the capability of the repair is declined.
2476 * (In the case of RAID5, we can not repair anything)
2478 if (dfail > rbio->bbio->max_errors - 1)
2482 * If all data is good, only parity is correctly, just
2483 * repair the parity.
2486 finish_parity_scrub(rbio, 0);
2491 * Here means we got one corrupted data stripe and one
2492 * corrupted parity on RAID6, if the corrupted parity
2493 * is scrubbing parity, luckily, use the other one to repair
2494 * the data, or we can not repair the data stripe.
2496 if (failp != rbio->scrubp)
2499 __raid_recover_end_io(rbio);
2501 finish_parity_scrub(rbio, 1);
2506 rbio_orig_end_io(rbio, -EIO);
2510 * end io for the read phase of the rmw cycle. All the bios here are physical
2511 * stripe bios we've read from the disk so we can recalculate the parity of the
2514 * This will usually kick off finish_rmw once all the bios are read in, but it
2515 * may trigger parity reconstruction if we had any errors along the way
2517 static void raid56_parity_scrub_end_io(struct bio *bio)
2519 struct btrfs_raid_bio *rbio = bio->bi_private;
2522 fail_bio_stripe(rbio, bio);
2524 set_bio_pages_uptodate(bio);
2528 if (!atomic_dec_and_test(&rbio->stripes_pending))
2532 * this will normally call finish_rmw to start our write
2533 * but if there are any failed stripes we'll reconstruct
2536 validate_rbio_for_parity_scrub(rbio);
2539 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2541 int bios_to_read = 0;
2542 struct bio_list bio_list;
2548 ret = alloc_rbio_essential_pages(rbio);
2552 bio_list_init(&bio_list);
2554 atomic_set(&rbio->error, 0);
2556 * build a list of bios to read all the missing parts of this
2559 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2560 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2563 * we want to find all the pages missing from
2564 * the rbio and read them from the disk. If
2565 * page_in_rbio finds a page in the bio list
2566 * we don't need to read it off the stripe.
2568 page = page_in_rbio(rbio, stripe, pagenr, 1);
2572 page = rbio_stripe_page(rbio, stripe, pagenr);
2574 * the bio cache may have handed us an uptodate
2575 * page. If so, be happy and use it
2577 if (PageUptodate(page))
2580 ret = rbio_add_io_page(rbio, &bio_list, page,
2581 stripe, pagenr, rbio->stripe_len);
2587 bios_to_read = bio_list_size(&bio_list);
2588 if (!bios_to_read) {
2590 * this can happen if others have merged with
2591 * us, it means there is nothing left to read.
2592 * But if there are missing devices it may not be
2593 * safe to do the full stripe write yet.
2599 * the bbio may be freed once we submit the last bio. Make sure
2600 * not to touch it after that
2602 atomic_set(&rbio->stripes_pending, bios_to_read);
2604 bio = bio_list_pop(&bio_list);
2608 bio->bi_private = rbio;
2609 bio->bi_end_io = raid56_parity_scrub_end_io;
2610 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2612 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2616 /* the actual write will happen once the reads are done */
2620 rbio_orig_end_io(rbio, -EIO);
2624 validate_rbio_for_parity_scrub(rbio);
2627 static void scrub_parity_work(struct btrfs_work *work)
2629 struct btrfs_raid_bio *rbio;
2631 rbio = container_of(work, struct btrfs_raid_bio, work);
2632 raid56_parity_scrub_stripe(rbio);
2635 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2637 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2638 scrub_parity_work, NULL, NULL);
2640 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2643 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2645 if (!lock_stripe_add(rbio))
2646 async_scrub_parity(rbio);
2649 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2651 struct btrfs_raid_bio *
2652 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2653 struct btrfs_bio *bbio, u64 length)
2655 struct btrfs_raid_bio *rbio;
2657 rbio = alloc_rbio(fs_info, bbio, length);
2661 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2662 bio_list_add(&rbio->bio_list, bio);
2664 * This is a special bio which is used to hold the completion handler
2665 * and make the scrub rbio is similar to the other types
2667 ASSERT(!bio->bi_iter.bi_size);
2669 rbio->faila = find_logical_bio_stripe(rbio, bio);
2670 if (rbio->faila == -1) {
2679 static void missing_raid56_work(struct btrfs_work *work)
2681 struct btrfs_raid_bio *rbio;
2683 rbio = container_of(work, struct btrfs_raid_bio, work);
2684 __raid56_parity_recover(rbio);
2687 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2689 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2690 missing_raid56_work, NULL, NULL);
2692 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2695 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2697 if (!lock_stripe_add(rbio))
2698 async_missing_raid56(rbio);