1 /* linux/arch/sparc/kernel/time.c
7 * Added support for the intersil on the sun4/4200
10 * Support for MicroSPARC-IIep, PCI CPU.
12 * This file handles the Sparc specific time handling details.
14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
15 * "A Kernel Model for Precision Timekeeping" by Dave Mills
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
44 #include <asm/idprom.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
52 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
53 static __volatile__ u64 timer_cs_internal_counter = 0;
54 static char timer_cs_enabled = 0;
56 static struct clock_event_device timer_ce;
57 static char timer_ce_enabled = 0;
60 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
63 DEFINE_SPINLOCK(rtc_lock);
64 EXPORT_SYMBOL(rtc_lock);
66 static int set_rtc_mmss(unsigned long);
68 unsigned long profile_pc(struct pt_regs *regs)
70 extern char __copy_user_begin[], __copy_user_end[];
71 extern char __bzero_begin[], __bzero_end[];
73 unsigned long pc = regs->pc;
75 if (in_lock_functions(pc) ||
76 (pc >= (unsigned long) __copy_user_begin &&
77 pc < (unsigned long) __copy_user_end) ||
78 (pc >= (unsigned long) __bzero_begin &&
79 pc < (unsigned long) __bzero_end))
80 pc = regs->u_regs[UREG_RETPC];
84 EXPORT_SYMBOL(profile_pc);
86 __volatile__ unsigned int *master_l10_counter;
88 int update_persistent_clock(struct timespec now)
90 return set_rtc_mmss(now.tv_sec);
93 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
95 if (timer_cs_enabled) {
96 write_seqlock(&timer_cs_lock);
97 timer_cs_internal_counter++;
98 sparc_config.clear_clock_irq();
99 write_sequnlock(&timer_cs_lock);
101 sparc_config.clear_clock_irq();
104 if (timer_ce_enabled)
105 timer_ce.event_handler(&timer_ce);
110 static void timer_ce_set_mode(enum clock_event_mode mode,
111 struct clock_event_device *evt)
114 case CLOCK_EVT_MODE_PERIODIC:
115 case CLOCK_EVT_MODE_RESUME:
116 timer_ce_enabled = 1;
118 case CLOCK_EVT_MODE_SHUTDOWN:
119 timer_ce_enabled = 0;
127 static __init void setup_timer_ce(void)
129 struct clock_event_device *ce = &timer_ce;
131 BUG_ON(smp_processor_id() != boot_cpu_id);
133 ce->name = "timer_ce";
135 ce->features = CLOCK_EVT_FEAT_PERIODIC;
136 ce->set_mode = timer_ce_set_mode;
137 ce->cpumask = cpu_possible_mask;
139 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
141 clockevents_register_device(ce);
144 static unsigned int sbus_cycles_offset(void)
146 unsigned int val, offset;
148 val = *master_l10_counter;
149 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
152 if (val & TIMER_LIMIT_BIT)
153 offset += sparc_config.cs_period;
158 static cycle_t timer_cs_read(struct clocksource *cs)
160 unsigned int seq, offset;
164 seq = read_seqbegin(&timer_cs_lock);
166 cycles = timer_cs_internal_counter;
167 offset = sparc_config.get_cycles_offset();
168 } while (read_seqretry(&timer_cs_lock, seq));
170 /* Count absolute cycles */
171 cycles *= sparc_config.cs_period;
177 static struct clocksource timer_cs = {
180 .read = timer_cs_read,
181 .mask = CLOCKSOURCE_MASK(64),
183 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
186 static __init int setup_timer_cs(void)
188 timer_cs_enabled = 1;
189 timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
192 return clocksource_register(&timer_cs);
196 static void percpu_ce_setup(enum clock_event_mode mode,
197 struct clock_event_device *evt)
199 int cpu = __first_cpu(evt->cpumask);
202 case CLOCK_EVT_MODE_PERIODIC:
203 sparc_config.load_profile_irq(cpu,
204 SBUS_CLOCK_RATE / HZ);
206 case CLOCK_EVT_MODE_ONESHOT:
207 case CLOCK_EVT_MODE_SHUTDOWN:
208 case CLOCK_EVT_MODE_UNUSED:
209 sparc_config.load_profile_irq(cpu, 0);
216 static int percpu_ce_set_next_event(unsigned long delta,
217 struct clock_event_device *evt)
219 int cpu = __first_cpu(evt->cpumask);
220 unsigned int next = (unsigned int)delta;
222 sparc_config.load_profile_irq(cpu, next);
226 void register_percpu_ce(int cpu)
228 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
229 unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
231 if (sparc_config.features & FEAT_L14_ONESHOT)
232 features |= CLOCK_EVT_FEAT_ONESHOT;
234 ce->name = "percpu_ce";
236 ce->features = features;
237 ce->set_mode = percpu_ce_setup;
238 ce->set_next_event = percpu_ce_set_next_event;
239 ce->cpumask = cpumask_of(cpu);
241 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
243 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
244 ce->min_delta_ns = clockevent_delta2ns(100, ce);
246 clockevents_register_device(ce);
250 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
252 struct platform_device *pdev = to_platform_device(dev);
253 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
255 return readb(pdata->ioaddr + ofs);
258 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
260 struct platform_device *pdev = to_platform_device(dev);
261 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
263 writeb(val, pdata->ioaddr + ofs);
266 static struct m48t59_plat_data m48t59_data = {
267 .read_byte = mostek_read_byte,
268 .write_byte = mostek_write_byte,
271 /* resource is set at runtime */
272 static struct platform_device m48t59_rtc = {
273 .name = "rtc-m48t59",
277 .platform_data = &m48t59_data,
281 static int clock_probe(struct platform_device *op)
283 struct device_node *dp = op->dev.of_node;
284 const char *model = of_get_property(dp, "model", NULL);
289 /* Only the primary RTC has an address property */
290 if (!of_find_property(dp, "address", NULL))
293 m48t59_rtc.resource = &op->resource[0];
294 if (!strcmp(model, "mk48t02")) {
295 /* Map the clock register io area read-only */
296 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
298 m48t59_data.type = M48T59RTC_TYPE_M48T02;
299 } else if (!strcmp(model, "mk48t08")) {
300 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
302 m48t59_data.type = M48T59RTC_TYPE_M48T08;
306 if (platform_device_register(&m48t59_rtc) < 0)
307 printk(KERN_ERR "Registering RTC device failed\n");
312 static struct of_device_id clock_match[] = {
319 static struct platform_driver clock_driver = {
320 .probe = clock_probe,
323 .owner = THIS_MODULE,
324 .of_match_table = clock_match,
329 /* Probe for the mostek real time clock chip. */
330 static int __init clock_init(void)
332 return platform_driver_register(&clock_driver);
334 /* Must be after subsys_initcall() so that busses are probed. Must
335 * be before device_initcall() because things like the RTC driver
336 * need to see the clock registers.
338 fs_initcall(clock_init);
340 static void __init sparc32_late_time_init(void)
342 if (sparc_config.features & FEAT_L10_CLOCKEVENT)
344 if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
347 register_percpu_ce(smp_processor_id());
351 static void __init sbus_time_init(void)
353 sparc_config.get_cycles_offset = sbus_cycles_offset;
354 sparc_config.init_timers();
357 void __init time_init(void)
359 sparc_config.features = 0;
360 late_time_init = sparc32_late_time_init;
369 static int set_rtc_mmss(unsigned long secs)
371 struct rtc_device *rtc = rtc_class_open("rtc0");
375 err = rtc_set_mmss(rtc, secs);
376 rtc_class_close(rtc);