2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
5 * Copyright 2010 Red Hat, Inc.
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
31 #include <linux/bitfield.h>
32 #include <linux/cec.h>
33 #include <linux/hdmi.h>
34 #include <linux/i2c.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
41 #include <drm/drm_displayid.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_edid.h>
44 #include <drm/drm_eld.h>
45 #include <drm/drm_encoder.h>
46 #include <drm/drm_print.h>
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
51 static int oui(u8 first, u8 second, u8 third)
53 return (first << 16) | (second << 8) | third;
56 #define EDID_EST_TIMINGS 16
57 #define EDID_STD_TIMINGS 8
58 #define EDID_DETAILED_TIMINGS 4
61 * EDID blocks out in the wild have a variety of bugs, try to collect
62 * them here (note that userspace may work around broken monitors first,
63 * but fixes should make their way here so that the kernel "just works"
64 * on as many displays as possible).
67 /* First detailed mode wrong, use largest 60Hz mode */
68 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
69 /* Reported 135MHz pixel clock is too high, needs adjustment */
70 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
71 /* Prefer the largest mode at 75 Hz */
72 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
73 /* Detail timing is in cm not mm */
74 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
75 /* Detailed timing descriptors have bogus size values, so just take the
76 * maximum size and use that.
78 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
79 /* use +hsync +vsync for detailed mode */
80 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
81 /* Force reduced-blanking timings for detailed modes */
82 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
84 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
86 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
88 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
90 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
91 /* Non desktop display (i.e. HMD) */
92 #define EDID_QUIRK_NON_DESKTOP (1 << 12)
93 /* Cap the DSC target bitrate to 15bpp */
94 #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
96 #define MICROSOFT_IEEE_OUI 0xca125c
98 struct detailed_mode_closure {
99 struct drm_connector *connector;
100 const struct drm_edid *drm_edid;
110 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
112 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
117 static const struct edid_quirk {
120 } edid_quirk_list[] = {
122 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
124 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
126 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
127 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
130 EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
132 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
133 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
135 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
136 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
138 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
139 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
141 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
142 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
144 /* Belinea 10 15 55 */
145 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
146 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
148 /* Envision Peripherals, Inc. EN-7100e */
149 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
150 /* Envision EN2028 */
151 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
153 /* Funai Electronics PM36B */
154 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
155 EDID_QUIRK_DETAILED_IN_CM),
158 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
161 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
163 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
164 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
166 /* LG Philips LCD LP154W01-A5 */
167 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
168 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
170 /* Samsung SyncMaster 205BW. Note: irony */
171 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
172 /* Samsung SyncMaster 22[5-6]BW */
173 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
174 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
176 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
177 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
179 /* ViewSonic VA2026w */
180 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
182 /* Medion MD 30217 PG */
183 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
186 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
188 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
189 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
191 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
192 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
194 /* Valve Index Headset */
195 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
207 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
208 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
209 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
211 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
213 /* HTC Vive and Vive Pro VR Headsets */
214 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
217 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
218 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
219 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
223 /* Windows Mixed Reality Headsets */
224 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
225 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
226 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
227 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
228 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
229 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
231 /* Sony PlayStation VR Headset */
232 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
234 /* Sensics VR Headsets */
235 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
237 /* OSVR HDK and HDK2 VR Headsets */
238 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
239 EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
243 * Autogenerated from the DMT spec.
244 * This table is copied from xfree86/modes/xf86EdidModes.c.
246 static const struct drm_display_mode drm_dmt_modes[] = {
247 /* 0x01 - 640x350@85Hz */
248 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
249 736, 832, 0, 350, 382, 385, 445, 0,
250 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
251 /* 0x02 - 640x400@85Hz */
252 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
253 736, 832, 0, 400, 401, 404, 445, 0,
254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
255 /* 0x03 - 720x400@85Hz */
256 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
257 828, 936, 0, 400, 401, 404, 446, 0,
258 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
259 /* 0x04 - 640x480@60Hz */
260 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
261 752, 800, 0, 480, 490, 492, 525, 0,
262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
263 /* 0x05 - 640x480@72Hz */
264 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
265 704, 832, 0, 480, 489, 492, 520, 0,
266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
267 /* 0x06 - 640x480@75Hz */
268 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
269 720, 840, 0, 480, 481, 484, 500, 0,
270 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 /* 0x07 - 640x480@85Hz */
272 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
273 752, 832, 0, 480, 481, 484, 509, 0,
274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
275 /* 0x08 - 800x600@56Hz */
276 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
277 896, 1024, 0, 600, 601, 603, 625, 0,
278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 /* 0x09 - 800x600@60Hz */
280 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
281 968, 1056, 0, 600, 601, 605, 628, 0,
282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
283 /* 0x0a - 800x600@72Hz */
284 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
285 976, 1040, 0, 600, 637, 643, 666, 0,
286 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
287 /* 0x0b - 800x600@75Hz */
288 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
289 896, 1056, 0, 600, 601, 604, 625, 0,
290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
291 /* 0x0c - 800x600@85Hz */
292 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
293 896, 1048, 0, 600, 601, 604, 631, 0,
294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
295 /* 0x0d - 800x600@120Hz RB */
296 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
297 880, 960, 0, 600, 603, 607, 636, 0,
298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
299 /* 0x0e - 848x480@60Hz */
300 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
301 976, 1088, 0, 480, 486, 494, 517, 0,
302 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 /* 0x0f - 1024x768@43Hz, interlace */
304 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
305 1208, 1264, 0, 768, 768, 776, 817, 0,
306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
307 DRM_MODE_FLAG_INTERLACE) },
308 /* 0x10 - 1024x768@60Hz */
309 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
310 1184, 1344, 0, 768, 771, 777, 806, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
312 /* 0x11 - 1024x768@70Hz */
313 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
314 1184, 1328, 0, 768, 771, 777, 806, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
316 /* 0x12 - 1024x768@75Hz */
317 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
318 1136, 1312, 0, 768, 769, 772, 800, 0,
319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 0x13 - 1024x768@85Hz */
321 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
322 1168, 1376, 0, 768, 769, 772, 808, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
324 /* 0x14 - 1024x768@120Hz RB */
325 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
326 1104, 1184, 0, 768, 771, 775, 813, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 0x15 - 1152x864@75Hz */
329 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
330 1344, 1600, 0, 864, 865, 868, 900, 0,
331 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 0x55 - 1280x720@60Hz */
333 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
334 1430, 1650, 0, 720, 725, 730, 750, 0,
335 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 0x16 - 1280x768@60Hz RB */
337 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
338 1360, 1440, 0, 768, 771, 778, 790, 0,
339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
340 /* 0x17 - 1280x768@60Hz */
341 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
342 1472, 1664, 0, 768, 771, 778, 798, 0,
343 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 /* 0x18 - 1280x768@75Hz */
345 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
346 1488, 1696, 0, 768, 771, 778, 805, 0,
347 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 0x19 - 1280x768@85Hz */
349 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
350 1496, 1712, 0, 768, 771, 778, 809, 0,
351 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 0x1a - 1280x768@120Hz RB */
353 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
354 1360, 1440, 0, 768, 771, 778, 813, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
356 /* 0x1b - 1280x800@60Hz RB */
357 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
358 1360, 1440, 0, 800, 803, 809, 823, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 /* 0x1c - 1280x800@60Hz */
361 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
362 1480, 1680, 0, 800, 803, 809, 831, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 0x1d - 1280x800@75Hz */
365 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
366 1488, 1696, 0, 800, 803, 809, 838, 0,
367 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 /* 0x1e - 1280x800@85Hz */
369 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
370 1496, 1712, 0, 800, 803, 809, 843, 0,
371 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 /* 0x1f - 1280x800@120Hz RB */
373 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
374 1360, 1440, 0, 800, 803, 809, 847, 0,
375 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 /* 0x20 - 1280x960@60Hz */
377 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
378 1488, 1800, 0, 960, 961, 964, 1000, 0,
379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 0x21 - 1280x960@85Hz */
381 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
382 1504, 1728, 0, 960, 961, 964, 1011, 0,
383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 0x22 - 1280x960@120Hz RB */
385 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
386 1360, 1440, 0, 960, 963, 967, 1017, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 0x23 - 1280x1024@60Hz */
389 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
390 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
391 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 0x24 - 1280x1024@75Hz */
393 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
394 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
395 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 0x25 - 1280x1024@85Hz */
397 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
398 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 /* 0x26 - 1280x1024@120Hz RB */
401 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
402 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
403 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
404 /* 0x27 - 1360x768@60Hz */
405 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
406 1536, 1792, 0, 768, 771, 777, 795, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 0x28 - 1360x768@120Hz RB */
409 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
410 1440, 1520, 0, 768, 771, 776, 813, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 0x51 - 1366x768@60Hz */
413 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
414 1579, 1792, 0, 768, 771, 774, 798, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 /* 0x56 - 1366x768@60Hz */
417 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
418 1436, 1500, 0, 768, 769, 772, 800, 0,
419 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 0x29 - 1400x1050@60Hz RB */
421 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
422 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 /* 0x2a - 1400x1050@60Hz */
425 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
426 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 0x2b - 1400x1050@75Hz */
429 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
430 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
431 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
432 /* 0x2c - 1400x1050@85Hz */
433 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
434 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 0x2d - 1400x1050@120Hz RB */
437 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
438 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
439 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
440 /* 0x2e - 1440x900@60Hz RB */
441 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
442 1520, 1600, 0, 900, 903, 909, 926, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 0x2f - 1440x900@60Hz */
445 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
446 1672, 1904, 0, 900, 903, 909, 934, 0,
447 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 /* 0x30 - 1440x900@75Hz */
449 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
450 1688, 1936, 0, 900, 903, 909, 942, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 0x31 - 1440x900@85Hz */
453 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
454 1696, 1952, 0, 900, 903, 909, 948, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 0x32 - 1440x900@120Hz RB */
457 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
458 1520, 1600, 0, 900, 903, 909, 953, 0,
459 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 /* 0x53 - 1600x900@60Hz */
461 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
462 1704, 1800, 0, 900, 901, 904, 1000, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
464 /* 0x33 - 1600x1200@60Hz */
465 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
466 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 /* 0x34 - 1600x1200@65Hz */
469 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
470 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 /* 0x35 - 1600x1200@70Hz */
473 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
474 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
475 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 /* 0x36 - 1600x1200@75Hz */
477 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
478 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
479 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
480 /* 0x37 - 1600x1200@85Hz */
481 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
482 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
483 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 /* 0x38 - 1600x1200@120Hz RB */
485 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
486 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
488 /* 0x39 - 1680x1050@60Hz RB */
489 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
490 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
492 /* 0x3a - 1680x1050@60Hz */
493 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
494 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 /* 0x3b - 1680x1050@75Hz */
497 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
498 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 /* 0x3c - 1680x1050@85Hz */
501 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
502 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
503 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 /* 0x3d - 1680x1050@120Hz RB */
505 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
506 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 /* 0x3e - 1792x1344@60Hz */
509 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
510 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
512 /* 0x3f - 1792x1344@75Hz */
513 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
514 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
515 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 /* 0x40 - 1792x1344@120Hz RB */
517 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
518 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
520 /* 0x41 - 1856x1392@60Hz */
521 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
522 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
523 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 /* 0x42 - 1856x1392@75Hz */
525 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
526 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
527 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
528 /* 0x43 - 1856x1392@120Hz RB */
529 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
530 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
532 /* 0x52 - 1920x1080@60Hz */
533 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
534 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
535 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
536 /* 0x44 - 1920x1200@60Hz RB */
537 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
538 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 /* 0x45 - 1920x1200@60Hz */
541 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
542 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
543 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 /* 0x46 - 1920x1200@75Hz */
545 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
546 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
547 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 /* 0x47 - 1920x1200@85Hz */
549 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
550 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
551 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
552 /* 0x48 - 1920x1200@120Hz RB */
553 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
554 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
555 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 /* 0x49 - 1920x1440@60Hz */
557 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
558 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
560 /* 0x4a - 1920x1440@75Hz */
561 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
562 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
563 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 /* 0x4b - 1920x1440@120Hz RB */
565 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
566 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
568 /* 0x54 - 2048x1152@60Hz */
569 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
570 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 /* 0x4c - 2560x1600@60Hz RB */
573 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
574 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
575 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 /* 0x4d - 2560x1600@60Hz */
577 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
578 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
579 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 /* 0x4e - 2560x1600@75Hz */
581 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
582 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 /* 0x4f - 2560x1600@85Hz */
585 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
586 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
587 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
588 /* 0x50 - 2560x1600@120Hz RB */
589 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
590 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
591 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
592 /* 0x57 - 4096x2160@60Hz RB */
593 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
594 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
595 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
597 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
598 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
603 * These more or less come from the DMT spec. The 720x400 modes are
604 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
605 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
609 * The DMT modes have been fact-checked; the rest are mild guesses.
611 static const struct drm_display_mode edid_est_modes[] = {
612 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
613 968, 1056, 0, 600, 601, 605, 628, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
615 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
616 896, 1024, 0, 600, 601, 603, 625, 0,
617 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
619 720, 840, 0, 480, 481, 484, 500, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
622 704, 832, 0, 480, 489, 492, 520, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
624 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
625 768, 864, 0, 480, 483, 486, 525, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
627 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
628 752, 800, 0, 480, 490, 492, 525, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
630 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
631 846, 900, 0, 400, 421, 423, 449, 0,
632 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
633 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
634 846, 900, 0, 400, 412, 414, 449, 0,
635 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
636 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
637 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
638 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
640 1136, 1312, 0, 768, 769, 772, 800, 0,
641 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
642 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
643 1184, 1328, 0, 768, 771, 777, 806, 0,
644 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
645 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
646 1184, 1344, 0, 768, 771, 777, 806, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
648 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
649 1208, 1264, 0, 768, 768, 776, 817, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
651 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
652 928, 1152, 0, 624, 625, 628, 667, 0,
653 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
654 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
655 896, 1056, 0, 600, 601, 604, 625, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
657 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
658 976, 1040, 0, 600, 637, 643, 666, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
660 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
661 1344, 1600, 0, 864, 865, 868, 900, 0,
662 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
672 static const struct minimode est3_modes[] = {
680 { 1024, 768, 85, 0 },
681 { 1152, 864, 75, 0 },
683 { 1280, 768, 60, 1 },
684 { 1280, 768, 60, 0 },
685 { 1280, 768, 75, 0 },
686 { 1280, 768, 85, 0 },
687 { 1280, 960, 60, 0 },
688 { 1280, 960, 85, 0 },
689 { 1280, 1024, 60, 0 },
690 { 1280, 1024, 85, 0 },
692 { 1360, 768, 60, 0 },
693 { 1440, 900, 60, 1 },
694 { 1440, 900, 60, 0 },
695 { 1440, 900, 75, 0 },
696 { 1440, 900, 85, 0 },
697 { 1400, 1050, 60, 1 },
698 { 1400, 1050, 60, 0 },
699 { 1400, 1050, 75, 0 },
701 { 1400, 1050, 85, 0 },
702 { 1680, 1050, 60, 1 },
703 { 1680, 1050, 60, 0 },
704 { 1680, 1050, 75, 0 },
705 { 1680, 1050, 85, 0 },
706 { 1600, 1200, 60, 0 },
707 { 1600, 1200, 65, 0 },
708 { 1600, 1200, 70, 0 },
710 { 1600, 1200, 75, 0 },
711 { 1600, 1200, 85, 0 },
712 { 1792, 1344, 60, 0 },
713 { 1792, 1344, 75, 0 },
714 { 1856, 1392, 60, 0 },
715 { 1856, 1392, 75, 0 },
716 { 1920, 1200, 60, 1 },
717 { 1920, 1200, 60, 0 },
719 { 1920, 1200, 75, 0 },
720 { 1920, 1200, 85, 0 },
721 { 1920, 1440, 60, 0 },
722 { 1920, 1440, 75, 0 },
725 static const struct minimode extra_modes[] = {
726 { 1024, 576, 60, 0 },
727 { 1366, 768, 60, 0 },
728 { 1600, 900, 60, 0 },
729 { 1680, 945, 60, 0 },
730 { 1920, 1080, 60, 0 },
731 { 2048, 1152, 60, 0 },
732 { 2048, 1536, 60, 0 },
736 * From CEA/CTA-861 spec.
738 * Do not access directly, instead always use cea_mode_for_vic().
740 static const struct drm_display_mode edid_cea_modes_1[] = {
741 /* 1 - 640x480@60Hz 4:3 */
742 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
743 752, 800, 0, 480, 490, 492, 525, 0,
744 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
745 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
746 /* 2 - 720x480@60Hz 4:3 */
747 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
748 798, 858, 0, 480, 489, 495, 525, 0,
749 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
750 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
751 /* 3 - 720x480@60Hz 16:9 */
752 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
753 798, 858, 0, 480, 489, 495, 525, 0,
754 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
755 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 /* 4 - 1280x720@60Hz 16:9 */
757 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
758 1430, 1650, 0, 720, 725, 730, 750, 0,
759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 5 - 1920x1080i@60Hz 16:9 */
762 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
763 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
765 DRM_MODE_FLAG_INTERLACE),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 /* 6 - 720(1440)x480i@60Hz 4:3 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
773 /* 7 - 720(1440)x480i@60Hz 16:9 */
774 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 480, 488, 494, 525, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
779 /* 8 - 720(1440)x240@60Hz 4:3 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
785 /* 9 - 720(1440)x240@60Hz 16:9 */
786 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
787 801, 858, 0, 240, 244, 247, 262, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_DBLCLK),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
791 /* 10 - 2880x480i@60Hz 4:3 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
797 /* 11 - 2880x480i@60Hz 16:9 */
798 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 480, 488, 494, 525, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
801 DRM_MODE_FLAG_INTERLACE),
802 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
803 /* 12 - 2880x240@60Hz 4:3 */
804 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
805 3204, 3432, 0, 240, 244, 247, 262, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 /* 13 - 2880x240@60Hz 16:9 */
809 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
810 3204, 3432, 0, 240, 244, 247, 262, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
812 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
813 /* 14 - 1440x480@60Hz 4:3 */
814 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
815 1596, 1716, 0, 480, 489, 495, 525, 0,
816 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
817 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
818 /* 15 - 1440x480@60Hz 16:9 */
819 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
820 1596, 1716, 0, 480, 489, 495, 525, 0,
821 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
822 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 /* 16 - 1920x1080@60Hz 16:9 */
824 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
825 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
826 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
827 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
828 /* 17 - 720x576@50Hz 4:3 */
829 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
830 796, 864, 0, 576, 581, 586, 625, 0,
831 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
833 /* 18 - 720x576@50Hz 16:9 */
834 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
835 796, 864, 0, 576, 581, 586, 625, 0,
836 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
838 /* 19 - 1280x720@50Hz 16:9 */
839 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
840 1760, 1980, 0, 720, 725, 730, 750, 0,
841 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 20 - 1920x1080i@50Hz 16:9 */
844 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
845 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
846 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
847 DRM_MODE_FLAG_INTERLACE),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 21 - 720(1440)x576i@50Hz 4:3 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
855 /* 22 - 720(1440)x576i@50Hz 16:9 */
856 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 576, 580, 586, 625, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
861 /* 23 - 720(1440)x288@50Hz 4:3 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
867 /* 24 - 720(1440)x288@50Hz 16:9 */
868 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
869 795, 864, 0, 288, 290, 293, 312, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_DBLCLK),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 25 - 2880x576i@50Hz 4:3 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 26 - 2880x576i@50Hz 16:9 */
880 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 576, 580, 586, 625, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 DRM_MODE_FLAG_INTERLACE),
884 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 27 - 2880x288@50Hz 4:3 */
886 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
887 3180, 3456, 0, 288, 290, 293, 312, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
890 /* 28 - 2880x288@50Hz 16:9 */
891 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
892 3180, 3456, 0, 288, 290, 293, 312, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
894 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
895 /* 29 - 1440x576@50Hz 4:3 */
896 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
897 1592, 1728, 0, 576, 581, 586, 625, 0,
898 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
899 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
900 /* 30 - 1440x576@50Hz 16:9 */
901 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
902 1592, 1728, 0, 576, 581, 586, 625, 0,
903 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
904 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 /* 31 - 1920x1080@50Hz 16:9 */
906 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
907 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
908 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
909 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
910 /* 32 - 1920x1080@24Hz 16:9 */
911 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
912 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
913 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
914 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 /* 33 - 1920x1080@25Hz 16:9 */
916 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
917 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
918 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
919 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
920 /* 34 - 1920x1080@30Hz 16:9 */
921 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
922 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
923 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
924 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 /* 35 - 2880x480@60Hz 4:3 */
926 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
927 3192, 3432, 0, 480, 489, 495, 525, 0,
928 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
929 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
930 /* 36 - 2880x480@60Hz 16:9 */
931 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
932 3192, 3432, 0, 480, 489, 495, 525, 0,
933 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
934 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 /* 37 - 2880x576@50Hz 4:3 */
936 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
937 3184, 3456, 0, 576, 581, 586, 625, 0,
938 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
939 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 /* 38 - 2880x576@50Hz 16:9 */
941 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
942 3184, 3456, 0, 576, 581, 586, 625, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 39 - 1920x1080i@50Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
947 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 40 - 1920x1080i@100Hz 16:9 */
952 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
953 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
955 DRM_MODE_FLAG_INTERLACE),
956 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
957 /* 41 - 1280x720@100Hz 16:9 */
958 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
959 1760, 1980, 0, 720, 725, 730, 750, 0,
960 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
961 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 42 - 720x576@100Hz 4:3 */
963 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 796, 864, 0, 576, 581, 586, 625, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
966 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
967 /* 43 - 720x576@100Hz 16:9 */
968 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
969 796, 864, 0, 576, 581, 586, 625, 0,
970 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 44 - 720(1440)x576i@100Hz 4:3 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
978 /* 45 - 720(1440)x576i@100Hz 16:9 */
979 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
980 795, 864, 0, 576, 580, 586, 625, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 46 - 1920x1080i@120Hz 16:9 */
985 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
986 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
988 DRM_MODE_FLAG_INTERLACE),
989 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 47 - 1280x720@120Hz 16:9 */
991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
992 1430, 1650, 0, 720, 725, 730, 750, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 48 - 720x480@120Hz 4:3 */
996 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
997 798, 858, 0, 480, 489, 495, 525, 0,
998 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
999 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000 /* 49 - 720x480@120Hz 16:9 */
1001 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002 798, 858, 0, 480, 489, 495, 525, 0,
1003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 50 - 720(1440)x480i@120Hz 4:3 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011 /* 51 - 720(1440)x480i@120Hz 16:9 */
1012 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013 801, 858, 0, 480, 488, 494, 525, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017 /* 52 - 720x576@200Hz 4:3 */
1018 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019 796, 864, 0, 576, 581, 586, 625, 0,
1020 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022 /* 53 - 720x576@200Hz 16:9 */
1023 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024 796, 864, 0, 576, 581, 586, 625, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027 /* 54 - 720(1440)x576i@200Hz 4:3 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033 /* 55 - 720(1440)x576i@200Hz 16:9 */
1034 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035 795, 864, 0, 576, 580, 586, 625, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039 /* 56 - 720x480@240Hz 4:3 */
1040 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041 798, 858, 0, 480, 489, 495, 525, 0,
1042 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044 /* 57 - 720x480@240Hz 16:9 */
1045 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046 798, 858, 0, 480, 489, 495, 525, 0,
1047 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049 /* 58 - 720(1440)x480i@240Hz 4:3 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055 /* 59 - 720(1440)x480i@240Hz 16:9 */
1056 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057 801, 858, 0, 480, 488, 494, 525, 0,
1058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061 /* 60 - 1280x720@24Hz 16:9 */
1062 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063 3080, 3300, 0, 720, 725, 730, 750, 0,
1064 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066 /* 61 - 1280x720@25Hz 16:9 */
1067 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068 3740, 3960, 0, 720, 725, 730, 750, 0,
1069 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071 /* 62 - 1280x720@30Hz 16:9 */
1072 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073 3080, 3300, 0, 720, 725, 730, 750, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076 /* 63 - 1920x1080@120Hz 16:9 */
1077 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 /* 64 - 1920x1080@100Hz 16:9 */
1082 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 /* 65 - 1280x720@24Hz 64:27 */
1087 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088 3080, 3300, 0, 720, 725, 730, 750, 0,
1089 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091 /* 66 - 1280x720@25Hz 64:27 */
1092 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093 3740, 3960, 0, 720, 725, 730, 750, 0,
1094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096 /* 67 - 1280x720@30Hz 64:27 */
1097 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098 3080, 3300, 0, 720, 725, 730, 750, 0,
1099 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101 /* 68 - 1280x720@50Hz 64:27 */
1102 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103 1760, 1980, 0, 720, 725, 730, 750, 0,
1104 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106 /* 69 - 1280x720@60Hz 64:27 */
1107 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108 1430, 1650, 0, 720, 725, 730, 750, 0,
1109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 /* 70 - 1280x720@100Hz 64:27 */
1112 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113 1760, 1980, 0, 720, 725, 730, 750, 0,
1114 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 /* 71 - 1280x720@120Hz 64:27 */
1117 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118 1430, 1650, 0, 720, 725, 730, 750, 0,
1119 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 /* 72 - 1920x1080@24Hz 64:27 */
1122 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 /* 73 - 1920x1080@25Hz 64:27 */
1127 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 /* 74 - 1920x1080@30Hz 64:27 */
1132 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 /* 75 - 1920x1080@50Hz 64:27 */
1137 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 /* 76 - 1920x1080@60Hz 64:27 */
1142 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 /* 77 - 1920x1080@100Hz 64:27 */
1147 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 /* 78 - 1920x1080@120Hz 64:27 */
1152 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 /* 79 - 1680x720@24Hz 64:27 */
1157 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158 3080, 3300, 0, 720, 725, 730, 750, 0,
1159 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 /* 80 - 1680x720@25Hz 64:27 */
1162 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163 2948, 3168, 0, 720, 725, 730, 750, 0,
1164 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 /* 81 - 1680x720@30Hz 64:27 */
1167 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168 2420, 2640, 0, 720, 725, 730, 750, 0,
1169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 /* 82 - 1680x720@50Hz 64:27 */
1172 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173 1980, 2200, 0, 720, 725, 730, 750, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 /* 83 - 1680x720@60Hz 64:27 */
1177 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178 1980, 2200, 0, 720, 725, 730, 750, 0,
1179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 /* 84 - 1680x720@100Hz 64:27 */
1182 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183 1780, 2000, 0, 720, 725, 730, 825, 0,
1184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 /* 85 - 1680x720@120Hz 64:27 */
1187 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188 1780, 2000, 0, 720, 725, 730, 825, 0,
1189 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 /* 86 - 2560x1080@24Hz 64:27 */
1192 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 /* 87 - 2560x1080@25Hz 64:27 */
1197 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 /* 88 - 2560x1080@30Hz 64:27 */
1202 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 /* 89 - 2560x1080@50Hz 64:27 */
1207 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 /* 90 - 2560x1080@60Hz 64:27 */
1212 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 /* 91 - 2560x1080@100Hz 64:27 */
1217 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 /* 92 - 2560x1080@120Hz 64:27 */
1222 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 /* 93 - 3840x2160@24Hz 16:9 */
1227 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231 /* 94 - 3840x2160@25Hz 16:9 */
1232 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236 /* 95 - 3840x2160@30Hz 16:9 */
1237 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241 /* 96 - 3840x2160@50Hz 16:9 */
1242 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246 /* 97 - 3840x2160@60Hz 16:9 */
1247 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 /* 98 - 4096x2160@24Hz 256:135 */
1252 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256 /* 99 - 4096x2160@25Hz 256:135 */
1257 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261 /* 100 - 4096x2160@30Hz 256:135 */
1262 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266 /* 101 - 4096x2160@50Hz 256:135 */
1267 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271 /* 102 - 4096x2160@60Hz 256:135 */
1272 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 /* 103 - 3840x2160@24Hz 64:27 */
1277 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281 /* 104 - 3840x2160@25Hz 64:27 */
1282 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286 /* 105 - 3840x2160@30Hz 64:27 */
1287 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291 /* 106 - 3840x2160@50Hz 64:27 */
1292 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296 /* 107 - 3840x2160@60Hz 64:27 */
1297 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 /* 108 - 1280x720@48Hz 16:9 */
1302 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303 2280, 2500, 0, 720, 725, 730, 750, 0,
1304 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306 /* 109 - 1280x720@48Hz 64:27 */
1307 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308 2280, 2500, 0, 720, 725, 730, 750, 0,
1309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 /* 110 - 1680x720@48Hz 64:27 */
1312 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313 2530, 2750, 0, 720, 725, 730, 750, 0,
1314 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 /* 111 - 1920x1080@48Hz 16:9 */
1317 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321 /* 112 - 1920x1080@48Hz 64:27 */
1322 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326 /* 113 - 2560x1080@48Hz 64:27 */
1327 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 /* 114 - 3840x2160@48Hz 16:9 */
1332 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336 /* 115 - 4096x2160@48Hz 256:135 */
1337 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341 /* 116 - 3840x2160@48Hz 64:27 */
1342 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 /* 117 - 3840x2160@100Hz 16:9 */
1347 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351 /* 118 - 3840x2160@120Hz 16:9 */
1352 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 /* 119 - 3840x2160@100Hz 64:27 */
1357 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361 /* 120 - 3840x2160@120Hz 64:27 */
1362 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 /* 121 - 5120x2160@24Hz 64:27 */
1367 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371 /* 122 - 5120x2160@25Hz 64:27 */
1372 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376 /* 123 - 5120x2160@30Hz 64:27 */
1377 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 /* 124 - 5120x2160@48Hz 64:27 */
1382 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 /* 125 - 5120x2160@50Hz 64:27 */
1387 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 /* 126 - 5120x2160@60Hz 64:27 */
1392 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 /* 127 - 5120x2160@100Hz 64:27 */
1397 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1404 * From CEA/CTA-861 spec.
1406 * Do not access directly, instead always use cea_mode_for_vic().
1408 static const struct drm_display_mode edid_cea_modes_193[] = {
1409 /* 193 - 5120x2160@120Hz 64:27 */
1410 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414 /* 194 - 7680x4320@24Hz 16:9 */
1415 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419 /* 195 - 7680x4320@25Hz 16:9 */
1420 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424 /* 196 - 7680x4320@30Hz 16:9 */
1425 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429 /* 197 - 7680x4320@48Hz 16:9 */
1430 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434 /* 198 - 7680x4320@50Hz 16:9 */
1435 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 /* 199 - 7680x4320@60Hz 16:9 */
1440 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 /* 200 - 7680x4320@100Hz 16:9 */
1445 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 /* 201 - 7680x4320@120Hz 16:9 */
1450 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 /* 202 - 7680x4320@24Hz 64:27 */
1455 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459 /* 203 - 7680x4320@25Hz 64:27 */
1460 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464 /* 204 - 7680x4320@30Hz 64:27 */
1465 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469 /* 205 - 7680x4320@48Hz 64:27 */
1470 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474 /* 206 - 7680x4320@50Hz 64:27 */
1475 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 /* 207 - 7680x4320@60Hz 64:27 */
1480 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 /* 208 - 7680x4320@100Hz 64:27 */
1485 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 /* 209 - 7680x4320@120Hz 64:27 */
1490 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 /* 210 - 10240x4320@24Hz 64:27 */
1495 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 /* 211 - 10240x4320@25Hz 64:27 */
1500 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 /* 212 - 10240x4320@30Hz 64:27 */
1505 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 /* 213 - 10240x4320@48Hz 64:27 */
1510 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 /* 214 - 10240x4320@50Hz 64:27 */
1515 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 /* 215 - 10240x4320@60Hz 64:27 */
1520 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 /* 216 - 10240x4320@100Hz 64:27 */
1525 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 /* 217 - 10240x4320@120Hz 64:27 */
1530 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 /* 218 - 4096x2160@100Hz 256:135 */
1535 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539 /* 219 - 4096x2160@120Hz 256:135 */
1540 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1547 * HDMI 1.4 4k modes. Index using the VIC.
1549 static const struct drm_display_mode edid_4k_modes[] = {
1550 /* 0 - dummy, VICs start at 1 */
1552 /* 1 - 3840x2160@30Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4016, 4104, 4400, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 2 - 3840x2160@25Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 4896, 4984, 5280, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 3 - 3840x2160@24Hz */
1565 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 3840, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570 /* 4 - 4096x2160@24Hz (SMPTE) */
1571 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572 4096, 5116, 5204, 5500, 0,
1573 2160, 2168, 2178, 2250, 0,
1574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1578 /*** DDC fetch and block validation ***/
1581 * The opaque EDID type, internal to drm_edid.c.
1584 /* Size allocated for edid */
1586 const struct edid *edid;
1589 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1591 static int edid_hfeeodb_block_count(const struct edid *edid)
1593 int eeodb = edid_hfeeodb_extension_block_count(edid);
1595 return eeodb ? eeodb + 1 : 0;
1598 static int edid_extension_block_count(const struct edid *edid)
1600 return edid->extensions;
1603 static int edid_block_count(const struct edid *edid)
1605 return edid_extension_block_count(edid) + 1;
1608 static int edid_size_by_blocks(int num_blocks)
1610 return num_blocks * EDID_LENGTH;
1613 static int edid_size(const struct edid *edid)
1615 return edid_size_by_blocks(edid_block_count(edid));
1618 static const void *edid_block_data(const struct edid *edid, int index)
1620 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1622 return edid + index;
1625 static const void *edid_extension_block_data(const struct edid *edid, int index)
1627 return edid_block_data(edid, index + 1);
1630 /* EDID block count indicated in EDID, may exceed allocated size */
1631 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1635 /* Starting point */
1636 num_blocks = edid_block_count(drm_edid->edid);
1638 /* HF-EEODB override */
1639 if (drm_edid->size >= edid_size_by_blocks(2)) {
1643 * Note: HF-EEODB may specify a smaller extension count than the
1644 * regular one. Unlike in buffer allocation, here we can use it.
1646 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1654 /* EDID block count, limited by allocated size */
1655 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1657 /* Limit by allocated size */
1658 return min(__drm_edid_block_count(drm_edid),
1659 (int)drm_edid->size / EDID_LENGTH);
1662 /* EDID extension block count, limited by allocated size */
1663 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1665 return drm_edid_block_count(drm_edid) - 1;
1668 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1670 return edid_block_data(drm_edid->edid, index);
1673 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1676 return edid_extension_block_data(drm_edid->edid, index);
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1683 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684 const struct edid *edid)
1689 memset(drm_edid, 0, sizeof(*drm_edid));
1691 drm_edid->edid = edid;
1692 drm_edid->size = edid_size(edid);
1698 * EDID base and extension block iterator.
1700 * struct drm_edid_iter iter;
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 * // do stuff with block
1707 * drm_edid_iter_end(&iter);
1709 struct drm_edid_iter {
1710 const struct drm_edid *drm_edid;
1712 /* Current block index. */
1716 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717 struct drm_edid_iter *iter)
1719 memset(iter, 0, sizeof(*iter));
1721 iter->drm_edid = drm_edid;
1724 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1726 const void *block = NULL;
1728 if (!iter->drm_edid)
1731 if (iter->index < drm_edid_block_count(iter->drm_edid))
1732 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1737 #define drm_edid_iter_for_each(__block, __iter) \
1738 while (((__block) = __drm_edid_iter_next(__iter)))
1740 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1742 memset(iter, 0, sizeof(*iter));
1745 static const u8 edid_header[] = {
1746 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1749 static void edid_header_fix(void *edid)
1751 memcpy(edid, edid_header, sizeof(edid_header));
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1758 * Sanity check the header of the base EDID block.
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1762 int drm_edid_header_is_valid(const void *_edid)
1764 const struct edid *edid = _edid;
1767 for (i = 0; i < sizeof(edid_header); i++) {
1768 if (edid->header[i] == edid_header[i])
1774 EXPORT_SYMBOL(drm_edid_header_is_valid);
1776 static int edid_fixup __read_mostly = 6;
1777 module_param_named(edid_fixup, edid_fixup, int, 0400);
1778 MODULE_PARM_DESC(edid_fixup,
1779 "Minimum number of valid EDID header bytes (0-8, default 6)");
1781 static int edid_block_compute_checksum(const void *_block)
1783 const u8 *block = _block;
1785 u8 csum = 0, crc = 0;
1787 for (i = 0; i < EDID_LENGTH - 1; i++)
1795 static int edid_block_get_checksum(const void *_block)
1797 const struct edid *block = _block;
1799 return block->checksum;
1802 static int edid_block_tag(const void *_block)
1804 const u8 *block = _block;
1809 static bool edid_block_is_zero(const void *edid)
1811 return !memchr_inv(edid, 0, EDID_LENGTH);
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1821 bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1823 int edid1_len, edid2_len;
1824 bool edid1_present = edid1 != NULL;
1825 bool edid2_present = edid2 != NULL;
1827 if (edid1_present != edid2_present)
1831 edid1_len = edid_size(edid1);
1832 edid2_len = edid_size(edid2);
1834 if (edid1_len != edid2_len)
1837 if (memcmp(edid1, edid2, edid1_len))
1843 EXPORT_SYMBOL(drm_edid_are_equal);
1845 enum edid_block_status {
1847 EDID_BLOCK_READ_FAIL,
1850 EDID_BLOCK_HEADER_CORRUPT,
1851 EDID_BLOCK_HEADER_REPAIR,
1852 EDID_BLOCK_HEADER_FIXED,
1853 EDID_BLOCK_CHECKSUM,
1857 static enum edid_block_status edid_block_check(const void *_block,
1860 const struct edid *block = _block;
1863 return EDID_BLOCK_NULL;
1865 if (is_base_block) {
1866 int score = drm_edid_header_is_valid(block);
1868 if (score < clamp(edid_fixup, 0, 8)) {
1869 if (edid_block_is_zero(block))
1870 return EDID_BLOCK_ZERO;
1872 return EDID_BLOCK_HEADER_CORRUPT;
1876 return EDID_BLOCK_HEADER_REPAIR;
1879 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880 if (edid_block_is_zero(block))
1881 return EDID_BLOCK_ZERO;
1883 return EDID_BLOCK_CHECKSUM;
1886 if (is_base_block) {
1887 if (block->version != 1)
1888 return EDID_BLOCK_VERSION;
1891 return EDID_BLOCK_OK;
1894 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1896 return status == EDID_BLOCK_OK ||
1897 status == EDID_BLOCK_HEADER_FIXED ||
1898 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1901 static bool edid_block_valid(const void *block, bool base)
1903 return edid_block_status_valid(edid_block_check(block, base),
1904 edid_block_tag(block));
1907 static void edid_block_status_print(enum edid_block_status status,
1908 const struct edid *block,
1914 case EDID_BLOCK_READ_FAIL:
1915 pr_debug("EDID block %d read failed\n", block_num);
1917 case EDID_BLOCK_NULL:
1918 pr_debug("EDID block %d pointer is NULL\n", block_num);
1920 case EDID_BLOCK_ZERO:
1921 pr_notice("EDID block %d is all zeroes\n", block_num);
1923 case EDID_BLOCK_HEADER_CORRUPT:
1924 pr_notice("EDID has corrupt header\n");
1926 case EDID_BLOCK_HEADER_REPAIR:
1927 pr_debug("EDID corrupt header needs repair\n");
1929 case EDID_BLOCK_HEADER_FIXED:
1930 pr_debug("EDID corrupt header fixed\n");
1932 case EDID_BLOCK_CHECKSUM:
1933 if (edid_block_status_valid(status, edid_block_tag(block))) {
1934 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935 block_num, edid_block_tag(block),
1936 edid_block_compute_checksum(block));
1938 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939 block_num, edid_block_tag(block),
1940 edid_block_compute_checksum(block));
1943 case EDID_BLOCK_VERSION:
1944 pr_notice("EDID has major version %d, instead of 1\n",
1948 WARN(1, "EDID block %d unknown edid block status code %d\n",
1954 static void edid_block_dump(const char *level, const void *block, int block_num)
1956 enum edid_block_status status;
1959 status = edid_block_check(block, block_num == 0);
1960 if (status == EDID_BLOCK_ZERO)
1961 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963 sprintf(prefix, "\t[%02x] BAD ", block_num);
1965 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1967 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968 block, EDID_LENGTH, false);
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1981 * Return: True if the block is valid, false otherwise.
1983 bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1986 struct edid *block = (struct edid *)_block;
1987 enum edid_block_status status;
1988 bool is_base_block = block_num == 0;
1991 if (WARN_ON(!block))
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_HEADER_REPAIR) {
1996 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997 edid_header_fix(block);
1999 /* Retry with fixed header, update status if that worked. */
2000 status = edid_block_check(block, is_base_block);
2001 if (status == EDID_BLOCK_OK)
2002 status = EDID_BLOCK_HEADER_FIXED;
2007 * Unknown major version isn't corrupt but we can't use it. Only
2008 * the base block can reset edid_corrupt to false.
2010 if (is_base_block &&
2011 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012 *edid_corrupt = false;
2013 else if (status != EDID_BLOCK_OK)
2014 *edid_corrupt = true;
2017 edid_block_status_print(status, block, block_num);
2019 /* Determine whether we can use this block with this status. */
2020 valid = edid_block_status_valid(status, edid_block_tag(block));
2022 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023 pr_notice("Raw EDID:\n");
2024 edid_block_dump(KERN_NOTICE, block, block_num);
2029 EXPORT_SYMBOL(drm_edid_block_valid);
2032 * drm_edid_is_valid - sanity check EDID data
2035 * Sanity-check an entire EDID record (including extensions)
2037 * Return: True if the EDID data is valid, false otherwise.
2039 bool drm_edid_is_valid(struct edid *edid)
2046 for (i = 0; i < edid_block_count(edid); i++) {
2047 void *block = (void *)edid_block_data(edid, i);
2049 if (!drm_edid_block_valid(block, i, true, NULL))
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2064 * Return: True if the EDID data is valid, false otherwise.
2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2073 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2076 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 const void *block = drm_edid_block_data(drm_edid, i);
2079 if (!edid_block_valid(block, i == 0))
2085 EXPORT_SYMBOL(drm_edid_valid);
2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2091 int i, valid_blocks = 0;
2094 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 * back to regular extension count here. We don't want to start
2096 * modifying the HF-EEODB extension too.
2098 for (i = 0; i < edid_block_count(edid); i++) {
2099 const void *src_block = edid_block_data(edid, i);
2101 if (edid_block_valid(src_block, i == 0)) {
2102 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2104 memmove(dst_block, src_block, EDID_LENGTH);
2109 /* We already trusted the base block to be valid here... */
2110 if (WARN_ON(!valid_blocks)) {
2115 edid->extensions = valid_blocks - 1;
2116 edid->checksum = edid_block_compute_checksum(edid);
2118 *alloc_size = edid_size_by_blocks(valid_blocks);
2120 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2127 #define DDC_SEGMENT_ADDR 0x30
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2135 * Try to fetch EDID information by calling I2C driver functions.
2137 * Return: 0 on success or -1 on failure.
2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2142 struct i2c_adapter *adapter = data;
2143 unsigned char start = block * EDID_LENGTH;
2144 unsigned char segment = block >> 1;
2145 unsigned char xfers = segment ? 3 : 2;
2146 int ret, retries = 5;
2149 * The core I2C driver will automatically retry the transfer if the
2150 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 * are susceptible to errors under a heavily loaded machine and
2152 * generate spurious NAKs and timeouts. Retrying the transfer
2153 * of the individual block a few times seems to overcome this.
2156 struct i2c_msg msgs[] = {
2158 .addr = DDC_SEGMENT_ADDR,
2176 * Avoid sending the segment addr to not upset non-compliant
2179 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2181 if (ret == -ENXIO) {
2182 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2186 } while (ret != xfers && --retries);
2188 return ret == xfers ? 0 : -1;
2191 static void connector_bad_edid(struct drm_connector *connector,
2192 const struct edid *edid, int num_blocks)
2198 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 * of 0x7e in the EDID of the _index_ of the last block in the
2201 * combined chunk of memory.
2203 last_block = edid->extensions;
2205 /* Calculate real checksum for the last edid extension block data */
2206 if (last_block < num_blocks)
2207 connector->real_edid_checksum =
2208 edid_block_compute_checksum(edid + last_block);
2210 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2213 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 connector->base.id, connector->name);
2215 for (i = 0; i < num_blocks; i++)
2216 edid_block_dump(KERN_DEBUG, edid + i, i);
2219 /* Get override or firmware EDID */
2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2222 const struct drm_edid *override = NULL;
2224 mutex_lock(&connector->edid_override_mutex);
2226 if (connector->edid_override)
2227 override = drm_edid_dup(connector->edid_override);
2229 mutex_unlock(&connector->edid_override_mutex);
2232 override = drm_edid_load_firmware(connector);
2234 return IS_ERR(override) ? NULL : override;
2237 /* For debugfs edid_override implementation */
2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2240 const struct drm_edid *drm_edid;
2242 mutex_lock(&connector->edid_override_mutex);
2244 drm_edid = connector->edid_override;
2246 seq_write(m, drm_edid->edid, drm_edid->size);
2248 mutex_unlock(&connector->edid_override_mutex);
2253 /* For debugfs edid_override implementation */
2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2257 const struct drm_edid *drm_edid;
2259 drm_edid = drm_edid_alloc(edid, size);
2260 if (!drm_edid_valid(drm_edid)) {
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 connector->base.id, connector->name);
2263 drm_edid_free(drm_edid);
2267 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 connector->base.id, connector->name);
2270 mutex_lock(&connector->edid_override_mutex);
2272 drm_edid_free(connector->edid_override);
2273 connector->edid_override = drm_edid;
2275 mutex_unlock(&connector->edid_override_mutex);
2280 /* For debugfs edid_override implementation */
2281 int drm_edid_override_reset(struct drm_connector *connector)
2283 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 connector->base.id, connector->name);
2286 mutex_lock(&connector->edid_override_mutex);
2288 drm_edid_free(connector->edid_override);
2289 connector->edid_override = NULL;
2291 mutex_unlock(&connector->edid_override_mutex);
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2305 * Return: The number of modes added or 0 if we couldn't find any.
2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2309 const struct drm_edid *override;
2312 override = drm_edid_override_get(connector);
2314 if (drm_edid_connector_update(connector, override) == 0)
2315 num_modes = drm_edid_connector_add_modes(connector);
2317 drm_edid_free(override);
2319 drm_dbg_kms(connector->dev,
2320 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 connector->base.id, connector->name, num_modes);
2326 EXPORT_SYMBOL(drm_edid_override_connector_update);
2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 read_block_fn read_block,
2334 enum edid_block_status status;
2335 bool is_base_block = block_num == 0;
2338 for (try = 0; try < 4; try++) {
2339 if (read_block(context, block, block_num, EDID_LENGTH))
2340 return EDID_BLOCK_READ_FAIL;
2342 status = edid_block_check(block, is_base_block);
2343 if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 edid_header_fix(block);
2346 /* Retry with fixed header, update status if that worked. */
2347 status = edid_block_check(block, is_base_block);
2348 if (status == EDID_BLOCK_OK)
2349 status = EDID_BLOCK_HEADER_FIXED;
2352 if (edid_block_status_valid(status, edid_block_tag(block)))
2355 /* Fail early for unrepairable base block all zeros. */
2356 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 read_block_fn read_block, void *context,
2367 enum edid_block_status status;
2368 int i, num_blocks, invalid_blocks = 0;
2369 const struct drm_edid *override;
2370 struct edid *edid, *new;
2371 size_t alloc_size = EDID_LENGTH;
2373 override = drm_edid_override_get(connector);
2375 alloc_size = override->size;
2376 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 drm_edid_free(override);
2383 edid = kmalloc(alloc_size, GFP_KERNEL);
2387 status = edid_block_read(edid, 0, read_block, context);
2389 edid_block_status_print(status, edid, 0);
2391 if (status == EDID_BLOCK_READ_FAIL)
2394 /* FIXME: Clarify what a corrupt EDID actually means. */
2395 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 connector->edid_corrupt = false;
2398 connector->edid_corrupt = true;
2400 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 if (status == EDID_BLOCK_ZERO)
2402 connector->null_edid_counter++;
2404 connector_bad_edid(connector, edid, 1);
2408 if (!edid_extension_block_count(edid))
2411 alloc_size = edid_size(edid);
2412 new = krealloc(edid, alloc_size, GFP_KERNEL);
2417 num_blocks = edid_block_count(edid);
2418 for (i = 1; i < num_blocks; i++) {
2419 void *block = (void *)edid_block_data(edid, i);
2421 status = edid_block_read(block, i, read_block, context);
2423 edid_block_status_print(status, block, i);
2425 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 if (status == EDID_BLOCK_READ_FAIL)
2429 } else if (i == 1) {
2431 * If the first EDID extension is a CTA extension, and
2432 * the first Data Block is HF-EEODB, override the
2433 * extension block count.
2435 * Note: HF-EEODB could specify a smaller extension
2436 * count too, but we can't risk allocating a smaller
2439 int eeodb = edid_hfeeodb_block_count(edid);
2441 if (eeodb > num_blocks) {
2443 alloc_size = edid_size_by_blocks(num_blocks);
2444 new = krealloc(edid, alloc_size, GFP_KERNEL);
2452 if (invalid_blocks) {
2453 connector_bad_edid(connector, edid, num_blocks);
2455 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2489 struct edid *drm_do_get_edid(struct drm_connector *connector,
2490 read_block_fn read_block,
2493 return _drm_do_get_edid(connector, read_block, context, NULL);
2495 EXPORT_SYMBOL_GPL(drm_do_get_edid);
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2501 * Get a pointer to the raw EDID data.
2503 * This is for transition only. Avoid using this like the plague.
2505 * Return: Pointer to raw EDID data.
2507 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2509 if (!drm_edid || !drm_edid->size)
2513 * Do not return pointers where relying on EDID extension count would
2514 * lead to buffer overflow.
2516 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2519 return drm_edid->edid;
2521 EXPORT_SYMBOL(drm_edid_raw);
2523 /* Allocate struct drm_edid container *without* duplicating the edid data */
2524 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2526 struct drm_edid *drm_edid;
2528 if (!edid || !size || size < EDID_LENGTH)
2531 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2533 drm_edid->edid = edid;
2534 drm_edid->size = size;
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2550 * The returned pointer must be freed using drm_edid_free().
2552 * Return: drm_edid container, or NULL on errors
2554 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2556 const struct drm_edid *drm_edid;
2558 if (!edid || !size || size < EDID_LENGTH)
2561 edid = kmemdup(edid, size, GFP_KERNEL);
2565 drm_edid = _drm_edid_alloc(edid, size);
2571 EXPORT_SYMBOL(drm_edid_alloc);
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2577 * The returned pointer must be freed using drm_edid_free().
2579 * Returns: drm_edid container copy, or NULL on errors
2581 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2586 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2588 EXPORT_SYMBOL(drm_edid_dup);
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2594 void drm_edid_free(const struct drm_edid *drm_edid)
2599 kfree(drm_edid->edid);
2602 EXPORT_SYMBOL(drm_edid_free);
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2608 * Return: True on success, false on failure.
2611 drm_probe_ddc(struct i2c_adapter *adapter)
2615 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2617 EXPORT_SYMBOL(drm_probe_ddc);
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2624 * Poke the given I2C channel to grab EDID data if possible. If found,
2625 * attach it to the connector.
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2629 struct edid *drm_get_edid(struct drm_connector *connector,
2630 struct i2c_adapter *adapter)
2634 if (connector->force == DRM_FORCE_OFF)
2637 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2640 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641 drm_connector_update_edid_property(connector, edid);
2644 EXPORT_SYMBOL(drm_get_edid);
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2665 * The returned pointer must be freed using drm_edid_free().
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2669 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670 read_block_fn read_block,
2673 const struct drm_edid *drm_edid;
2677 edid = _drm_do_get_edid(connector, read_block, context, &size);
2681 /* Sanity check for now */
2682 drm_WARN_ON(connector->dev, !size);
2684 drm_edid = _drm_edid_alloc(edid, size);
2690 EXPORT_SYMBOL(drm_edid_read_custom);
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2697 * Read EDID using the given I2C adapter.
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2706 * The returned pointer must be freed using drm_edid_free().
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2710 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711 struct i2c_adapter *adapter)
2713 const struct drm_edid *drm_edid;
2715 if (connector->force == DRM_FORCE_OFF)
2718 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2721 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2723 /* Note: Do *not* call connector updates here. */
2727 EXPORT_SYMBOL(drm_edid_read_ddc);
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2733 * Read EDID using the connector's I2C adapter.
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2739 * The returned pointer must be freed using drm_edid_free().
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2743 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2745 if (drm_WARN_ON(connector->dev, !connector->ddc))
2748 return drm_edid_read_ddc(connector, connector->ddc);
2750 EXPORT_SYMBOL(drm_edid_read);
2752 static u32 edid_extract_panel_id(const struct edid *edid)
2755 * We represent the ID as a 32-bit number so it can easily be compared
2758 * NOTE that we deal with endianness differently for the top half
2759 * of this ID than for the bottom half. The bottom half (the product
2760 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762 * gets stored as big endian because that makes
2763 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764 * to write (it's easier to extract the ASCII). It doesn't really
2765 * matter, though, as long as the number here is unique.
2767 return (u32)edid->mfg_id[0] << 24 |
2768 (u32)edid->mfg_id[1] << 16 |
2769 (u32)EDID_PRODUCT_ID(edid);
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 * See the functions drm_edid_encode_panel_id() and
2792 * drm_edid_decode_panel_id() for some details on the structure of this
2796 u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2798 enum edid_block_status status;
2803 * There are no manufacturer IDs of 0, so if there is a problem reading
2804 * the EDID then we'll just return 0.
2807 base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2811 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2813 edid_block_status_print(status, base_block, 0);
2815 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816 panel_id = edid_extract_panel_id(base_block);
2818 edid_block_dump(KERN_NOTICE, base_block, 0);
2824 EXPORT_SYMBOL(drm_edid_get_panel_id);
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2837 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838 struct i2c_adapter *adapter)
2840 struct drm_device *dev = connector->dev;
2841 struct pci_dev *pdev = to_pci_dev(dev->dev);
2844 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2847 vga_switcheroo_lock_ddc(pdev);
2848 edid = drm_get_edid(connector, adapter);
2849 vga_switcheroo_unlock_ddc(pdev);
2853 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2866 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867 struct i2c_adapter *adapter)
2869 struct drm_device *dev = connector->dev;
2870 struct pci_dev *pdev = to_pci_dev(dev->dev);
2871 const struct drm_edid *drm_edid;
2873 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2876 vga_switcheroo_lock_ddc(pdev);
2877 drm_edid = drm_edid_read_ddc(connector, adapter);
2878 vga_switcheroo_unlock_ddc(pdev);
2882 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2890 struct edid *drm_edid_duplicate(const struct edid *edid)
2895 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2897 EXPORT_SYMBOL(drm_edid_duplicate);
2899 /*** EDID parsing ***/
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2905 * This tells subsequent routines what fixes they need to apply.
2907 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2909 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910 const struct edid_quirk *quirk;
2913 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914 quirk = &edid_quirk_list[i];
2915 if (quirk->panel_id == panel_id)
2916 return quirk->quirks;
2922 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2929 static void edid_fixup_preferred(struct drm_connector *connector)
2931 const struct drm_display_info *info = &connector->display_info;
2932 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933 int target_refresh = 0;
2934 int cur_vrefresh, preferred_vrefresh;
2936 if (list_empty(&connector->probed_modes))
2939 if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940 target_refresh = 60;
2941 if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942 target_refresh = 75;
2944 preferred_mode = list_first_entry(&connector->probed_modes,
2945 struct drm_display_mode, head);
2947 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2950 if (cur_mode == preferred_mode)
2953 /* Largest mode is preferred */
2954 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955 preferred_mode = cur_mode;
2957 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959 /* At a given size, try to get closest to target refresh */
2960 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963 preferred_mode = cur_mode;
2967 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2971 mode_is_rb(const struct drm_display_mode *mode)
2973 return (mode->htotal - mode->hdisplay == 160) &&
2974 (mode->hsync_end - mode->hdisplay == 80) &&
2975 (mode->hsync_end - mode->hsync_start == 32) &&
2976 (mode->vsync_start - mode->vdisplay == 3);
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2987 * Walk the DMT mode list looking for a match for the given parameters.
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2991 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992 int hsize, int vsize, int fresh,
2997 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3000 if (hsize != ptr->hdisplay)
3002 if (vsize != ptr->vdisplay)
3004 if (fresh != drm_mode_vrefresh(ptr))
3006 if (rb != mode_is_rb(ptr))
3009 return drm_mode_duplicate(dev, ptr);
3014 EXPORT_SYMBOL(drm_mode_find_dmt);
3016 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3018 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3022 return descriptor->pixel_clock == 0 &&
3023 descriptor->data.other_data.pad1 == 0 &&
3024 descriptor->data.other_data.type == type;
3027 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3029 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3031 return descriptor->pixel_clock != 0;
3034 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3037 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3041 const u8 *det_base = ext + d;
3043 if (d < 4 || d > 127)
3047 for (i = 0; i < n; i++)
3048 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3052 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3054 unsigned int i, n = min((int)ext[0x02], 6);
3055 const u8 *det_base = ext + 5;
3058 return; /* unknown version */
3060 for (i = 0; i < n; i++)
3061 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3064 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065 detailed_cb *cb, void *closure)
3067 struct drm_edid_iter edid_iter;
3074 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075 cb(&drm_edid->edid->detailed_timings[i], closure);
3077 drm_edid_iter_begin(drm_edid, &edid_iter);
3078 drm_edid_iter_for_each(ext, &edid_iter) {
3081 cea_for_each_detailed_block(ext, cb, closure);
3084 vtb_for_each_detailed_block(ext, cb, closure);
3090 drm_edid_iter_end(&edid_iter);
3094 is_rb(const struct detailed_timing *descriptor, void *data)
3098 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3101 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3104 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3109 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3111 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3113 if (drm_edid->edid->revision >= 4) {
3116 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3120 return drm_edid_is_digital(drm_edid);
3124 find_gtf2(const struct detailed_timing *descriptor, void *data)
3126 const struct detailed_timing **res = data;
3128 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3131 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3133 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3137 /* Secondary GTF curve kicks in above some break frequency */
3139 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3141 const struct detailed_timing *descriptor = NULL;
3143 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3145 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3147 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3151 drm_gtf2_2c(const struct drm_edid *drm_edid)
3153 const struct detailed_timing *descriptor = NULL;
3155 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3157 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3159 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3163 drm_gtf2_m(const struct drm_edid *drm_edid)
3165 const struct detailed_timing *descriptor = NULL;
3167 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3169 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3171 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3175 drm_gtf2_k(const struct drm_edid *drm_edid)
3177 const struct detailed_timing *descriptor = NULL;
3179 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3181 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3183 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3187 drm_gtf2_2j(const struct drm_edid *drm_edid)
3189 const struct detailed_timing *descriptor = NULL;
3191 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3193 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3195 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3199 get_timing_level(const struct detailed_timing *descriptor, void *data)
3203 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3206 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3208 switch (descriptor->data.other_data.data.range.flags) {
3209 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3212 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3215 case DRM_EDID_CVT_SUPPORT_FLAG:
3223 /* Get standard timing level (CVT/GTF/DMT). */
3224 static int standard_timing_level(const struct drm_edid *drm_edid)
3226 const struct edid *edid = drm_edid->edid;
3228 if (edid->revision >= 4) {
3230 * If the range descriptor doesn't
3231 * indicate otherwise default to CVT
3233 int ret = LEVEL_CVT;
3235 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3238 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3240 } else if (edid->revision >= 2) {
3248 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3249 * monitors fill with ascii space (0x20) instead.
3252 bad_std_timing(u8 a, u8 b)
3254 return (a == 0x00 && b == 0x00) ||
3255 (a == 0x01 && b == 0x01) ||
3256 (a == 0x20 && b == 0x20);
3259 static int drm_mode_hsync(const struct drm_display_mode *mode)
3261 if (mode->htotal <= 0)
3264 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3267 static struct drm_display_mode *
3268 drm_gtf2_mode(struct drm_device *dev,
3269 const struct drm_edid *drm_edid,
3270 int hsize, int vsize, int vrefresh_rate)
3272 struct drm_display_mode *mode;
3275 * This is potentially wrong if there's ever a monitor with
3276 * more than one ranges section, each claiming a different
3277 * secondary GTF curve. Please don't do that.
3279 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3283 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284 drm_mode_destroy(dev, mode);
3285 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286 vrefresh_rate, 0, 0,
3287 drm_gtf2_m(drm_edid),
3288 drm_gtf2_2c(drm_edid),
3289 drm_gtf2_k(drm_edid),
3290 drm_gtf2_2j(drm_edid));
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3300 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301 const struct drm_edid *drm_edid,
3302 const struct std_timing *t)
3304 struct drm_device *dev = connector->dev;
3305 struct drm_display_mode *m, *mode = NULL;
3308 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309 >> EDID_TIMING_ASPECT_SHIFT;
3310 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311 >> EDID_TIMING_VFREQ_SHIFT;
3312 int timing_level = standard_timing_level(drm_edid);
3314 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3317 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318 hsize = t->hsize * 8 + 248;
3319 /* vrefresh_rate = vfreq + 60 */
3320 vrefresh_rate = vfreq + 60;
3321 /* the vdisplay is calculated based on the aspect ratio */
3322 if (aspect_ratio == 0) {
3323 if (drm_edid->edid->revision < 3)
3326 vsize = (hsize * 10) / 16;
3327 } else if (aspect_ratio == 1)
3328 vsize = (hsize * 3) / 4;
3329 else if (aspect_ratio == 2)
3330 vsize = (hsize * 4) / 5;
3332 vsize = (hsize * 9) / 16;
3334 /* HDTV hack, part 1 */
3335 if (vrefresh_rate == 60 &&
3336 ((hsize == 1360 && vsize == 765) ||
3337 (hsize == 1368 && vsize == 769))) {
3343 * If this connector already has a mode for this size and refresh
3344 * rate (because it came from detailed or CVT info), use that
3345 * instead. This way we don't have to guess at interlace or
3348 list_for_each_entry(m, &connector->probed_modes, head)
3349 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350 drm_mode_vrefresh(m) == vrefresh_rate)
3353 /* HDTV hack, part 2 */
3354 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3359 mode->hdisplay = 1366;
3360 mode->hsync_start = mode->hsync_start - 1;
3361 mode->hsync_end = mode->hsync_end - 1;
3365 /* check whether it can be found in default mode table */
3366 if (drm_monitor_supports_rb(drm_edid)) {
3367 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3372 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3376 /* okay, generate it */
3377 switch (timing_level) {
3381 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3384 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3387 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded. Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3399 * The format list here is from CEA, in frame size. Technically we
3400 * should be checking refresh rate too. Whatever.
3403 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404 const struct detailed_pixel_timing *pt)
3407 static const struct {
3409 } cea_interlaced[] = {
3419 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3422 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423 if ((mode->hdisplay == cea_interlaced[i].w) &&
3424 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425 mode->vdisplay *= 2;
3426 mode->vsync_start *= 2;
3427 mode->vsync_end *= 2;
3433 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3441 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442 const struct drm_edid *drm_edid,
3443 const struct detailed_timing *timing)
3445 const struct drm_display_info *info = &connector->display_info;
3446 struct drm_device *dev = connector->dev;
3447 struct drm_display_mode *mode;
3448 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3458 /* ignore tiny modes */
3459 if (hactive < 64 || vactive < 64)
3462 if (pt->misc & DRM_EDID_PT_STEREO) {
3463 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464 connector->base.id, connector->name);
3467 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469 connector->base.id, connector->name);
3472 /* it is incorrect if hsync/vsync width is zero */
3473 if (!hsync_pulse_width || !vsync_pulse_width) {
3474 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475 connector->base.id, connector->name);
3479 if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3487 mode = drm_mode_create(dev);
3491 if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492 mode->clock = 1088 * 10;
3494 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3496 mode->hdisplay = hactive;
3497 mode->hsync_start = mode->hdisplay + hsync_offset;
3498 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499 mode->htotal = mode->hdisplay + hblank;
3501 mode->vdisplay = vactive;
3502 mode->vsync_start = mode->vdisplay + vsync_offset;
3503 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504 mode->vtotal = mode->vdisplay + vblank;
3506 /* Some EDIDs have bogus h/vsync_end values */
3507 if (mode->hsync_end > mode->htotal) {
3508 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509 connector->base.id, connector->name,
3510 mode->hsync_end, mode->htotal);
3511 mode->hsync_end = mode->htotal;
3513 if (mode->vsync_end > mode->vtotal) {
3514 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515 connector->base.id, connector->name,
3516 mode->vsync_end, mode->vtotal);
3517 mode->vsync_end = mode->vtotal;
3520 drm_mode_do_interlace_quirk(mode, pt);
3522 if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3525 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3532 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3535 if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536 mode->width_mm *= 10;
3537 mode->height_mm *= 10;
3540 if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541 mode->width_mm = drm_edid->edid->width_cm * 10;
3542 mode->height_mm = drm_edid->edid->height_cm * 10;
3545 mode->type = DRM_MODE_TYPE_DRIVER;
3546 drm_mode_set_name(mode);
3552 mode_in_hsync_range(const struct drm_display_mode *mode,
3553 const struct edid *edid, const u8 *t)
3555 int hsync, hmin, hmax;
3558 if (edid->revision >= 4)
3559 hmin += ((t[4] & 0x04) ? 255 : 0);
3561 if (edid->revision >= 4)
3562 hmax += ((t[4] & 0x08) ? 255 : 0);
3563 hsync = drm_mode_hsync(mode);
3565 return (hsync <= hmax && hsync >= hmin);
3569 mode_in_vsync_range(const struct drm_display_mode *mode,
3570 const struct edid *edid, const u8 *t)
3572 int vsync, vmin, vmax;
3575 if (edid->revision >= 4)
3576 vmin += ((t[4] & 0x01) ? 255 : 0);
3578 if (edid->revision >= 4)
3579 vmax += ((t[4] & 0x02) ? 255 : 0);
3580 vsync = drm_mode_vrefresh(mode);
3582 return (vsync <= vmax && vsync >= vmin);
3586 range_pixel_clock(const struct edid *edid, const u8 *t)
3589 if (t[9] == 0 || t[9] == 255)
3592 /* 1.4 with CVT support gives us real precision, yay */
3593 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3596 /* 1.3 is pathetic, so fuzz up a bit */
3597 return t[9] * 10000 + 5001;
3600 static bool mode_in_range(const struct drm_display_mode *mode,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3604 const struct edid *edid = drm_edid->edid;
3606 const u8 *t = (const u8 *)timing;
3608 if (!mode_in_hsync_range(mode, edid, t))
3611 if (!mode_in_vsync_range(mode, edid, t))
3614 max_clock = range_pixel_clock(edid, t);
3616 if (mode->clock > max_clock)
3619 /* 1.4 max horizontal check */
3620 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3621 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3624 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3630 static bool valid_inferred_mode(const struct drm_connector *connector,
3631 const struct drm_display_mode *mode)
3633 const struct drm_display_mode *m;
3636 list_for_each_entry(m, &connector->probed_modes, head) {
3637 if (mode->hdisplay == m->hdisplay &&
3638 mode->vdisplay == m->vdisplay &&
3639 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3640 return false; /* duplicated */
3641 if (mode->hdisplay <= m->hdisplay &&
3642 mode->vdisplay <= m->vdisplay)
3648 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3649 const struct drm_edid *drm_edid,
3650 const struct detailed_timing *timing)
3653 struct drm_display_mode *newmode;
3654 struct drm_device *dev = connector->dev;
3656 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3657 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3658 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3659 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3661 drm_mode_probed_add(connector, newmode);
3670 /* fix up 1366x768 mode from 1368x768;
3671 * GFT/CVT can't express 1366 width which isn't dividable by 8
3673 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3675 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3676 mode->hdisplay = 1366;
3677 mode->hsync_start--;
3679 drm_mode_set_name(mode);
3683 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3684 const struct drm_edid *drm_edid,
3685 const struct detailed_timing *timing)
3688 struct drm_display_mode *newmode;
3689 struct drm_device *dev = connector->dev;
3691 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3692 const struct minimode *m = &extra_modes[i];
3694 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3698 drm_mode_fixup_1366x768(newmode);
3699 if (!mode_in_range(newmode, drm_edid, timing) ||
3700 !valid_inferred_mode(connector, newmode)) {
3701 drm_mode_destroy(dev, newmode);
3705 drm_mode_probed_add(connector, newmode);
3712 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3713 const struct drm_edid *drm_edid,
3714 const struct detailed_timing *timing)
3717 struct drm_display_mode *newmode;
3718 struct drm_device *dev = connector->dev;
3720 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3721 const struct minimode *m = &extra_modes[i];
3723 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3727 drm_mode_fixup_1366x768(newmode);
3728 if (!mode_in_range(newmode, drm_edid, timing) ||
3729 !valid_inferred_mode(connector, newmode)) {
3730 drm_mode_destroy(dev, newmode);
3734 drm_mode_probed_add(connector, newmode);
3741 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3742 const struct drm_edid *drm_edid,
3743 const struct detailed_timing *timing)
3746 struct drm_display_mode *newmode;
3747 struct drm_device *dev = connector->dev;
3748 bool rb = drm_monitor_supports_rb(drm_edid);
3750 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3751 const struct minimode *m = &extra_modes[i];
3753 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3757 drm_mode_fixup_1366x768(newmode);
3758 if (!mode_in_range(newmode, drm_edid, timing) ||
3759 !valid_inferred_mode(connector, newmode)) {
3760 drm_mode_destroy(dev, newmode);
3764 drm_mode_probed_add(connector, newmode);
3772 do_inferred_modes(const struct detailed_timing *timing, void *c)
3774 struct detailed_mode_closure *closure = c;
3775 const struct detailed_non_pixel *data = &timing->data.other_data;
3776 const struct detailed_data_monitor_range *range = &data->data.range;
3778 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3781 closure->modes += drm_dmt_modes_for_range(closure->connector,
3785 if (closure->drm_edid->edid->revision < 2)
3786 return; /* GTF not defined yet */
3788 switch (range->flags) {
3789 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3790 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3794 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3795 closure->modes += drm_gtf_modes_for_range(closure->connector,
3799 case DRM_EDID_CVT_SUPPORT_FLAG:
3800 if (closure->drm_edid->edid->revision < 4)
3803 closure->modes += drm_cvt_modes_for_range(closure->connector,
3807 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3813 static int add_inferred_modes(struct drm_connector *connector,
3814 const struct drm_edid *drm_edid)
3816 struct detailed_mode_closure closure = {
3817 .connector = connector,
3818 .drm_edid = drm_edid,
3821 if (drm_edid->edid->revision >= 1)
3822 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3824 return closure.modes;
3828 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3830 int i, j, m, modes = 0;
3831 struct drm_display_mode *mode;
3832 const u8 *est = ((const u8 *)timing) + 6;
3834 for (i = 0; i < 6; i++) {
3835 for (j = 7; j >= 0; j--) {
3836 m = (i * 8) + (7 - j);
3837 if (m >= ARRAY_SIZE(est3_modes))
3839 if (est[i] & (1 << j)) {
3840 mode = drm_mode_find_dmt(connector->dev,
3846 drm_mode_probed_add(connector, mode);
3857 do_established_modes(const struct detailed_timing *timing, void *c)
3859 struct detailed_mode_closure *closure = c;
3861 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3864 closure->modes += drm_est3_modes(closure->connector, timing);
3868 * Get established modes from EDID and add them. Each EDID block contains a
3869 * bitmap of the supported "established modes" list (defined above). Tease them
3870 * out and add them to the global modes list.
3872 static int add_established_modes(struct drm_connector *connector,
3873 const struct drm_edid *drm_edid)
3875 struct drm_device *dev = connector->dev;
3876 const struct edid *edid = drm_edid->edid;
3877 unsigned long est_bits = edid->established_timings.t1 |
3878 (edid->established_timings.t2 << 8) |
3879 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3881 struct detailed_mode_closure closure = {
3882 .connector = connector,
3883 .drm_edid = drm_edid,
3886 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3887 if (est_bits & (1<<i)) {
3888 struct drm_display_mode *newmode;
3890 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3892 drm_mode_probed_add(connector, newmode);
3898 if (edid->revision >= 1)
3899 drm_for_each_detailed_block(drm_edid, do_established_modes,
3902 return modes + closure.modes;
3906 do_standard_modes(const struct detailed_timing *timing, void *c)
3908 struct detailed_mode_closure *closure = c;
3909 const struct detailed_non_pixel *data = &timing->data.other_data;
3910 struct drm_connector *connector = closure->connector;
3913 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3916 for (i = 0; i < 6; i++) {
3917 const struct std_timing *std = &data->data.timings[i];
3918 struct drm_display_mode *newmode;
3920 newmode = drm_mode_std(connector, closure->drm_edid, std);
3922 drm_mode_probed_add(connector, newmode);
3929 * Get standard modes from EDID and add them. Standard modes can be calculated
3930 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3931 * add them to the list.
3933 static int add_standard_modes(struct drm_connector *connector,
3934 const struct drm_edid *drm_edid)
3937 struct detailed_mode_closure closure = {
3938 .connector = connector,
3939 .drm_edid = drm_edid,
3942 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3943 struct drm_display_mode *newmode;
3945 newmode = drm_mode_std(connector, drm_edid,
3946 &drm_edid->edid->standard_timings[i]);
3948 drm_mode_probed_add(connector, newmode);
3953 if (drm_edid->edid->revision >= 1)
3954 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3957 /* XXX should also look for standard codes in VTB blocks */
3959 return modes + closure.modes;
3962 static int drm_cvt_modes(struct drm_connector *connector,
3963 const struct detailed_timing *timing)
3965 int i, j, modes = 0;
3966 struct drm_display_mode *newmode;
3967 struct drm_device *dev = connector->dev;
3968 const struct cvt_timing *cvt;
3969 static const int rates[] = { 60, 85, 75, 60, 50 };
3970 const u8 empty[3] = { 0, 0, 0 };
3972 for (i = 0; i < 4; i++) {
3975 cvt = &(timing->data.other_data.data.cvt[i]);
3977 if (!memcmp(cvt->code, empty, 3))
3980 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3981 switch (cvt->code[1] & 0x0c) {
3982 /* default - because compiler doesn't see that we've enumerated all cases */
3985 width = height * 4 / 3;
3988 width = height * 16 / 9;
3991 width = height * 16 / 10;
3994 width = height * 15 / 9;
3998 for (j = 1; j < 5; j++) {
3999 if (cvt->code[2] & (1 << j)) {
4000 newmode = drm_cvt_mode(dev, width, height,
4004 drm_mode_probed_add(connector, newmode);
4015 do_cvt_mode(const struct detailed_timing *timing, void *c)
4017 struct detailed_mode_closure *closure = c;
4019 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4022 closure->modes += drm_cvt_modes(closure->connector, timing);
4026 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4028 struct detailed_mode_closure closure = {
4029 .connector = connector,
4030 .drm_edid = drm_edid,
4033 if (drm_edid->edid->revision >= 3)
4034 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4036 /* XXX should also look for CVT codes in VTB blocks */
4038 return closure.modes;
4041 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4042 struct drm_display_mode *mode);
4045 do_detailed_mode(const struct detailed_timing *timing, void *c)
4047 struct detailed_mode_closure *closure = c;
4048 struct drm_display_mode *newmode;
4050 if (!is_detailed_timing_descriptor(timing))
4053 newmode = drm_mode_detailed(closure->connector,
4054 closure->drm_edid, timing);
4058 if (closure->preferred)
4059 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4062 * Detailed modes are limited to 10kHz pixel clock resolution,
4063 * so fix up anything that looks like CEA/HDMI mode, but the clock
4064 * is just slightly off.
4066 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4068 drm_mode_probed_add(closure->connector, newmode);
4070 closure->preferred = false;
4074 * add_detailed_modes - Add modes from detailed timings
4075 * @connector: attached connector
4076 * @drm_edid: EDID block to scan
4078 static int add_detailed_modes(struct drm_connector *connector,
4079 const struct drm_edid *drm_edid)
4081 struct detailed_mode_closure closure = {
4082 .connector = connector,
4083 .drm_edid = drm_edid,
4086 if (drm_edid->edid->revision >= 4)
4087 closure.preferred = true; /* first detailed timing is always preferred */
4090 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4092 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4094 return closure.modes;
4097 /* CTA-861-H Table 60 - CTA Tag Codes */
4098 #define CTA_DB_AUDIO 1
4099 #define CTA_DB_VIDEO 2
4100 #define CTA_DB_VENDOR 3
4101 #define CTA_DB_SPEAKER 4
4102 #define CTA_DB_EXTENDED_TAG 7
4104 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4105 #define CTA_EXT_DB_VIDEO_CAP 0
4106 #define CTA_EXT_DB_VENDOR 1
4107 #define CTA_EXT_DB_HDR_STATIC_METADATA 6
4108 #define CTA_EXT_DB_420_VIDEO_DATA 14
4109 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4110 #define CTA_EXT_DB_HF_EEODB 0x78
4111 #define CTA_EXT_DB_HF_SCDB 0x79
4113 #define EDID_BASIC_AUDIO (1 << 6)
4114 #define EDID_CEA_YCRCB444 (1 << 5)
4115 #define EDID_CEA_YCRCB422 (1 << 4)
4116 #define EDID_CEA_VCDB_QS (1 << 6)
4119 * Search EDID for CEA extension block.
4121 * FIXME: Prefer not returning pointers to raw EDID data.
4123 const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4124 int ext_id, int *ext_index)
4126 const u8 *edid_ext = NULL;
4129 /* No EDID or EDID extensions */
4130 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4133 /* Find CEA extension */
4134 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4135 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4136 if (edid_block_tag(edid_ext) == ext_id)
4140 if (i >= drm_edid_extension_block_count(drm_edid))
4148 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4149 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4151 const struct displayid_block *block;
4152 struct displayid_iter iter;
4156 /* Look for a top level CEA extension block */
4157 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4160 /* CEA blocks can also be found embedded in a DisplayID block */
4161 displayid_iter_edid_begin(drm_edid, &iter);
4162 displayid_iter_for_each(block, &iter) {
4163 if (block->tag == DATA_BLOCK_CTA) {
4168 displayid_iter_end(&iter);
4173 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4175 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4176 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4178 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4179 return &edid_cea_modes_1[vic - 1];
4180 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4181 return &edid_cea_modes_193[vic - 193];
4185 static u8 cea_num_vics(void)
4187 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4190 static u8 cea_next_vic(u8 vic)
4192 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4198 * Calculate the alternate clock for the CEA mode
4199 * (60Hz vs. 59.94Hz etc.)
4202 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4204 unsigned int clock = cea_mode->clock;
4206 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4210 * edid_cea_modes contains the 59.94Hz
4211 * variant for 240 and 480 line modes,
4212 * and the 60Hz variant otherwise.
4214 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4215 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4217 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4223 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4226 * For certain VICs the spec allows the vertical
4227 * front porch to vary by one or two lines.
4229 * cea_modes[] stores the variant with the shortest
4230 * vertical front porch. We can adjust the mode to
4231 * get the other variants by simply increasing the
4232 * vertical front porch length.
4234 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4235 cea_mode_for_vic(9)->vtotal != 262 ||
4236 cea_mode_for_vic(12)->vtotal != 262 ||
4237 cea_mode_for_vic(13)->vtotal != 262 ||
4238 cea_mode_for_vic(23)->vtotal != 312 ||
4239 cea_mode_for_vic(24)->vtotal != 312 ||
4240 cea_mode_for_vic(27)->vtotal != 312 ||
4241 cea_mode_for_vic(28)->vtotal != 312);
4243 if (((vic == 8 || vic == 9 ||
4244 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4245 ((vic == 23 || vic == 24 ||
4246 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4247 mode->vsync_start++;
4257 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4258 unsigned int clock_tolerance)
4260 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4263 if (!to_match->clock)
4266 if (to_match->picture_aspect_ratio)
4267 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4269 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4270 struct drm_display_mode cea_mode;
4271 unsigned int clock1, clock2;
4273 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4275 /* Check both 60Hz and 59.94Hz */
4276 clock1 = cea_mode.clock;
4277 clock2 = cea_mode_alternate_clock(&cea_mode);
4279 if (abs(to_match->clock - clock1) > clock_tolerance &&
4280 abs(to_match->clock - clock2) > clock_tolerance)
4284 if (drm_mode_match(to_match, &cea_mode, match_flags))
4286 } while (cea_mode_alternate_timings(vic, &cea_mode));
4293 * drm_match_cea_mode - look for a CEA mode matching given mode
4294 * @to_match: display mode
4296 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4299 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4301 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4304 if (!to_match->clock)
4307 if (to_match->picture_aspect_ratio)
4308 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4310 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4311 struct drm_display_mode cea_mode;
4312 unsigned int clock1, clock2;
4314 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4316 /* Check both 60Hz and 59.94Hz */
4317 clock1 = cea_mode.clock;
4318 clock2 = cea_mode_alternate_clock(&cea_mode);
4320 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4321 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4325 if (drm_mode_match(to_match, &cea_mode, match_flags))
4327 } while (cea_mode_alternate_timings(vic, &cea_mode));
4332 EXPORT_SYMBOL(drm_match_cea_mode);
4334 static bool drm_valid_cea_vic(u8 vic)
4336 return cea_mode_for_vic(vic) != NULL;
4339 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4341 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4344 return mode->picture_aspect_ratio;
4346 return HDMI_PICTURE_ASPECT_NONE;
4349 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4351 return edid_4k_modes[video_code].picture_aspect_ratio;
4355 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4359 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4361 return cea_mode_alternate_clock(hdmi_mode);
4364 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4365 unsigned int clock_tolerance)
4367 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4370 if (!to_match->clock)
4373 if (to_match->picture_aspect_ratio)
4374 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4376 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4377 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4378 unsigned int clock1, clock2;
4380 /* Make sure to also match alternate clocks */
4381 clock1 = hdmi_mode->clock;
4382 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4384 if (abs(to_match->clock - clock1) > clock_tolerance &&
4385 abs(to_match->clock - clock2) > clock_tolerance)
4388 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4396 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4397 * @to_match: display mode
4399 * An HDMI mode is one defined in the HDMI vendor specific block.
4401 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4403 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4405 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4408 if (!to_match->clock)
4411 if (to_match->picture_aspect_ratio)
4412 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4414 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4415 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4416 unsigned int clock1, clock2;
4418 /* Make sure to also match alternate clocks */
4419 clock1 = hdmi_mode->clock;
4420 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4422 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4423 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4424 drm_mode_match(to_match, hdmi_mode, match_flags))
4430 static bool drm_valid_hdmi_vic(u8 vic)
4432 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4435 static int add_alternate_cea_modes(struct drm_connector *connector,
4436 const struct drm_edid *drm_edid)
4438 struct drm_device *dev = connector->dev;
4439 struct drm_display_mode *mode, *tmp;
4443 /* Don't add CTA modes if the CTA extension block is missing */
4444 if (!drm_edid_has_cta_extension(drm_edid))
4448 * Go through all probed modes and create a new mode
4449 * with the alternate clock for certain CEA modes.
4451 list_for_each_entry(mode, &connector->probed_modes, head) {
4452 const struct drm_display_mode *cea_mode = NULL;
4453 struct drm_display_mode *newmode;
4454 u8 vic = drm_match_cea_mode(mode);
4455 unsigned int clock1, clock2;
4457 if (drm_valid_cea_vic(vic)) {
4458 cea_mode = cea_mode_for_vic(vic);
4459 clock2 = cea_mode_alternate_clock(cea_mode);
4461 vic = drm_match_hdmi_mode(mode);
4462 if (drm_valid_hdmi_vic(vic)) {
4463 cea_mode = &edid_4k_modes[vic];
4464 clock2 = hdmi_mode_alternate_clock(cea_mode);
4471 clock1 = cea_mode->clock;
4473 if (clock1 == clock2)
4476 if (mode->clock != clock1 && mode->clock != clock2)
4479 newmode = drm_mode_duplicate(dev, cea_mode);
4483 /* Carry over the stereo flags */
4484 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4487 * The current mode could be either variant. Make
4488 * sure to pick the "other" clock for the new mode.
4490 if (mode->clock != clock1)
4491 newmode->clock = clock1;
4493 newmode->clock = clock2;
4495 list_add_tail(&newmode->head, &list);
4498 list_for_each_entry_safe(mode, tmp, &list, head) {
4499 list_del(&mode->head);
4500 drm_mode_probed_add(connector, mode);
4507 static u8 svd_to_vic(u8 svd)
4509 /* 0-6 bit vic, 7th bit native mode indicator */
4510 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4517 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4518 * the EDID, or NULL on errors.
4520 static struct drm_display_mode *
4521 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4523 const struct drm_display_info *info = &connector->display_info;
4524 struct drm_device *dev = connector->dev;
4526 if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4529 return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4533 * do_y420vdb_modes - Parse YCBCR 420 only modes
4534 * @connector: connector corresponding to the HDMI sink
4535 * @svds: start of the data block of CEA YCBCR 420 VDB
4536 * @len: length of the CEA YCBCR 420 VDB
4538 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4539 * which contains modes which can be supported in YCBCR 420
4540 * output format only.
4542 static int do_y420vdb_modes(struct drm_connector *connector,
4543 const u8 *svds, u8 svds_len)
4545 struct drm_device *dev = connector->dev;
4548 for (i = 0; i < svds_len; i++) {
4549 u8 vic = svd_to_vic(svds[i]);
4550 struct drm_display_mode *newmode;
4552 if (!drm_valid_cea_vic(vic))
4555 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4558 drm_mode_probed_add(connector, newmode);
4566 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4568 * @video_code: CEA VIC of the mode
4570 * Creates a new mode matching the specified CEA VIC.
4572 * Returns: A new drm_display_mode on success or NULL on failure
4574 struct drm_display_mode *
4575 drm_display_mode_from_cea_vic(struct drm_device *dev,
4578 const struct drm_display_mode *cea_mode;
4579 struct drm_display_mode *newmode;
4581 cea_mode = cea_mode_for_vic(video_code);
4585 newmode = drm_mode_duplicate(dev, cea_mode);
4591 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4593 /* Add modes based on VICs parsed in parse_cta_vdb() */
4594 static int add_cta_vdb_modes(struct drm_connector *connector)
4596 const struct drm_display_info *info = &connector->display_info;
4602 for (i = 0; i < info->vics_len; i++) {
4603 struct drm_display_mode *mode;
4605 mode = drm_display_mode_from_vic_index(connector, i);
4607 drm_mode_probed_add(connector, mode);
4615 struct stereo_mandatory_mode {
4616 int width, height, vrefresh;
4620 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4621 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4622 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4624 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4627 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4628 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4629 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4630 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4634 stereo_match_mandatory(const struct drm_display_mode *mode,
4635 const struct stereo_mandatory_mode *stereo_mode)
4637 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4639 return mode->hdisplay == stereo_mode->width &&
4640 mode->vdisplay == stereo_mode->height &&
4641 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4642 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4645 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4647 struct drm_device *dev = connector->dev;
4648 const struct drm_display_mode *mode;
4649 struct list_head stereo_modes;
4652 INIT_LIST_HEAD(&stereo_modes);
4654 list_for_each_entry(mode, &connector->probed_modes, head) {
4655 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4656 const struct stereo_mandatory_mode *mandatory;
4657 struct drm_display_mode *new_mode;
4659 if (!stereo_match_mandatory(mode,
4660 &stereo_mandatory_modes[i]))
4663 mandatory = &stereo_mandatory_modes[i];
4664 new_mode = drm_mode_duplicate(dev, mode);
4668 new_mode->flags |= mandatory->flags;
4669 list_add_tail(&new_mode->head, &stereo_modes);
4674 list_splice_tail(&stereo_modes, &connector->probed_modes);
4679 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4681 struct drm_device *dev = connector->dev;
4682 struct drm_display_mode *newmode;
4684 if (!drm_valid_hdmi_vic(vic)) {
4685 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4686 connector->base.id, connector->name, vic);
4690 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4694 drm_mode_probed_add(connector, newmode);
4699 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4702 struct drm_display_mode *newmode;
4705 if (structure & (1 << 0)) {
4706 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4708 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4709 drm_mode_probed_add(connector, newmode);
4713 if (structure & (1 << 6)) {
4714 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 drm_mode_probed_add(connector, newmode);
4721 if (structure & (1 << 8)) {
4722 newmode = drm_display_mode_from_vic_index(connector, vic_index);
4724 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4725 drm_mode_probed_add(connector, newmode);
4733 static bool hdmi_vsdb_latency_present(const u8 *db)
4735 return db[8] & BIT(7);
4738 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4740 return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4743 static int hdmi_vsdb_latency_length(const u8 *db)
4745 if (hdmi_vsdb_i_latency_present(db))
4747 else if (hdmi_vsdb_latency_present(db))
4754 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4755 * @connector: connector corresponding to the HDMI sink
4756 * @db: start of the CEA vendor specific block
4757 * @len: length of the CEA block payload, ie. one can access up to db[len]
4759 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4760 * also adds the stereo 3d modes when applicable.
4763 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4765 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4766 u8 vic_len, hdmi_3d_len = 0;
4773 /* no HDMI_Video_Present */
4774 if (!(db[8] & (1 << 5)))
4777 offset += hdmi_vsdb_latency_length(db);
4779 /* the declared length is not long enough for the 2 first bytes
4780 * of additional video format capabilities */
4781 if (len < (8 + offset + 2))
4786 if (db[8 + offset] & (1 << 7)) {
4787 modes += add_hdmi_mandatory_stereo_modes(connector);
4789 /* 3D_Multi_present */
4790 multi_present = (db[8 + offset] & 0x60) >> 5;
4794 vic_len = db[8 + offset] >> 5;
4795 hdmi_3d_len = db[8 + offset] & 0x1f;
4797 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4800 vic = db[9 + offset + i];
4801 modes += add_hdmi_mode(connector, vic);
4803 offset += 1 + vic_len;
4805 if (multi_present == 1)
4807 else if (multi_present == 2)
4812 if (len < (8 + offset + hdmi_3d_len - 1))
4815 if (hdmi_3d_len < multi_len)
4818 if (multi_present == 1 || multi_present == 2) {
4819 /* 3D_Structure_ALL */
4820 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4822 /* check if 3D_MASK is present */
4823 if (multi_present == 2)
4824 mask = (db[10 + offset] << 8) | db[11 + offset];
4828 for (i = 0; i < 16; i++) {
4829 if (mask & (1 << i))
4830 modes += add_3d_struct_modes(connector,
4835 offset += multi_len;
4837 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4839 struct drm_display_mode *newmode = NULL;
4840 unsigned int newflag = 0;
4841 bool detail_present;
4843 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4845 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4848 /* 2D_VIC_order_X */
4849 vic_index = db[8 + offset + i] >> 4;
4851 /* 3D_Structure_X */
4852 switch (db[8 + offset + i] & 0x0f) {
4854 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4857 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4861 if ((db[9 + offset + i] >> 4) == 1)
4862 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4867 newmode = drm_display_mode_from_vic_index(connector,
4871 newmode->flags |= newflag;
4872 drm_mode_probed_add(connector, newmode);
4886 cea_revision(const u8 *cea)
4889 * FIXME is this correct for the DispID variant?
4890 * The DispID spec doesn't really specify whether
4891 * this is the revision of the CEA extension or
4892 * the DispID CEA data block. And the only value
4893 * given as an example is 0.
4899 * CTA Data Block iterator.
4901 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4904 * struct cea_db *db:
4905 * struct cea_db_iter iter;
4907 * cea_db_iter_edid_begin(edid, &iter);
4908 * cea_db_iter_for_each(db, &iter) {
4909 * // do stuff with db
4911 * cea_db_iter_end(&iter);
4913 struct cea_db_iter {
4914 struct drm_edid_iter edid_iter;
4915 struct displayid_iter displayid_iter;
4917 /* Current Data Block Collection. */
4918 const u8 *collection;
4920 /* Current Data Block index in current collection. */
4923 /* End index in current collection. */
4927 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4933 static int cea_db_tag(const struct cea_db *db)
4935 return db->tag_length >> 5;
4938 static int cea_db_payload_len(const void *_db)
4940 /* FIXME: Transition to passing struct cea_db * everywhere. */
4941 const struct cea_db *db = _db;
4943 return db->tag_length & 0x1f;
4946 static const void *cea_db_data(const struct cea_db *db)
4951 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4953 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4954 cea_db_payload_len(db) >= 1 &&
4958 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4960 const u8 *data = cea_db_data(db);
4962 return cea_db_tag(db) == CTA_DB_VENDOR &&
4963 cea_db_payload_len(db) >= 3 &&
4964 oui(data[2], data[1], data[0]) == vendor_oui;
4967 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4968 struct cea_db_iter *iter)
4970 memset(iter, 0, sizeof(*iter));
4972 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4973 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4976 static const struct cea_db *
4977 __cea_db_iter_current_block(const struct cea_db_iter *iter)
4979 const struct cea_db *db;
4981 if (!iter->collection)
4984 db = (const struct cea_db *)&iter->collection[iter->index];
4986 if (iter->index + sizeof(*db) <= iter->end &&
4987 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4995 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4997 static int cea_db_collection_size(const u8 *cta)
5001 if (d < 4 || d > 127)
5009 * - VESA E-EDID v1.4
5010 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5012 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5016 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5019 /* Only support CTA Extension revision 3+ */
5020 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5023 size = cea_db_collection_size(ext);
5028 iter->end = iter->index + size;
5038 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5039 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5041 * Note that the above do not specify any connection between DisplayID Data
5042 * Block revision and CTA Extension versions.
5044 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5046 const struct displayid_block *block;
5048 displayid_iter_for_each(block, &iter->displayid_iter) {
5049 if (block->tag != DATA_BLOCK_CTA)
5053 * The displayid iterator has already verified the block bounds
5054 * in displayid_iter_block().
5056 iter->index = sizeof(*block);
5057 iter->end = iter->index + block->num_bytes;
5065 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5067 const struct cea_db *db;
5069 if (iter->collection) {
5070 /* Current collection should always be valid. */
5071 db = __cea_db_iter_current_block(iter);
5073 iter->collection = NULL;
5077 /* Next block in CTA Data Block Collection */
5078 iter->index += sizeof(*db) + cea_db_payload_len(db);
5080 db = __cea_db_iter_current_block(iter);
5087 * Find the next CTA Data Block Collection. First iterate all
5088 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5090 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5091 * Extension, it's recommended that DisplayID extensions are
5092 * exposed after all of the CTA Extensions.
5094 iter->collection = __cea_db_iter_edid_next(iter);
5095 if (!iter->collection)
5096 iter->collection = __cea_db_iter_displayid_next(iter);
5098 if (!iter->collection)
5101 db = __cea_db_iter_current_block(iter);
5107 #define cea_db_iter_for_each(__db, __iter) \
5108 while (((__db) = __cea_db_iter_next(__iter)))
5110 static void cea_db_iter_end(struct cea_db_iter *iter)
5112 displayid_iter_end(&iter->displayid_iter);
5113 drm_edid_iter_end(&iter->edid_iter);
5115 memset(iter, 0, sizeof(*iter));
5118 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5120 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5121 cea_db_payload_len(db) >= 5;
5124 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5126 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5127 cea_db_payload_len(db) >= 7;
5130 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5132 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5133 cea_db_payload_len(db) >= 2;
5136 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5138 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5139 cea_db_payload_len(db) == 21;
5142 static bool cea_db_is_vcdb(const struct cea_db *db)
5144 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5145 cea_db_payload_len(db) == 2;
5148 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5150 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5151 cea_db_payload_len(db) >= 7;
5154 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5156 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5159 static bool cea_db_is_y420vdb(const struct cea_db *db)
5161 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5164 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5166 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5167 cea_db_payload_len(db) >= 3;
5171 * Get the HF-EEODB override extension block count from EDID.
5173 * The passed in EDID may be partially read, as long as it has at least two
5174 * blocks (base block and one extension block) if EDID extension count is > 0.
5176 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5177 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5178 * iterators instead.
5181 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5183 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5187 /* No extensions according to base block, no HF-EEODB. */
5188 if (!edid_extension_block_count(edid))
5191 /* HF-EEODB is always in the first EDID extension block only */
5192 cta = edid_extension_block_data(edid, 0);
5193 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5196 /* Need to have the data block collection, and at least 3 bytes. */
5197 if (cea_db_collection_size(cta) < 3)
5201 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5202 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5203 * through 6 of Block 1 of the E-EDID.
5205 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5212 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5214 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5215 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5216 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5217 * support YCBCR420 output too.
5219 static void parse_cta_y420cmdb(struct drm_connector *connector,
5220 const struct cea_db *db, u64 *y420cmdb_map)
5222 struct drm_display_info *info = &connector->display_info;
5223 int i, map_len = cea_db_payload_len(db) - 1;
5224 const u8 *data = cea_db_data(db) + 1;
5228 /* All CEA modes support ycbcr420 sampling also.*/
5234 * This map indicates which of the existing CEA block modes
5235 * from VDB can support YCBCR420 output too. So if bit=0 is
5236 * set, first mode from VDB can support YCBCR420 output too.
5237 * We will parse and keep this map, before parsing VDB itself
5238 * to avoid going through the same block again and again.
5240 * Spec is not clear about max possible size of this block.
5241 * Clamping max bitmap block size at 8 bytes. Every byte can
5242 * address 8 CEA modes, in this way this map can address
5243 * 8*8 = first 64 SVDs.
5245 if (WARN_ON_ONCE(map_len > 8))
5248 for (i = 0; i < map_len; i++)
5249 map |= (u64)data[i] << (8 * i);
5253 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5255 *y420cmdb_map = map;
5258 static int add_cea_modes(struct drm_connector *connector,
5259 const struct drm_edid *drm_edid)
5261 const struct cea_db *db;
5262 struct cea_db_iter iter;
5265 /* CTA VDB block VICs parsed earlier */
5266 modes = add_cta_vdb_modes(connector);
5268 cea_db_iter_edid_begin(drm_edid, &iter);
5269 cea_db_iter_for_each(db, &iter) {
5270 if (cea_db_is_hdmi_vsdb(db)) {
5271 modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5272 cea_db_payload_len(db));
5273 } else if (cea_db_is_y420vdb(db)) {
5274 const u8 *vdb420 = cea_db_data(db) + 1;
5276 /* Add 4:2:0(only) modes present in EDID */
5277 modes += do_y420vdb_modes(connector, vdb420,
5278 cea_db_payload_len(db) - 1);
5281 cea_db_iter_end(&iter);
5286 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5287 struct drm_display_mode *mode)
5289 const struct drm_display_mode *cea_mode;
5290 int clock1, clock2, clock;
5295 * allow 5kHz clock difference either way to account for
5296 * the 10kHz clock resolution limit of detailed timings.
5298 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5299 if (drm_valid_cea_vic(vic)) {
5301 cea_mode = cea_mode_for_vic(vic);
5302 clock1 = cea_mode->clock;
5303 clock2 = cea_mode_alternate_clock(cea_mode);
5305 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5306 if (drm_valid_hdmi_vic(vic)) {
5308 cea_mode = &edid_4k_modes[vic];
5309 clock1 = cea_mode->clock;
5310 clock2 = hdmi_mode_alternate_clock(cea_mode);
5316 /* pick whichever is closest */
5317 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5322 if (mode->clock == clock)
5325 drm_dbg_kms(connector->dev,
5326 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5327 connector->base.id, connector->name,
5328 type, vic, mode->clock, clock);
5329 mode->clock = clock;
5332 static void drm_calculate_luminance_range(struct drm_connector *connector)
5334 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5335 struct drm_luminance_range_info *luminance_range =
5336 &connector->display_info.luminance_range;
5337 static const u8 pre_computed_values[] = {
5338 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5339 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5341 u32 max_avg, min_cll, max, min, q, r;
5343 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5346 max_avg = hdr_metadata->max_fall;
5347 min_cll = hdr_metadata->min_cll;
5350 * From the specification (CTA-861-G), for calculating the maximum
5351 * luminance we need to use:
5352 * Luminance = 50*2**(CV/32)
5353 * Where CV is a one-byte value.
5354 * For calculating this expression we may need float point precision;
5355 * to avoid this complexity level, we take advantage that CV is divided
5356 * by a constant. From the Euclids division algorithm, we know that CV
5357 * can be written as: CV = 32*q + r. Next, we replace CV in the
5358 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5359 * need to pre-compute the value of r/32. For pre-computing the values
5360 * We just used the following Ruby line:
5361 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5362 * The results of the above expressions can be verified at
5363 * pre_computed_values.
5367 max = (1 << q) * pre_computed_values[r];
5369 /* min luminance: maxLum * (CV/255)^2 / 100 */
5370 q = DIV_ROUND_CLOSEST(min_cll, 255);
5371 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5373 luminance_range->min_luminance = min;
5374 luminance_range->max_luminance = max;
5377 static uint8_t eotf_supported(const u8 *edid_ext)
5379 return edid_ext[2] &
5380 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5381 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5382 BIT(HDMI_EOTF_SMPTE_ST2084) |
5383 BIT(HDMI_EOTF_BT_2100_HLG));
5386 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5388 return edid_ext[3] &
5389 BIT(HDMI_STATIC_METADATA_TYPE1);
5393 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5397 len = cea_db_payload_len(db);
5399 connector->hdr_sink_metadata.hdmi_type1.eotf =
5401 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5402 hdr_metadata_type(db);
5405 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5407 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5409 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5411 /* Calculate only when all values are available */
5412 drm_calculate_luminance_range(connector);
5416 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5418 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5420 u8 len = cea_db_payload_len(db);
5422 if (len >= 6 && (db[6] & (1 << 7)))
5423 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5425 if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5426 connector->latency_present[0] = true;
5427 connector->video_latency[0] = db[9];
5428 connector->audio_latency[0] = db[10];
5431 if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5432 connector->latency_present[1] = true;
5433 connector->video_latency[1] = db[11];
5434 connector->audio_latency[1] = db[12];
5437 drm_dbg_kms(connector->dev,
5438 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5439 connector->base.id, connector->name,
5440 connector->latency_present[0], connector->latency_present[1],
5441 connector->video_latency[0], connector->video_latency[1],
5442 connector->audio_latency[0], connector->audio_latency[1]);
5446 monitor_name(const struct detailed_timing *timing, void *data)
5448 const char **res = data;
5450 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5453 *res = timing->data.other_data.data.str.str;
5456 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5458 const char *edid_name = NULL;
5461 if (!drm_edid || !name)
5464 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5465 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5466 if (edid_name[mnl] == 0x0a)
5469 name[mnl] = edid_name[mnl];
5476 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5477 * @edid: monitor EDID information
5478 * @name: pointer to a character array to hold the name of the monitor
5479 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5482 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5484 int name_length = 0;
5491 struct drm_edid drm_edid = {
5493 .size = edid_size(edid),
5496 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5497 memcpy(name, buf, name_length);
5500 name[name_length] = '\0';
5502 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5504 static void clear_eld(struct drm_connector *connector)
5506 memset(connector->eld, 0, sizeof(connector->eld));
5508 connector->latency_present[0] = false;
5509 connector->latency_present[1] = false;
5510 connector->video_latency[0] = 0;
5511 connector->audio_latency[0] = 0;
5512 connector->video_latency[1] = 0;
5513 connector->audio_latency[1] = 0;
5517 * Get 3-byte SAD buffer from struct cea_sad.
5519 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5521 sad[0] = cta_sad->format << 3 | cta_sad->channels;
5522 sad[1] = cta_sad->freq;
5523 sad[2] = cta_sad->byte2;
5527 * Set struct cea_sad from 3-byte SAD buffer.
5529 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5531 cta_sad->format = (sad[0] & 0x78) >> 3;
5532 cta_sad->channels = sad[0] & 0x07;
5533 cta_sad->freq = sad[1] & 0x7f;
5534 cta_sad->byte2 = sad[2];
5538 * drm_edid_to_eld - build ELD from EDID
5539 * @connector: connector corresponding to the HDMI/DP sink
5540 * @drm_edid: EDID to parse
5542 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5543 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5545 static void drm_edid_to_eld(struct drm_connector *connector,
5546 const struct drm_edid *drm_edid)
5548 const struct drm_display_info *info = &connector->display_info;
5549 const struct cea_db *db;
5550 struct cea_db_iter iter;
5551 uint8_t *eld = connector->eld;
5552 int total_sad_count = 0;
5558 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5559 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5560 connector->base.id, connector->name,
5561 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5563 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5564 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5566 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5568 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5569 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5570 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5571 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5573 cea_db_iter_edid_begin(drm_edid, &iter);
5574 cea_db_iter_for_each(db, &iter) {
5575 const u8 *data = cea_db_data(db);
5576 int len = cea_db_payload_len(db);
5579 switch (cea_db_tag(db)) {
5581 /* Audio Data Block, contains SADs */
5582 sad_count = min(len / 3, 15 - total_sad_count);
5584 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5585 data, sad_count * 3);
5586 total_sad_count += sad_count;
5588 case CTA_DB_SPEAKER:
5589 /* Speaker Allocation Data Block */
5591 eld[DRM_ELD_SPEAKER] = data[0];
5594 /* HDMI Vendor-Specific Data Block */
5595 if (cea_db_is_hdmi_vsdb(db))
5596 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5602 cea_db_iter_end(&iter);
5604 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5606 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5607 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5608 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5610 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5612 eld[DRM_ELD_BASELINE_ELD_LEN] =
5613 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5615 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5616 connector->base.id, connector->name,
5617 drm_eld_size(eld), total_sad_count);
5620 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5621 struct cea_sad **psads)
5623 const struct cea_db *db;
5624 struct cea_db_iter iter;
5627 cea_db_iter_edid_begin(drm_edid, &iter);
5628 cea_db_iter_for_each(db, &iter) {
5629 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5630 struct cea_sad *sads;
5633 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5634 sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5638 for (i = 0; i < count; i++)
5639 drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5643 cea_db_iter_end(&iter);
5645 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5651 * drm_edid_to_sad - extracts SADs from EDID
5652 * @edid: EDID to parse
5653 * @sads: pointer that will be set to the extracted SADs
5655 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5657 * Note: The returned pointer needs to be freed using kfree().
5659 * Return: The number of found SADs or negative number on error.
5661 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5663 struct drm_edid drm_edid;
5665 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5667 EXPORT_SYMBOL(drm_edid_to_sad);
5669 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5672 const struct cea_db *db;
5673 struct cea_db_iter iter;
5676 cea_db_iter_edid_begin(drm_edid, &iter);
5677 cea_db_iter_for_each(db, &iter) {
5678 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5679 cea_db_payload_len(db) == 3) {
5680 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5684 count = cea_db_payload_len(db);
5688 cea_db_iter_end(&iter);
5690 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5696 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5697 * @edid: EDID to parse
5698 * @sadb: pointer to the speaker block
5700 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5702 * Note: The returned pointer needs to be freed using kfree().
5704 * Return: The number of found Speaker Allocation Blocks or negative number on
5707 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5709 struct drm_edid drm_edid;
5711 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5714 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5717 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5718 * @connector: connector associated with the HDMI/DP sink
5719 * @mode: the display mode
5721 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5722 * the sink doesn't support audio or video.
5724 int drm_av_sync_delay(struct drm_connector *connector,
5725 const struct drm_display_mode *mode)
5727 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5730 if (!connector->latency_present[0])
5732 if (!connector->latency_present[1])
5735 a = connector->audio_latency[i];
5736 v = connector->video_latency[i];
5739 * HDMI/DP sink doesn't support audio or video?
5741 if (a == 255 || v == 255)
5745 * Convert raw EDID values to millisecond.
5746 * Treat unknown latency as 0ms.
5749 a = min(2 * (a - 1), 500);
5751 v = min(2 * (v - 1), 500);
5753 return max(v - a, 0);
5755 EXPORT_SYMBOL(drm_av_sync_delay);
5757 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5759 const struct cea_db *db;
5760 struct cea_db_iter iter;
5764 * Because HDMI identifier is in Vendor Specific Block,
5765 * search it from all data blocks of CEA extension.
5767 cea_db_iter_edid_begin(drm_edid, &iter);
5768 cea_db_iter_for_each(db, &iter) {
5769 if (cea_db_is_hdmi_vsdb(db)) {
5774 cea_db_iter_end(&iter);
5780 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5781 * @edid: monitor EDID information
5783 * Parse the CEA extension according to CEA-861-B.
5785 * Drivers that have added the modes parsed from EDID to drm_display_info
5786 * should use &drm_display_info.is_hdmi instead of calling this function.
5788 * Return: True if the monitor is HDMI, false if not or unknown.
5790 bool drm_detect_hdmi_monitor(const struct edid *edid)
5792 struct drm_edid drm_edid;
5794 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5796 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5798 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5800 struct drm_edid_iter edid_iter;
5801 const struct cea_db *db;
5802 struct cea_db_iter iter;
5804 bool has_audio = false;
5806 drm_edid_iter_begin(drm_edid, &edid_iter);
5807 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5808 if (edid_ext[0] == CEA_EXT) {
5809 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5814 drm_edid_iter_end(&edid_iter);
5817 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5821 cea_db_iter_edid_begin(drm_edid, &iter);
5822 cea_db_iter_for_each(db, &iter) {
5823 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5824 const u8 *data = cea_db_data(db);
5827 for (i = 0; i < cea_db_payload_len(db); i += 3)
5828 DRM_DEBUG_KMS("CEA audio format %d\n",
5829 (data[i] >> 3) & 0xf);
5834 cea_db_iter_end(&iter);
5841 * drm_detect_monitor_audio - check monitor audio capability
5842 * @edid: EDID block to scan
5844 * Monitor should have CEA extension block.
5845 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5846 * audio' only. If there is any audio extension block and supported
5847 * audio format, assume at least 'basic audio' support, even if 'basic
5848 * audio' is not defined in EDID.
5850 * Return: True if the monitor supports audio, false otherwise.
5852 bool drm_detect_monitor_audio(const struct edid *edid)
5854 struct drm_edid drm_edid;
5856 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5858 EXPORT_SYMBOL(drm_detect_monitor_audio);
5862 * drm_default_rgb_quant_range - default RGB quantization range
5863 * @mode: display mode
5865 * Determine the default RGB quantization range for the mode,
5866 * as specified in CEA-861.
5868 * Return: The default RGB quantization range for the mode
5870 enum hdmi_quantization_range
5871 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5873 /* All CEA modes other than VIC 1 use limited quantization range. */
5874 return drm_match_cea_mode(mode) > 1 ?
5875 HDMI_QUANTIZATION_RANGE_LIMITED :
5876 HDMI_QUANTIZATION_RANGE_FULL;
5878 EXPORT_SYMBOL(drm_default_rgb_quant_range);
5880 /* CTA-861 Video Data Block (CTA VDB) */
5881 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5883 struct drm_display_info *info = &connector->display_info;
5884 int i, vic_index, len = cea_db_payload_len(db);
5885 const u8 *svds = cea_db_data(db);
5891 /* Gracefully handle multiple VDBs, however unlikely that is */
5892 vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5896 vic_index = info->vics_len;
5897 info->vics_len += len;
5900 for (i = 0; i < len; i++) {
5901 u8 vic = svd_to_vic(svds[i]);
5903 if (!drm_valid_cea_vic(vic))
5906 info->vics[vic_index++] = vic;
5911 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5913 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5914 * using the VICs themselves.
5916 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5918 struct drm_display_info *info = &connector->display_info;
5919 struct drm_hdmi_info *hdmi = &info->hdmi;
5920 int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5922 for (i = 0; i < len; i++) {
5923 u8 vic = info->vics[i];
5925 if (vic && y420cmdb_map & BIT_ULL(i))
5926 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5930 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5932 const struct drm_display_info *info = &connector->display_info;
5935 if (!vic || !info->vics)
5938 for (i = 0; i < info->vics_len; i++) {
5939 if (info->vics[i] == vic)
5946 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5947 static void parse_cta_y420vdb(struct drm_connector *connector,
5948 const struct cea_db *db)
5950 struct drm_display_info *info = &connector->display_info;
5951 struct drm_hdmi_info *hdmi = &info->hdmi;
5952 const u8 *svds = cea_db_data(db) + 1;
5955 for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5956 u8 vic = svd_to_vic(svds[i]);
5958 if (!drm_valid_cea_vic(vic))
5961 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5962 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5966 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5968 struct drm_display_info *info = &connector->display_info;
5970 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5971 connector->base.id, connector->name, db[2]);
5973 if (db[2] & EDID_CEA_VCDB_QS)
5974 info->rgb_quant_range_selectable = true;
5978 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5980 switch (max_frl_rate) {
5983 *max_rate_per_lane = 3;
5987 *max_rate_per_lane = 6;
5991 *max_rate_per_lane = 6;
5995 *max_rate_per_lane = 8;
5999 *max_rate_per_lane = 10;
6003 *max_rate_per_lane = 12;
6008 *max_rate_per_lane = 0;
6012 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6016 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6018 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6019 hdmi->y420_dc_modes = dc_mask;
6022 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6025 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6027 if (!hdmi_dsc->v_1p2)
6030 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6031 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6033 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6034 hdmi_dsc->bpc_supported = 16;
6035 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6036 hdmi_dsc->bpc_supported = 12;
6037 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6038 hdmi_dsc->bpc_supported = 10;
6040 /* Supports min 8 BPC if DSC 1.2 is supported*/
6041 hdmi_dsc->bpc_supported = 8;
6043 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6045 u8 dsc_max_frl_rate;
6047 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6048 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6049 &hdmi_dsc->max_frl_rate_per_lane);
6051 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6053 switch (dsc_max_slices) {
6055 hdmi_dsc->max_slices = 1;
6056 hdmi_dsc->clk_per_slice = 340;
6059 hdmi_dsc->max_slices = 2;
6060 hdmi_dsc->clk_per_slice = 340;
6063 hdmi_dsc->max_slices = 4;
6064 hdmi_dsc->clk_per_slice = 340;
6067 hdmi_dsc->max_slices = 8;
6068 hdmi_dsc->clk_per_slice = 340;
6071 hdmi_dsc->max_slices = 8;
6072 hdmi_dsc->clk_per_slice = 400;
6075 hdmi_dsc->max_slices = 12;
6076 hdmi_dsc->clk_per_slice = 400;
6079 hdmi_dsc->max_slices = 16;
6080 hdmi_dsc->clk_per_slice = 400;
6084 hdmi_dsc->max_slices = 0;
6085 hdmi_dsc->clk_per_slice = 0;
6089 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6090 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6093 /* Sink Capability Data Structure */
6094 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6097 struct drm_display_info *info = &connector->display_info;
6098 struct drm_hdmi_info *hdmi = &info->hdmi;
6099 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6100 int max_tmds_clock = 0;
6101 u8 max_frl_rate = 0;
6102 bool dsc_support = false;
6104 info->has_hdmi_infoframe = true;
6106 if (hf_scds[6] & 0x80) {
6107 hdmi->scdc.supported = true;
6108 if (hf_scds[6] & 0x40)
6109 hdmi->scdc.read_request = true;
6113 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6114 * And as per the spec, three factors confirm this:
6115 * * Availability of a HF-VSDB block in EDID (check)
6116 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6117 * * SCDC support available (let's check)
6118 * Lets check it out.
6122 struct drm_scdc *scdc = &hdmi->scdc;
6124 /* max clock is 5000 KHz times block value */
6125 max_tmds_clock = hf_scds[5] * 5000;
6127 if (max_tmds_clock > 340000) {
6128 info->max_tmds_clock = max_tmds_clock;
6131 if (scdc->supported) {
6132 scdc->scrambling.supported = true;
6134 /* Few sinks support scrambling for clocks < 340M */
6135 if ((hf_scds[6] & 0x8))
6136 scdc->scrambling.low_rates = true;
6141 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6142 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6143 &hdmi->max_frl_rate_per_lane);
6146 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6148 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6149 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6153 drm_dbg_kms(connector->dev,
6154 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6155 connector->base.id, connector->name,
6156 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6159 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6162 struct drm_display_info *info = &connector->display_info;
6163 unsigned int dc_bpc = 0;
6165 /* HDMI supports at least 8 bpc */
6168 if (cea_db_payload_len(hdmi) < 6)
6171 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6173 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6174 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6175 connector->base.id, connector->name);
6178 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6180 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6181 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6182 connector->base.id, connector->name);
6185 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6187 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6188 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6189 connector->base.id, connector->name);
6193 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6194 connector->base.id, connector->name);
6198 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6199 connector->base.id, connector->name, dc_bpc);
6202 /* YCRCB444 is optional according to spec. */
6203 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6204 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6205 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6206 connector->base.id, connector->name);
6210 * Spec says that if any deep color mode is supported at all,
6211 * then deep color 36 bit must be supported.
6213 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6214 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6215 connector->base.id, connector->name);
6219 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6221 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6223 struct drm_display_info *info = &connector->display_info;
6224 u8 len = cea_db_payload_len(db);
6226 info->is_hdmi = true;
6228 info->source_physical_address = (db[4] << 8) | db[5];
6231 info->dvi_dual = db[6] & 1;
6233 info->max_tmds_clock = db[7] * 5000;
6236 * Try to infer whether the sink supports HDMI infoframes.
6238 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6239 * supports infoframes if HDMI_Video_present is set.
6241 if (len >= 8 && db[8] & BIT(5))
6242 info->has_hdmi_infoframe = true;
6244 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6245 connector->base.id, connector->name,
6246 info->dvi_dual, info->max_tmds_clock);
6248 drm_parse_hdmi_deep_color_info(connector, db);
6252 * See EDID extension for head-mounted and specialized monitors, specified at:
6253 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6255 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6258 struct drm_display_info *info = &connector->display_info;
6260 bool desktop_usage = db[5] & BIT(6);
6262 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6263 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6264 info->non_desktop = true;
6266 drm_dbg_kms(connector->dev,
6267 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6268 connector->base.id, connector->name, version, db[5]);
6271 static void drm_parse_cea_ext(struct drm_connector *connector,
6272 const struct drm_edid *drm_edid)
6274 struct drm_display_info *info = &connector->display_info;
6275 struct drm_edid_iter edid_iter;
6276 const struct cea_db *db;
6277 struct cea_db_iter iter;
6279 u64 y420cmdb_map = 0;
6281 drm_edid_iter_begin(drm_edid, &edid_iter);
6282 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6283 if (edid_ext[0] != CEA_EXT)
6287 info->cea_rev = edid_ext[1];
6289 if (info->cea_rev != edid_ext[1])
6290 drm_dbg_kms(connector->dev,
6291 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6292 connector->base.id, connector->name,
6293 info->cea_rev, edid_ext[1]);
6295 /* The existence of a CTA extension should imply RGB support */
6296 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6297 if (edid_ext[3] & EDID_CEA_YCRCB444)
6298 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6299 if (edid_ext[3] & EDID_CEA_YCRCB422)
6300 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6301 if (edid_ext[3] & EDID_BASIC_AUDIO)
6302 info->has_audio = true;
6305 drm_edid_iter_end(&edid_iter);
6307 cea_db_iter_edid_begin(drm_edid, &iter);
6308 cea_db_iter_for_each(db, &iter) {
6309 /* FIXME: convert parsers to use struct cea_db */
6310 const u8 *data = (const u8 *)db;
6312 if (cea_db_is_hdmi_vsdb(db))
6313 drm_parse_hdmi_vsdb_video(connector, data);
6314 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6315 cea_db_is_hdmi_forum_scdb(db))
6316 drm_parse_hdmi_forum_scds(connector, data);
6317 else if (cea_db_is_microsoft_vsdb(db))
6318 drm_parse_microsoft_vsdb(connector, data);
6319 else if (cea_db_is_y420cmdb(db))
6320 parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6321 else if (cea_db_is_y420vdb(db))
6322 parse_cta_y420vdb(connector, db);
6323 else if (cea_db_is_vcdb(db))
6324 drm_parse_vcdb(connector, data);
6325 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6326 drm_parse_hdr_metadata_block(connector, data);
6327 else if (cea_db_tag(db) == CTA_DB_VIDEO)
6328 parse_cta_vdb(connector, db);
6329 else if (cea_db_tag(db) == CTA_DB_AUDIO)
6330 info->has_audio = true;
6332 cea_db_iter_end(&iter);
6335 update_cta_y420cmdb(connector, y420cmdb_map);
6339 void get_monitor_range(const struct detailed_timing *timing, void *c)
6341 struct detailed_mode_closure *closure = c;
6342 struct drm_display_info *info = &closure->connector->display_info;
6343 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6344 const struct detailed_non_pixel *data = &timing->data.other_data;
6345 const struct detailed_data_monitor_range *range = &data->data.range;
6346 const struct edid *edid = closure->drm_edid->edid;
6348 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6352 * These limits are used to determine the VRR refresh
6353 * rate range. Only the "range limits only" variant
6354 * of the range descriptor seems to guarantee that
6355 * any and all timings are accepted by the sink, as
6356 * opposed to just timings conforming to the indicated
6357 * formula (GTF/GTF2/CVT). Thus other variants of the
6358 * range descriptor are not accepted here.
6360 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6363 monitor_range->min_vfreq = range->min_vfreq;
6364 monitor_range->max_vfreq = range->max_vfreq;
6366 if (edid->revision >= 4) {
6367 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6368 monitor_range->min_vfreq += 255;
6369 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6370 monitor_range->max_vfreq += 255;
6374 static void drm_get_monitor_range(struct drm_connector *connector,
6375 const struct drm_edid *drm_edid)
6377 const struct drm_display_info *info = &connector->display_info;
6378 struct detailed_mode_closure closure = {
6379 .connector = connector,
6380 .drm_edid = drm_edid,
6383 if (drm_edid->edid->revision < 4)
6386 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6389 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6391 drm_dbg_kms(connector->dev,
6392 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6393 connector->base.id, connector->name,
6394 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6397 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6398 const struct displayid_block *block)
6400 struct displayid_vesa_vendor_specific_block *vesa =
6401 (struct displayid_vesa_vendor_specific_block *)block;
6402 struct drm_display_info *info = &connector->display_info;
6404 if (block->num_bytes < 3) {
6405 drm_dbg_kms(connector->dev,
6406 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6407 connector->base.id, connector->name, block->num_bytes);
6411 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6414 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6415 drm_dbg_kms(connector->dev,
6416 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6417 connector->base.id, connector->name);
6421 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6423 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6424 connector->base.id, connector->name);
6427 info->mso_stream_count = 0;
6430 info->mso_stream_count = 2; /* 2 or 4 links */
6433 info->mso_stream_count = 4; /* 4 links */
6437 if (!info->mso_stream_count) {
6438 info->mso_pixel_overlap = 0;
6442 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6443 if (info->mso_pixel_overlap > 8) {
6444 drm_dbg_kms(connector->dev,
6445 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6446 connector->base.id, connector->name,
6447 info->mso_pixel_overlap);
6448 info->mso_pixel_overlap = 8;
6451 drm_dbg_kms(connector->dev,
6452 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6453 connector->base.id, connector->name,
6454 info->mso_stream_count, info->mso_pixel_overlap);
6457 static void drm_update_mso(struct drm_connector *connector,
6458 const struct drm_edid *drm_edid)
6460 const struct displayid_block *block;
6461 struct displayid_iter iter;
6463 displayid_iter_edid_begin(drm_edid, &iter);
6464 displayid_iter_for_each(block, &iter) {
6465 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6466 drm_parse_vesa_mso_data(connector, block);
6468 displayid_iter_end(&iter);
6471 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6472 * all of the values which would have been set from EDID
6474 static void drm_reset_display_info(struct drm_connector *connector)
6476 struct drm_display_info *info = &connector->display_info;
6479 info->height_mm = 0;
6482 info->color_formats = 0;
6484 info->max_tmds_clock = 0;
6485 info->dvi_dual = false;
6486 info->is_hdmi = false;
6487 info->has_audio = false;
6488 info->has_hdmi_infoframe = false;
6489 info->rgb_quant_range_selectable = false;
6490 memset(&info->hdmi, 0, sizeof(info->hdmi));
6492 info->edid_hdmi_rgb444_dc_modes = 0;
6493 info->edid_hdmi_ycbcr444_dc_modes = 0;
6495 info->non_desktop = 0;
6496 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6497 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6499 info->mso_stream_count = 0;
6500 info->mso_pixel_overlap = 0;
6501 info->max_dsc_bpp = 0;
6509 info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6512 static void update_displayid_info(struct drm_connector *connector,
6513 const struct drm_edid *drm_edid)
6515 struct drm_display_info *info = &connector->display_info;
6516 const struct displayid_block *block;
6517 struct displayid_iter iter;
6519 displayid_iter_edid_begin(drm_edid, &iter);
6520 displayid_iter_for_each(block, &iter) {
6521 if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6522 (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6523 displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6524 info->non_desktop = true;
6527 * We're only interested in the base section here, no need to
6532 displayid_iter_end(&iter);
6535 static void update_display_info(struct drm_connector *connector,
6536 const struct drm_edid *drm_edid)
6538 struct drm_display_info *info = &connector->display_info;
6539 const struct edid *edid;
6541 drm_reset_display_info(connector);
6542 clear_eld(connector);
6547 edid = drm_edid->edid;
6549 info->quirks = edid_get_quirks(drm_edid);
6551 info->width_mm = edid->width_cm * 10;
6552 info->height_mm = edid->height_cm * 10;
6554 drm_get_monitor_range(connector, drm_edid);
6556 if (edid->revision < 3)
6559 if (!drm_edid_is_digital(drm_edid))
6562 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6563 drm_parse_cea_ext(connector, drm_edid);
6565 update_displayid_info(connector, drm_edid);
6568 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6570 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6571 * tells us to assume 8 bpc color depth if the EDID doesn't have
6572 * extensions which tell otherwise.
6574 if (info->bpc == 0 && edid->revision == 3 &&
6575 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6577 drm_dbg_kms(connector->dev,
6578 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6579 connector->base.id, connector->name, info->bpc);
6582 /* Only defined for 1.4 with digital displays */
6583 if (edid->revision < 4)
6586 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6587 case DRM_EDID_DIGITAL_DEPTH_6:
6590 case DRM_EDID_DIGITAL_DEPTH_8:
6593 case DRM_EDID_DIGITAL_DEPTH_10:
6596 case DRM_EDID_DIGITAL_DEPTH_12:
6599 case DRM_EDID_DIGITAL_DEPTH_14:
6602 case DRM_EDID_DIGITAL_DEPTH_16:
6605 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6611 drm_dbg_kms(connector->dev,
6612 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6613 connector->base.id, connector->name, info->bpc);
6615 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6616 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6617 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6618 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6620 drm_update_mso(connector, drm_edid);
6623 if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6624 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6625 connector->base.id, connector->name,
6626 info->non_desktop ? " (redundant quirk)" : "");
6627 info->non_desktop = true;
6630 if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6631 info->max_dsc_bpp = 15;
6633 if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6636 if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6639 if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6642 if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6645 /* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6646 drm_edid_to_eld(connector, drm_edid);
6649 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6650 struct displayid_detailed_timings_1 *timings,
6653 struct drm_display_mode *mode;
6654 unsigned pixel_clock = (timings->pixel_clock[0] |
6655 (timings->pixel_clock[1] << 8) |
6656 (timings->pixel_clock[2] << 16)) + 1;
6657 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6658 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6659 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6660 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6661 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6662 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6663 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6664 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6665 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6666 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6668 mode = drm_mode_create(dev);
6672 /* resolution is kHz for type VII, and 10 kHz for type I */
6673 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6674 mode->hdisplay = hactive;
6675 mode->hsync_start = mode->hdisplay + hsync;
6676 mode->hsync_end = mode->hsync_start + hsync_width;
6677 mode->htotal = mode->hdisplay + hblank;
6679 mode->vdisplay = vactive;
6680 mode->vsync_start = mode->vdisplay + vsync;
6681 mode->vsync_end = mode->vsync_start + vsync_width;
6682 mode->vtotal = mode->vdisplay + vblank;
6685 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6686 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6687 mode->type = DRM_MODE_TYPE_DRIVER;
6689 if (timings->flags & 0x80)
6690 mode->type |= DRM_MODE_TYPE_PREFERRED;
6691 drm_mode_set_name(mode);
6696 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6697 const struct displayid_block *block)
6699 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6702 struct drm_display_mode *newmode;
6704 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6705 /* blocks must be multiple of 20 bytes length */
6706 if (block->num_bytes % 20)
6709 num_timings = block->num_bytes / 20;
6710 for (i = 0; i < num_timings; i++) {
6711 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6713 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6717 drm_mode_probed_add(connector, newmode);
6723 static int add_displayid_detailed_modes(struct drm_connector *connector,
6724 const struct drm_edid *drm_edid)
6726 const struct displayid_block *block;
6727 struct displayid_iter iter;
6730 displayid_iter_edid_begin(drm_edid, &iter);
6731 displayid_iter_for_each(block, &iter) {
6732 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6733 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6734 num_modes += add_displayid_detailed_1_modes(connector, block);
6736 displayid_iter_end(&iter);
6741 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6742 const struct drm_edid *drm_edid)
6744 const struct drm_display_info *info = &connector->display_info;
6751 * EDID spec says modes should be preferred in this order:
6752 * - preferred detailed mode
6753 * - other detailed modes from base block
6754 * - detailed modes from extension blocks
6755 * - CVT 3-byte code modes
6756 * - standard timing codes
6757 * - established timing codes
6758 * - modes inferred from GTF or CVT range information
6760 * We get this pretty much right.
6762 * XXX order for additional mode types in extension blocks?
6764 num_modes += add_detailed_modes(connector, drm_edid);
6765 num_modes += add_cvt_modes(connector, drm_edid);
6766 num_modes += add_standard_modes(connector, drm_edid);
6767 num_modes += add_established_modes(connector, drm_edid);
6768 num_modes += add_cea_modes(connector, drm_edid);
6769 num_modes += add_alternate_cea_modes(connector, drm_edid);
6770 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6771 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6772 num_modes += add_inferred_modes(connector, drm_edid);
6774 if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6775 edid_fixup_preferred(connector);
6780 static void _drm_update_tile_info(struct drm_connector *connector,
6781 const struct drm_edid *drm_edid);
6783 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6784 const struct drm_edid *drm_edid)
6786 struct drm_device *dev = connector->dev;
6789 if (connector->edid_blob_ptr) {
6790 const struct edid *old_edid = connector->edid_blob_ptr->data;
6793 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6794 connector->epoch_counter++;
6795 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6796 connector->base.id, connector->name,
6797 connector->epoch_counter);
6802 ret = drm_property_replace_global_blob(dev,
6803 &connector->edid_blob_ptr,
6804 drm_edid ? drm_edid->size : 0,
6805 drm_edid ? drm_edid->edid : NULL,
6807 dev->mode_config.edid_property);
6809 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6810 connector->base.id, connector->name, ret);
6814 ret = drm_object_property_set_value(&connector->base,
6815 dev->mode_config.non_desktop_property,
6816 connector->display_info.non_desktop);
6818 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6819 connector->base.id, connector->name, ret);
6823 ret = drm_connector_set_tile_property(connector);
6825 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6826 connector->base.id, connector->name, ret);
6835 * drm_edid_connector_update - Update connector information from EDID
6836 * @connector: Connector
6839 * Update the connector display info, ELD, HDR metadata, relevant properties,
6840 * etc. from the passed in EDID.
6842 * If EDID is NULL, reset the information.
6844 * Must be called before calling drm_edid_connector_add_modes().
6846 * Return: 0 on success, negative error on errors.
6848 int drm_edid_connector_update(struct drm_connector *connector,
6849 const struct drm_edid *drm_edid)
6851 update_display_info(connector, drm_edid);
6853 _drm_update_tile_info(connector, drm_edid);
6855 return _drm_edid_connector_property_update(connector, drm_edid);
6857 EXPORT_SYMBOL(drm_edid_connector_update);
6860 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6861 * @connector: Connector
6863 * Add the modes from the previously updated EDID property to the connector
6864 * probed modes list.
6866 * drm_edid_connector_update() must have been called before this to update the
6869 * Return: The number of modes added, or 0 if we couldn't find any.
6871 int drm_edid_connector_add_modes(struct drm_connector *connector)
6873 const struct drm_edid *drm_edid = NULL;
6876 if (connector->edid_blob_ptr)
6877 drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6878 connector->edid_blob_ptr->length);
6880 count = _drm_edid_connector_add_modes(connector, drm_edid);
6882 drm_edid_free(drm_edid);
6886 EXPORT_SYMBOL(drm_edid_connector_add_modes);
6889 * drm_connector_update_edid_property - update the edid property of a connector
6890 * @connector: drm connector
6891 * @edid: new value of the edid property
6893 * This function creates a new blob modeset object and assigns its id to the
6894 * connector's edid property.
6895 * Since we also parse tile information from EDID's displayID block, we also
6896 * set the connector's tile property here. See drm_connector_set_tile_property()
6899 * This function is deprecated. Use drm_edid_connector_update() instead.
6902 * Zero on success, negative errno on failure.
6904 int drm_connector_update_edid_property(struct drm_connector *connector,
6905 const struct edid *edid)
6907 struct drm_edid drm_edid;
6909 return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
6911 EXPORT_SYMBOL(drm_connector_update_edid_property);
6914 * drm_add_edid_modes - add modes from EDID data, if available
6915 * @connector: connector we're probing
6918 * Add the specified modes to the connector's mode list. Also fills out the
6919 * &drm_display_info structure and ELD in @connector with any information which
6920 * can be derived from the edid.
6922 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6924 * Return: The number of modes added or 0 if we couldn't find any.
6926 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6928 struct drm_edid _drm_edid;
6929 const struct drm_edid *drm_edid;
6931 if (edid && !drm_edid_is_valid(edid)) {
6932 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6933 connector->base.id, connector->name);
6937 drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6939 update_display_info(connector, drm_edid);
6941 return _drm_edid_connector_add_modes(connector, drm_edid);
6943 EXPORT_SYMBOL(drm_add_edid_modes);
6946 * drm_add_modes_noedid - add modes for the connectors without EDID
6947 * @connector: connector we're probing
6948 * @hdisplay: the horizontal display limit
6949 * @vdisplay: the vertical display limit
6951 * Add the specified modes to the connector's mode list. Only when the
6952 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6954 * Return: The number of modes added or 0 if we couldn't find any.
6956 int drm_add_modes_noedid(struct drm_connector *connector,
6957 int hdisplay, int vdisplay)
6959 int i, count, num_modes = 0;
6960 struct drm_display_mode *mode;
6961 struct drm_device *dev = connector->dev;
6963 count = ARRAY_SIZE(drm_dmt_modes);
6969 for (i = 0; i < count; i++) {
6970 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6972 if (hdisplay && vdisplay) {
6974 * Only when two are valid, they will be used to check
6975 * whether the mode should be added to the mode list of
6978 if (ptr->hdisplay > hdisplay ||
6979 ptr->vdisplay > vdisplay)
6982 if (drm_mode_vrefresh(ptr) > 61)
6984 mode = drm_mode_duplicate(dev, ptr);
6986 drm_mode_probed_add(connector, mode);
6992 EXPORT_SYMBOL(drm_add_modes_noedid);
6994 static bool is_hdmi2_sink(const struct drm_connector *connector)
6997 * FIXME: sil-sii8620 doesn't have a connector around when
6998 * we need one, so we have to be prepared for a NULL connector.
7003 return connector->display_info.hdmi.scdc.supported ||
7004 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7007 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7008 const struct drm_display_mode *mode)
7010 bool has_hdmi_infoframe = connector ?
7011 connector->display_info.has_hdmi_infoframe : false;
7013 if (!has_hdmi_infoframe)
7016 /* No HDMI VIC when signalling 3D video format */
7017 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7020 return drm_match_hdmi_mode(mode);
7023 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7024 const struct drm_display_mode *mode)
7027 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7028 * we should send its VIC in vendor infoframes, else send the
7029 * VIC in AVI infoframes. Lets check if this mode is present in
7030 * HDMI 1.4b 4K modes
7032 if (drm_mode_hdmi_vic(connector, mode))
7035 return drm_match_cea_mode(mode);
7039 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7040 * conform to HDMI 1.4.
7042 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7043 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7045 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7048 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7050 if (!is_hdmi2_sink(connector) && vic > 64 &&
7051 !cta_vdb_has_vic(connector, vic))
7058 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7059 * data from a DRM display mode
7060 * @frame: HDMI AVI infoframe
7061 * @connector: the connector
7062 * @mode: DRM display mode
7064 * Return: 0 on success or a negative error code on failure.
7067 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7068 const struct drm_connector *connector,
7069 const struct drm_display_mode *mode)
7071 enum hdmi_picture_aspect picture_aspect;
7074 if (!frame || !mode)
7077 hdmi_avi_infoframe_init(frame);
7079 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7080 frame->pixel_repeat = 1;
7082 vic = drm_mode_cea_vic(connector, mode);
7083 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7085 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7088 * As some drivers don't support atomic, we can't use connector state.
7089 * So just initialize the frame with default values, just the same way
7090 * as it's done with other properties here.
7092 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7096 * Populate picture aspect ratio from either
7097 * user input (if specified) or from the CEA/HDMI mode lists.
7099 picture_aspect = mode->picture_aspect_ratio;
7100 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7102 picture_aspect = drm_get_cea_aspect_ratio(vic);
7104 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7108 * The infoframe can't convey anything but none, 4:3
7109 * and 16:9, so if the user has asked for anything else
7110 * we can only satisfy it by specifying the right VIC.
7112 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7114 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7116 } else if (hdmi_vic) {
7117 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7123 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7126 frame->video_code = vic_for_avi_infoframe(connector, vic);
7127 frame->picture_aspect = picture_aspect;
7128 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7129 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7133 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7136 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7137 * quantization range information
7138 * @frame: HDMI AVI infoframe
7139 * @connector: the connector
7140 * @mode: DRM display mode
7141 * @rgb_quant_range: RGB quantization range (Q)
7144 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7145 const struct drm_connector *connector,
7146 const struct drm_display_mode *mode,
7147 enum hdmi_quantization_range rgb_quant_range)
7149 const struct drm_display_info *info = &connector->display_info;
7153 * "A Source shall not send a non-zero Q value that does not correspond
7154 * to the default RGB Quantization Range for the transmitted Picture
7155 * unless the Sink indicates support for the Q bit in a Video
7156 * Capabilities Data Block."
7158 * HDMI 2.0 recommends sending non-zero Q when it does match the
7159 * default RGB quantization range for the mode, even when QS=0.
7161 if (info->rgb_quant_range_selectable ||
7162 rgb_quant_range == drm_default_rgb_quant_range(mode))
7163 frame->quantization_range = rgb_quant_range;
7165 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7169 * "When transmitting any RGB colorimetry, the Source should set the
7170 * YQ-field to match the RGB Quantization Range being transmitted
7171 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7172 * set YQ=1) and the Sink shall ignore the YQ-field."
7174 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7175 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7176 * good way to tell which version of CEA-861 the sink supports, so
7177 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7180 if (!is_hdmi2_sink(connector) ||
7181 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7182 frame->ycc_quantization_range =
7183 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7185 frame->ycc_quantization_range =
7186 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7188 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7190 static enum hdmi_3d_structure
7191 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7193 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7196 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7197 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7198 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7199 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7200 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7201 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7202 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7203 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7204 case DRM_MODE_FLAG_3D_L_DEPTH:
7205 return HDMI_3D_STRUCTURE_L_DEPTH;
7206 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7207 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7208 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7209 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7210 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7211 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7213 return HDMI_3D_STRUCTURE_INVALID;
7218 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7219 * data from a DRM display mode
7220 * @frame: HDMI vendor infoframe
7221 * @connector: the connector
7222 * @mode: DRM display mode
7224 * Note that there's is a need to send HDMI vendor infoframes only when using a
7225 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7226 * function will return -EINVAL, error that can be safely ignored.
7228 * Return: 0 on success or a negative error code on failure.
7231 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7232 const struct drm_connector *connector,
7233 const struct drm_display_mode *mode)
7236 * FIXME: sil-sii8620 doesn't have a connector around when
7237 * we need one, so we have to be prepared for a NULL connector.
7239 bool has_hdmi_infoframe = connector ?
7240 connector->display_info.has_hdmi_infoframe : false;
7243 if (!frame || !mode)
7246 if (!has_hdmi_infoframe)
7249 err = hdmi_vendor_infoframe_init(frame);
7254 * Even if it's not absolutely necessary to send the infoframe
7255 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7256 * know that the sink can handle it. This is based on a
7257 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7258 * have trouble realizing that they should switch from 3D to 2D
7259 * mode if the source simply stops sending the infoframe when
7260 * it wants to switch from 3D to 2D.
7262 frame->vic = drm_mode_hdmi_vic(connector, mode);
7263 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7267 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7269 static void drm_parse_tiled_block(struct drm_connector *connector,
7270 const struct displayid_block *block)
7272 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7274 u8 tile_v_loc, tile_h_loc;
7275 u8 num_v_tile, num_h_tile;
7276 struct drm_tile_group *tg;
7278 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7279 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7281 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7282 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7283 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7284 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7286 connector->has_tile = true;
7287 if (tile->tile_cap & 0x80)
7288 connector->tile_is_single_monitor = true;
7290 connector->num_h_tile = num_h_tile + 1;
7291 connector->num_v_tile = num_v_tile + 1;
7292 connector->tile_h_loc = tile_h_loc;
7293 connector->tile_v_loc = tile_v_loc;
7294 connector->tile_h_size = w + 1;
7295 connector->tile_v_size = h + 1;
7297 drm_dbg_kms(connector->dev,
7298 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7299 connector->base.id, connector->name,
7301 connector->tile_h_size, connector->tile_v_size,
7302 connector->num_h_tile, connector->num_v_tile,
7303 connector->tile_h_loc, connector->tile_v_loc,
7304 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7306 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7308 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7312 if (connector->tile_group != tg) {
7313 /* if we haven't got a pointer,
7314 take the reference, drop ref to old tile group */
7315 if (connector->tile_group)
7316 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7317 connector->tile_group = tg;
7319 /* if same tile group, then release the ref we just took. */
7320 drm_mode_put_tile_group(connector->dev, tg);
7324 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7325 const struct displayid_block *block)
7327 return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7328 block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7329 (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7330 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7333 static void _drm_update_tile_info(struct drm_connector *connector,
7334 const struct drm_edid *drm_edid)
7336 const struct displayid_block *block;
7337 struct displayid_iter iter;
7339 connector->has_tile = false;
7341 displayid_iter_edid_begin(drm_edid, &iter);
7342 displayid_iter_for_each(block, &iter) {
7343 if (displayid_is_tiled_block(&iter, block))
7344 drm_parse_tiled_block(connector, block);
7346 displayid_iter_end(&iter);
7348 if (!connector->has_tile && connector->tile_group) {
7349 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7350 connector->tile_group = NULL;
7355 * drm_edid_is_digital - is digital?
7356 * @drm_edid: The EDID
7358 * Return true if input is digital.
7360 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7362 return drm_edid && drm_edid->edid &&
7363 drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7365 EXPORT_SYMBOL(drm_edid_is_digital);