1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
23 static kmem_zone_t *xfs_buf_zone;
30 * b_sema (caller holds)
34 * b_sema (caller holds)
43 * xfs_buftarg_drain_rele
45 * b_lock (trylock due to inversion)
49 * b_lock (trylock due to inversion)
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
79 return (bp->b_page_count * PAGE_SIZE);
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
99 if (bp->b_flags & XBF_NO_IOACCT)
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
108 spin_unlock(&bp->b_lock);
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
116 __xfs_buf_ioacct_dec(
119 lockdep_assert_held(&bp->b_lock);
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
142 * This prevents build-up of stale buffers on the LRU.
148 ASSERT(xfs_buf_islocked(bp));
150 bp->b_flags |= XBF_STALE;
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
157 bp->b_flags &= ~_XBF_DELWRI_Q;
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
198 * Frees b_pages if it was allocated.
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
223 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 INIT_LIST_HEAD(&bp->b_li_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 bp->b_target = target;
240 bp->b_mount = target->bt_mount;
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 error = xfs_buf_get_maps(bp, nmaps);
250 kmem_cache_free(xfs_buf_zone, bp);
254 bp->b_bn = map[0].bm_bn;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
265 XFS_STATS_INC(bp->b_mount, xb_create);
266 trace_xfs_buf_init(bp, _RET_IP_);
278 ASSERT(bp->b_flags & _XBF_PAGES);
280 if (xfs_buf_is_vmapped(bp))
281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
283 for (i = 0; i < bp->b_page_count; i++) {
285 __free_page(bp->b_pages[i]);
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
290 if (bp->b_pages != bp->b_page_array)
291 kmem_free(bp->b_pages);
293 bp->b_flags &= ~_XBF_PAGES;
300 trace_xfs_buf_free(bp, _RET_IP_);
302 ASSERT(list_empty(&bp->b_lru));
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
307 kmem_free(bp->b_addr);
309 xfs_buf_free_maps(bp);
310 kmem_cache_free(xfs_buf_zone, bp);
316 xfs_buf_flags_t flags)
318 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
319 xfs_km_flags_t kmflag_mask = KM_NOFS;
320 size_t size = BBTOB(bp->b_length);
322 /* Assure zeroed buffer for non-read cases. */
323 if (!(flags & XBF_READ))
324 kmflag_mask |= KM_ZERO;
326 bp->b_addr = kmem_alloc_io(size, align_mask, kmflag_mask);
330 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
331 ((unsigned long)bp->b_addr & PAGE_MASK)) {
332 /* b_addr spans two pages - use alloc_page instead */
333 kmem_free(bp->b_addr);
337 bp->b_offset = offset_in_page(bp->b_addr);
338 bp->b_pages = bp->b_page_array;
339 bp->b_pages[0] = kmem_to_page(bp->b_addr);
340 bp->b_page_count = 1;
341 bp->b_flags |= _XBF_KMEM;
348 xfs_buf_flags_t flags)
350 gfp_t gfp_mask = __GFP_NOWARN;
353 if (flags & XBF_READ_AHEAD)
354 gfp_mask |= __GFP_NORETRY;
356 gfp_mask |= GFP_NOFS;
358 /* Make sure that we have a page list */
359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 if (bp->b_page_count <= XB_PAGES) {
361 bp->b_pages = bp->b_page_array;
363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
368 bp->b_flags |= _XBF_PAGES;
370 /* Assure zeroed buffer for non-read cases. */
371 if (!(flags & XBF_READ))
372 gfp_mask |= __GFP_ZERO;
375 * Bulk filling of pages can take multiple calls. Not filling the entire
376 * array is not an allocation failure, so don't back off if we get at
377 * least one extra page.
382 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
384 if (filled == bp->b_page_count) {
385 XFS_STATS_INC(bp->b_mount, xb_page_found);
392 if (flags & XBF_READ_AHEAD) {
393 xfs_buf_free_pages(bp);
397 XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 congestion_wait(BLK_RW_ASYNC, HZ / 50);
404 * Map buffer into kernel address-space if necessary.
411 ASSERT(bp->b_flags & _XBF_PAGES);
412 if (bp->b_page_count == 1) {
413 /* A single page buffer is always mappable */
414 bp->b_addr = page_address(bp->b_pages[0]);
415 } else if (flags & XBF_UNMAPPED) {
422 * vm_map_ram() will allocate auxiliary structures (e.g.
423 * pagetables) with GFP_KERNEL, yet we are likely to be under
424 * GFP_NOFS context here. Hence we need to tell memory reclaim
425 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
426 * memory reclaim re-entering the filesystem here and
427 * potentially deadlocking.
429 nofs_flag = memalloc_nofs_save();
431 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
436 } while (retried++ <= 1);
437 memalloc_nofs_restore(nofs_flag);
447 * Finding and Reading Buffers
451 struct rhashtable_compare_arg *arg,
454 const struct xfs_buf_map *map = arg->key;
455 const struct xfs_buf *bp = obj;
458 * The key hashing in the lookup path depends on the key being the
459 * first element of the compare_arg, make sure to assert this.
461 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
463 if (bp->b_bn != map->bm_bn)
466 if (unlikely(bp->b_length != map->bm_len)) {
468 * found a block number match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching for an exact match.
475 ASSERT(bp->b_flags & XBF_STALE);
481 static const struct rhashtable_params xfs_buf_hash_params = {
482 .min_size = 32, /* empty AGs have minimal footprint */
484 .key_len = sizeof(xfs_daddr_t),
485 .key_offset = offsetof(struct xfs_buf, b_bn),
486 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
487 .automatic_shrinking = true,
488 .obj_cmpfn = _xfs_buf_obj_cmp,
493 struct xfs_perag *pag)
495 spin_lock_init(&pag->pag_buf_lock);
496 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
500 xfs_buf_hash_destroy(
501 struct xfs_perag *pag)
503 rhashtable_destroy(&pag->pag_buf_hash);
507 * Look up a buffer in the buffer cache and return it referenced and locked
510 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
513 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
514 * -EAGAIN if we fail to lock it.
517 * -EFSCORRUPTED if have been supplied with an invalid address
518 * -EAGAIN on trylock failure
519 * -ENOENT if we fail to find a match and @new_bp was NULL
521 * - @new_bp if we inserted it into the cache
522 * - the buffer we found and locked.
526 struct xfs_buftarg *btp,
527 struct xfs_buf_map *map,
529 xfs_buf_flags_t flags,
530 struct xfs_buf *new_bp,
531 struct xfs_buf **found_bp)
533 struct xfs_perag *pag;
535 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
541 for (i = 0; i < nmaps; i++)
542 cmap.bm_len += map[i].bm_len;
544 /* Check for IOs smaller than the sector size / not sector aligned */
545 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
546 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
549 * Corrupted block numbers can get through to here, unfortunately, so we
550 * have to check that the buffer falls within the filesystem bounds.
552 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
553 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
554 xfs_alert(btp->bt_mount,
555 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
556 __func__, cmap.bm_bn, eofs);
558 return -EFSCORRUPTED;
561 pag = xfs_perag_get(btp->bt_mount,
562 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
564 spin_lock(&pag->pag_buf_lock);
565 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
566 xfs_buf_hash_params);
568 atomic_inc(&bp->b_hold);
574 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
575 spin_unlock(&pag->pag_buf_lock);
580 /* the buffer keeps the perag reference until it is freed */
582 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
583 xfs_buf_hash_params);
584 spin_unlock(&pag->pag_buf_lock);
589 spin_unlock(&pag->pag_buf_lock);
592 if (!xfs_buf_trylock(bp)) {
593 if (flags & XBF_TRYLOCK) {
595 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
599 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
603 * if the buffer is stale, clear all the external state associated with
604 * it. We need to keep flags such as how we allocated the buffer memory
607 if (bp->b_flags & XBF_STALE) {
608 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
609 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
613 trace_xfs_buf_find(bp, flags, _RET_IP_);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
621 struct xfs_buftarg *target,
624 xfs_buf_flags_t flags)
628 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
630 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
637 * Assembles a buffer covering the specified range. The code is optimised for
638 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
639 * more hits than misses.
643 struct xfs_buftarg *target,
644 struct xfs_buf_map *map,
646 xfs_buf_flags_t flags,
647 struct xfs_buf **bpp)
650 struct xfs_buf *new_bp;
654 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
657 if (error != -ENOENT)
660 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
665 * For buffers that fit entirely within a single page, first attempt to
666 * allocate the memory from the heap to minimise memory usage. If we
667 * can't get heap memory for these small buffers, we fall back to using
668 * the page allocator.
670 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
671 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
672 error = xfs_buf_alloc_pages(new_bp, flags);
677 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
682 xfs_buf_free(new_bp);
686 error = _xfs_buf_map_pages(bp, flags);
687 if (unlikely(error)) {
688 xfs_warn_ratelimited(target->bt_mount,
689 "%s: failed to map %u pages", __func__,
697 * Clear b_error if this is a lookup from a caller that doesn't expect
698 * valid data to be found in the buffer.
700 if (!(flags & XBF_READ))
701 xfs_buf_ioerror(bp, 0);
703 XFS_STATS_INC(target->bt_mount, xb_get);
704 trace_xfs_buf_get(bp, flags, _RET_IP_);
708 xfs_buf_free(new_bp);
715 xfs_buf_flags_t flags)
717 ASSERT(!(flags & XBF_WRITE));
718 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
720 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
721 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
723 return xfs_buf_submit(bp);
727 * Reverify a buffer found in cache without an attached ->b_ops.
729 * If the caller passed an ops structure and the buffer doesn't have ops
730 * assigned, set the ops and use it to verify the contents. If verification
731 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
732 * already in XBF_DONE state on entry.
734 * Under normal operations, every in-core buffer is verified on read I/O
735 * completion. There are two scenarios that can lead to in-core buffers without
736 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
737 * filesystem, though these buffers are purged at the end of recovery. The
738 * other is online repair, which intentionally reads with a NULL buffer ops to
739 * run several verifiers across an in-core buffer in order to establish buffer
740 * type. If repair can't establish that, the buffer will be left in memory
741 * with NULL buffer ops.
746 const struct xfs_buf_ops *ops)
748 ASSERT(bp->b_flags & XBF_DONE);
749 ASSERT(bp->b_error == 0);
751 if (!ops || bp->b_ops)
755 bp->b_ops->verify_read(bp);
757 bp->b_flags &= ~XBF_DONE;
763 struct xfs_buftarg *target,
764 struct xfs_buf_map *map,
766 xfs_buf_flags_t flags,
767 struct xfs_buf **bpp,
768 const struct xfs_buf_ops *ops,
777 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
781 trace_xfs_buf_read(bp, flags, _RET_IP_);
783 if (!(bp->b_flags & XBF_DONE)) {
784 /* Initiate the buffer read and wait. */
785 XFS_STATS_INC(target->bt_mount, xb_get_read);
787 error = _xfs_buf_read(bp, flags);
789 /* Readahead iodone already dropped the buffer, so exit. */
790 if (flags & XBF_ASYNC)
793 /* Buffer already read; all we need to do is check it. */
794 error = xfs_buf_reverify(bp, ops);
796 /* Readahead already finished; drop the buffer and exit. */
797 if (flags & XBF_ASYNC) {
802 /* We do not want read in the flags */
803 bp->b_flags &= ~XBF_READ;
804 ASSERT(bp->b_ops != NULL || ops == NULL);
808 * If we've had a read error, then the contents of the buffer are
809 * invalid and should not be used. To ensure that a followup read tries
810 * to pull the buffer from disk again, we clear the XBF_DONE flag and
811 * mark the buffer stale. This ensures that anyone who has a current
812 * reference to the buffer will interpret it's contents correctly and
813 * future cache lookups will also treat it as an empty, uninitialised
817 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
818 xfs_buf_ioerror_alert(bp, fa);
820 bp->b_flags &= ~XBF_DONE;
824 /* bad CRC means corrupted metadata */
825 if (error == -EFSBADCRC)
826 error = -EFSCORRUPTED;
835 * If we are not low on memory then do the readahead in a deadlock
839 xfs_buf_readahead_map(
840 struct xfs_buftarg *target,
841 struct xfs_buf_map *map,
843 const struct xfs_buf_ops *ops)
847 if (bdi_read_congested(target->bt_bdev->bd_disk->bdi))
850 xfs_buf_read_map(target, map, nmaps,
851 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
856 * Read an uncached buffer from disk. Allocates and returns a locked
857 * buffer containing the disk contents or nothing.
860 xfs_buf_read_uncached(
861 struct xfs_buftarg *target,
865 struct xfs_buf **bpp,
866 const struct xfs_buf_ops *ops)
873 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
877 /* set up the buffer for a read IO */
878 ASSERT(bp->b_map_count == 1);
879 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
880 bp->b_maps[0].bm_bn = daddr;
881 bp->b_flags |= XBF_READ;
896 xfs_buf_get_uncached(
897 struct xfs_buftarg *target,
900 struct xfs_buf **bpp)
904 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
908 /* flags might contain irrelevant bits, pass only what we care about */
909 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
913 error = xfs_buf_alloc_pages(bp, flags);
917 error = _xfs_buf_map_pages(bp, 0);
918 if (unlikely(error)) {
919 xfs_warn(target->bt_mount,
920 "%s: failed to map pages", __func__);
924 trace_xfs_buf_get_uncached(bp, _RET_IP_);
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
954 struct xfs_perag *pag = bp->b_pag;
956 bool freebuf = false;
958 trace_xfs_buf_rele(bp, _RET_IP_);
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
969 ASSERT(atomic_read(&bp->b_hold) > 0);
972 * We grab the b_lock here first to serialise racing xfs_buf_rele()
973 * calls. The pag_buf_lock being taken on the last reference only
974 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
975 * to last reference we drop here is not serialised against the last
976 * reference until we take bp->b_lock. Hence if we don't grab b_lock
977 * first, the last "release" reference can win the race to the lock and
978 * free the buffer before the second-to-last reference is processed,
979 * leading to a use-after-free scenario.
981 spin_lock(&bp->b_lock);
982 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
985 * Drop the in-flight state if the buffer is already on the LRU
986 * and it holds the only reference. This is racy because we
987 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
988 * ensures the decrement occurs only once per-buf.
990 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
991 __xfs_buf_ioacct_dec(bp);
995 /* the last reference has been dropped ... */
996 __xfs_buf_ioacct_dec(bp);
997 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
999 * If the buffer is added to the LRU take a new reference to the
1000 * buffer for the LRU and clear the (now stale) dispose list
1003 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1004 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1005 atomic_inc(&bp->b_hold);
1007 spin_unlock(&pag->pag_buf_lock);
1010 * most of the time buffers will already be removed from the
1011 * LRU, so optimise that case by checking for the
1012 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1013 * was on was the disposal list
1015 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1016 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1018 ASSERT(list_empty(&bp->b_lru));
1021 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1022 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1023 xfs_buf_hash_params);
1024 spin_unlock(&pag->pag_buf_lock);
1030 spin_unlock(&bp->b_lock);
1038 * Lock a buffer object, if it is not already locked.
1040 * If we come across a stale, pinned, locked buffer, we know that we are
1041 * being asked to lock a buffer that has been reallocated. Because it is
1042 * pinned, we know that the log has not been pushed to disk and hence it
1043 * will still be locked. Rather than continuing to have trylock attempts
1044 * fail until someone else pushes the log, push it ourselves before
1045 * returning. This means that the xfsaild will not get stuck trying
1046 * to push on stale inode buffers.
1054 locked = down_trylock(&bp->b_sema) == 0;
1056 trace_xfs_buf_trylock(bp, _RET_IP_);
1058 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1063 * Lock a buffer object.
1065 * If we come across a stale, pinned, locked buffer, we know that we
1066 * are being asked to lock a buffer that has been reallocated. Because
1067 * it is pinned, we know that the log has not been pushed to disk and
1068 * hence it will still be locked. Rather than sleeping until someone
1069 * else pushes the log, push it ourselves before trying to get the lock.
1075 trace_xfs_buf_lock(bp, _RET_IP_);
1077 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1078 xfs_log_force(bp->b_mount, 0);
1081 trace_xfs_buf_lock_done(bp, _RET_IP_);
1088 ASSERT(xfs_buf_islocked(bp));
1091 trace_xfs_buf_unlock(bp, _RET_IP_);
1098 DECLARE_WAITQUEUE (wait, current);
1100 if (atomic_read(&bp->b_pin_count) == 0)
1103 add_wait_queue(&bp->b_waiters, &wait);
1105 set_current_state(TASK_UNINTERRUPTIBLE);
1106 if (atomic_read(&bp->b_pin_count) == 0)
1110 remove_wait_queue(&bp->b_waiters, &wait);
1111 set_current_state(TASK_RUNNING);
1115 xfs_buf_ioerror_alert_ratelimited(
1118 static unsigned long lasttime;
1119 static struct xfs_buftarg *lasttarg;
1121 if (bp->b_target != lasttarg ||
1122 time_after(jiffies, (lasttime + 5*HZ))) {
1124 xfs_buf_ioerror_alert(bp, __this_address);
1126 lasttarg = bp->b_target;
1130 * Account for this latest trip around the retry handler, and decide if
1131 * we've failed enough times to constitute a permanent failure.
1134 xfs_buf_ioerror_permanent(
1136 struct xfs_error_cfg *cfg)
1138 struct xfs_mount *mp = bp->b_mount;
1140 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1141 ++bp->b_retries > cfg->max_retries)
1143 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1144 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1147 /* At unmount we may treat errors differently */
1148 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1155 * On a sync write or shutdown we just want to stale the buffer and let the
1156 * caller handle the error in bp->b_error appropriately.
1158 * If the write was asynchronous then no one will be looking for the error. If
1159 * this is the first failure of this type, clear the error state and write the
1160 * buffer out again. This means we always retry an async write failure at least
1161 * once, but we also need to set the buffer up to behave correctly now for
1162 * repeated failures.
1164 * If we get repeated async write failures, then we take action according to the
1165 * error configuration we have been set up to use.
1167 * Returns true if this function took care of error handling and the caller must
1168 * not touch the buffer again. Return false if the caller should proceed with
1169 * normal I/O completion handling.
1172 xfs_buf_ioend_handle_error(
1175 struct xfs_mount *mp = bp->b_mount;
1176 struct xfs_error_cfg *cfg;
1179 * If we've already decided to shutdown the filesystem because of I/O
1180 * errors, there's no point in giving this a retry.
1182 if (XFS_FORCED_SHUTDOWN(mp))
1185 xfs_buf_ioerror_alert_ratelimited(bp);
1188 * We're not going to bother about retrying this during recovery.
1191 if (bp->b_flags & _XBF_LOGRECOVERY) {
1192 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1197 * Synchronous writes will have callers process the error.
1199 if (!(bp->b_flags & XBF_ASYNC))
1202 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1204 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1205 if (bp->b_last_error != bp->b_error ||
1206 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1207 bp->b_last_error = bp->b_error;
1208 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1209 !bp->b_first_retry_time)
1210 bp->b_first_retry_time = jiffies;
1215 * Permanent error - we need to trigger a shutdown if we haven't already
1216 * to indicate that inconsistency will result from this action.
1218 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1219 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1223 /* Still considered a transient error. Caller will schedule retries. */
1224 if (bp->b_flags & _XBF_INODES)
1225 xfs_buf_inode_io_fail(bp);
1226 else if (bp->b_flags & _XBF_DQUOTS)
1227 xfs_buf_dquot_io_fail(bp);
1229 ASSERT(list_empty(&bp->b_li_list));
1230 xfs_buf_ioerror(bp, 0);
1235 xfs_buf_ioerror(bp, 0);
1236 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1241 bp->b_flags |= XBF_DONE;
1242 bp->b_flags &= ~XBF_WRITE;
1243 trace_xfs_buf_error_relse(bp, _RET_IP_);
1251 trace_xfs_buf_iodone(bp, _RET_IP_);
1254 * Pull in IO completion errors now. We are guaranteed to be running
1255 * single threaded, so we don't need the lock to read b_io_error.
1257 if (!bp->b_error && bp->b_io_error)
1258 xfs_buf_ioerror(bp, bp->b_io_error);
1260 if (bp->b_flags & XBF_READ) {
1261 if (!bp->b_error && bp->b_ops)
1262 bp->b_ops->verify_read(bp);
1264 bp->b_flags |= XBF_DONE;
1267 bp->b_flags &= ~XBF_WRITE_FAIL;
1268 bp->b_flags |= XBF_DONE;
1271 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1274 /* clear the retry state */
1275 bp->b_last_error = 0;
1277 bp->b_first_retry_time = 0;
1280 * Note that for things like remote attribute buffers, there may
1281 * not be a buffer log item here, so processing the buffer log
1282 * item must remain optional.
1285 xfs_buf_item_done(bp);
1287 if (bp->b_flags & _XBF_INODES)
1288 xfs_buf_inode_iodone(bp);
1289 else if (bp->b_flags & _XBF_DQUOTS)
1290 xfs_buf_dquot_iodone(bp);
1294 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1297 if (bp->b_flags & XBF_ASYNC)
1300 complete(&bp->b_iowait);
1305 struct work_struct *work)
1307 struct xfs_buf *bp =
1308 container_of(work, struct xfs_buf, b_ioend_work);
1314 xfs_buf_ioend_async(
1317 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1318 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1325 xfs_failaddr_t failaddr)
1327 ASSERT(error <= 0 && error >= -1000);
1328 bp->b_error = error;
1329 trace_xfs_buf_ioerror(bp, error, failaddr);
1333 xfs_buf_ioerror_alert(
1335 xfs_failaddr_t func)
1337 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1338 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1339 func, (uint64_t)XFS_BUF_ADDR(bp),
1340 bp->b_length, -bp->b_error);
1344 * To simulate an I/O failure, the buffer must be locked and held with at least
1345 * three references. The LRU reference is dropped by the stale call. The buf
1346 * item reference is dropped via ioend processing. The third reference is owned
1347 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1353 bp->b_flags &= ~XBF_DONE;
1355 xfs_buf_ioerror(bp, -EIO);
1365 ASSERT(xfs_buf_islocked(bp));
1367 bp->b_flags |= XBF_WRITE;
1368 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1371 error = xfs_buf_submit(bp);
1373 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1381 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1383 if (!bio->bi_status &&
1384 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1385 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1386 bio->bi_status = BLK_STS_IOERR;
1389 * don't overwrite existing errors - otherwise we can lose errors on
1390 * buffers that require multiple bios to complete.
1392 if (bio->bi_status) {
1393 int error = blk_status_to_errno(bio->bi_status);
1395 cmpxchg(&bp->b_io_error, 0, error);
1398 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1399 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1401 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1402 xfs_buf_ioend_async(bp);
1407 xfs_buf_ioapply_map(
1415 unsigned int total_nr_pages = bp->b_page_count;
1418 sector_t sector = bp->b_maps[map].bm_bn;
1422 /* skip the pages in the buffer before the start offset */
1424 offset = *buf_offset;
1425 while (offset >= PAGE_SIZE) {
1427 offset -= PAGE_SIZE;
1431 * Limit the IO size to the length of the current vector, and update the
1432 * remaining IO count for the next time around.
1434 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1436 *buf_offset += size;
1439 atomic_inc(&bp->b_io_remaining);
1440 nr_pages = bio_max_segs(total_nr_pages);
1442 bio = bio_alloc(GFP_NOIO, nr_pages);
1443 bio_set_dev(bio, bp->b_target->bt_bdev);
1444 bio->bi_iter.bi_sector = sector;
1445 bio->bi_end_io = xfs_buf_bio_end_io;
1446 bio->bi_private = bp;
1449 for (; size && nr_pages; nr_pages--, page_index++) {
1450 int rbytes, nbytes = PAGE_SIZE - offset;
1455 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1457 if (rbytes < nbytes)
1461 sector += BTOBB(nbytes);
1466 if (likely(bio->bi_iter.bi_size)) {
1467 if (xfs_buf_is_vmapped(bp)) {
1468 flush_kernel_vmap_range(bp->b_addr,
1469 xfs_buf_vmap_len(bp));
1476 * This is guaranteed not to be the last io reference count
1477 * because the caller (xfs_buf_submit) holds a count itself.
1479 atomic_dec(&bp->b_io_remaining);
1480 xfs_buf_ioerror(bp, -EIO);
1490 struct blk_plug plug;
1497 * Make sure we capture only current IO errors rather than stale errors
1498 * left over from previous use of the buffer (e.g. failed readahead).
1502 if (bp->b_flags & XBF_WRITE) {
1506 * Run the write verifier callback function if it exists. If
1507 * this function fails it will mark the buffer with an error and
1508 * the IO should not be dispatched.
1511 bp->b_ops->verify_write(bp);
1513 xfs_force_shutdown(bp->b_mount,
1514 SHUTDOWN_CORRUPT_INCORE);
1517 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1518 struct xfs_mount *mp = bp->b_mount;
1521 * non-crc filesystems don't attach verifiers during
1522 * log recovery, so don't warn for such filesystems.
1524 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1526 "%s: no buf ops on daddr 0x%llx len %d",
1527 __func__, bp->b_bn, bp->b_length);
1528 xfs_hex_dump(bp->b_addr,
1529 XFS_CORRUPTION_DUMP_LEN);
1535 if (bp->b_flags & XBF_READ_AHEAD)
1539 /* we only use the buffer cache for meta-data */
1543 * Walk all the vectors issuing IO on them. Set up the initial offset
1544 * into the buffer and the desired IO size before we start -
1545 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1548 offset = bp->b_offset;
1549 size = BBTOB(bp->b_length);
1550 blk_start_plug(&plug);
1551 for (i = 0; i < bp->b_map_count; i++) {
1552 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1556 break; /* all done */
1558 blk_finish_plug(&plug);
1562 * Wait for I/O completion of a sync buffer and return the I/O error code.
1568 ASSERT(!(bp->b_flags & XBF_ASYNC));
1570 trace_xfs_buf_iowait(bp, _RET_IP_);
1571 wait_for_completion(&bp->b_iowait);
1572 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1578 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1579 * the buffer lock ownership and the current reference to the IO. It is not
1580 * safe to reference the buffer after a call to this function unless the caller
1581 * holds an additional reference itself.
1590 trace_xfs_buf_submit(bp, _RET_IP_);
1592 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1594 /* on shutdown we stale and complete the buffer immediately */
1595 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1596 xfs_buf_ioend_fail(bp);
1601 * Grab a reference so the buffer does not go away underneath us. For
1602 * async buffers, I/O completion drops the callers reference, which
1603 * could occur before submission returns.
1607 if (bp->b_flags & XBF_WRITE)
1608 xfs_buf_wait_unpin(bp);
1610 /* clear the internal error state to avoid spurious errors */
1614 * Set the count to 1 initially, this will stop an I/O completion
1615 * callout which happens before we have started all the I/O from calling
1616 * xfs_buf_ioend too early.
1618 atomic_set(&bp->b_io_remaining, 1);
1619 if (bp->b_flags & XBF_ASYNC)
1620 xfs_buf_ioacct_inc(bp);
1621 _xfs_buf_ioapply(bp);
1624 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1625 * reference we took above. If we drop it to zero, run completion so
1626 * that we don't return to the caller with completion still pending.
1628 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1629 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1632 xfs_buf_ioend_async(bp);
1636 error = xfs_buf_iowait(bp);
1639 * Release the hold that keeps the buffer referenced for the entire
1640 * I/O. Note that if the buffer is async, it is not safe to reference
1641 * after this release.
1655 return bp->b_addr + offset;
1657 page = bp->b_pages[offset >> PAGE_SHIFT];
1658 return page_address(page) + (offset & (PAGE_SIZE-1));
1669 bend = boff + bsize;
1670 while (boff < bend) {
1672 int page_index, page_offset, csize;
1674 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1675 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1676 page = bp->b_pages[page_index];
1677 csize = min_t(size_t, PAGE_SIZE - page_offset,
1678 BBTOB(bp->b_length) - boff);
1680 ASSERT((csize + page_offset) <= PAGE_SIZE);
1682 memset(page_address(page) + page_offset, 0, csize);
1689 * Log a message about and stale a buffer that a caller has decided is corrupt.
1691 * This function should be called for the kinds of metadata corruption that
1692 * cannot be detect from a verifier, such as incorrect inter-block relationship
1693 * data. Do /not/ call this function from a verifier function.
1695 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1696 * be marked stale, but b_error will not be set. The caller is responsible for
1697 * releasing the buffer or fixing it.
1700 __xfs_buf_mark_corrupt(
1704 ASSERT(bp->b_flags & XBF_DONE);
1706 xfs_buf_corruption_error(bp, fa);
1711 * Handling of buffer targets (buftargs).
1715 * Wait for any bufs with callbacks that have been submitted but have not yet
1716 * returned. These buffers will have an elevated hold count, so wait on those
1717 * while freeing all the buffers only held by the LRU.
1719 static enum lru_status
1720 xfs_buftarg_drain_rele(
1721 struct list_head *item,
1722 struct list_lru_one *lru,
1723 spinlock_t *lru_lock,
1727 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1728 struct list_head *dispose = arg;
1730 if (atomic_read(&bp->b_hold) > 1) {
1731 /* need to wait, so skip it this pass */
1732 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1735 if (!spin_trylock(&bp->b_lock))
1739 * clear the LRU reference count so the buffer doesn't get
1740 * ignored in xfs_buf_rele().
1742 atomic_set(&bp->b_lru_ref, 0);
1743 bp->b_state |= XFS_BSTATE_DISPOSE;
1744 list_lru_isolate_move(lru, item, dispose);
1745 spin_unlock(&bp->b_lock);
1750 * Wait for outstanding I/O on the buftarg to complete.
1754 struct xfs_buftarg *btp)
1757 * First wait on the buftarg I/O count for all in-flight buffers to be
1758 * released. This is critical as new buffers do not make the LRU until
1759 * they are released.
1761 * Next, flush the buffer workqueue to ensure all completion processing
1762 * has finished. Just waiting on buffer locks is not sufficient for
1763 * async IO as the reference count held over IO is not released until
1764 * after the buffer lock is dropped. Hence we need to ensure here that
1765 * all reference counts have been dropped before we start walking the
1768 while (percpu_counter_sum(&btp->bt_io_count))
1770 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1775 struct xfs_buftarg *btp)
1779 bool write_fail = false;
1781 xfs_buftarg_wait(btp);
1783 /* loop until there is nothing left on the lru list. */
1784 while (list_lru_count(&btp->bt_lru)) {
1785 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1786 &dispose, LONG_MAX);
1788 while (!list_empty(&dispose)) {
1790 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 list_del_init(&bp->b_lru);
1792 if (bp->b_flags & XBF_WRITE_FAIL) {
1794 xfs_buf_alert_ratelimited(bp,
1795 "XFS: Corruption Alert",
1796 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1797 (long long)bp->b_bn);
1806 * If one or more failed buffers were freed, that means dirty metadata
1807 * was thrown away. This should only ever happen after I/O completion
1808 * handling has elevated I/O error(s) to permanent failures and shuts
1812 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1813 xfs_alert(btp->bt_mount,
1814 "Please run xfs_repair to determine the extent of the problem.");
1818 static enum lru_status
1819 xfs_buftarg_isolate(
1820 struct list_head *item,
1821 struct list_lru_one *lru,
1822 spinlock_t *lru_lock,
1825 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1826 struct list_head *dispose = arg;
1829 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1830 * If we fail to get the lock, just skip it.
1832 if (!spin_trylock(&bp->b_lock))
1835 * Decrement the b_lru_ref count unless the value is already
1836 * zero. If the value is already zero, we need to reclaim the
1837 * buffer, otherwise it gets another trip through the LRU.
1839 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1840 spin_unlock(&bp->b_lock);
1844 bp->b_state |= XFS_BSTATE_DISPOSE;
1845 list_lru_isolate_move(lru, item, dispose);
1846 spin_unlock(&bp->b_lock);
1850 static unsigned long
1851 xfs_buftarg_shrink_scan(
1852 struct shrinker *shrink,
1853 struct shrink_control *sc)
1855 struct xfs_buftarg *btp = container_of(shrink,
1856 struct xfs_buftarg, bt_shrinker);
1858 unsigned long freed;
1860 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1861 xfs_buftarg_isolate, &dispose);
1863 while (!list_empty(&dispose)) {
1865 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1866 list_del_init(&bp->b_lru);
1873 static unsigned long
1874 xfs_buftarg_shrink_count(
1875 struct shrinker *shrink,
1876 struct shrink_control *sc)
1878 struct xfs_buftarg *btp = container_of(shrink,
1879 struct xfs_buftarg, bt_shrinker);
1880 return list_lru_shrink_count(&btp->bt_lru, sc);
1885 struct xfs_buftarg *btp)
1887 unregister_shrinker(&btp->bt_shrinker);
1888 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1889 percpu_counter_destroy(&btp->bt_io_count);
1890 list_lru_destroy(&btp->bt_lru);
1892 blkdev_issue_flush(btp->bt_bdev);
1898 xfs_setsize_buftarg(
1900 unsigned int sectorsize)
1902 /* Set up metadata sector size info */
1903 btp->bt_meta_sectorsize = sectorsize;
1904 btp->bt_meta_sectormask = sectorsize - 1;
1906 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1907 xfs_warn(btp->bt_mount,
1908 "Cannot set_blocksize to %u on device %pg",
1909 sectorsize, btp->bt_bdev);
1913 /* Set up device logical sector size mask */
1914 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1915 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1921 * When allocating the initial buffer target we have not yet
1922 * read in the superblock, so don't know what sized sectors
1923 * are being used at this early stage. Play safe.
1926 xfs_setsize_buftarg_early(
1928 struct block_device *bdev)
1930 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1935 struct xfs_mount *mp,
1936 struct block_device *bdev,
1937 struct dax_device *dax_dev)
1941 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1944 btp->bt_dev = bdev->bd_dev;
1945 btp->bt_bdev = bdev;
1946 btp->bt_daxdev = dax_dev;
1949 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1950 * per 30 seconds so as to not spam logs too much on repeated errors.
1952 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1953 DEFAULT_RATELIMIT_BURST);
1955 if (xfs_setsize_buftarg_early(btp, bdev))
1958 if (list_lru_init(&btp->bt_lru))
1961 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1964 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1965 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1966 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1967 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1968 if (register_shrinker(&btp->bt_shrinker))
1973 percpu_counter_destroy(&btp->bt_io_count);
1975 list_lru_destroy(&btp->bt_lru);
1982 * Cancel a delayed write list.
1984 * Remove each buffer from the list, clear the delwri queue flag and drop the
1985 * associated buffer reference.
1988 xfs_buf_delwri_cancel(
1989 struct list_head *list)
1993 while (!list_empty(list)) {
1994 bp = list_first_entry(list, struct xfs_buf, b_list);
1997 bp->b_flags &= ~_XBF_DELWRI_Q;
1998 list_del_init(&bp->b_list);
2004 * Add a buffer to the delayed write list.
2006 * This queues a buffer for writeout if it hasn't already been. Note that
2007 * neither this routine nor the buffer list submission functions perform
2008 * any internal synchronization. It is expected that the lists are thread-local
2011 * Returns true if we queued up the buffer, or false if it already had
2012 * been on the buffer list.
2015 xfs_buf_delwri_queue(
2017 struct list_head *list)
2019 ASSERT(xfs_buf_islocked(bp));
2020 ASSERT(!(bp->b_flags & XBF_READ));
2023 * If the buffer is already marked delwri it already is queued up
2024 * by someone else for imediate writeout. Just ignore it in that
2027 if (bp->b_flags & _XBF_DELWRI_Q) {
2028 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2032 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2035 * If a buffer gets written out synchronously or marked stale while it
2036 * is on a delwri list we lazily remove it. To do this, the other party
2037 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2038 * It remains referenced and on the list. In a rare corner case it
2039 * might get readded to a delwri list after the synchronous writeout, in
2040 * which case we need just need to re-add the flag here.
2042 bp->b_flags |= _XBF_DELWRI_Q;
2043 if (list_empty(&bp->b_list)) {
2044 atomic_inc(&bp->b_hold);
2045 list_add_tail(&bp->b_list, list);
2052 * Compare function is more complex than it needs to be because
2053 * the return value is only 32 bits and we are doing comparisons
2059 const struct list_head *a,
2060 const struct list_head *b)
2062 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2063 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2066 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2075 * Submit buffers for write. If wait_list is specified, the buffers are
2076 * submitted using sync I/O and placed on the wait list such that the caller can
2077 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2078 * at I/O completion time. In either case, buffers remain locked until I/O
2079 * completes and the buffer is released from the queue.
2082 xfs_buf_delwri_submit_buffers(
2083 struct list_head *buffer_list,
2084 struct list_head *wait_list)
2086 struct xfs_buf *bp, *n;
2088 struct blk_plug plug;
2090 list_sort(NULL, buffer_list, xfs_buf_cmp);
2092 blk_start_plug(&plug);
2093 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2095 if (xfs_buf_ispinned(bp)) {
2099 if (!xfs_buf_trylock(bp))
2106 * Someone else might have written the buffer synchronously or
2107 * marked it stale in the meantime. In that case only the
2108 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2109 * reference and remove it from the list here.
2111 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2112 list_del_init(&bp->b_list);
2117 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2120 * If we have a wait list, each buffer (and associated delwri
2121 * queue reference) transfers to it and is submitted
2122 * synchronously. Otherwise, drop the buffer from the delwri
2123 * queue and submit async.
2125 bp->b_flags &= ~_XBF_DELWRI_Q;
2126 bp->b_flags |= XBF_WRITE;
2128 bp->b_flags &= ~XBF_ASYNC;
2129 list_move_tail(&bp->b_list, wait_list);
2131 bp->b_flags |= XBF_ASYNC;
2132 list_del_init(&bp->b_list);
2134 __xfs_buf_submit(bp, false);
2136 blk_finish_plug(&plug);
2142 * Write out a buffer list asynchronously.
2144 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2145 * out and not wait for I/O completion on any of the buffers. This interface
2146 * is only safely useable for callers that can track I/O completion by higher
2147 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2150 * Note: this function will skip buffers it would block on, and in doing so
2151 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2152 * it is up to the caller to ensure that the buffer list is fully submitted or
2153 * cancelled appropriately when they are finished with the list. Failure to
2154 * cancel or resubmit the list until it is empty will result in leaked buffers
2158 xfs_buf_delwri_submit_nowait(
2159 struct list_head *buffer_list)
2161 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2165 * Write out a buffer list synchronously.
2167 * This will take the @buffer_list, write all buffers out and wait for I/O
2168 * completion on all of the buffers. @buffer_list is consumed by the function,
2169 * so callers must have some other way of tracking buffers if they require such
2173 xfs_buf_delwri_submit(
2174 struct list_head *buffer_list)
2176 LIST_HEAD (wait_list);
2177 int error = 0, error2;
2180 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2182 /* Wait for IO to complete. */
2183 while (!list_empty(&wait_list)) {
2184 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2186 list_del_init(&bp->b_list);
2189 * Wait on the locked buffer, check for errors and unlock and
2190 * release the delwri queue reference.
2192 error2 = xfs_buf_iowait(bp);
2202 * Push a single buffer on a delwri queue.
2204 * The purpose of this function is to submit a single buffer of a delwri queue
2205 * and return with the buffer still on the original queue. The waiting delwri
2206 * buffer submission infrastructure guarantees transfer of the delwri queue
2207 * buffer reference to a temporary wait list. We reuse this infrastructure to
2208 * transfer the buffer back to the original queue.
2210 * Note the buffer transitions from the queued state, to the submitted and wait
2211 * listed state and back to the queued state during this call. The buffer
2212 * locking and queue management logic between _delwri_pushbuf() and
2213 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2217 xfs_buf_delwri_pushbuf(
2219 struct list_head *buffer_list)
2221 LIST_HEAD (submit_list);
2224 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2226 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2229 * Isolate the buffer to a new local list so we can submit it for I/O
2230 * independently from the rest of the original list.
2233 list_move(&bp->b_list, &submit_list);
2237 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2238 * the buffer on the wait list with the original reference. Rather than
2239 * bounce the buffer from a local wait list back to the original list
2240 * after I/O completion, reuse the original list as the wait list.
2242 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2245 * The buffer is now locked, under I/O and wait listed on the original
2246 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2247 * return with the buffer unlocked and on the original queue.
2249 error = xfs_buf_iowait(bp);
2250 bp->b_flags |= _XBF_DELWRI_Q;
2259 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2260 SLAB_HWCACHE_ALIGN |
2261 SLAB_RECLAIM_ACCOUNT |
2274 xfs_buf_terminate(void)
2276 kmem_cache_destroy(xfs_buf_zone);
2279 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2282 * Set the lru reference count to 0 based on the error injection tag.
2283 * This allows userspace to disrupt buffer caching for debug/testing
2286 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2289 atomic_set(&bp->b_lru_ref, lru_ref);
2293 * Verify an on-disk magic value against the magic value specified in the
2294 * verifier structure. The verifier magic is in disk byte order so the caller is
2295 * expected to pass the value directly from disk.
2302 struct xfs_mount *mp = bp->b_mount;
2305 idx = xfs_sb_version_hascrc(&mp->m_sb);
2306 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2308 return dmagic == bp->b_ops->magic[idx];
2311 * Verify an on-disk magic value against the magic value specified in the
2312 * verifier structure. The verifier magic is in disk byte order so the caller is
2313 * expected to pass the value directly from disk.
2320 struct xfs_mount *mp = bp->b_mount;
2323 idx = xfs_sb_version_hascrc(&mp->m_sb);
2324 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2326 return dmagic == bp->b_ops->magic16[idx];