1 // SPDX-License-Identifier: GPL-2.0-only
3 // Driver for Cadence QSPI Controller
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
33 #define CQSPI_NAME "cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT 16
37 #define CQSPI_NEEDS_WR_DELAY BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
41 #define CQSPI_SLOW_SRAM BIT(4)
42 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR BIT(5)
45 #define CQSPI_SUPPORTS_OCTAL BIT(0)
47 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
57 struct cqspi_flash_pdata {
58 struct cqspi_st *cqspi;
69 struct platform_device *pdev;
70 struct spi_controller *host;
72 struct clk *clks[CLK_QSPI_NUM];
76 void __iomem *ahb_base;
77 resource_size_t ahb_size;
78 struct completion transfer_complete;
80 struct dma_chan *rx_chan;
81 struct completion rx_dma_complete;
82 dma_addr_t mmap_phys_base;
85 unsigned long master_ref_clk_hz;
94 bool use_direct_mode_wr;
95 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
102 bool is_jh7110; /* Flag for StarFive JH7110 SoC */
105 struct cqspi_driver_platdata {
108 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
109 u_char *rxbuf, loff_t from_addr, size_t n_rx);
110 u32 (*get_dma_status)(struct cqspi_st *cqspi);
111 int (*jh7110_clk_init)(struct platform_device *pdev,
112 struct cqspi_st *cqspi);
115 /* Operation timeout value */
116 #define CQSPI_TIMEOUT_MS 500
117 #define CQSPI_READ_TIMEOUT_MS 10
119 /* Runtime_pm autosuspend delay */
120 #define CQSPI_AUTOSUSPEND_TIMEOUT 2000
122 #define CQSPI_DUMMY_CLKS_PER_BYTE 8
123 #define CQSPI_DUMMY_BYTES_MAX 4
124 #define CQSPI_DUMMY_CLKS_MAX 31
126 #define CQSPI_STIG_DATA_LEN_MAX 8
129 #define CQSPI_REG_CONFIG 0x00
130 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
131 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
132 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
133 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
134 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
135 #define CQSPI_REG_CONFIG_BAUD_LSB 19
136 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
137 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
138 #define CQSPI_REG_CONFIG_IDLE_LSB 31
139 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
140 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
142 #define CQSPI_REG_RD_INSTR 0x04
143 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
144 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
145 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
146 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
147 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
148 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
149 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
150 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
151 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
152 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
154 #define CQSPI_REG_WR_INSTR 0x08
155 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
156 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
157 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
159 #define CQSPI_REG_DELAY 0x0C
160 #define CQSPI_REG_DELAY_TSLCH_LSB 0
161 #define CQSPI_REG_DELAY_TCHSH_LSB 8
162 #define CQSPI_REG_DELAY_TSD2D_LSB 16
163 #define CQSPI_REG_DELAY_TSHSL_LSB 24
164 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
165 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
166 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
167 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
169 #define CQSPI_REG_READCAPTURE 0x10
170 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
171 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
172 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
174 #define CQSPI_REG_SIZE 0x14
175 #define CQSPI_REG_SIZE_ADDRESS_LSB 0
176 #define CQSPI_REG_SIZE_PAGE_LSB 4
177 #define CQSPI_REG_SIZE_BLOCK_LSB 16
178 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
179 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
180 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
182 #define CQSPI_REG_SRAMPARTITION 0x18
183 #define CQSPI_REG_INDIRECTTRIGGER 0x1C
185 #define CQSPI_REG_DMA 0x20
186 #define CQSPI_REG_DMA_SINGLE_LSB 0
187 #define CQSPI_REG_DMA_BURST_LSB 8
188 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
189 #define CQSPI_REG_DMA_BURST_MASK 0xFF
191 #define CQSPI_REG_REMAP 0x24
192 #define CQSPI_REG_MODE_BIT 0x28
194 #define CQSPI_REG_SDRAMLEVEL 0x2C
195 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
196 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
197 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
198 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
200 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38
201 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
203 #define CQSPI_REG_IRQSTATUS 0x40
204 #define CQSPI_REG_IRQMASK 0x44
206 #define CQSPI_REG_INDIRECTRD 0x60
207 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
208 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
209 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
211 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
212 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
213 #define CQSPI_REG_INDIRECTRDBYTES 0x6C
215 #define CQSPI_REG_CMDCTRL 0x90
216 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
217 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
218 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
219 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
220 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
221 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
222 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
223 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
224 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
225 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
226 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
227 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
228 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
229 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
231 #define CQSPI_REG_INDIRECTWR 0x70
232 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
233 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
234 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
236 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
237 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
238 #define CQSPI_REG_INDIRECTWRBYTES 0x7C
240 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
242 #define CQSPI_REG_CMDADDRESS 0x94
243 #define CQSPI_REG_CMDREADDATALOWER 0xA0
244 #define CQSPI_REG_CMDREADDATAUPPER 0xA4
245 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
246 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
248 #define CQSPI_REG_POLLING_STATUS 0xB0
249 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
251 #define CQSPI_REG_OP_EXT_LOWER 0xE0
252 #define CQSPI_REG_OP_EXT_READ_LSB 24
253 #define CQSPI_REG_OP_EXT_WRITE_LSB 16
254 #define CQSPI_REG_OP_EXT_STIG_LSB 0
256 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
258 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
259 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
261 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
263 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
264 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
265 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
266 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
268 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
270 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
271 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
273 /* Interrupt status bits */
274 #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
275 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
276 #define CQSPI_REG_IRQ_IND_COMP BIT(2)
277 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
278 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
279 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
280 #define CQSPI_REG_IRQ_WATERMARK BIT(6)
281 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
283 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
284 CQSPI_REG_IRQ_IND_SRAM_FULL | \
285 CQSPI_REG_IRQ_IND_COMP)
287 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
288 CQSPI_REG_IRQ_WATERMARK | \
289 CQSPI_REG_IRQ_UNDERFLOW)
291 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
292 #define CQSPI_DMA_UNALIGN 0x3
294 #define CQSPI_REG_VERSAL_DMA_VAL 0x602
296 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
300 return readl_relaxed_poll_timeout(reg, val,
301 (((clr ? ~val : val) & mask) == mask),
302 10, CQSPI_TIMEOUT_MS * 1000);
305 static bool cqspi_is_idle(struct cqspi_st *cqspi)
307 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
309 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
312 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
314 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
316 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
317 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
320 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
324 dma_status = readl(cqspi->iobase +
325 CQSPI_REG_VERSAL_DMA_DST_I_STS);
326 writel(dma_status, cqspi->iobase +
327 CQSPI_REG_VERSAL_DMA_DST_I_STS);
329 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
332 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
334 struct cqspi_st *cqspi = dev;
335 unsigned int irq_status;
336 struct device *device = &cqspi->pdev->dev;
337 const struct cqspi_driver_platdata *ddata;
339 ddata = of_device_get_match_data(device);
341 /* Read interrupt status */
342 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
344 /* Clear interrupt */
345 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
347 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
348 if (ddata->get_dma_status(cqspi)) {
349 complete(&cqspi->transfer_complete);
354 else if (!cqspi->slow_sram)
355 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
357 irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
360 complete(&cqspi->transfer_complete);
365 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
369 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
370 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
371 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
376 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
378 unsigned int dummy_clk;
380 if (!op->dummy.nbytes)
383 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
390 static int cqspi_wait_idle(struct cqspi_st *cqspi)
392 const unsigned int poll_idle_retry = 3;
393 unsigned int count = 0;
394 unsigned long timeout;
396 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
399 * Read few times in succession to ensure the controller
400 * is indeed idle, that is, the bit does not transition
403 if (cqspi_is_idle(cqspi))
408 if (count >= poll_idle_retry)
411 if (time_after(jiffies, timeout)) {
412 /* Timeout, in busy mode. */
413 dev_err(&cqspi->pdev->dev,
414 "QSPI is still busy after %dms timeout.\n",
423 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
425 void __iomem *reg_base = cqspi->iobase;
428 /* Write the CMDCTRL without start execution. */
429 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
431 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
432 writel(reg, reg_base + CQSPI_REG_CMDCTRL);
434 /* Polling for completion. */
435 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
436 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
438 dev_err(&cqspi->pdev->dev,
439 "Flash command execution timed out.\n");
443 /* Polling QSPI idle status. */
444 return cqspi_wait_idle(cqspi);
447 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
448 const struct spi_mem_op *op,
451 struct cqspi_st *cqspi = f_pdata->cqspi;
452 void __iomem *reg_base = cqspi->iobase;
456 if (op->cmd.nbytes != 2)
459 /* Opcode extension is the LSB. */
460 ext = op->cmd.opcode & 0xff;
462 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
463 reg &= ~(0xff << shift);
465 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
470 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
471 const struct spi_mem_op *op, unsigned int shift)
473 struct cqspi_st *cqspi = f_pdata->cqspi;
474 void __iomem *reg_base = cqspi->iobase;
478 reg = readl(reg_base + CQSPI_REG_CONFIG);
481 * We enable dual byte opcode here. The callers have to set up the
482 * extension opcode based on which type of operation it is.
485 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
486 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
488 /* Set up command opcode extension. */
489 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
493 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
494 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
497 writel(reg, reg_base + CQSPI_REG_CONFIG);
499 return cqspi_wait_idle(cqspi);
502 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
503 const struct spi_mem_op *op)
505 struct cqspi_st *cqspi = f_pdata->cqspi;
506 void __iomem *reg_base = cqspi->iobase;
507 u8 *rxbuf = op->data.buf.in;
509 size_t n_rx = op->data.nbytes;
512 unsigned int dummy_clk;
516 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
520 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
521 dev_err(&cqspi->pdev->dev,
522 "Invalid input argument, len %zu rxbuf 0x%p\n",
528 opcode = op->cmd.opcode >> 8;
530 opcode = op->cmd.opcode;
532 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
534 rdreg = cqspi_calc_rdreg(op);
535 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
537 dummy_clk = cqspi_calc_dummy(op);
538 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
542 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
543 << CQSPI_REG_CMDCTRL_DUMMY_LSB;
545 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
547 /* 0 means 1 byte. */
548 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
549 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
551 /* setup ADDR BIT field */
552 if (op->addr.nbytes) {
553 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
554 reg |= ((op->addr.nbytes - 1) &
555 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
556 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
558 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
561 status = cqspi_exec_flash_cmd(cqspi, reg);
565 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
567 /* Put the read value into rx_buf */
568 read_len = (n_rx > 4) ? 4 : n_rx;
569 memcpy(rxbuf, ®, read_len);
573 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
575 read_len = n_rx - read_len;
576 memcpy(rxbuf, ®, read_len);
579 /* Reset CMD_CTRL Reg once command read completes */
580 writel(0, reg_base + CQSPI_REG_CMDCTRL);
585 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
586 const struct spi_mem_op *op)
588 struct cqspi_st *cqspi = f_pdata->cqspi;
589 void __iomem *reg_base = cqspi->iobase;
591 const u8 *txbuf = op->data.buf.out;
592 size_t n_tx = op->data.nbytes;
598 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
602 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603 dev_err(&cqspi->pdev->dev,
604 "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
609 reg = cqspi_calc_rdreg(op);
610 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
613 opcode = op->cmd.opcode >> 8;
615 opcode = op->cmd.opcode;
617 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
619 if (op->addr.nbytes) {
620 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621 reg |= ((op->addr.nbytes - 1) &
622 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
625 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
629 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
633 write_len = (n_tx > 4) ? 4 : n_tx;
634 memcpy(&data, txbuf, write_len);
636 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
640 write_len = n_tx - 4;
641 memcpy(&data, txbuf, write_len);
642 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
646 ret = cqspi_exec_flash_cmd(cqspi, reg);
648 /* Reset CMD_CTRL Reg once command write completes */
649 writel(0, reg_base + CQSPI_REG_CMDCTRL);
654 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
655 const struct spi_mem_op *op)
657 struct cqspi_st *cqspi = f_pdata->cqspi;
658 void __iomem *reg_base = cqspi->iobase;
659 unsigned int dummy_clk = 0;
664 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
669 opcode = op->cmd.opcode >> 8;
671 opcode = op->cmd.opcode;
673 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
674 reg |= cqspi_calc_rdreg(op);
676 /* Setup dummy clock cycles */
677 dummy_clk = cqspi_calc_dummy(op);
679 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
683 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
684 << CQSPI_REG_RD_INSTR_DUMMY_LSB;
686 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
688 /* Set address width */
689 reg = readl(reg_base + CQSPI_REG_SIZE);
690 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
691 reg |= (op->addr.nbytes - 1);
692 writel(reg, reg_base + CQSPI_REG_SIZE);
696 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
697 u8 *rxbuf, loff_t from_addr,
700 struct cqspi_st *cqspi = f_pdata->cqspi;
701 struct device *dev = &cqspi->pdev->dev;
702 void __iomem *reg_base = cqspi->iobase;
703 void __iomem *ahb_base = cqspi->ahb_base;
704 unsigned int remaining = n_rx;
705 unsigned int mod_bytes = n_rx % 4;
706 unsigned int bytes_to_read = 0;
707 u8 *rxbuf_end = rxbuf + n_rx;
710 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
711 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
713 /* Clear all interrupts. */
714 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
717 * On SoCFPGA platform reading the SRAM is slow due to
718 * hardware limitation and causing read interrupt storm to CPU,
719 * so enabling only watermark interrupt to disable all read
720 * interrupts later as we want to run "bytes to read" loop with
721 * all the read interrupts disabled for max performance.
724 if (!cqspi->slow_sram)
725 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
727 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
729 reinit_completion(&cqspi->transfer_complete);
730 writel(CQSPI_REG_INDIRECTRD_START_MASK,
731 reg_base + CQSPI_REG_INDIRECTRD);
733 while (remaining > 0) {
734 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
735 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
739 * Disable all read interrupts until
740 * we are out of "bytes to read"
742 if (cqspi->slow_sram)
743 writel(0x0, reg_base + CQSPI_REG_IRQMASK);
745 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
747 if (ret && bytes_to_read == 0) {
748 dev_err(dev, "Indirect read timeout, no bytes\n");
752 while (bytes_to_read != 0) {
753 unsigned int word_remain = round_down(remaining, 4);
755 bytes_to_read *= cqspi->fifo_width;
756 bytes_to_read = bytes_to_read > remaining ?
757 remaining : bytes_to_read;
758 bytes_to_read = round_down(bytes_to_read, 4);
759 /* Read 4 byte word chunks then single bytes */
761 ioread32_rep(ahb_base, rxbuf,
762 (bytes_to_read / 4));
763 } else if (!word_remain && mod_bytes) {
764 unsigned int temp = ioread32(ahb_base);
766 bytes_to_read = mod_bytes;
767 memcpy(rxbuf, &temp, min((unsigned int)
771 rxbuf += bytes_to_read;
772 remaining -= bytes_to_read;
773 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
777 reinit_completion(&cqspi->transfer_complete);
778 if (cqspi->slow_sram)
779 writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
783 /* Check indirect done status */
784 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
785 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
787 dev_err(dev, "Indirect read completion error (%i)\n", ret);
791 /* Disable interrupt */
792 writel(0, reg_base + CQSPI_REG_IRQMASK);
794 /* Clear indirect completion status */
795 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
800 /* Disable interrupt */
801 writel(0, reg_base + CQSPI_REG_IRQMASK);
803 /* Cancel the indirect read */
804 writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
805 reg_base + CQSPI_REG_INDIRECTRD);
809 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
811 void __iomem *reg_base = cqspi->iobase;
814 reg = readl(reg_base + CQSPI_REG_CONFIG);
817 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
819 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
821 writel(reg, reg_base + CQSPI_REG_CONFIG);
824 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
825 u_char *rxbuf, loff_t from_addr,
828 struct cqspi_st *cqspi = f_pdata->cqspi;
829 struct device *dev = &cqspi->pdev->dev;
830 void __iomem *reg_base = cqspi->iobase;
831 u32 reg, bytes_to_dma;
832 loff_t addr = from_addr;
838 bytes_rem = n_rx % 4;
839 bytes_to_dma = (n_rx - bytes_rem);
844 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
848 cqspi_controller_enable(cqspi, 0);
850 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
851 reg |= CQSPI_REG_CONFIG_DMA_MASK;
852 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
854 cqspi_controller_enable(cqspi, 1);
856 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
857 if (dma_mapping_error(dev, dma_addr)) {
858 dev_err(dev, "dma mapping failed\n");
862 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
863 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
864 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
865 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
867 /* Clear all interrupts. */
868 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
870 /* Enable DMA done interrupt */
871 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
872 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
874 /* Default DMA periph configuration */
875 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
877 /* Configure DMA Dst address */
878 writel(lower_32_bits(dma_addr),
879 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
880 writel(upper_32_bits(dma_addr),
881 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
883 /* Configure DMA Src address */
884 writel(cqspi->trigger_address, reg_base +
885 CQSPI_REG_VERSAL_DMA_SRC_ADDR);
887 /* Set DMA destination size */
888 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
890 /* Set DMA destination control */
891 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
892 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
894 writel(CQSPI_REG_INDIRECTRD_START_MASK,
895 reg_base + CQSPI_REG_INDIRECTRD);
897 reinit_completion(&cqspi->transfer_complete);
899 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
900 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
905 /* Disable DMA interrupt */
906 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
908 /* Clear indirect completion status */
909 writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
910 cqspi->iobase + CQSPI_REG_INDIRECTRD);
911 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
913 cqspi_controller_enable(cqspi, 0);
915 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
916 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
917 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
919 cqspi_controller_enable(cqspi, 1);
921 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
922 PM_OSPI_MUX_SEL_LINEAR);
928 addr += bytes_to_dma;
930 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
939 /* Disable DMA interrupt */
940 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
942 /* Cancel the indirect read */
943 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
944 reg_base + CQSPI_REG_INDIRECTRD);
946 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
948 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
949 reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
950 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
952 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
957 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
958 const struct spi_mem_op *op)
962 struct cqspi_st *cqspi = f_pdata->cqspi;
963 void __iomem *reg_base = cqspi->iobase;
966 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
971 opcode = op->cmd.opcode >> 8;
973 opcode = op->cmd.opcode;
976 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
977 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
978 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
979 writel(reg, reg_base + CQSPI_REG_WR_INSTR);
980 reg = cqspi_calc_rdreg(op);
981 writel(reg, reg_base + CQSPI_REG_RD_INSTR);
984 * SPI NAND flashes require the address of the status register to be
985 * passed in the Read SR command. Also, some SPI NOR flashes like the
986 * cypress Semper flash expect a 4-byte dummy address in the Read SR
987 * command in DTR mode.
989 * But this controller does not support address phase in the Read SR
990 * command when doing auto-HW polling. So, disable write completion
991 * polling on the controller's side. spinand and spi-nor will take
992 * care of polling the status register.
994 if (cqspi->wr_completion) {
995 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
996 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
997 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
999 * DAC mode require auto polling as flash needs to be polled
1000 * for write completion in case of bubble in SPI transaction
1001 * due to slow CPU/DMA master.
1003 cqspi->use_direct_mode_wr = false;
1006 reg = readl(reg_base + CQSPI_REG_SIZE);
1007 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1008 reg |= (op->addr.nbytes - 1);
1009 writel(reg, reg_base + CQSPI_REG_SIZE);
1013 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1014 loff_t to_addr, const u8 *txbuf,
1017 struct cqspi_st *cqspi = f_pdata->cqspi;
1018 struct device *dev = &cqspi->pdev->dev;
1019 void __iomem *reg_base = cqspi->iobase;
1020 unsigned int remaining = n_tx;
1021 unsigned int write_bytes;
1024 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1025 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1027 /* Clear all interrupts. */
1028 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1030 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1032 reinit_completion(&cqspi->transfer_complete);
1033 writel(CQSPI_REG_INDIRECTWR_START_MASK,
1034 reg_base + CQSPI_REG_INDIRECTWR);
1036 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1037 * Controller programming sequence, couple of cycles of
1038 * QSPI_REF_CLK delay is required for the above bit to
1039 * be internally synchronized by the QSPI module. Provide 5
1042 if (cqspi->wr_delay)
1043 ndelay(cqspi->wr_delay);
1046 * If a hazard exists between the APB and AHB interfaces, perform a
1047 * dummy readback from the controller to ensure synchronization.
1049 if (cqspi->apb_ahb_hazard)
1050 readl(reg_base + CQSPI_REG_INDIRECTWR);
1052 while (remaining > 0) {
1053 size_t write_words, mod_bytes;
1055 write_bytes = remaining;
1056 write_words = write_bytes / 4;
1057 mod_bytes = write_bytes % 4;
1058 /* Write 4 bytes at a time then single bytes. */
1060 iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1061 txbuf += (write_words * 4);
1064 unsigned int temp = 0xFFFFFFFF;
1066 memcpy(&temp, txbuf, mod_bytes);
1067 iowrite32(temp, cqspi->ahb_base);
1071 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1072 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1073 dev_err(dev, "Indirect write timeout\n");
1078 remaining -= write_bytes;
1081 reinit_completion(&cqspi->transfer_complete);
1084 /* Check indirect done status */
1085 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1086 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1088 dev_err(dev, "Indirect write completion error (%i)\n", ret);
1092 /* Disable interrupt. */
1093 writel(0, reg_base + CQSPI_REG_IRQMASK);
1095 /* Clear indirect completion status */
1096 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1098 cqspi_wait_idle(cqspi);
1103 /* Disable interrupt. */
1104 writel(0, reg_base + CQSPI_REG_IRQMASK);
1106 /* Cancel the indirect write */
1107 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1108 reg_base + CQSPI_REG_INDIRECTWR);
1112 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1114 struct cqspi_st *cqspi = f_pdata->cqspi;
1115 void __iomem *reg_base = cqspi->iobase;
1116 unsigned int chip_select = f_pdata->cs;
1119 reg = readl(reg_base + CQSPI_REG_CONFIG);
1120 if (cqspi->is_decoded_cs) {
1121 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1123 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1125 /* Convert CS if without decoder.
1131 chip_select = 0xF & ~(1 << chip_select);
1134 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1135 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1136 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1137 << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1138 writel(reg, reg_base + CQSPI_REG_CONFIG);
1141 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1142 const unsigned int ns_val)
1146 ticks = ref_clk_hz / 1000; /* kHz */
1147 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1152 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1154 struct cqspi_st *cqspi = f_pdata->cqspi;
1155 void __iomem *iobase = cqspi->iobase;
1156 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1157 unsigned int tshsl, tchsh, tslch, tsd2d;
1161 /* calculate the number of ref ticks for one sclk tick */
1162 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1164 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1165 /* this particular value must be at least one sclk */
1169 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1170 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1171 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1173 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1174 << CQSPI_REG_DELAY_TSHSL_LSB;
1175 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1176 << CQSPI_REG_DELAY_TCHSH_LSB;
1177 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1178 << CQSPI_REG_DELAY_TSLCH_LSB;
1179 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1180 << CQSPI_REG_DELAY_TSD2D_LSB;
1181 writel(reg, iobase + CQSPI_REG_DELAY);
1184 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1186 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1187 void __iomem *reg_base = cqspi->iobase;
1190 /* Recalculate the baudrate divisor based on QSPI specification. */
1191 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1193 /* Maximum baud divisor */
1194 if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1195 div = CQSPI_REG_CONFIG_BAUD_MASK;
1196 dev_warn(&cqspi->pdev->dev,
1197 "Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1198 cqspi->sclk, ref_clk_hz/((div+1)*2));
1201 reg = readl(reg_base + CQSPI_REG_CONFIG);
1202 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1203 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1204 writel(reg, reg_base + CQSPI_REG_CONFIG);
1207 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1209 const unsigned int delay)
1211 void __iomem *reg_base = cqspi->iobase;
1214 reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1217 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1219 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1221 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1222 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1224 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1225 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1227 writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1230 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233 struct cqspi_st *cqspi = f_pdata->cqspi;
1234 int switch_cs = (cqspi->current_cs != f_pdata->cs);
1235 int switch_ck = (cqspi->sclk != sclk);
1237 if (switch_cs || switch_ck)
1238 cqspi_controller_enable(cqspi, 0);
1240 /* Switch chip select. */
1242 cqspi->current_cs = f_pdata->cs;
1243 cqspi_chipselect(f_pdata);
1246 /* Setup baudrate divisor and delays */
1249 cqspi_config_baudrate_div(cqspi);
1250 cqspi_delay(f_pdata);
1251 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1252 f_pdata->read_delay);
1255 if (switch_cs || switch_ck)
1256 cqspi_controller_enable(cqspi, 1);
1259 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1260 const struct spi_mem_op *op)
1262 struct cqspi_st *cqspi = f_pdata->cqspi;
1263 loff_t to = op->addr.val;
1264 size_t len = op->data.nbytes;
1265 const u_char *buf = op->data.buf.out;
1268 ret = cqspi_write_setup(f_pdata, op);
1273 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1274 * address (all 0s) with the read status register command in DTR mode.
1275 * But this controller does not support sending dummy address bytes to
1276 * the flash when it is polling the write completion register in DTR
1277 * mode. So, we can not use direct mode when in DTR mode for writing
1280 if (!op->cmd.dtr && cqspi->use_direct_mode &&
1281 cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1282 memcpy_toio(cqspi->ahb_base + to, buf, len);
1283 return cqspi_wait_idle(cqspi);
1286 return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1289 static void cqspi_rx_dma_callback(void *param)
1291 struct cqspi_st *cqspi = param;
1293 complete(&cqspi->rx_dma_complete);
1296 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1297 u_char *buf, loff_t from, size_t len)
1299 struct cqspi_st *cqspi = f_pdata->cqspi;
1300 struct device *dev = &cqspi->pdev->dev;
1301 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1302 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1304 struct dma_async_tx_descriptor *tx;
1305 dma_cookie_t cookie;
1307 struct device *ddev;
1309 if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1310 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1314 ddev = cqspi->rx_chan->device->dev;
1315 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1316 if (dma_mapping_error(ddev, dma_dst)) {
1317 dev_err(dev, "dma mapping failed\n");
1320 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1323 dev_err(dev, "device_prep_dma_memcpy error\n");
1328 tx->callback = cqspi_rx_dma_callback;
1329 tx->callback_param = cqspi;
1330 cookie = tx->tx_submit(tx);
1331 reinit_completion(&cqspi->rx_dma_complete);
1333 ret = dma_submit_error(cookie);
1335 dev_err(dev, "dma_submit_error %d\n", cookie);
1340 dma_async_issue_pending(cqspi->rx_chan);
1341 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1342 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1343 dmaengine_terminate_sync(cqspi->rx_chan);
1344 dev_err(dev, "DMA wait_for_completion_timeout\n");
1350 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1355 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1356 const struct spi_mem_op *op)
1358 struct cqspi_st *cqspi = f_pdata->cqspi;
1359 struct device *dev = &cqspi->pdev->dev;
1360 const struct cqspi_driver_platdata *ddata;
1361 loff_t from = op->addr.val;
1362 size_t len = op->data.nbytes;
1363 u_char *buf = op->data.buf.in;
1364 u64 dma_align = (u64)(uintptr_t)buf;
1367 ddata = of_device_get_match_data(dev);
1369 ret = cqspi_read_setup(f_pdata, op);
1373 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1374 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1376 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1377 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1378 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1380 return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1383 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1385 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1386 struct cqspi_flash_pdata *f_pdata;
1388 f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1389 cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1391 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1393 * Performing reads in DAC mode forces to read minimum 4 bytes
1394 * which is unsupported on some flash devices during register
1395 * reads, prefer STIG mode for such small reads.
1397 if (!op->addr.nbytes ||
1398 op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1399 return cqspi_command_read(f_pdata, op);
1401 return cqspi_read(f_pdata, op);
1404 if (!op->addr.nbytes || !op->data.buf.out)
1405 return cqspi_command_write(f_pdata, op);
1407 return cqspi_write(f_pdata, op);
1410 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1414 struct device *dev = &cqspi->pdev->dev;
1416 ret = pm_runtime_resume_and_get(dev);
1418 dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1422 ret = cqspi_mem_process(mem, op);
1424 pm_runtime_mark_last_busy(dev);
1425 pm_runtime_put_autosuspend(dev);
1428 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1433 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1434 const struct spi_mem_op *op)
1436 bool all_true, all_false;
1439 * op->dummy.dtr is required for converting nbytes into ncycles.
1440 * Also, don't check the dtr field of the op phase having zero nbytes.
1442 all_true = op->cmd.dtr &&
1443 (!op->addr.nbytes || op->addr.dtr) &&
1444 (!op->dummy.nbytes || op->dummy.dtr) &&
1445 (!op->data.nbytes || op->data.dtr);
1447 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1451 /* Right now we only support 8-8-8 DTR mode. */
1452 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1454 if (op->addr.nbytes && op->addr.buswidth != 8)
1456 if (op->data.nbytes && op->data.buswidth != 8)
1458 } else if (!all_false) {
1459 /* Mixed DTR modes are not supported. */
1463 return spi_mem_default_supports_op(mem, op);
1466 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1467 struct cqspi_flash_pdata *f_pdata,
1468 struct device_node *np)
1470 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1471 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1475 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1476 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1480 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1481 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1485 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1486 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1490 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1491 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1495 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1496 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1503 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1505 struct device *dev = &cqspi->pdev->dev;
1506 struct device_node *np = dev->of_node;
1509 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1511 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1512 dev_err(dev, "couldn't determine fifo-depth\n");
1516 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1517 dev_err(dev, "couldn't determine fifo-width\n");
1521 if (of_property_read_u32(np, "cdns,trigger-address",
1522 &cqspi->trigger_address)) {
1523 dev_err(dev, "couldn't determine trigger-address\n");
1527 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1528 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1530 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1532 if (!of_property_read_u32_array(np, "power-domains", id,
1534 cqspi->pd_dev_id = id[1];
1539 static void cqspi_controller_init(struct cqspi_st *cqspi)
1543 cqspi_controller_enable(cqspi, 0);
1545 /* Configure the remap address register, no remap */
1546 writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1548 /* Disable all interrupts. */
1549 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1551 /* Configure the SRAM split to 1:1 . */
1552 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1554 /* Load indirect trigger address. */
1555 writel(cqspi->trigger_address,
1556 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1558 /* Program read watermark -- 1/2 of the FIFO. */
1559 writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1560 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1561 /* Program write watermark -- 1/8 of the FIFO. */
1562 writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1563 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1565 /* Disable direct access controller */
1566 if (!cqspi->use_direct_mode) {
1567 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1568 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1569 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1572 /* Enable DMA interface */
1573 if (cqspi->use_dma_read) {
1574 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1575 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1576 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1579 cqspi_controller_enable(cqspi, 1);
1582 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1584 dma_cap_mask_t mask;
1587 dma_cap_set(DMA_MEMCPY, mask);
1589 cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1590 if (IS_ERR(cqspi->rx_chan)) {
1591 int ret = PTR_ERR(cqspi->rx_chan);
1593 cqspi->rx_chan = NULL;
1594 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1596 init_completion(&cqspi->rx_dma_complete);
1601 static const char *cqspi_get_name(struct spi_mem *mem)
1603 struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1604 struct device *dev = &cqspi->pdev->dev;
1606 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1607 spi_get_chipselect(mem->spi, 0));
1610 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1611 .exec_op = cqspi_exec_mem_op,
1612 .get_name = cqspi_get_name,
1613 .supports_op = cqspi_supports_mem_op,
1616 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1620 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1622 struct platform_device *pdev = cqspi->pdev;
1623 struct device *dev = &pdev->dev;
1624 struct device_node *np = dev->of_node;
1625 struct cqspi_flash_pdata *f_pdata;
1629 /* Get flash device data */
1630 for_each_available_child_of_node(dev->of_node, np) {
1631 ret = of_property_read_u32(np, "reg", &cs);
1633 dev_err(dev, "Couldn't determine chip select.\n");
1638 if (cs >= CQSPI_MAX_CHIPSELECT) {
1639 dev_err(dev, "Chip select %d out of range.\n", cs);
1644 f_pdata = &cqspi->f_pdata[cs];
1645 f_pdata->cqspi = cqspi;
1648 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1658 static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1660 static struct clk_bulk_data qspiclk[] = {
1667 ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1669 dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1673 cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1674 cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1676 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1678 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1682 ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1684 dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1685 goto disable_apb_clk;
1688 cqspi->is_jh7110 = true;
1693 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1698 static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1700 clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1701 clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1703 static int cqspi_probe(struct platform_device *pdev)
1705 const struct cqspi_driver_platdata *ddata;
1706 struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1707 struct device *dev = &pdev->dev;
1708 struct spi_controller *host;
1709 struct resource *res_ahb;
1710 struct cqspi_st *cqspi;
1714 host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1716 dev_err(&pdev->dev, "devm_spi_alloc_host failed\n");
1719 host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1720 host->mem_ops = &cqspi_mem_ops;
1721 host->mem_caps = &cqspi_mem_caps;
1722 host->dev.of_node = pdev->dev.of_node;
1724 cqspi = spi_controller_get_devdata(host);
1728 cqspi->is_jh7110 = false;
1729 platform_set_drvdata(pdev, cqspi);
1731 /* Obtain configuration from OF. */
1732 ret = cqspi_of_get_pdata(cqspi);
1734 dev_err(dev, "Cannot get mandatory OF data.\n");
1738 /* Obtain QSPI clock. */
1739 cqspi->clk = devm_clk_get(dev, NULL);
1740 if (IS_ERR(cqspi->clk)) {
1741 dev_err(dev, "Cannot claim QSPI clock.\n");
1742 ret = PTR_ERR(cqspi->clk);
1746 /* Obtain and remap controller address. */
1747 cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1748 if (IS_ERR(cqspi->iobase)) {
1749 dev_err(dev, "Cannot remap controller address.\n");
1750 ret = PTR_ERR(cqspi->iobase);
1754 /* Obtain and remap AHB address. */
1755 cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1756 if (IS_ERR(cqspi->ahb_base)) {
1757 dev_err(dev, "Cannot remap AHB address.\n");
1758 ret = PTR_ERR(cqspi->ahb_base);
1761 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1762 cqspi->ahb_size = resource_size(res_ahb);
1764 init_completion(&cqspi->transfer_complete);
1766 /* Obtain IRQ line. */
1767 irq = platform_get_irq(pdev, 0);
1771 ret = pm_runtime_set_active(dev);
1776 ret = clk_prepare_enable(cqspi->clk);
1778 dev_err(dev, "Cannot enable QSPI clock.\n");
1779 goto probe_clk_failed;
1782 /* Obtain QSPI reset control */
1783 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1785 ret = PTR_ERR(rstc);
1786 dev_err(dev, "Cannot get QSPI reset.\n");
1787 goto probe_reset_failed;
1790 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1791 if (IS_ERR(rstc_ocp)) {
1792 ret = PTR_ERR(rstc_ocp);
1793 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1794 goto probe_reset_failed;
1797 if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1798 rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1799 if (IS_ERR(rstc_ref)) {
1800 ret = PTR_ERR(rstc_ref);
1801 dev_err(dev, "Cannot get QSPI REF reset.\n");
1802 goto probe_reset_failed;
1804 reset_control_assert(rstc_ref);
1805 reset_control_deassert(rstc_ref);
1808 reset_control_assert(rstc);
1809 reset_control_deassert(rstc);
1811 reset_control_assert(rstc_ocp);
1812 reset_control_deassert(rstc_ocp);
1814 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1815 host->max_speed_hz = cqspi->master_ref_clk_hz;
1817 /* write completion is supported by default */
1818 cqspi->wr_completion = true;
1820 ddata = of_device_get_match_data(dev);
1822 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1823 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1824 cqspi->master_ref_clk_hz);
1825 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1826 host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1827 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1828 cqspi->use_direct_mode = true;
1829 cqspi->use_direct_mode_wr = true;
1831 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1832 cqspi->use_dma_read = true;
1833 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1834 cqspi->wr_completion = false;
1835 if (ddata->quirks & CQSPI_SLOW_SRAM)
1836 cqspi->slow_sram = true;
1837 if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1838 cqspi->apb_ahb_hazard = true;
1840 if (ddata->jh7110_clk_init) {
1841 ret = cqspi_jh7110_clk_init(pdev, cqspi);
1843 goto probe_reset_failed;
1846 if (of_device_is_compatible(pdev->dev.of_node,
1847 "xlnx,versal-ospi-1.0")) {
1848 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1850 goto probe_reset_failed;
1854 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1857 dev_err(dev, "Cannot request IRQ.\n");
1858 goto probe_reset_failed;
1861 cqspi_wait_idle(cqspi);
1862 cqspi_controller_init(cqspi);
1863 cqspi->current_cs = -1;
1866 host->num_chipselect = cqspi->num_chipselect;
1868 ret = cqspi_setup_flash(cqspi);
1870 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1871 goto probe_setup_failed;
1874 if (cqspi->use_direct_mode) {
1875 ret = cqspi_request_mmap_dma(cqspi);
1876 if (ret == -EPROBE_DEFER)
1877 goto probe_setup_failed;
1880 ret = devm_pm_runtime_enable(dev);
1883 dma_release_channel(cqspi->rx_chan);
1884 goto probe_setup_failed;
1887 pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1888 pm_runtime_use_autosuspend(dev);
1889 pm_runtime_get_noresume(dev);
1891 ret = spi_register_controller(host);
1893 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1894 goto probe_setup_failed;
1897 pm_runtime_mark_last_busy(dev);
1898 pm_runtime_put_autosuspend(dev);
1902 cqspi_controller_enable(cqspi, 0);
1904 if (cqspi->is_jh7110)
1905 cqspi_jh7110_disable_clk(pdev, cqspi);
1906 clk_disable_unprepare(cqspi->clk);
1911 static void cqspi_remove(struct platform_device *pdev)
1913 struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1915 spi_unregister_controller(cqspi->host);
1916 cqspi_controller_enable(cqspi, 0);
1919 dma_release_channel(cqspi->rx_chan);
1921 clk_disable_unprepare(cqspi->clk);
1923 if (cqspi->is_jh7110)
1924 cqspi_jh7110_disable_clk(pdev, cqspi);
1926 pm_runtime_put_sync(&pdev->dev);
1927 pm_runtime_disable(&pdev->dev);
1930 static int cqspi_suspend(struct device *dev)
1932 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1933 struct spi_controller *host = dev_get_drvdata(dev);
1936 ret = spi_controller_suspend(host);
1937 cqspi_controller_enable(cqspi, 0);
1939 clk_disable_unprepare(cqspi->clk);
1944 static int cqspi_resume(struct device *dev)
1946 struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947 struct spi_controller *host = dev_get_drvdata(dev);
1949 clk_prepare_enable(cqspi->clk);
1950 cqspi_wait_idle(cqspi);
1951 cqspi_controller_init(cqspi);
1953 cqspi->current_cs = -1;
1956 return spi_controller_resume(host);
1959 static DEFINE_RUNTIME_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend,
1960 cqspi_resume, NULL);
1962 static const struct cqspi_driver_platdata cdns_qspi = {
1963 .quirks = CQSPI_DISABLE_DAC_MODE,
1966 static const struct cqspi_driver_platdata k2g_qspi = {
1967 .quirks = CQSPI_NEEDS_WR_DELAY,
1970 static const struct cqspi_driver_platdata am654_ospi = {
1971 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1972 .quirks = CQSPI_NEEDS_WR_DELAY,
1975 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1976 .quirks = CQSPI_DISABLE_DAC_MODE,
1979 static const struct cqspi_driver_platdata socfpga_qspi = {
1980 .quirks = CQSPI_DISABLE_DAC_MODE
1981 | CQSPI_NO_SUPPORT_WR_COMPLETION
1985 static const struct cqspi_driver_platdata versal_ospi = {
1986 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1987 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1988 .indirect_read_dma = cqspi_versal_indirect_read_dma,
1989 .get_dma_status = cqspi_get_versal_dma_status,
1992 static const struct cqspi_driver_platdata jh7110_qspi = {
1993 .quirks = CQSPI_DISABLE_DAC_MODE,
1994 .jh7110_clk_init = cqspi_jh7110_clk_init,
1997 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1998 .quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2001 static const struct of_device_id cqspi_dt_ids[] = {
2003 .compatible = "cdns,qspi-nor",
2007 .compatible = "ti,k2g-qspi",
2011 .compatible = "ti,am654-ospi",
2012 .data = &am654_ospi,
2015 .compatible = "intel,lgm-qspi",
2016 .data = &intel_lgm_qspi,
2019 .compatible = "xlnx,versal-ospi-1.0",
2020 .data = &versal_ospi,
2023 .compatible = "intel,socfpga-qspi",
2024 .data = &socfpga_qspi,
2027 .compatible = "starfive,jh7110-qspi",
2028 .data = &jh7110_qspi,
2031 .compatible = "amd,pensando-elba-qspi",
2032 .data = &pensando_cdns_qspi,
2034 { /* end of table */ }
2037 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2039 static struct platform_driver cqspi_platform_driver = {
2040 .probe = cqspi_probe,
2041 .remove_new = cqspi_remove,
2044 .pm = pm_ptr(&cqspi_dev_pm_ops),
2045 .of_match_table = cqspi_dt_ids,
2049 module_platform_driver(cqspi_platform_driver);
2051 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2052 MODULE_LICENSE("GPL v2");
2053 MODULE_ALIAS("platform:" CQSPI_NAME);