2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @ap_sync_state: State for AP synchronization
63 * @done_up: Signal completion to the issuer of the task for cpu-up
64 * @done_down: Signal completion to the issuer of the task for cpu-down
66 struct cpuhp_cpu_state {
67 enum cpuhp_state state;
68 enum cpuhp_state target;
69 enum cpuhp_state fail;
71 struct task_struct *thread;
76 struct hlist_node *node;
77 struct hlist_node *last;
78 enum cpuhp_state cb_state;
80 atomic_t ap_sync_state;
81 struct completion done_up;
82 struct completion done_down;
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 .fail = CPUHP_INVALID,
91 cpumask_t cpus_booted_once_mask;
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
101 static inline void cpuhp_lock_acquire(bool bringup)
103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
106 static inline void cpuhp_lock_release(bool bringup)
108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
118 * struct cpuhp_step - Hotplug state machine step
119 * @name: Name of the step
120 * @startup: Startup function of the step
121 * @teardown: Teardown function of the step
122 * @cant_stop: Bringup/teardown can't be stopped at this step
123 * @multi_instance: State has multiple instances which get added afterwards
128 int (*single)(unsigned int cpu);
129 int (*multi)(unsigned int cpu,
130 struct hlist_node *node);
133 int (*single)(unsigned int cpu);
134 int (*multi)(unsigned int cpu,
135 struct hlist_node *node);
138 struct hlist_head list;
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 return cpuhp_hp_states + state;
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 return bringup ? !step->startup.single : !step->teardown.single;
158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
159 * @cpu: The cpu for which the callback should be invoked
160 * @state: The state to do callbacks for
161 * @bringup: True if the bringup callback should be invoked
162 * @node: For multi-instance, do a single entry callback for install/remove
163 * @lastp: For multi-instance rollback, remember how far we got
165 * Called from cpu hotplug and from the state register machinery.
167 * Return: %0 on success or a negative errno code
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 bool bringup, struct hlist_node *node,
171 struct hlist_node **lastp)
173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 struct cpuhp_step *step = cpuhp_get_step(state);
175 int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 int (*cb)(unsigned int cpu);
179 if (st->fail == state) {
180 st->fail = CPUHP_INVALID;
184 if (cpuhp_step_empty(bringup, step)) {
189 if (!step->multi_instance) {
190 WARN_ON_ONCE(lastp && *lastp);
191 cb = bringup ? step->startup.single : step->teardown.single;
193 trace_cpuhp_enter(cpu, st->target, state, cb);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
198 cbm = bringup ? step->startup.multi : step->teardown.multi;
200 /* Single invocation for instance add/remove */
202 WARN_ON_ONCE(lastp && *lastp);
203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 ret = cbm(cpu, node);
205 trace_cpuhp_exit(cpu, st->state, state, ret);
209 /* State transition. Invoke on all instances */
211 hlist_for_each(node, &step->list) {
212 if (lastp && node == *lastp)
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
231 /* Rollback the instances if one failed */
232 cbm = !bringup ? step->startup.multi : step->teardown.multi;
236 hlist_for_each(node, &step->list) {
240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 ret = cbm(cpu, node);
242 trace_cpuhp_exit(cpu, st->state, state, ret);
244 * Rollback must not fail,
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 * purposes as that state is handled explicitly in cpu_down.
258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 struct completion *done = bringup ? &st->done_up : &st->done_down;
264 wait_for_completion(done);
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 struct completion *done = bringup ? &st->done_up : &st->done_down;
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
285 SYNC_STATE_SHOULD_DIE,
287 SYNC_STATE_SHOULD_ONLINE,
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state: The synchronization state to set
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 (void)atomic_xchg(st, state);
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 enum cpuhp_sync_state next_state)
311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 ktime_t now, end, start = ktime_get();
315 end = start + 10ULL * NSEC_PER_SEC;
317 sync = atomic_read(st);
320 if (!atomic_try_cmpxchg(st, &sync, next_state))
327 /* Timeout. Leave the state unchanged */
329 } else if (now - start < NSEC_PER_MSEC) {
330 /* Poll for one millisecond */
331 arch_cpuhp_sync_state_poll();
333 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 sync = atomic_read(st);
339 #else /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 * No synchronization point. Just update of the synchronization state.
349 void cpuhp_ap_report_dead(void)
351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 int sync = atomic_read(st);
366 /* CPU can have reported dead already. Don't overwrite that! */
367 if (sync == SYNC_STATE_DEAD)
369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 /* CPU reached dead state. Invoke the cleanup function */
373 arch_cpuhp_cleanup_dead_cpu(cpu);
377 /* No further action possible. Emit message and give up. */
378 pr_err("CPU%u failed to report dead state\n", cpu);
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
391 void cpuhp_ap_sync_alive(void)
393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 /* Wait for the control CPU to release it. */
398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 int sync = atomic_read(st);
409 case SYNC_STATE_DEAD:
410 /* CPU is properly dead */
412 case SYNC_STATE_KICKED:
413 /* CPU did not come up in previous attempt */
415 case SYNC_STATE_ALIVE:
416 /* CPU is stuck cpuhp_ap_sync_alive(). */
419 /* CPU failed to report online or dead and is in limbo state. */
423 /* Prepare for booting */
424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 pr_err("CPU%u failed to report alive state\n", cpu);
448 /* Let the architecture cleanup the kick alive mechanics. */
449 arch_cpuhp_cleanup_kick_cpu(cpu);
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 void cpu_maps_update_begin(void)
468 mutex_lock(&cpu_add_remove_lock);
471 void cpu_maps_update_done(void)
473 mutex_unlock(&cpu_add_remove_lock);
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478 * Should always be manipulated under cpu_add_remove_lock
480 static int cpu_hotplug_disabled;
482 #ifdef CONFIG_HOTPLUG_CPU
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
488 void cpus_read_lock(void)
490 percpu_down_read(&cpu_hotplug_lock);
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
494 int cpus_read_trylock(void)
496 return percpu_down_read_trylock(&cpu_hotplug_lock);
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
500 void cpus_read_unlock(void)
502 percpu_up_read(&cpu_hotplug_lock);
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
506 void cpus_write_lock(void)
508 percpu_down_write(&cpu_hotplug_lock);
511 void cpus_write_unlock(void)
513 percpu_up_write(&cpu_hotplug_lock);
516 void lockdep_assert_cpus_held(void)
519 * We can't have hotplug operations before userspace starts running,
520 * and some init codepaths will knowingly not take the hotplug lock.
521 * This is all valid, so mute lockdep until it makes sense to report
524 if (system_state < SYSTEM_RUNNING)
527 percpu_rwsem_assert_held(&cpu_hotplug_lock);
530 #ifdef CONFIG_LOCKDEP
531 int lockdep_is_cpus_held(void)
533 return percpu_rwsem_is_held(&cpu_hotplug_lock);
537 static void lockdep_acquire_cpus_lock(void)
539 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
542 static void lockdep_release_cpus_lock(void)
544 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
547 /* Declare CPU offlining not supported */
548 void cpu_hotplug_disable_offlining(void)
550 cpu_maps_update_begin();
551 cpu_hotplug_offline_disabled = true;
552 cpu_maps_update_done();
556 * Wait for currently running CPU hotplug operations to complete (if any) and
557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559 * hotplug path before performing hotplug operations. So acquiring that lock
560 * guarantees mutual exclusion from any currently running hotplug operations.
562 void cpu_hotplug_disable(void)
564 cpu_maps_update_begin();
565 cpu_hotplug_disabled++;
566 cpu_maps_update_done();
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
570 static void __cpu_hotplug_enable(void)
572 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
574 cpu_hotplug_disabled--;
577 void cpu_hotplug_enable(void)
579 cpu_maps_update_begin();
580 __cpu_hotplug_enable();
581 cpu_maps_update_done();
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
587 static void lockdep_acquire_cpus_lock(void)
591 static void lockdep_release_cpus_lock(void)
595 #endif /* CONFIG_HOTPLUG_CPU */
598 * Architectures that need SMT-specific errata handling during SMT hotplug
599 * should override this.
601 void __weak arch_smt_update(void) { }
603 #ifdef CONFIG_HOTPLUG_SMT
605 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
606 static unsigned int cpu_smt_max_threads __ro_after_init;
607 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
609 void __init cpu_smt_disable(bool force)
611 if (!cpu_smt_possible())
615 pr_info("SMT: Force disabled\n");
616 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
618 pr_info("SMT: disabled\n");
619 cpu_smt_control = CPU_SMT_DISABLED;
621 cpu_smt_num_threads = 1;
625 * The decision whether SMT is supported can only be done after the full
626 * CPU identification. Called from architecture code.
628 void __init cpu_smt_set_num_threads(unsigned int num_threads,
629 unsigned int max_threads)
631 WARN_ON(!num_threads || (num_threads > max_threads));
633 if (max_threads == 1)
634 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
636 cpu_smt_max_threads = max_threads;
639 * If SMT has been disabled via the kernel command line or SMT is
640 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 * If enabled, take the architecture requested number of threads
642 * to bring up into account.
644 if (cpu_smt_control != CPU_SMT_ENABLED)
645 cpu_smt_num_threads = 1;
646 else if (num_threads < cpu_smt_num_threads)
647 cpu_smt_num_threads = num_threads;
650 static int __init smt_cmdline_disable(char *str)
652 cpu_smt_disable(str && !strcmp(str, "force"));
655 early_param("nosmt", smt_cmdline_disable);
658 * For Archicture supporting partial SMT states check if the thread is allowed.
659 * Otherwise this has already been checked through cpu_smt_max_threads when
660 * setting the SMT level.
662 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 return topology_smt_thread_allowed(cpu);
671 static inline bool cpu_bootable(unsigned int cpu)
673 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
676 /* All CPUs are bootable if controls are not configured */
677 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
680 /* All CPUs are bootable if CPU is not SMT capable */
681 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
684 if (topology_is_primary_thread(cpu))
688 * On x86 it's required to boot all logical CPUs at least once so
689 * that the init code can get a chance to set CR4.MCE on each
690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 * core will shutdown the machine.
693 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697 bool cpu_smt_possible(void)
699 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
700 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
702 EXPORT_SYMBOL_GPL(cpu_smt_possible);
705 static inline bool cpu_bootable(unsigned int cpu) { return true; }
708 static inline enum cpuhp_state
709 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
711 enum cpuhp_state prev_state = st->state;
712 bool bringup = st->state < target;
714 st->rollback = false;
719 st->bringup = bringup;
720 if (cpu_dying(cpu) != !bringup)
721 set_cpu_dying(cpu, !bringup);
727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
728 enum cpuhp_state prev_state)
730 bool bringup = !st->bringup;
732 st->target = prev_state;
735 * Already rolling back. No need invert the bringup value or to change
744 * If we have st->last we need to undo partial multi_instance of this
745 * state first. Otherwise start undo at the previous state.
754 st->bringup = bringup;
755 if (cpu_dying(cpu) != !bringup)
756 set_cpu_dying(cpu, !bringup);
759 /* Regular hotplug invocation of the AP hotplug thread */
760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
762 if (!st->single && st->state == st->target)
767 * Make sure the above stores are visible before should_run becomes
768 * true. Paired with the mb() above in cpuhp_thread_fun()
771 st->should_run = true;
772 wake_up_process(st->thread);
773 wait_for_ap_thread(st, st->bringup);
776 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
777 enum cpuhp_state target)
779 enum cpuhp_state prev_state;
782 prev_state = cpuhp_set_state(cpu, st, target);
784 if ((ret = st->result)) {
785 cpuhp_reset_state(cpu, st, prev_state);
792 static int bringup_wait_for_ap_online(unsigned int cpu)
794 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 wait_for_ap_thread(st, true);
798 if (WARN_ON_ONCE((!cpu_online(cpu))))
801 /* Unpark the hotplug thread of the target cpu */
802 kthread_unpark(st->thread);
805 * SMT soft disabling on X86 requires to bring the CPU out of the
806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
807 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 * cpu_bootable() check will now return false if this is not the
811 if (!cpu_bootable(cpu))
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817 static int cpuhp_kick_ap_alive(unsigned int cpu)
819 if (!cpuhp_can_boot_ap(cpu))
822 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
825 static int cpuhp_bringup_ap(unsigned int cpu)
827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
831 * Some architectures have to walk the irq descriptors to
832 * setup the vector space for the cpu which comes online.
833 * Prevent irq alloc/free across the bringup.
837 ret = cpuhp_bp_sync_alive(cpu);
841 ret = bringup_wait_for_ap_online(cpu);
847 if (st->target <= CPUHP_AP_ONLINE_IDLE)
850 return cpuhp_kick_ap(cpu, st, st->target);
857 static int bringup_cpu(unsigned int cpu)
859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 struct task_struct *idle = idle_thread_get(cpu);
863 if (!cpuhp_can_boot_ap(cpu))
867 * Some architectures have to walk the irq descriptors to
868 * setup the vector space for the cpu which comes online.
870 * Prevent irq alloc/free across the bringup by acquiring the
871 * sparse irq lock. Hold it until the upcoming CPU completes the
872 * startup in cpuhp_online_idle() which allows to avoid
873 * intermediate synchronization points in the architecture code.
877 ret = __cpu_up(cpu, idle);
881 ret = cpuhp_bp_sync_alive(cpu);
885 ret = bringup_wait_for_ap_online(cpu);
891 if (st->target <= CPUHP_AP_ONLINE_IDLE)
894 return cpuhp_kick_ap(cpu, st, st->target);
902 static int finish_cpu(unsigned int cpu)
904 struct task_struct *idle = idle_thread_get(cpu);
905 struct mm_struct *mm = idle->active_mm;
908 * idle_task_exit() will have switched to &init_mm, now
909 * clean up any remaining active_mm state.
912 idle->active_mm = &init_mm;
918 * Hotplug state machine related functions
922 * Get the next state to run. Empty ones will be skipped. Returns true if a
925 * st->state will be modified ahead of time, to match state_to_run, as if it
928 static bool cpuhp_next_state(bool bringup,
929 enum cpuhp_state *state_to_run,
930 struct cpuhp_cpu_state *st,
931 enum cpuhp_state target)
935 if (st->state >= target)
938 *state_to_run = ++st->state;
940 if (st->state <= target)
943 *state_to_run = st->state--;
946 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
953 static int __cpuhp_invoke_callback_range(bool bringup,
955 struct cpuhp_cpu_state *st,
956 enum cpuhp_state target,
959 enum cpuhp_state state;
962 while (cpuhp_next_state(bringup, &state, st, target)) {
965 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
970 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971 cpu, bringup ? "UP" : "DOWN",
972 cpuhp_get_step(st->state)->name,
984 static inline int cpuhp_invoke_callback_range(bool bringup,
986 struct cpuhp_cpu_state *st,
987 enum cpuhp_state target)
989 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
994 struct cpuhp_cpu_state *st,
995 enum cpuhp_state target)
997 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1005 * When CPU hotplug is disabled, then taking the CPU down is not
1006 * possible because takedown_cpu() and the architecture and
1007 * subsystem specific mechanisms are not available. So the CPU
1008 * which would be completely unplugged again needs to stay around
1009 * in the current state.
1011 return st->state <= CPUHP_BRINGUP_CPU;
1014 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1015 enum cpuhp_state target)
1017 enum cpuhp_state prev_state = st->state;
1020 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1022 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023 ret, cpu, cpuhp_get_step(st->state)->name,
1026 cpuhp_reset_state(cpu, st, prev_state);
1027 if (can_rollback_cpu(st))
1028 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1035 * The cpu hotplug threads manage the bringup and teardown of the cpus
1037 static int cpuhp_should_run(unsigned int cpu)
1039 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1041 return st->should_run;
1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046 * callbacks when a state gets [un]installed at runtime.
1048 * Each invocation of this function by the smpboot thread does a single AP
1051 * It has 3 modes of operation:
1052 * - single: runs st->cb_state
1053 * - up: runs ++st->state, while st->state < st->target
1054 * - down: runs st->state--, while st->state > st->target
1056 * When complete or on error, should_run is cleared and the completion is fired.
1058 static void cpuhp_thread_fun(unsigned int cpu)
1060 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1061 bool bringup = st->bringup;
1062 enum cpuhp_state state;
1064 if (WARN_ON_ONCE(!st->should_run))
1068 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069 * that if we see ->should_run we also see the rest of the state.
1074 * The BP holds the hotplug lock, but we're now running on the AP,
1075 * ensure that anybody asserting the lock is held, will actually find
1078 lockdep_acquire_cpus_lock();
1079 cpuhp_lock_acquire(bringup);
1082 state = st->cb_state;
1083 st->should_run = false;
1085 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1086 if (!st->should_run)
1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1092 if (cpuhp_is_atomic_state(state)) {
1093 local_irq_disable();
1094 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1098 * STARTING/DYING must not fail!
1100 WARN_ON_ONCE(st->result);
1102 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1107 * If we fail on a rollback, we're up a creek without no
1108 * paddle, no way forward, no way back. We loose, thanks for
1111 WARN_ON_ONCE(st->rollback);
1112 st->should_run = false;
1116 cpuhp_lock_release(bringup);
1117 lockdep_release_cpus_lock();
1119 if (!st->should_run)
1120 complete_ap_thread(st, bringup);
1123 /* Invoke a single callback on a remote cpu */
1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1126 struct hlist_node *node)
1128 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1131 if (!cpu_online(cpu))
1134 cpuhp_lock_acquire(false);
1135 cpuhp_lock_release(false);
1137 cpuhp_lock_acquire(true);
1138 cpuhp_lock_release(true);
1141 * If we are up and running, use the hotplug thread. For early calls
1142 * we invoke the thread function directly.
1145 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1147 st->rollback = false;
1151 st->bringup = bringup;
1152 st->cb_state = state;
1155 __cpuhp_kick_ap(st);
1158 * If we failed and did a partial, do a rollback.
1160 if ((ret = st->result) && st->last) {
1161 st->rollback = true;
1162 st->bringup = !bringup;
1164 __cpuhp_kick_ap(st);
1168 * Clean up the leftovers so the next hotplug operation wont use stale
1171 st->node = st->last = NULL;
1175 static int cpuhp_kick_ap_work(unsigned int cpu)
1177 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1178 enum cpuhp_state prev_state = st->state;
1181 cpuhp_lock_acquire(false);
1182 cpuhp_lock_release(false);
1184 cpuhp_lock_acquire(true);
1185 cpuhp_lock_release(true);
1187 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1188 ret = cpuhp_kick_ap(cpu, st, st->target);
1189 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1194 static struct smp_hotplug_thread cpuhp_threads = {
1195 .store = &cpuhp_state.thread,
1196 .thread_should_run = cpuhp_should_run,
1197 .thread_fn = cpuhp_thread_fun,
1198 .thread_comm = "cpuhp/%u",
1199 .selfparking = true,
1202 static __init void cpuhp_init_state(void)
1204 struct cpuhp_cpu_state *st;
1207 for_each_possible_cpu(cpu) {
1208 st = per_cpu_ptr(&cpuhp_state, cpu);
1209 init_completion(&st->done_up);
1210 init_completion(&st->done_down);
1214 void __init cpuhp_threads_init(void)
1217 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1218 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 #ifndef arch_clear_mm_cpumask_cpu
1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1230 * This function walks all processes, finds a valid mm struct for each one and
1231 * then clears a corresponding bit in mm's cpumask. While this all sounds
1232 * trivial, there are various non-obvious corner cases, which this function
1233 * tries to solve in a safe manner.
1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236 * be called only for an already offlined CPU.
1238 void clear_tasks_mm_cpumask(int cpu)
1240 struct task_struct *p;
1243 * This function is called after the cpu is taken down and marked
1244 * offline, so its not like new tasks will ever get this cpu set in
1245 * their mm mask. -- Peter Zijlstra
1246 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247 * full-fledged tasklist_lock.
1249 WARN_ON(cpu_online(cpu));
1251 for_each_process(p) {
1252 struct task_struct *t;
1255 * Main thread might exit, but other threads may still have
1256 * a valid mm. Find one.
1258 t = find_lock_task_mm(p);
1261 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1267 /* Take this CPU down. */
1268 static int take_cpu_down(void *_param)
1270 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1271 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1272 int err, cpu = smp_processor_id();
1274 /* Ensure this CPU doesn't handle any more interrupts. */
1275 err = __cpu_disable();
1280 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1283 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1286 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1288 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1290 /* Park the stopper thread */
1291 stop_machine_park(cpu);
1295 static int takedown_cpu(unsigned int cpu)
1297 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300 /* Park the smpboot threads */
1301 kthread_park(st->thread);
1304 * Prevent irq alloc/free while the dying cpu reorganizes the
1305 * interrupt affinities.
1310 * So now all preempt/rcu users must observe !cpu_active().
1312 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1314 /* CPU refused to die */
1315 irq_unlock_sparse();
1316 /* Unpark the hotplug thread so we can rollback there */
1317 kthread_unpark(st->thread);
1320 BUG_ON(cpu_online(cpu));
1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324 * all runnable tasks from the CPU, there's only the idle task left now
1325 * that the migration thread is done doing the stop_machine thing.
1327 * Wait for the stop thread to go away.
1329 wait_for_ap_thread(st, false);
1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333 irq_unlock_sparse();
1335 hotplug_cpu__broadcast_tick_pull(cpu);
1336 /* This actually kills the CPU. */
1339 cpuhp_bp_sync_dead(cpu);
1341 tick_cleanup_dead_cpu(cpu);
1344 * Callbacks must be re-integrated right away to the RCU state machine.
1345 * Otherwise an RCU callback could block a further teardown function
1346 * waiting for its completion.
1348 rcutree_migrate_callbacks(cpu);
1353 static void cpuhp_complete_idle_dead(void *arg)
1355 struct cpuhp_cpu_state *st = arg;
1357 complete_ap_thread(st, false);
1360 void cpuhp_report_idle_dead(void)
1362 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1364 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365 tick_assert_timekeeping_handover();
1366 rcutree_report_cpu_dead();
1367 st->state = CPUHP_AP_IDLE_DEAD;
1369 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1372 smp_call_function_single(cpumask_first(cpu_online_mask),
1373 cpuhp_complete_idle_dead, st, 0);
1376 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377 enum cpuhp_state target)
1379 enum cpuhp_state prev_state = st->state;
1382 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1384 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385 ret, cpu, cpuhp_get_step(st->state)->name,
1388 cpuhp_reset_state(cpu, st, prev_state);
1390 if (st->state < prev_state)
1391 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1398 /* Requires cpu_add_remove_lock to be held */
1399 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400 enum cpuhp_state target)
1402 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403 int prev_state, ret = 0;
1405 if (num_online_cpus() == 1)
1408 if (!cpu_present(cpu))
1413 cpuhp_tasks_frozen = tasks_frozen;
1415 prev_state = cpuhp_set_state(cpu, st, target);
1417 * If the current CPU state is in the range of the AP hotplug thread,
1418 * then we need to kick the thread.
1420 if (st->state > CPUHP_TEARDOWN_CPU) {
1421 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422 ret = cpuhp_kick_ap_work(cpu);
1424 * The AP side has done the error rollback already. Just
1425 * return the error code..
1431 * We might have stopped still in the range of the AP hotplug
1432 * thread. Nothing to do anymore.
1434 if (st->state > CPUHP_TEARDOWN_CPU)
1437 st->target = target;
1440 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441 * to do the further cleanups.
1443 ret = cpuhp_down_callbacks(cpu, st, target);
1444 if (ret && st->state < prev_state) {
1445 if (st->state == CPUHP_TEARDOWN_CPU) {
1446 cpuhp_reset_state(cpu, st, prev_state);
1447 __cpuhp_kick_ap(st);
1449 WARN(1, "DEAD callback error for CPU%d", cpu);
1454 cpus_write_unlock();
1456 * Do post unplug cleanup. This is still protected against
1457 * concurrent CPU hotplug via cpu_add_remove_lock.
1459 lockup_detector_cleanup();
1464 struct cpu_down_work {
1466 enum cpuhp_state target;
1469 static long __cpu_down_maps_locked(void *arg)
1471 struct cpu_down_work *work = arg;
1473 return _cpu_down(work->cpu, 0, work->target);
1476 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1478 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1481 * If the platform does not support hotplug, report it explicitly to
1482 * differentiate it from a transient offlining failure.
1484 if (cpu_hotplug_offline_disabled)
1486 if (cpu_hotplug_disabled)
1490 * Ensure that the control task does not run on the to be offlined
1491 * CPU to prevent a deadlock against cfs_b->period_timer.
1492 * Also keep at least one housekeeping cpu onlined to avoid generating
1493 * an empty sched_domain span.
1495 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1496 if (cpu != work.cpu)
1497 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1502 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1506 cpu_maps_update_begin();
1507 err = cpu_down_maps_locked(cpu, target);
1508 cpu_maps_update_done();
1513 * cpu_device_down - Bring down a cpu device
1514 * @dev: Pointer to the cpu device to offline
1516 * This function is meant to be used by device core cpu subsystem only.
1518 * Other subsystems should use remove_cpu() instead.
1520 * Return: %0 on success or a negative errno code
1522 int cpu_device_down(struct device *dev)
1524 return cpu_down(dev->id, CPUHP_OFFLINE);
1527 int remove_cpu(unsigned int cpu)
1531 lock_device_hotplug();
1532 ret = device_offline(get_cpu_device(cpu));
1533 unlock_device_hotplug();
1537 EXPORT_SYMBOL_GPL(remove_cpu);
1539 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1544 cpu_maps_update_begin();
1547 * Make certain the cpu I'm about to reboot on is online.
1549 * This is inline to what migrate_to_reboot_cpu() already do.
1551 if (!cpu_online(primary_cpu))
1552 primary_cpu = cpumask_first(cpu_online_mask);
1554 for_each_online_cpu(cpu) {
1555 if (cpu == primary_cpu)
1558 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1560 pr_err("Failed to offline CPU%d - error=%d",
1567 * Ensure all but the reboot CPU are offline.
1569 BUG_ON(num_online_cpus() > 1);
1572 * Make sure the CPUs won't be enabled by someone else after this
1573 * point. Kexec will reboot to a new kernel shortly resetting
1574 * everything along the way.
1576 cpu_hotplug_disabled++;
1578 cpu_maps_update_done();
1582 #define takedown_cpu NULL
1583 #endif /*CONFIG_HOTPLUG_CPU*/
1586 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587 * @cpu: cpu that just started
1589 * It must be called by the arch code on the new cpu, before the new cpu
1590 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1592 void notify_cpu_starting(unsigned int cpu)
1594 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1595 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1597 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1598 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1601 * STARTING must not fail!
1603 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1607 * Called from the idle task. Wake up the controlling task which brings the
1608 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609 * online bringup to the hotplug thread.
1611 void cpuhp_online_idle(enum cpuhp_state state)
1613 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1615 /* Happens for the boot cpu */
1616 if (state != CPUHP_AP_ONLINE_IDLE)
1619 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1622 * Unpark the stopper thread before we start the idle loop (and start
1623 * scheduling); this ensures the stopper task is always available.
1625 stop_machine_unpark(smp_processor_id());
1627 st->state = CPUHP_AP_ONLINE_IDLE;
1628 complete_ap_thread(st, true);
1631 /* Requires cpu_add_remove_lock to be held */
1632 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635 struct task_struct *idle;
1640 if (!cpu_present(cpu)) {
1646 * The caller of cpu_up() might have raced with another
1647 * caller. Nothing to do.
1649 if (st->state >= target)
1652 if (st->state == CPUHP_OFFLINE) {
1653 /* Let it fail before we try to bring the cpu up */
1654 idle = idle_thread_get(cpu);
1656 ret = PTR_ERR(idle);
1661 * Reset stale stack state from the last time this CPU was online.
1663 scs_task_reset(idle);
1664 kasan_unpoison_task_stack(idle);
1667 cpuhp_tasks_frozen = tasks_frozen;
1669 cpuhp_set_state(cpu, st, target);
1671 * If the current CPU state is in the range of the AP hotplug thread,
1672 * then we need to kick the thread once more.
1674 if (st->state > CPUHP_BRINGUP_CPU) {
1675 ret = cpuhp_kick_ap_work(cpu);
1677 * The AP side has done the error rollback already. Just
1678 * return the error code..
1685 * Try to reach the target state. We max out on the BP at
1686 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687 * responsible for bringing it up to the target state.
1689 target = min((int)target, CPUHP_BRINGUP_CPU);
1690 ret = cpuhp_up_callbacks(cpu, st, target);
1692 cpus_write_unlock();
1697 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1701 if (!cpu_possible(cpu)) {
1702 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1707 err = try_online_node(cpu_to_node(cpu));
1711 cpu_maps_update_begin();
1713 if (cpu_hotplug_disabled) {
1717 if (!cpu_bootable(cpu)) {
1722 err = _cpu_up(cpu, 0, target);
1724 cpu_maps_update_done();
1729 * cpu_device_up - Bring up a cpu device
1730 * @dev: Pointer to the cpu device to online
1732 * This function is meant to be used by device core cpu subsystem only.
1734 * Other subsystems should use add_cpu() instead.
1736 * Return: %0 on success or a negative errno code
1738 int cpu_device_up(struct device *dev)
1740 return cpu_up(dev->id, CPUHP_ONLINE);
1743 int add_cpu(unsigned int cpu)
1747 lock_device_hotplug();
1748 ret = device_online(get_cpu_device(cpu));
1749 unlock_device_hotplug();
1753 EXPORT_SYMBOL_GPL(add_cpu);
1756 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1759 * On some architectures like arm64, we can hibernate on any CPU, but on
1760 * wake up the CPU we hibernated on might be offline as a side effect of
1761 * using maxcpus= for example.
1763 * Return: %0 on success or a negative errno code
1765 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1769 if (!cpu_online(sleep_cpu)) {
1770 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1773 pr_err("Failed to bring hibernate-CPU up!\n");
1780 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1781 enum cpuhp_state target)
1785 for_each_cpu(cpu, mask) {
1786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1788 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1790 * If this failed then cpu_up() might have only
1791 * rolled back to CPUHP_BP_KICK_AP for the final
1792 * online. Clean it up. NOOP if already rolled back.
1794 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1802 #ifdef CONFIG_HOTPLUG_PARALLEL
1803 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1805 static int __init parallel_bringup_parse_param(char *arg)
1807 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1809 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1811 static inline bool cpuhp_smt_aware(void)
1813 return cpu_smt_max_threads > 1;
1816 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1818 return cpu_primary_thread_mask;
1822 * On architectures which have enabled parallel bringup this invokes all BP
1823 * prepare states for each of the to be onlined APs first. The last state
1824 * sends the startup IPI to the APs. The APs proceed through the low level
1825 * bringup code in parallel and then wait for the control CPU to release
1826 * them one by one for the final onlining procedure.
1828 * This avoids waiting for each AP to respond to the startup IPI in
1829 * CPUHP_BRINGUP_CPU.
1831 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1833 const struct cpumask *mask = cpu_present_mask;
1835 if (__cpuhp_parallel_bringup)
1836 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1837 if (!__cpuhp_parallel_bringup)
1840 if (cpuhp_smt_aware()) {
1841 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1842 static struct cpumask tmp_mask __initdata;
1845 * X86 requires to prevent that SMT siblings stopped while
1846 * the primary thread does a microcode update for various
1847 * reasons. Bring the primary threads up first.
1849 cpumask_and(&tmp_mask, mask, pmask);
1850 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1851 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1852 /* Account for the online CPUs */
1853 ncpus -= num_online_cpus();
1856 /* Create the mask for secondary CPUs */
1857 cpumask_andnot(&tmp_mask, mask, pmask);
1861 /* Bring the not-yet started CPUs up */
1862 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1863 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1867 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1868 #endif /* CONFIG_HOTPLUG_PARALLEL */
1870 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1875 /* Try parallel bringup optimization if enabled */
1876 if (cpuhp_bringup_cpus_parallel(max_cpus))
1879 /* Full per CPU serialized bringup */
1880 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1883 #ifdef CONFIG_PM_SLEEP_SMP
1884 static cpumask_var_t frozen_cpus;
1886 int freeze_secondary_cpus(int primary)
1890 cpu_maps_update_begin();
1891 if (primary == -1) {
1892 primary = cpumask_first(cpu_online_mask);
1893 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1894 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1896 if (!cpu_online(primary))
1897 primary = cpumask_first(cpu_online_mask);
1901 * We take down all of the non-boot CPUs in one shot to avoid races
1902 * with the userspace trying to use the CPU hotplug at the same time
1904 cpumask_clear(frozen_cpus);
1906 pr_info("Disabling non-boot CPUs ...\n");
1907 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1908 if (!cpu_online(cpu) || cpu == primary)
1911 if (pm_wakeup_pending()) {
1912 pr_info("Wakeup pending. Abort CPU freeze\n");
1917 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1918 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1919 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1921 cpumask_set_cpu(cpu, frozen_cpus);
1923 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1929 BUG_ON(num_online_cpus() > 1);
1931 pr_err("Non-boot CPUs are not disabled\n");
1934 * Make sure the CPUs won't be enabled by someone else. We need to do
1935 * this even in case of failure as all freeze_secondary_cpus() users are
1936 * supposed to do thaw_secondary_cpus() on the failure path.
1938 cpu_hotplug_disabled++;
1940 cpu_maps_update_done();
1944 void __weak arch_thaw_secondary_cpus_begin(void)
1948 void __weak arch_thaw_secondary_cpus_end(void)
1952 void thaw_secondary_cpus(void)
1956 /* Allow everyone to use the CPU hotplug again */
1957 cpu_maps_update_begin();
1958 __cpu_hotplug_enable();
1959 if (cpumask_empty(frozen_cpus))
1962 pr_info("Enabling non-boot CPUs ...\n");
1964 arch_thaw_secondary_cpus_begin();
1966 for_each_cpu(cpu, frozen_cpus) {
1967 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1968 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1969 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1971 pr_info("CPU%d is up\n", cpu);
1974 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1977 arch_thaw_secondary_cpus_end();
1979 cpumask_clear(frozen_cpus);
1981 cpu_maps_update_done();
1984 static int __init alloc_frozen_cpus(void)
1986 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1990 core_initcall(alloc_frozen_cpus);
1993 * When callbacks for CPU hotplug notifications are being executed, we must
1994 * ensure that the state of the system with respect to the tasks being frozen
1995 * or not, as reported by the notification, remains unchanged *throughout the
1996 * duration* of the execution of the callbacks.
1997 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1999 * This synchronization is implemented by mutually excluding regular CPU
2000 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2001 * Hibernate notifications.
2004 cpu_hotplug_pm_callback(struct notifier_block *nb,
2005 unsigned long action, void *ptr)
2009 case PM_SUSPEND_PREPARE:
2010 case PM_HIBERNATION_PREPARE:
2011 cpu_hotplug_disable();
2014 case PM_POST_SUSPEND:
2015 case PM_POST_HIBERNATION:
2016 cpu_hotplug_enable();
2027 static int __init cpu_hotplug_pm_sync_init(void)
2030 * cpu_hotplug_pm_callback has higher priority than x86
2031 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2032 * to disable cpu hotplug to avoid cpu hotplug race.
2034 pm_notifier(cpu_hotplug_pm_callback, 0);
2037 core_initcall(cpu_hotplug_pm_sync_init);
2039 #endif /* CONFIG_PM_SLEEP_SMP */
2043 #endif /* CONFIG_SMP */
2045 /* Boot processor state steps */
2046 static struct cpuhp_step cpuhp_hp_states[] = {
2049 .startup.single = NULL,
2050 .teardown.single = NULL,
2053 [CPUHP_CREATE_THREADS]= {
2054 .name = "threads:prepare",
2055 .startup.single = smpboot_create_threads,
2056 .teardown.single = NULL,
2059 [CPUHP_PERF_PREPARE] = {
2060 .name = "perf:prepare",
2061 .startup.single = perf_event_init_cpu,
2062 .teardown.single = perf_event_exit_cpu,
2064 [CPUHP_RANDOM_PREPARE] = {
2065 .name = "random:prepare",
2066 .startup.single = random_prepare_cpu,
2067 .teardown.single = NULL,
2069 [CPUHP_WORKQUEUE_PREP] = {
2070 .name = "workqueue:prepare",
2071 .startup.single = workqueue_prepare_cpu,
2072 .teardown.single = NULL,
2074 [CPUHP_HRTIMERS_PREPARE] = {
2075 .name = "hrtimers:prepare",
2076 .startup.single = hrtimers_prepare_cpu,
2077 .teardown.single = NULL,
2079 [CPUHP_SMPCFD_PREPARE] = {
2080 .name = "smpcfd:prepare",
2081 .startup.single = smpcfd_prepare_cpu,
2082 .teardown.single = smpcfd_dead_cpu,
2084 [CPUHP_RELAY_PREPARE] = {
2085 .name = "relay:prepare",
2086 .startup.single = relay_prepare_cpu,
2087 .teardown.single = NULL,
2089 [CPUHP_RCUTREE_PREP] = {
2090 .name = "RCU/tree:prepare",
2091 .startup.single = rcutree_prepare_cpu,
2092 .teardown.single = rcutree_dead_cpu,
2095 * On the tear-down path, timers_dead_cpu() must be invoked
2096 * before blk_mq_queue_reinit_notify() from notify_dead(),
2097 * otherwise a RCU stall occurs.
2099 [CPUHP_TIMERS_PREPARE] = {
2100 .name = "timers:prepare",
2101 .startup.single = timers_prepare_cpu,
2102 .teardown.single = timers_dead_cpu,
2105 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2107 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2108 * the next step will release it.
2110 [CPUHP_BP_KICK_AP] = {
2111 .name = "cpu:kick_ap",
2112 .startup.single = cpuhp_kick_ap_alive,
2116 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2117 * releases it for the complete bringup.
2119 [CPUHP_BRINGUP_CPU] = {
2120 .name = "cpu:bringup",
2121 .startup.single = cpuhp_bringup_ap,
2122 .teardown.single = finish_cpu,
2127 * All-in-one CPU bringup state which includes the kick alive.
2129 [CPUHP_BRINGUP_CPU] = {
2130 .name = "cpu:bringup",
2131 .startup.single = bringup_cpu,
2132 .teardown.single = finish_cpu,
2136 /* Final state before CPU kills itself */
2137 [CPUHP_AP_IDLE_DEAD] = {
2138 .name = "idle:dead",
2141 * Last state before CPU enters the idle loop to die. Transient state
2142 * for synchronization.
2144 [CPUHP_AP_OFFLINE] = {
2145 .name = "ap:offline",
2148 /* First state is scheduler control. Interrupts are disabled */
2149 [CPUHP_AP_SCHED_STARTING] = {
2150 .name = "sched:starting",
2151 .startup.single = sched_cpu_starting,
2152 .teardown.single = sched_cpu_dying,
2154 [CPUHP_AP_RCUTREE_DYING] = {
2155 .name = "RCU/tree:dying",
2156 .startup.single = NULL,
2157 .teardown.single = rcutree_dying_cpu,
2159 [CPUHP_AP_SMPCFD_DYING] = {
2160 .name = "smpcfd:dying",
2161 .startup.single = NULL,
2162 .teardown.single = smpcfd_dying_cpu,
2164 [CPUHP_AP_HRTIMERS_DYING] = {
2165 .name = "hrtimers:dying",
2166 .startup.single = NULL,
2167 .teardown.single = hrtimers_cpu_dying,
2169 [CPUHP_AP_TICK_DYING] = {
2170 .name = "tick:dying",
2171 .startup.single = NULL,
2172 .teardown.single = tick_cpu_dying,
2174 /* Entry state on starting. Interrupts enabled from here on. Transient
2175 * state for synchronsization */
2176 [CPUHP_AP_ONLINE] = {
2177 .name = "ap:online",
2180 * Handled on control processor until the plugged processor manages
2183 [CPUHP_TEARDOWN_CPU] = {
2184 .name = "cpu:teardown",
2185 .startup.single = NULL,
2186 .teardown.single = takedown_cpu,
2190 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2191 .name = "sched:waitempty",
2192 .startup.single = NULL,
2193 .teardown.single = sched_cpu_wait_empty,
2196 /* Handle smpboot threads park/unpark */
2197 [CPUHP_AP_SMPBOOT_THREADS] = {
2198 .name = "smpboot/threads:online",
2199 .startup.single = smpboot_unpark_threads,
2200 .teardown.single = smpboot_park_threads,
2202 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2203 .name = "irq/affinity:online",
2204 .startup.single = irq_affinity_online_cpu,
2205 .teardown.single = NULL,
2207 [CPUHP_AP_PERF_ONLINE] = {
2208 .name = "perf:online",
2209 .startup.single = perf_event_init_cpu,
2210 .teardown.single = perf_event_exit_cpu,
2212 [CPUHP_AP_WATCHDOG_ONLINE] = {
2213 .name = "lockup_detector:online",
2214 .startup.single = lockup_detector_online_cpu,
2215 .teardown.single = lockup_detector_offline_cpu,
2217 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2218 .name = "workqueue:online",
2219 .startup.single = workqueue_online_cpu,
2220 .teardown.single = workqueue_offline_cpu,
2222 [CPUHP_AP_RANDOM_ONLINE] = {
2223 .name = "random:online",
2224 .startup.single = random_online_cpu,
2225 .teardown.single = NULL,
2227 [CPUHP_AP_RCUTREE_ONLINE] = {
2228 .name = "RCU/tree:online",
2229 .startup.single = rcutree_online_cpu,
2230 .teardown.single = rcutree_offline_cpu,
2234 * The dynamically registered state space is here
2238 /* Last state is scheduler control setting the cpu active */
2239 [CPUHP_AP_ACTIVE] = {
2240 .name = "sched:active",
2241 .startup.single = sched_cpu_activate,
2242 .teardown.single = sched_cpu_deactivate,
2246 /* CPU is fully up and running. */
2249 .startup.single = NULL,
2250 .teardown.single = NULL,
2254 /* Sanity check for callbacks */
2255 static int cpuhp_cb_check(enum cpuhp_state state)
2257 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2263 * Returns a free for dynamic slot assignment of the Online state. The states
2264 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2265 * by having no name assigned.
2267 static int cpuhp_reserve_state(enum cpuhp_state state)
2269 enum cpuhp_state i, end;
2270 struct cpuhp_step *step;
2273 case CPUHP_AP_ONLINE_DYN:
2274 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2275 end = CPUHP_AP_ONLINE_DYN_END;
2277 case CPUHP_BP_PREPARE_DYN:
2278 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2279 end = CPUHP_BP_PREPARE_DYN_END;
2285 for (i = state; i <= end; i++, step++) {
2289 WARN(1, "No more dynamic states available for CPU hotplug\n");
2293 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2294 int (*startup)(unsigned int cpu),
2295 int (*teardown)(unsigned int cpu),
2296 bool multi_instance)
2298 /* (Un)Install the callbacks for further cpu hotplug operations */
2299 struct cpuhp_step *sp;
2303 * If name is NULL, then the state gets removed.
2305 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2306 * the first allocation from these dynamic ranges, so the removal
2307 * would trigger a new allocation and clear the wrong (already
2308 * empty) state, leaving the callbacks of the to be cleared state
2309 * dangling, which causes wreckage on the next hotplug operation.
2311 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2312 state == CPUHP_BP_PREPARE_DYN)) {
2313 ret = cpuhp_reserve_state(state);
2318 sp = cpuhp_get_step(state);
2319 if (name && sp->name)
2322 sp->startup.single = startup;
2323 sp->teardown.single = teardown;
2325 sp->multi_instance = multi_instance;
2326 INIT_HLIST_HEAD(&sp->list);
2330 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2332 return cpuhp_get_step(state)->teardown.single;
2336 * Call the startup/teardown function for a step either on the AP or
2337 * on the current CPU.
2339 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2340 struct hlist_node *node)
2342 struct cpuhp_step *sp = cpuhp_get_step(state);
2346 * If there's nothing to do, we done.
2347 * Relies on the union for multi_instance.
2349 if (cpuhp_step_empty(bringup, sp))
2352 * The non AP bound callbacks can fail on bringup. On teardown
2353 * e.g. module removal we crash for now.
2356 if (cpuhp_is_ap_state(state))
2357 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2359 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2361 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2363 BUG_ON(ret && !bringup);
2368 * Called from __cpuhp_setup_state on a recoverable failure.
2370 * Note: The teardown callbacks for rollback are not allowed to fail!
2372 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2373 struct hlist_node *node)
2377 /* Roll back the already executed steps on the other cpus */
2378 for_each_present_cpu(cpu) {
2379 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2380 int cpustate = st->state;
2382 if (cpu >= failedcpu)
2385 /* Did we invoke the startup call on that cpu ? */
2386 if (cpustate >= state)
2387 cpuhp_issue_call(cpu, state, false, node);
2391 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2392 struct hlist_node *node,
2395 struct cpuhp_step *sp;
2399 lockdep_assert_cpus_held();
2401 sp = cpuhp_get_step(state);
2402 if (sp->multi_instance == false)
2405 mutex_lock(&cpuhp_state_mutex);
2407 if (!invoke || !sp->startup.multi)
2411 * Try to call the startup callback for each present cpu
2412 * depending on the hotplug state of the cpu.
2414 for_each_present_cpu(cpu) {
2415 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2416 int cpustate = st->state;
2418 if (cpustate < state)
2421 ret = cpuhp_issue_call(cpu, state, true, node);
2423 if (sp->teardown.multi)
2424 cpuhp_rollback_install(cpu, state, node);
2430 hlist_add_head(node, &sp->list);
2432 mutex_unlock(&cpuhp_state_mutex);
2436 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2442 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2446 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2449 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2450 * @state: The state to setup
2451 * @name: Name of the step
2452 * @invoke: If true, the startup function is invoked for cpus where
2453 * cpu state >= @state
2454 * @startup: startup callback function
2455 * @teardown: teardown callback function
2456 * @multi_instance: State is set up for multiple instances which get
2459 * The caller needs to hold cpus read locked while calling this function.
2462 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2463 * 0 for all other states
2464 * On failure: proper (negative) error code
2466 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2467 const char *name, bool invoke,
2468 int (*startup)(unsigned int cpu),
2469 int (*teardown)(unsigned int cpu),
2470 bool multi_instance)
2475 lockdep_assert_cpus_held();
2477 if (cpuhp_cb_check(state) || !name)
2480 mutex_lock(&cpuhp_state_mutex);
2482 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2485 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2486 if (ret > 0 && dynstate) {
2491 if (ret || !invoke || !startup)
2495 * Try to call the startup callback for each present cpu
2496 * depending on the hotplug state of the cpu.
2498 for_each_present_cpu(cpu) {
2499 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2500 int cpustate = st->state;
2502 if (cpustate < state)
2505 ret = cpuhp_issue_call(cpu, state, true, NULL);
2508 cpuhp_rollback_install(cpu, state, NULL);
2509 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2514 mutex_unlock(&cpuhp_state_mutex);
2516 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2517 * return the dynamically allocated state in case of success.
2519 if (!ret && dynstate)
2523 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2525 int __cpuhp_setup_state(enum cpuhp_state state,
2526 const char *name, bool invoke,
2527 int (*startup)(unsigned int cpu),
2528 int (*teardown)(unsigned int cpu),
2529 bool multi_instance)
2534 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2535 teardown, multi_instance);
2539 EXPORT_SYMBOL(__cpuhp_setup_state);
2541 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2542 struct hlist_node *node, bool invoke)
2544 struct cpuhp_step *sp = cpuhp_get_step(state);
2547 BUG_ON(cpuhp_cb_check(state));
2549 if (!sp->multi_instance)
2553 mutex_lock(&cpuhp_state_mutex);
2555 if (!invoke || !cpuhp_get_teardown_cb(state))
2558 * Call the teardown callback for each present cpu depending
2559 * on the hotplug state of the cpu. This function is not
2560 * allowed to fail currently!
2562 for_each_present_cpu(cpu) {
2563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2564 int cpustate = st->state;
2566 if (cpustate >= state)
2567 cpuhp_issue_call(cpu, state, false, node);
2572 mutex_unlock(&cpuhp_state_mutex);
2577 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2580 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2581 * @state: The state to remove
2582 * @invoke: If true, the teardown function is invoked for cpus where
2583 * cpu state >= @state
2585 * The caller needs to hold cpus read locked while calling this function.
2586 * The teardown callback is currently not allowed to fail. Think
2587 * about module removal!
2589 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2591 struct cpuhp_step *sp = cpuhp_get_step(state);
2594 BUG_ON(cpuhp_cb_check(state));
2596 lockdep_assert_cpus_held();
2598 mutex_lock(&cpuhp_state_mutex);
2599 if (sp->multi_instance) {
2600 WARN(!hlist_empty(&sp->list),
2601 "Error: Removing state %d which has instances left.\n",
2606 if (!invoke || !cpuhp_get_teardown_cb(state))
2610 * Call the teardown callback for each present cpu depending
2611 * on the hotplug state of the cpu. This function is not
2612 * allowed to fail currently!
2614 for_each_present_cpu(cpu) {
2615 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2616 int cpustate = st->state;
2618 if (cpustate >= state)
2619 cpuhp_issue_call(cpu, state, false, NULL);
2622 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2623 mutex_unlock(&cpuhp_state_mutex);
2625 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2627 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2630 __cpuhp_remove_state_cpuslocked(state, invoke);
2633 EXPORT_SYMBOL(__cpuhp_remove_state);
2635 #ifdef CONFIG_HOTPLUG_SMT
2636 static void cpuhp_offline_cpu_device(unsigned int cpu)
2638 struct device *dev = get_cpu_device(cpu);
2640 dev->offline = true;
2641 /* Tell user space about the state change */
2642 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2645 static void cpuhp_online_cpu_device(unsigned int cpu)
2647 struct device *dev = get_cpu_device(cpu);
2649 dev->offline = false;
2650 /* Tell user space about the state change */
2651 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2654 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2658 cpu_maps_update_begin();
2659 for_each_online_cpu(cpu) {
2660 if (topology_is_primary_thread(cpu))
2663 * Disable can be called with CPU_SMT_ENABLED when changing
2664 * from a higher to lower number of SMT threads per core.
2666 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2668 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2672 * As this needs to hold the cpu maps lock it's impossible
2673 * to call device_offline() because that ends up calling
2674 * cpu_down() which takes cpu maps lock. cpu maps lock
2675 * needs to be held as this might race against in kernel
2676 * abusers of the hotplug machinery (thermal management).
2678 * So nothing would update device:offline state. That would
2679 * leave the sysfs entry stale and prevent onlining after
2680 * smt control has been changed to 'off' again. This is
2681 * called under the sysfs hotplug lock, so it is properly
2682 * serialized against the regular offline usage.
2684 cpuhp_offline_cpu_device(cpu);
2687 cpu_smt_control = ctrlval;
2688 cpu_maps_update_done();
2693 * Check if the core a CPU belongs to is online
2695 #if !defined(topology_is_core_online)
2696 static inline bool topology_is_core_online(unsigned int cpu)
2702 int cpuhp_smt_enable(void)
2706 cpu_maps_update_begin();
2707 cpu_smt_control = CPU_SMT_ENABLED;
2708 for_each_present_cpu(cpu) {
2709 /* Skip online CPUs and CPUs on offline nodes */
2710 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2712 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2714 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2717 /* See comment in cpuhp_smt_disable() */
2718 cpuhp_online_cpu_device(cpu);
2720 cpu_maps_update_done();
2725 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2726 static ssize_t state_show(struct device *dev,
2727 struct device_attribute *attr, char *buf)
2729 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2731 return sprintf(buf, "%d\n", st->state);
2733 static DEVICE_ATTR_RO(state);
2735 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2736 const char *buf, size_t count)
2738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2739 struct cpuhp_step *sp;
2742 ret = kstrtoint(buf, 10, &target);
2746 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2747 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2750 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2754 ret = lock_device_hotplug_sysfs();
2758 mutex_lock(&cpuhp_state_mutex);
2759 sp = cpuhp_get_step(target);
2760 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2761 mutex_unlock(&cpuhp_state_mutex);
2765 if (st->state < target)
2766 ret = cpu_up(dev->id, target);
2767 else if (st->state > target)
2768 ret = cpu_down(dev->id, target);
2769 else if (WARN_ON(st->target != target))
2770 st->target = target;
2772 unlock_device_hotplug();
2773 return ret ? ret : count;
2776 static ssize_t target_show(struct device *dev,
2777 struct device_attribute *attr, char *buf)
2779 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2781 return sprintf(buf, "%d\n", st->target);
2783 static DEVICE_ATTR_RW(target);
2785 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2786 const char *buf, size_t count)
2788 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789 struct cpuhp_step *sp;
2792 ret = kstrtoint(buf, 10, &fail);
2796 if (fail == CPUHP_INVALID) {
2801 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2805 * Cannot fail STARTING/DYING callbacks.
2807 if (cpuhp_is_atomic_state(fail))
2811 * DEAD callbacks cannot fail...
2812 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2813 * triggering STARTING callbacks, a failure in this state would
2816 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2820 * Cannot fail anything that doesn't have callbacks.
2822 mutex_lock(&cpuhp_state_mutex);
2823 sp = cpuhp_get_step(fail);
2824 if (!sp->startup.single && !sp->teardown.single)
2826 mutex_unlock(&cpuhp_state_mutex);
2835 static ssize_t fail_show(struct device *dev,
2836 struct device_attribute *attr, char *buf)
2838 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2840 return sprintf(buf, "%d\n", st->fail);
2843 static DEVICE_ATTR_RW(fail);
2845 static struct attribute *cpuhp_cpu_attrs[] = {
2846 &dev_attr_state.attr,
2847 &dev_attr_target.attr,
2848 &dev_attr_fail.attr,
2852 static const struct attribute_group cpuhp_cpu_attr_group = {
2853 .attrs = cpuhp_cpu_attrs,
2858 static ssize_t states_show(struct device *dev,
2859 struct device_attribute *attr, char *buf)
2861 ssize_t cur, res = 0;
2864 mutex_lock(&cpuhp_state_mutex);
2865 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2866 struct cpuhp_step *sp = cpuhp_get_step(i);
2869 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2874 mutex_unlock(&cpuhp_state_mutex);
2877 static DEVICE_ATTR_RO(states);
2879 static struct attribute *cpuhp_cpu_root_attrs[] = {
2880 &dev_attr_states.attr,
2884 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2885 .attrs = cpuhp_cpu_root_attrs,
2890 #ifdef CONFIG_HOTPLUG_SMT
2892 static bool cpu_smt_num_threads_valid(unsigned int threads)
2894 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2895 return threads >= 1 && threads <= cpu_smt_max_threads;
2896 return threads == 1 || threads == cpu_smt_max_threads;
2900 __store_smt_control(struct device *dev, struct device_attribute *attr,
2901 const char *buf, size_t count)
2903 int ctrlval, ret, num_threads, orig_threads;
2906 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2909 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2912 if (sysfs_streq(buf, "on")) {
2913 ctrlval = CPU_SMT_ENABLED;
2914 num_threads = cpu_smt_max_threads;
2915 } else if (sysfs_streq(buf, "off")) {
2916 ctrlval = CPU_SMT_DISABLED;
2918 } else if (sysfs_streq(buf, "forceoff")) {
2919 ctrlval = CPU_SMT_FORCE_DISABLED;
2921 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2922 if (num_threads == 1)
2923 ctrlval = CPU_SMT_DISABLED;
2924 else if (cpu_smt_num_threads_valid(num_threads))
2925 ctrlval = CPU_SMT_ENABLED;
2932 ret = lock_device_hotplug_sysfs();
2936 orig_threads = cpu_smt_num_threads;
2937 cpu_smt_num_threads = num_threads;
2939 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2941 if (num_threads > orig_threads)
2942 ret = cpuhp_smt_enable();
2943 else if (num_threads < orig_threads || force_off)
2944 ret = cpuhp_smt_disable(ctrlval);
2946 unlock_device_hotplug();
2947 return ret ? ret : count;
2950 #else /* !CONFIG_HOTPLUG_SMT */
2952 __store_smt_control(struct device *dev, struct device_attribute *attr,
2953 const char *buf, size_t count)
2957 #endif /* CONFIG_HOTPLUG_SMT */
2959 static const char *smt_states[] = {
2960 [CPU_SMT_ENABLED] = "on",
2961 [CPU_SMT_DISABLED] = "off",
2962 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2963 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2964 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2967 static ssize_t control_show(struct device *dev,
2968 struct device_attribute *attr, char *buf)
2970 const char *state = smt_states[cpu_smt_control];
2972 #ifdef CONFIG_HOTPLUG_SMT
2974 * If SMT is enabled but not all threads are enabled then show the
2975 * number of threads. If all threads are enabled show "on". Otherwise
2976 * show the state name.
2978 if (cpu_smt_control == CPU_SMT_ENABLED &&
2979 cpu_smt_num_threads != cpu_smt_max_threads)
2980 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2983 return sysfs_emit(buf, "%s\n", state);
2986 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2987 const char *buf, size_t count)
2989 return __store_smt_control(dev, attr, buf, count);
2991 static DEVICE_ATTR_RW(control);
2993 static ssize_t active_show(struct device *dev,
2994 struct device_attribute *attr, char *buf)
2996 return sysfs_emit(buf, "%d\n", sched_smt_active());
2998 static DEVICE_ATTR_RO(active);
3000 static struct attribute *cpuhp_smt_attrs[] = {
3001 &dev_attr_control.attr,
3002 &dev_attr_active.attr,
3006 static const struct attribute_group cpuhp_smt_attr_group = {
3007 .attrs = cpuhp_smt_attrs,
3012 static int __init cpu_smt_sysfs_init(void)
3014 struct device *dev_root;
3017 dev_root = bus_get_dev_root(&cpu_subsys);
3019 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3020 put_device(dev_root);
3025 static int __init cpuhp_sysfs_init(void)
3027 struct device *dev_root;
3030 ret = cpu_smt_sysfs_init();
3034 dev_root = bus_get_dev_root(&cpu_subsys);
3036 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3037 put_device(dev_root);
3042 for_each_possible_cpu(cpu) {
3043 struct device *dev = get_cpu_device(cpu);
3047 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3053 device_initcall(cpuhp_sysfs_init);
3054 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3057 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3058 * represents all NR_CPUS bits binary values of 1<<nr.
3060 * It is used by cpumask_of() to get a constant address to a CPU
3061 * mask value that has a single bit set only.
3064 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3065 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3066 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3067 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3068 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3070 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3072 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3073 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3074 #if BITS_PER_LONG > 32
3075 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3076 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3079 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3081 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3082 EXPORT_SYMBOL(cpu_all_bits);
3084 #ifdef CONFIG_INIT_ALL_POSSIBLE
3085 struct cpumask __cpu_possible_mask __ro_after_init
3088 struct cpumask __cpu_possible_mask __ro_after_init;
3090 EXPORT_SYMBOL(__cpu_possible_mask);
3092 struct cpumask __cpu_online_mask __read_mostly;
3093 EXPORT_SYMBOL(__cpu_online_mask);
3095 struct cpumask __cpu_enabled_mask __read_mostly;
3096 EXPORT_SYMBOL(__cpu_enabled_mask);
3098 struct cpumask __cpu_present_mask __read_mostly;
3099 EXPORT_SYMBOL(__cpu_present_mask);
3101 struct cpumask __cpu_active_mask __read_mostly;
3102 EXPORT_SYMBOL(__cpu_active_mask);
3104 struct cpumask __cpu_dying_mask __read_mostly;
3105 EXPORT_SYMBOL(__cpu_dying_mask);
3107 atomic_t __num_online_cpus __read_mostly;
3108 EXPORT_SYMBOL(__num_online_cpus);
3110 void init_cpu_present(const struct cpumask *src)
3112 cpumask_copy(&__cpu_present_mask, src);
3115 void init_cpu_possible(const struct cpumask *src)
3117 cpumask_copy(&__cpu_possible_mask, src);
3120 void init_cpu_online(const struct cpumask *src)
3122 cpumask_copy(&__cpu_online_mask, src);
3125 void set_cpu_online(unsigned int cpu, bool online)
3128 * atomic_inc/dec() is required to handle the horrid abuse of this
3129 * function by the reboot and kexec code which invoke it from
3130 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3131 * regular CPU hotplug is properly serialized.
3133 * Note, that the fact that __num_online_cpus is of type atomic_t
3134 * does not protect readers which are not serialized against
3135 * concurrent hotplug operations.
3138 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3139 atomic_inc(&__num_online_cpus);
3141 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3142 atomic_dec(&__num_online_cpus);
3147 * Activate the first processor.
3149 void __init boot_cpu_init(void)
3151 int cpu = smp_processor_id();
3153 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3154 set_cpu_online(cpu, true);
3155 set_cpu_active(cpu, true);
3156 set_cpu_present(cpu, true);
3157 set_cpu_possible(cpu, true);
3160 __boot_cpu_id = cpu;
3165 * Must be called _AFTER_ setting up the per_cpu areas
3167 void __init boot_cpu_hotplug_init(void)
3170 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3171 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3173 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3174 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3177 #ifdef CONFIG_CPU_MITIGATIONS
3179 * These are used for a global "mitigations=" cmdline option for toggling
3180 * optional CPU mitigations.
3182 enum cpu_mitigations {
3183 CPU_MITIGATIONS_OFF,
3184 CPU_MITIGATIONS_AUTO,
3185 CPU_MITIGATIONS_AUTO_NOSMT,
3188 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3190 static int __init mitigations_parse_cmdline(char *arg)
3192 if (!strcmp(arg, "off"))
3193 cpu_mitigations = CPU_MITIGATIONS_OFF;
3194 else if (!strcmp(arg, "auto"))
3195 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3196 else if (!strcmp(arg, "auto,nosmt"))
3197 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3199 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3205 /* mitigations=off */
3206 bool cpu_mitigations_off(void)
3208 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3210 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3212 /* mitigations=auto,nosmt */
3213 bool cpu_mitigations_auto_nosmt(void)
3215 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3217 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3219 static int __init mitigations_parse_cmdline(char *arg)
3221 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3225 early_param("mitigations", mitigations_parse_cmdline);