2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
86 struct dentry *kvm_debugfs_dir;
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 struct kvm_memory_slot *new, u64 last_generation);
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
108 static bool largepages_enabled = true;
110 bool kvm_is_mmio_pfn(pfn_t pfn)
113 return PageReserved(pfn_to_page(pfn));
119 * Switches to specified vcpu, until a matching vcpu_put()
121 int vcpu_load(struct kvm_vcpu *vcpu)
125 if (mutex_lock_killable(&vcpu->mutex))
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
137 preempt_notifier_register(&vcpu->preempt_notifier);
138 kvm_arch_vcpu_load(vcpu, cpu);
143 void vcpu_put(struct kvm_vcpu *vcpu)
146 kvm_arch_vcpu_put(vcpu);
147 preempt_notifier_unregister(&vcpu->preempt_notifier);
149 mutex_unlock(&vcpu->mutex);
152 static void ack_flush(void *_completed)
156 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
161 struct kvm_vcpu *vcpu;
163 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_make_request(req, vcpu);
170 /* Set ->requests bit before we read ->mode */
173 if (cpus != NULL && cpu != -1 && cpu != me &&
174 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175 cpumask_set_cpu(cpu, cpus);
177 if (unlikely(cpus == NULL))
178 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 else if (!cpumask_empty(cpus))
180 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 free_cpumask_var(cpus);
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
190 long dirty_count = kvm->tlbs_dirty;
193 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 ++kvm->stat.remote_tlb_flush;
195 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
199 void kvm_reload_remote_mmus(struct kvm *kvm)
201 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
206 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
211 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
219 mutex_init(&vcpu->mutex);
224 init_waitqueue_head(&vcpu->wq);
225 kvm_async_pf_vcpu_init(vcpu);
227 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
232 vcpu->run = page_address(page);
234 kvm_vcpu_set_in_spin_loop(vcpu, false);
235 kvm_vcpu_set_dy_eligible(vcpu, false);
236 vcpu->preempted = false;
238 r = kvm_arch_vcpu_init(vcpu);
244 free_page((unsigned long)vcpu->run);
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 return container_of(mn, struct kvm, mmu_notifier);
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
296 kvm_flush_remote_tlbs(kvm);
298 spin_unlock(&kvm->mmu_lock);
299 srcu_read_unlock(&kvm->srcu, idx);
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
338 kvm_flush_remote_tlbs(kvm);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 spin_lock(&kvm->mmu_lock);
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
357 kvm->mmu_notifier_seq++;
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
367 BUG_ON(kvm->mmu_notifier_count < 0);
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
380 young = kvm_age_hva(kvm, address);
382 kvm_flush_remote_tlbs(kvm);
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442 static void kvm_init_memslots_id(struct kvm *kvm)
445 struct kvm_memslots *slots = kvm->memslots;
447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 slots->id_to_index[i] = slots->memslots[i].id = i;
451 static struct kvm *kvm_create_vm(unsigned long type)
454 struct kvm *kvm = kvm_arch_alloc_vm();
457 return ERR_PTR(-ENOMEM);
459 r = kvm_arch_init_vm(kvm, type);
461 goto out_err_no_disable;
463 r = hardware_enable_all();
465 goto out_err_no_disable;
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 #ifdef CONFIG_HAVE_KVM_IRQFD
471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
474 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
477 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479 goto out_err_no_srcu;
480 kvm_init_memslots_id(kvm);
481 if (init_srcu_struct(&kvm->srcu))
482 goto out_err_no_srcu;
483 if (init_srcu_struct(&kvm->irq_srcu))
484 goto out_err_no_irq_srcu;
485 for (i = 0; i < KVM_NR_BUSES; i++) {
486 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492 spin_lock_init(&kvm->mmu_lock);
493 kvm->mm = current->mm;
494 atomic_inc(&kvm->mm->mm_count);
495 kvm_eventfd_init(kvm);
496 mutex_init(&kvm->lock);
497 mutex_init(&kvm->irq_lock);
498 mutex_init(&kvm->slots_lock);
499 atomic_set(&kvm->users_count, 1);
500 INIT_LIST_HEAD(&kvm->devices);
502 r = kvm_init_mmu_notifier(kvm);
506 spin_lock(&kvm_lock);
507 list_add(&kvm->vm_list, &vm_list);
508 spin_unlock(&kvm_lock);
513 cleanup_srcu_struct(&kvm->irq_srcu);
515 cleanup_srcu_struct(&kvm->srcu);
517 hardware_disable_all();
519 for (i = 0; i < KVM_NR_BUSES; i++)
520 kfree(kvm->buses[i]);
521 kfree(kvm->memslots);
522 kvm_arch_free_vm(kvm);
527 * Avoid using vmalloc for a small buffer.
528 * Should not be used when the size is statically known.
530 void *kvm_kvzalloc(unsigned long size)
532 if (size > PAGE_SIZE)
533 return vzalloc(size);
535 return kzalloc(size, GFP_KERNEL);
538 void kvm_kvfree(const void *addr)
540 if (is_vmalloc_addr(addr))
546 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
548 if (!memslot->dirty_bitmap)
551 kvm_kvfree(memslot->dirty_bitmap);
552 memslot->dirty_bitmap = NULL;
556 * Free any memory in @free but not in @dont.
558 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
559 struct kvm_memory_slot *dont)
561 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
562 kvm_destroy_dirty_bitmap(free);
564 kvm_arch_free_memslot(kvm, free, dont);
569 static void kvm_free_physmem(struct kvm *kvm)
571 struct kvm_memslots *slots = kvm->memslots;
572 struct kvm_memory_slot *memslot;
574 kvm_for_each_memslot(memslot, slots)
575 kvm_free_physmem_slot(kvm, memslot, NULL);
577 kfree(kvm->memslots);
580 static void kvm_destroy_devices(struct kvm *kvm)
582 struct list_head *node, *tmp;
584 list_for_each_safe(node, tmp, &kvm->devices) {
585 struct kvm_device *dev =
586 list_entry(node, struct kvm_device, vm_node);
589 dev->ops->destroy(dev);
593 static void kvm_destroy_vm(struct kvm *kvm)
596 struct mm_struct *mm = kvm->mm;
598 kvm_arch_sync_events(kvm);
599 spin_lock(&kvm_lock);
600 list_del(&kvm->vm_list);
601 spin_unlock(&kvm_lock);
602 kvm_free_irq_routing(kvm);
603 for (i = 0; i < KVM_NR_BUSES; i++)
604 kvm_io_bus_destroy(kvm->buses[i]);
605 kvm_coalesced_mmio_free(kvm);
606 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
607 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
609 kvm_arch_flush_shadow_all(kvm);
611 kvm_arch_destroy_vm(kvm);
612 kvm_destroy_devices(kvm);
613 kvm_free_physmem(kvm);
614 cleanup_srcu_struct(&kvm->irq_srcu);
615 cleanup_srcu_struct(&kvm->srcu);
616 kvm_arch_free_vm(kvm);
617 hardware_disable_all();
621 void kvm_get_kvm(struct kvm *kvm)
623 atomic_inc(&kvm->users_count);
625 EXPORT_SYMBOL_GPL(kvm_get_kvm);
627 void kvm_put_kvm(struct kvm *kvm)
629 if (atomic_dec_and_test(&kvm->users_count))
632 EXPORT_SYMBOL_GPL(kvm_put_kvm);
635 static int kvm_vm_release(struct inode *inode, struct file *filp)
637 struct kvm *kvm = filp->private_data;
639 kvm_irqfd_release(kvm);
646 * Allocation size is twice as large as the actual dirty bitmap size.
647 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
649 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
651 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
653 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
654 if (!memslot->dirty_bitmap)
660 static int cmp_memslot(const void *slot1, const void *slot2)
662 struct kvm_memory_slot *s1, *s2;
664 s1 = (struct kvm_memory_slot *)slot1;
665 s2 = (struct kvm_memory_slot *)slot2;
667 if (s1->npages < s2->npages)
669 if (s1->npages > s2->npages)
676 * Sort the memslots base on its size, so the larger slots
677 * will get better fit.
679 static void sort_memslots(struct kvm_memslots *slots)
683 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
684 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
686 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
687 slots->id_to_index[slots->memslots[i].id] = i;
690 static void update_memslots(struct kvm_memslots *slots,
691 struct kvm_memory_slot *new,
696 struct kvm_memory_slot *old = id_to_memslot(slots, id);
697 unsigned long npages = old->npages;
700 if (new->npages != npages)
701 sort_memslots(slots);
704 slots->generation = last_generation + 1;
707 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
709 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
711 #ifdef KVM_CAP_READONLY_MEM
712 valid_flags |= KVM_MEM_READONLY;
715 if (mem->flags & ~valid_flags)
721 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
722 struct kvm_memslots *slots, struct kvm_memory_slot *new)
724 struct kvm_memslots *old_memslots = kvm->memslots;
726 update_memslots(slots, new, kvm->memslots->generation);
727 rcu_assign_pointer(kvm->memslots, slots);
728 synchronize_srcu_expedited(&kvm->srcu);
730 kvm_arch_memslots_updated(kvm);
736 * Allocate some memory and give it an address in the guest physical address
739 * Discontiguous memory is allowed, mostly for framebuffers.
741 * Must be called holding mmap_sem for write.
743 int __kvm_set_memory_region(struct kvm *kvm,
744 struct kvm_userspace_memory_region *mem)
748 unsigned long npages;
749 struct kvm_memory_slot *slot;
750 struct kvm_memory_slot old, new;
751 struct kvm_memslots *slots = NULL, *old_memslots;
752 enum kvm_mr_change change;
754 r = check_memory_region_flags(mem);
759 /* General sanity checks */
760 if (mem->memory_size & (PAGE_SIZE - 1))
762 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
764 /* We can read the guest memory with __xxx_user() later on. */
765 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
766 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
767 !access_ok(VERIFY_WRITE,
768 (void __user *)(unsigned long)mem->userspace_addr,
771 if (mem->slot >= KVM_MEM_SLOTS_NUM)
773 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
776 slot = id_to_memslot(kvm->memslots, mem->slot);
777 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
778 npages = mem->memory_size >> PAGE_SHIFT;
781 if (npages > KVM_MEM_MAX_NR_PAGES)
785 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
790 new.base_gfn = base_gfn;
792 new.flags = mem->flags;
797 change = KVM_MR_CREATE;
798 else { /* Modify an existing slot. */
799 if ((mem->userspace_addr != old.userspace_addr) ||
800 (npages != old.npages) ||
801 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
804 if (base_gfn != old.base_gfn)
805 change = KVM_MR_MOVE;
806 else if (new.flags != old.flags)
807 change = KVM_MR_FLAGS_ONLY;
808 else { /* Nothing to change. */
813 } else if (old.npages) {
814 change = KVM_MR_DELETE;
815 } else /* Modify a non-existent slot: disallowed. */
818 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
819 /* Check for overlaps */
821 kvm_for_each_memslot(slot, kvm->memslots) {
822 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
823 (slot->id == mem->slot))
825 if (!((base_gfn + npages <= slot->base_gfn) ||
826 (base_gfn >= slot->base_gfn + slot->npages)))
831 /* Free page dirty bitmap if unneeded */
832 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
833 new.dirty_bitmap = NULL;
836 if (change == KVM_MR_CREATE) {
837 new.userspace_addr = mem->userspace_addr;
839 if (kvm_arch_create_memslot(kvm, &new, npages))
843 /* Allocate page dirty bitmap if needed */
844 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
845 if (kvm_create_dirty_bitmap(&new) < 0)
849 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
851 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
855 slot = id_to_memslot(slots, mem->slot);
856 slot->flags |= KVM_MEMSLOT_INVALID;
858 old_memslots = install_new_memslots(kvm, slots, NULL);
860 /* slot was deleted or moved, clear iommu mapping */
861 kvm_iommu_unmap_pages(kvm, &old);
862 /* From this point no new shadow pages pointing to a deleted,
863 * or moved, memslot will be created.
865 * validation of sp->gfn happens in:
866 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
867 * - kvm_is_visible_gfn (mmu_check_roots)
869 kvm_arch_flush_shadow_memslot(kvm, slot);
870 slots = old_memslots;
873 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
879 * We can re-use the old_memslots from above, the only difference
880 * from the currently installed memslots is the invalid flag. This
881 * will get overwritten by update_memslots anyway.
884 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
890 /* actual memory is freed via old in kvm_free_physmem_slot below */
891 if (change == KVM_MR_DELETE) {
892 new.dirty_bitmap = NULL;
893 memset(&new.arch, 0, sizeof(new.arch));
896 old_memslots = install_new_memslots(kvm, slots, &new);
898 kvm_arch_commit_memory_region(kvm, mem, &old, change);
900 kvm_free_physmem_slot(kvm, &old, &new);
904 * IOMMU mapping: New slots need to be mapped. Old slots need to be
905 * un-mapped and re-mapped if their base changes. Since base change
906 * unmapping is handled above with slot deletion, mapping alone is
907 * needed here. Anything else the iommu might care about for existing
908 * slots (size changes, userspace addr changes and read-only flag
909 * changes) is disallowed above, so any other attribute changes getting
910 * here can be skipped.
912 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
913 r = kvm_iommu_map_pages(kvm, &new);
922 kvm_free_physmem_slot(kvm, &new, &old);
926 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
928 int kvm_set_memory_region(struct kvm *kvm,
929 struct kvm_userspace_memory_region *mem)
933 mutex_lock(&kvm->slots_lock);
934 r = __kvm_set_memory_region(kvm, mem);
935 mutex_unlock(&kvm->slots_lock);
938 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
940 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
941 struct kvm_userspace_memory_region *mem)
943 if (mem->slot >= KVM_USER_MEM_SLOTS)
945 return kvm_set_memory_region(kvm, mem);
948 int kvm_get_dirty_log(struct kvm *kvm,
949 struct kvm_dirty_log *log, int *is_dirty)
951 struct kvm_memory_slot *memslot;
954 unsigned long any = 0;
957 if (log->slot >= KVM_USER_MEM_SLOTS)
960 memslot = id_to_memslot(kvm->memslots, log->slot);
962 if (!memslot->dirty_bitmap)
965 n = kvm_dirty_bitmap_bytes(memslot);
967 for (i = 0; !any && i < n/sizeof(long); ++i)
968 any = memslot->dirty_bitmap[i];
971 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
981 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
983 bool kvm_largepages_enabled(void)
985 return largepages_enabled;
988 void kvm_disable_largepages(void)
990 largepages_enabled = false;
992 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
994 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
996 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
998 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1000 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1002 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1004 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1005 memslot->flags & KVM_MEMSLOT_INVALID)
1010 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1012 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1014 struct vm_area_struct *vma;
1015 unsigned long addr, size;
1019 addr = gfn_to_hva(kvm, gfn);
1020 if (kvm_is_error_hva(addr))
1023 down_read(¤t->mm->mmap_sem);
1024 vma = find_vma(current->mm, addr);
1028 size = vma_kernel_pagesize(vma);
1031 up_read(¤t->mm->mmap_sem);
1036 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1038 return slot->flags & KVM_MEM_READONLY;
1041 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 gfn_t *nr_pages, bool write)
1044 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1045 return KVM_HVA_ERR_BAD;
1047 if (memslot_is_readonly(slot) && write)
1048 return KVM_HVA_ERR_RO_BAD;
1051 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1053 return __gfn_to_hva_memslot(slot, gfn);
1056 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1059 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1062 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1065 return gfn_to_hva_many(slot, gfn, NULL);
1067 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1069 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1071 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1073 EXPORT_SYMBOL_GPL(gfn_to_hva);
1076 * If writable is set to false, the hva returned by this function is only
1077 * allowed to be read.
1079 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1081 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1082 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1084 if (!kvm_is_error_hva(hva) && writable)
1085 *writable = !memslot_is_readonly(slot);
1090 static int kvm_read_hva(void *data, void __user *hva, int len)
1092 return __copy_from_user(data, hva, len);
1095 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1097 return __copy_from_user_inatomic(data, hva, len);
1100 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1101 unsigned long start, int write, struct page **page)
1103 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1106 flags |= FOLL_WRITE;
1108 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1111 static inline int check_user_page_hwpoison(unsigned long addr)
1113 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1115 rc = __get_user_pages(current, current->mm, addr, 1,
1116 flags, NULL, NULL, NULL);
1117 return rc == -EHWPOISON;
1121 * The atomic path to get the writable pfn which will be stored in @pfn,
1122 * true indicates success, otherwise false is returned.
1124 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1125 bool write_fault, bool *writable, pfn_t *pfn)
1127 struct page *page[1];
1130 if (!(async || atomic))
1134 * Fast pin a writable pfn only if it is a write fault request
1135 * or the caller allows to map a writable pfn for a read fault
1138 if (!(write_fault || writable))
1141 npages = __get_user_pages_fast(addr, 1, 1, page);
1143 *pfn = page_to_pfn(page[0]);
1154 * The slow path to get the pfn of the specified host virtual address,
1155 * 1 indicates success, -errno is returned if error is detected.
1157 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1158 bool *writable, pfn_t *pfn)
1160 struct page *page[1];
1166 *writable = write_fault;
1169 down_read(¤t->mm->mmap_sem);
1170 npages = get_user_page_nowait(current, current->mm,
1171 addr, write_fault, page);
1172 up_read(¤t->mm->mmap_sem);
1174 npages = get_user_pages_fast(addr, 1, write_fault,
1179 /* map read fault as writable if possible */
1180 if (unlikely(!write_fault) && writable) {
1181 struct page *wpage[1];
1183 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1192 *pfn = page_to_pfn(page[0]);
1196 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1198 if (unlikely(!(vma->vm_flags & VM_READ)))
1201 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1208 * Pin guest page in memory and return its pfn.
1209 * @addr: host virtual address which maps memory to the guest
1210 * @atomic: whether this function can sleep
1211 * @async: whether this function need to wait IO complete if the
1212 * host page is not in the memory
1213 * @write_fault: whether we should get a writable host page
1214 * @writable: whether it allows to map a writable host page for !@write_fault
1216 * The function will map a writable host page for these two cases:
1217 * 1): @write_fault = true
1218 * 2): @write_fault = false && @writable, @writable will tell the caller
1219 * whether the mapping is writable.
1221 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1222 bool write_fault, bool *writable)
1224 struct vm_area_struct *vma;
1228 /* we can do it either atomically or asynchronously, not both */
1229 BUG_ON(atomic && async);
1231 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1235 return KVM_PFN_ERR_FAULT;
1237 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1241 down_read(¤t->mm->mmap_sem);
1242 if (npages == -EHWPOISON ||
1243 (!async && check_user_page_hwpoison(addr))) {
1244 pfn = KVM_PFN_ERR_HWPOISON;
1248 vma = find_vma_intersection(current->mm, addr, addr + 1);
1251 pfn = KVM_PFN_ERR_FAULT;
1252 else if ((vma->vm_flags & VM_PFNMAP)) {
1253 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1255 BUG_ON(!kvm_is_mmio_pfn(pfn));
1257 if (async && vma_is_valid(vma, write_fault))
1259 pfn = KVM_PFN_ERR_FAULT;
1262 up_read(¤t->mm->mmap_sem);
1267 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1268 bool *async, bool write_fault, bool *writable)
1270 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1272 if (addr == KVM_HVA_ERR_RO_BAD)
1273 return KVM_PFN_ERR_RO_FAULT;
1275 if (kvm_is_error_hva(addr))
1276 return KVM_PFN_NOSLOT;
1278 /* Do not map writable pfn in the readonly memslot. */
1279 if (writable && memslot_is_readonly(slot)) {
1284 return hva_to_pfn(addr, atomic, async, write_fault,
1288 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1289 bool write_fault, bool *writable)
1291 struct kvm_memory_slot *slot;
1296 slot = gfn_to_memslot(kvm, gfn);
1298 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1302 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1304 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1308 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1309 bool write_fault, bool *writable)
1311 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1315 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1317 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1319 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1321 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1324 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1326 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1328 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1330 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1333 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1335 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1337 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1339 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1345 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1346 if (kvm_is_error_hva(addr))
1349 if (entry < nr_pages)
1352 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1354 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1356 static struct page *kvm_pfn_to_page(pfn_t pfn)
1358 if (is_error_noslot_pfn(pfn))
1359 return KVM_ERR_PTR_BAD_PAGE;
1361 if (kvm_is_mmio_pfn(pfn)) {
1363 return KVM_ERR_PTR_BAD_PAGE;
1366 return pfn_to_page(pfn);
1369 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1373 pfn = gfn_to_pfn(kvm, gfn);
1375 return kvm_pfn_to_page(pfn);
1378 EXPORT_SYMBOL_GPL(gfn_to_page);
1380 void kvm_release_page_clean(struct page *page)
1382 WARN_ON(is_error_page(page));
1384 kvm_release_pfn_clean(page_to_pfn(page));
1386 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1388 void kvm_release_pfn_clean(pfn_t pfn)
1390 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1391 put_page(pfn_to_page(pfn));
1393 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1395 void kvm_release_page_dirty(struct page *page)
1397 WARN_ON(is_error_page(page));
1399 kvm_release_pfn_dirty(page_to_pfn(page));
1401 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1403 static void kvm_release_pfn_dirty(pfn_t pfn)
1405 kvm_set_pfn_dirty(pfn);
1406 kvm_release_pfn_clean(pfn);
1409 void kvm_set_pfn_dirty(pfn_t pfn)
1411 if (!kvm_is_mmio_pfn(pfn)) {
1412 struct page *page = pfn_to_page(pfn);
1413 if (!PageReserved(page))
1417 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1419 void kvm_set_pfn_accessed(pfn_t pfn)
1421 if (!kvm_is_mmio_pfn(pfn))
1422 mark_page_accessed(pfn_to_page(pfn));
1424 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1426 void kvm_get_pfn(pfn_t pfn)
1428 if (!kvm_is_mmio_pfn(pfn))
1429 get_page(pfn_to_page(pfn));
1431 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1433 static int next_segment(unsigned long len, int offset)
1435 if (len > PAGE_SIZE - offset)
1436 return PAGE_SIZE - offset;
1441 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1447 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1448 if (kvm_is_error_hva(addr))
1450 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1455 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1457 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1459 gfn_t gfn = gpa >> PAGE_SHIFT;
1461 int offset = offset_in_page(gpa);
1464 while ((seg = next_segment(len, offset)) != 0) {
1465 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1475 EXPORT_SYMBOL_GPL(kvm_read_guest);
1477 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1482 gfn_t gfn = gpa >> PAGE_SHIFT;
1483 int offset = offset_in_page(gpa);
1485 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1486 if (kvm_is_error_hva(addr))
1488 pagefault_disable();
1489 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1495 EXPORT_SYMBOL(kvm_read_guest_atomic);
1497 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1498 int offset, int len)
1503 addr = gfn_to_hva(kvm, gfn);
1504 if (kvm_is_error_hva(addr))
1506 r = __copy_to_user((void __user *)addr + offset, data, len);
1509 mark_page_dirty(kvm, gfn);
1512 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1514 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1517 gfn_t gfn = gpa >> PAGE_SHIFT;
1519 int offset = offset_in_page(gpa);
1522 while ((seg = next_segment(len, offset)) != 0) {
1523 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1534 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1535 gpa_t gpa, unsigned long len)
1537 struct kvm_memslots *slots = kvm_memslots(kvm);
1538 int offset = offset_in_page(gpa);
1539 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1540 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1541 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1542 gfn_t nr_pages_avail;
1545 ghc->generation = slots->generation;
1547 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1548 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1549 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1553 * If the requested region crosses two memslots, we still
1554 * verify that the entire region is valid here.
1556 while (start_gfn <= end_gfn) {
1557 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1558 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1560 if (kvm_is_error_hva(ghc->hva))
1562 start_gfn += nr_pages_avail;
1564 /* Use the slow path for cross page reads and writes. */
1565 ghc->memslot = NULL;
1569 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1572 void *data, unsigned long len)
1574 struct kvm_memslots *slots = kvm_memslots(kvm);
1577 BUG_ON(len > ghc->len);
1579 if (slots->generation != ghc->generation)
1580 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1582 if (unlikely(!ghc->memslot))
1583 return kvm_write_guest(kvm, ghc->gpa, data, len);
1585 if (kvm_is_error_hva(ghc->hva))
1588 r = __copy_to_user((void __user *)ghc->hva, data, len);
1591 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1595 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1597 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1598 void *data, unsigned long len)
1600 struct kvm_memslots *slots = kvm_memslots(kvm);
1603 BUG_ON(len > ghc->len);
1605 if (slots->generation != ghc->generation)
1606 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1608 if (unlikely(!ghc->memslot))
1609 return kvm_read_guest(kvm, ghc->gpa, data, len);
1611 if (kvm_is_error_hva(ghc->hva))
1614 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1620 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1622 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1624 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1626 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1628 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1630 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1632 gfn_t gfn = gpa >> PAGE_SHIFT;
1634 int offset = offset_in_page(gpa);
1637 while ((seg = next_segment(len, offset)) != 0) {
1638 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1647 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1649 static void mark_page_dirty_in_slot(struct kvm *kvm,
1650 struct kvm_memory_slot *memslot,
1653 if (memslot && memslot->dirty_bitmap) {
1654 unsigned long rel_gfn = gfn - memslot->base_gfn;
1656 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1660 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1662 struct kvm_memory_slot *memslot;
1664 memslot = gfn_to_memslot(kvm, gfn);
1665 mark_page_dirty_in_slot(kvm, memslot, gfn);
1667 EXPORT_SYMBOL_GPL(mark_page_dirty);
1670 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1672 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1677 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1679 if (kvm_arch_vcpu_runnable(vcpu)) {
1680 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1683 if (kvm_cpu_has_pending_timer(vcpu))
1685 if (signal_pending(current))
1691 finish_wait(&vcpu->wq, &wait);
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1697 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1699 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1702 int cpu = vcpu->cpu;
1703 wait_queue_head_t *wqp;
1705 wqp = kvm_arch_vcpu_wq(vcpu);
1706 if (waitqueue_active(wqp)) {
1707 wake_up_interruptible(wqp);
1708 ++vcpu->stat.halt_wakeup;
1712 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1713 if (kvm_arch_vcpu_should_kick(vcpu))
1714 smp_send_reschedule(cpu);
1717 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1718 #endif /* !CONFIG_S390 */
1720 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1723 struct task_struct *task = NULL;
1727 pid = rcu_dereference(target->pid);
1729 task = get_pid_task(target->pid, PIDTYPE_PID);
1733 if (task->flags & PF_VCPU) {
1734 put_task_struct(task);
1737 ret = yield_to(task, 1);
1738 put_task_struct(task);
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1745 * Helper that checks whether a VCPU is eligible for directed yield.
1746 * Most eligible candidate to yield is decided by following heuristics:
1748 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1749 * (preempted lock holder), indicated by @in_spin_loop.
1750 * Set at the beiginning and cleared at the end of interception/PLE handler.
1752 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1753 * chance last time (mostly it has become eligible now since we have probably
1754 * yielded to lockholder in last iteration. This is done by toggling
1755 * @dy_eligible each time a VCPU checked for eligibility.)
1757 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1758 * to preempted lock-holder could result in wrong VCPU selection and CPU
1759 * burning. Giving priority for a potential lock-holder increases lock
1762 * Since algorithm is based on heuristics, accessing another VCPU data without
1763 * locking does not harm. It may result in trying to yield to same VCPU, fail
1764 * and continue with next VCPU and so on.
1766 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1768 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1771 eligible = !vcpu->spin_loop.in_spin_loop ||
1772 (vcpu->spin_loop.in_spin_loop &&
1773 vcpu->spin_loop.dy_eligible);
1775 if (vcpu->spin_loop.in_spin_loop)
1776 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1784 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1786 struct kvm *kvm = me->kvm;
1787 struct kvm_vcpu *vcpu;
1788 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1794 kvm_vcpu_set_in_spin_loop(me, true);
1796 * We boost the priority of a VCPU that is runnable but not
1797 * currently running, because it got preempted by something
1798 * else and called schedule in __vcpu_run. Hopefully that
1799 * VCPU is holding the lock that we need and will release it.
1800 * We approximate round-robin by starting at the last boosted VCPU.
1802 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1803 kvm_for_each_vcpu(i, vcpu, kvm) {
1804 if (!pass && i <= last_boosted_vcpu) {
1805 i = last_boosted_vcpu;
1807 } else if (pass && i > last_boosted_vcpu)
1809 if (!ACCESS_ONCE(vcpu->preempted))
1813 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1815 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1818 yielded = kvm_vcpu_yield_to(vcpu);
1820 kvm->last_boosted_vcpu = i;
1822 } else if (yielded < 0) {
1829 kvm_vcpu_set_in_spin_loop(me, false);
1831 /* Ensure vcpu is not eligible during next spinloop */
1832 kvm_vcpu_set_dy_eligible(me, false);
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1836 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1838 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1841 if (vmf->pgoff == 0)
1842 page = virt_to_page(vcpu->run);
1844 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1845 page = virt_to_page(vcpu->arch.pio_data);
1847 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1848 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1849 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1852 return kvm_arch_vcpu_fault(vcpu, vmf);
1858 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1859 .fault = kvm_vcpu_fault,
1862 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1864 vma->vm_ops = &kvm_vcpu_vm_ops;
1868 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1870 struct kvm_vcpu *vcpu = filp->private_data;
1872 kvm_put_kvm(vcpu->kvm);
1876 static struct file_operations kvm_vcpu_fops = {
1877 .release = kvm_vcpu_release,
1878 .unlocked_ioctl = kvm_vcpu_ioctl,
1879 #ifdef CONFIG_COMPAT
1880 .compat_ioctl = kvm_vcpu_compat_ioctl,
1882 .mmap = kvm_vcpu_mmap,
1883 .llseek = noop_llseek,
1887 * Allocates an inode for the vcpu.
1889 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1891 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1895 * Creates some virtual cpus. Good luck creating more than one.
1897 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1900 struct kvm_vcpu *vcpu, *v;
1902 if (id >= KVM_MAX_VCPUS)
1905 vcpu = kvm_arch_vcpu_create(kvm, id);
1907 return PTR_ERR(vcpu);
1909 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1911 r = kvm_arch_vcpu_setup(vcpu);
1915 mutex_lock(&kvm->lock);
1916 if (!kvm_vcpu_compatible(vcpu)) {
1918 goto unlock_vcpu_destroy;
1920 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1922 goto unlock_vcpu_destroy;
1925 kvm_for_each_vcpu(r, v, kvm)
1926 if (v->vcpu_id == id) {
1928 goto unlock_vcpu_destroy;
1931 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1933 /* Now it's all set up, let userspace reach it */
1935 r = create_vcpu_fd(vcpu);
1938 goto unlock_vcpu_destroy;
1941 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1943 atomic_inc(&kvm->online_vcpus);
1945 mutex_unlock(&kvm->lock);
1946 kvm_arch_vcpu_postcreate(vcpu);
1949 unlock_vcpu_destroy:
1950 mutex_unlock(&kvm->lock);
1952 kvm_arch_vcpu_destroy(vcpu);
1956 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1959 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1960 vcpu->sigset_active = 1;
1961 vcpu->sigset = *sigset;
1963 vcpu->sigset_active = 0;
1967 static long kvm_vcpu_ioctl(struct file *filp,
1968 unsigned int ioctl, unsigned long arg)
1970 struct kvm_vcpu *vcpu = filp->private_data;
1971 void __user *argp = (void __user *)arg;
1973 struct kvm_fpu *fpu = NULL;
1974 struct kvm_sregs *kvm_sregs = NULL;
1976 if (vcpu->kvm->mm != current->mm)
1979 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1981 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1982 * so vcpu_load() would break it.
1984 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1985 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1989 r = vcpu_load(vcpu);
1997 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1998 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2000 case KVM_GET_REGS: {
2001 struct kvm_regs *kvm_regs;
2004 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2007 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2011 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2018 case KVM_SET_REGS: {
2019 struct kvm_regs *kvm_regs;
2022 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2023 if (IS_ERR(kvm_regs)) {
2024 r = PTR_ERR(kvm_regs);
2027 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2031 case KVM_GET_SREGS: {
2032 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2036 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2040 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2045 case KVM_SET_SREGS: {
2046 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2047 if (IS_ERR(kvm_sregs)) {
2048 r = PTR_ERR(kvm_sregs);
2052 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2055 case KVM_GET_MP_STATE: {
2056 struct kvm_mp_state mp_state;
2058 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2062 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2067 case KVM_SET_MP_STATE: {
2068 struct kvm_mp_state mp_state;
2071 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2073 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2076 case KVM_TRANSLATE: {
2077 struct kvm_translation tr;
2080 if (copy_from_user(&tr, argp, sizeof tr))
2082 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2086 if (copy_to_user(argp, &tr, sizeof tr))
2091 case KVM_SET_GUEST_DEBUG: {
2092 struct kvm_guest_debug dbg;
2095 if (copy_from_user(&dbg, argp, sizeof dbg))
2097 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2100 case KVM_SET_SIGNAL_MASK: {
2101 struct kvm_signal_mask __user *sigmask_arg = argp;
2102 struct kvm_signal_mask kvm_sigmask;
2103 sigset_t sigset, *p;
2108 if (copy_from_user(&kvm_sigmask, argp,
2109 sizeof kvm_sigmask))
2112 if (kvm_sigmask.len != sizeof sigset)
2115 if (copy_from_user(&sigset, sigmask_arg->sigset,
2120 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2124 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2128 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2132 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2138 fpu = memdup_user(argp, sizeof(*fpu));
2144 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2148 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2157 #ifdef CONFIG_COMPAT
2158 static long kvm_vcpu_compat_ioctl(struct file *filp,
2159 unsigned int ioctl, unsigned long arg)
2161 struct kvm_vcpu *vcpu = filp->private_data;
2162 void __user *argp = compat_ptr(arg);
2165 if (vcpu->kvm->mm != current->mm)
2169 case KVM_SET_SIGNAL_MASK: {
2170 struct kvm_signal_mask __user *sigmask_arg = argp;
2171 struct kvm_signal_mask kvm_sigmask;
2172 compat_sigset_t csigset;
2177 if (copy_from_user(&kvm_sigmask, argp,
2178 sizeof kvm_sigmask))
2181 if (kvm_sigmask.len != sizeof csigset)
2184 if (copy_from_user(&csigset, sigmask_arg->sigset,
2187 sigset_from_compat(&sigset, &csigset);
2188 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2190 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2194 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2202 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2203 int (*accessor)(struct kvm_device *dev,
2204 struct kvm_device_attr *attr),
2207 struct kvm_device_attr attr;
2212 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2215 return accessor(dev, &attr);
2218 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2221 struct kvm_device *dev = filp->private_data;
2224 case KVM_SET_DEVICE_ATTR:
2225 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2226 case KVM_GET_DEVICE_ATTR:
2227 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2228 case KVM_HAS_DEVICE_ATTR:
2229 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2231 if (dev->ops->ioctl)
2232 return dev->ops->ioctl(dev, ioctl, arg);
2238 static int kvm_device_release(struct inode *inode, struct file *filp)
2240 struct kvm_device *dev = filp->private_data;
2241 struct kvm *kvm = dev->kvm;
2247 static const struct file_operations kvm_device_fops = {
2248 .unlocked_ioctl = kvm_device_ioctl,
2249 #ifdef CONFIG_COMPAT
2250 .compat_ioctl = kvm_device_ioctl,
2252 .release = kvm_device_release,
2255 struct kvm_device *kvm_device_from_filp(struct file *filp)
2257 if (filp->f_op != &kvm_device_fops)
2260 return filp->private_data;
2263 static int kvm_ioctl_create_device(struct kvm *kvm,
2264 struct kvm_create_device *cd)
2266 struct kvm_device_ops *ops = NULL;
2267 struct kvm_device *dev;
2268 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2272 #ifdef CONFIG_KVM_MPIC
2273 case KVM_DEV_TYPE_FSL_MPIC_20:
2274 case KVM_DEV_TYPE_FSL_MPIC_42:
2275 ops = &kvm_mpic_ops;
2278 #ifdef CONFIG_KVM_XICS
2279 case KVM_DEV_TYPE_XICS:
2280 ops = &kvm_xics_ops;
2283 #ifdef CONFIG_KVM_VFIO
2284 case KVM_DEV_TYPE_VFIO:
2285 ops = &kvm_vfio_ops;
2288 #ifdef CONFIG_KVM_ARM_VGIC
2289 case KVM_DEV_TYPE_ARM_VGIC_V2:
2290 ops = &kvm_arm_vgic_v2_ops;
2294 case KVM_DEV_TYPE_FLIC:
2295 ops = &kvm_flic_ops;
2305 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2312 ret = ops->create(dev, cd->type);
2318 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2324 list_add(&dev->vm_node, &kvm->devices);
2330 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2333 case KVM_CAP_USER_MEMORY:
2334 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2335 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2336 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2337 case KVM_CAP_SET_BOOT_CPU_ID:
2339 case KVM_CAP_INTERNAL_ERROR_DATA:
2340 #ifdef CONFIG_HAVE_KVM_MSI
2341 case KVM_CAP_SIGNAL_MSI:
2343 #ifdef CONFIG_HAVE_KVM_IRQFD
2344 case KVM_CAP_IRQFD_RESAMPLE:
2346 case KVM_CAP_CHECK_EXTENSION_VM:
2348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2349 case KVM_CAP_IRQ_ROUTING:
2350 return KVM_MAX_IRQ_ROUTES;
2355 return kvm_vm_ioctl_check_extension(kvm, arg);
2358 static long kvm_vm_ioctl(struct file *filp,
2359 unsigned int ioctl, unsigned long arg)
2361 struct kvm *kvm = filp->private_data;
2362 void __user *argp = (void __user *)arg;
2365 if (kvm->mm != current->mm)
2368 case KVM_CREATE_VCPU:
2369 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2371 case KVM_SET_USER_MEMORY_REGION: {
2372 struct kvm_userspace_memory_region kvm_userspace_mem;
2375 if (copy_from_user(&kvm_userspace_mem, argp,
2376 sizeof kvm_userspace_mem))
2379 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2382 case KVM_GET_DIRTY_LOG: {
2383 struct kvm_dirty_log log;
2386 if (copy_from_user(&log, argp, sizeof log))
2388 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2391 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2392 case KVM_REGISTER_COALESCED_MMIO: {
2393 struct kvm_coalesced_mmio_zone zone;
2395 if (copy_from_user(&zone, argp, sizeof zone))
2397 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2400 case KVM_UNREGISTER_COALESCED_MMIO: {
2401 struct kvm_coalesced_mmio_zone zone;
2403 if (copy_from_user(&zone, argp, sizeof zone))
2405 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2410 struct kvm_irqfd data;
2413 if (copy_from_user(&data, argp, sizeof data))
2415 r = kvm_irqfd(kvm, &data);
2418 case KVM_IOEVENTFD: {
2419 struct kvm_ioeventfd data;
2422 if (copy_from_user(&data, argp, sizeof data))
2424 r = kvm_ioeventfd(kvm, &data);
2427 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2428 case KVM_SET_BOOT_CPU_ID:
2430 mutex_lock(&kvm->lock);
2431 if (atomic_read(&kvm->online_vcpus) != 0)
2434 kvm->bsp_vcpu_id = arg;
2435 mutex_unlock(&kvm->lock);
2438 #ifdef CONFIG_HAVE_KVM_MSI
2439 case KVM_SIGNAL_MSI: {
2443 if (copy_from_user(&msi, argp, sizeof msi))
2445 r = kvm_send_userspace_msi(kvm, &msi);
2449 #ifdef __KVM_HAVE_IRQ_LINE
2450 case KVM_IRQ_LINE_STATUS:
2451 case KVM_IRQ_LINE: {
2452 struct kvm_irq_level irq_event;
2455 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2458 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2459 ioctl == KVM_IRQ_LINE_STATUS);
2464 if (ioctl == KVM_IRQ_LINE_STATUS) {
2465 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2473 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2474 case KVM_SET_GSI_ROUTING: {
2475 struct kvm_irq_routing routing;
2476 struct kvm_irq_routing __user *urouting;
2477 struct kvm_irq_routing_entry *entries;
2480 if (copy_from_user(&routing, argp, sizeof(routing)))
2483 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2488 entries = vmalloc(routing.nr * sizeof(*entries));
2493 if (copy_from_user(entries, urouting->entries,
2494 routing.nr * sizeof(*entries)))
2495 goto out_free_irq_routing;
2496 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2498 out_free_irq_routing:
2502 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2503 case KVM_CREATE_DEVICE: {
2504 struct kvm_create_device cd;
2507 if (copy_from_user(&cd, argp, sizeof(cd)))
2510 r = kvm_ioctl_create_device(kvm, &cd);
2515 if (copy_to_user(argp, &cd, sizeof(cd)))
2521 case KVM_CHECK_EXTENSION:
2522 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2525 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2527 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2533 #ifdef CONFIG_COMPAT
2534 struct compat_kvm_dirty_log {
2538 compat_uptr_t dirty_bitmap; /* one bit per page */
2543 static long kvm_vm_compat_ioctl(struct file *filp,
2544 unsigned int ioctl, unsigned long arg)
2546 struct kvm *kvm = filp->private_data;
2549 if (kvm->mm != current->mm)
2552 case KVM_GET_DIRTY_LOG: {
2553 struct compat_kvm_dirty_log compat_log;
2554 struct kvm_dirty_log log;
2557 if (copy_from_user(&compat_log, (void __user *)arg,
2558 sizeof(compat_log)))
2560 log.slot = compat_log.slot;
2561 log.padding1 = compat_log.padding1;
2562 log.padding2 = compat_log.padding2;
2563 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2565 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2569 r = kvm_vm_ioctl(filp, ioctl, arg);
2577 static struct file_operations kvm_vm_fops = {
2578 .release = kvm_vm_release,
2579 .unlocked_ioctl = kvm_vm_ioctl,
2580 #ifdef CONFIG_COMPAT
2581 .compat_ioctl = kvm_vm_compat_ioctl,
2583 .llseek = noop_llseek,
2586 static int kvm_dev_ioctl_create_vm(unsigned long type)
2591 kvm = kvm_create_vm(type);
2593 return PTR_ERR(kvm);
2594 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2595 r = kvm_coalesced_mmio_init(kvm);
2601 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2608 static long kvm_dev_ioctl(struct file *filp,
2609 unsigned int ioctl, unsigned long arg)
2614 case KVM_GET_API_VERSION:
2618 r = KVM_API_VERSION;
2621 r = kvm_dev_ioctl_create_vm(arg);
2623 case KVM_CHECK_EXTENSION:
2624 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2626 case KVM_GET_VCPU_MMAP_SIZE:
2630 r = PAGE_SIZE; /* struct kvm_run */
2632 r += PAGE_SIZE; /* pio data page */
2634 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2635 r += PAGE_SIZE; /* coalesced mmio ring page */
2638 case KVM_TRACE_ENABLE:
2639 case KVM_TRACE_PAUSE:
2640 case KVM_TRACE_DISABLE:
2644 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2650 static struct file_operations kvm_chardev_ops = {
2651 .unlocked_ioctl = kvm_dev_ioctl,
2652 .compat_ioctl = kvm_dev_ioctl,
2653 .llseek = noop_llseek,
2656 static struct miscdevice kvm_dev = {
2662 static void hardware_enable_nolock(void *junk)
2664 int cpu = raw_smp_processor_id();
2667 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2670 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2672 r = kvm_arch_hardware_enable(NULL);
2675 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2676 atomic_inc(&hardware_enable_failed);
2677 printk(KERN_INFO "kvm: enabling virtualization on "
2678 "CPU%d failed\n", cpu);
2682 static void hardware_enable(void)
2684 raw_spin_lock(&kvm_count_lock);
2685 if (kvm_usage_count)
2686 hardware_enable_nolock(NULL);
2687 raw_spin_unlock(&kvm_count_lock);
2690 static void hardware_disable_nolock(void *junk)
2692 int cpu = raw_smp_processor_id();
2694 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2696 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2697 kvm_arch_hardware_disable(NULL);
2700 static void hardware_disable(void)
2702 raw_spin_lock(&kvm_count_lock);
2703 if (kvm_usage_count)
2704 hardware_disable_nolock(NULL);
2705 raw_spin_unlock(&kvm_count_lock);
2708 static void hardware_disable_all_nolock(void)
2710 BUG_ON(!kvm_usage_count);
2713 if (!kvm_usage_count)
2714 on_each_cpu(hardware_disable_nolock, NULL, 1);
2717 static void hardware_disable_all(void)
2719 raw_spin_lock(&kvm_count_lock);
2720 hardware_disable_all_nolock();
2721 raw_spin_unlock(&kvm_count_lock);
2724 static int hardware_enable_all(void)
2728 raw_spin_lock(&kvm_count_lock);
2731 if (kvm_usage_count == 1) {
2732 atomic_set(&hardware_enable_failed, 0);
2733 on_each_cpu(hardware_enable_nolock, NULL, 1);
2735 if (atomic_read(&hardware_enable_failed)) {
2736 hardware_disable_all_nolock();
2741 raw_spin_unlock(&kvm_count_lock);
2746 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2751 val &= ~CPU_TASKS_FROZEN;
2754 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2759 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2767 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2771 * Some (well, at least mine) BIOSes hang on reboot if
2774 * And Intel TXT required VMX off for all cpu when system shutdown.
2776 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2777 kvm_rebooting = true;
2778 on_each_cpu(hardware_disable_nolock, NULL, 1);
2782 static struct notifier_block kvm_reboot_notifier = {
2783 .notifier_call = kvm_reboot,
2787 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2791 for (i = 0; i < bus->dev_count; i++) {
2792 struct kvm_io_device *pos = bus->range[i].dev;
2794 kvm_iodevice_destructor(pos);
2799 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2800 const struct kvm_io_range *r2)
2802 if (r1->addr < r2->addr)
2804 if (r1->addr + r1->len > r2->addr + r2->len)
2809 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2811 return kvm_io_bus_cmp(p1, p2);
2814 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2815 gpa_t addr, int len)
2817 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2823 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2824 kvm_io_bus_sort_cmp, NULL);
2829 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2830 gpa_t addr, int len)
2832 struct kvm_io_range *range, key;
2835 key = (struct kvm_io_range) {
2840 range = bsearch(&key, bus->range, bus->dev_count,
2841 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2845 off = range - bus->range;
2847 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2853 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2854 struct kvm_io_range *range, const void *val)
2858 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2862 while (idx < bus->dev_count &&
2863 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2864 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2873 /* kvm_io_bus_write - called under kvm->slots_lock */
2874 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2875 int len, const void *val)
2877 struct kvm_io_bus *bus;
2878 struct kvm_io_range range;
2881 range = (struct kvm_io_range) {
2886 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2887 r = __kvm_io_bus_write(bus, &range, val);
2888 return r < 0 ? r : 0;
2891 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2892 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2893 int len, const void *val, long cookie)
2895 struct kvm_io_bus *bus;
2896 struct kvm_io_range range;
2898 range = (struct kvm_io_range) {
2903 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2905 /* First try the device referenced by cookie. */
2906 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2907 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2908 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2913 * cookie contained garbage; fall back to search and return the
2914 * correct cookie value.
2916 return __kvm_io_bus_write(bus, &range, val);
2919 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2924 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2928 while (idx < bus->dev_count &&
2929 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2930 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2938 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2940 /* kvm_io_bus_read - called under kvm->slots_lock */
2941 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944 struct kvm_io_bus *bus;
2945 struct kvm_io_range range;
2948 range = (struct kvm_io_range) {
2953 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2954 r = __kvm_io_bus_read(bus, &range, val);
2955 return r < 0 ? r : 0;
2959 /* Caller must hold slots_lock. */
2960 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2961 int len, struct kvm_io_device *dev)
2963 struct kvm_io_bus *new_bus, *bus;
2965 bus = kvm->buses[bus_idx];
2966 /* exclude ioeventfd which is limited by maximum fd */
2967 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2970 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2971 sizeof(struct kvm_io_range)), GFP_KERNEL);
2974 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2975 sizeof(struct kvm_io_range)));
2976 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2977 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2978 synchronize_srcu_expedited(&kvm->srcu);
2984 /* Caller must hold slots_lock. */
2985 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2986 struct kvm_io_device *dev)
2989 struct kvm_io_bus *new_bus, *bus;
2991 bus = kvm->buses[bus_idx];
2993 for (i = 0; i < bus->dev_count; i++)
2994 if (bus->range[i].dev == dev) {
3002 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3003 sizeof(struct kvm_io_range)), GFP_KERNEL);
3007 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3008 new_bus->dev_count--;
3009 memcpy(new_bus->range + i, bus->range + i + 1,
3010 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3012 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3013 synchronize_srcu_expedited(&kvm->srcu);
3018 static struct notifier_block kvm_cpu_notifier = {
3019 .notifier_call = kvm_cpu_hotplug,
3022 static int vm_stat_get(void *_offset, u64 *val)
3024 unsigned offset = (long)_offset;
3028 spin_lock(&kvm_lock);
3029 list_for_each_entry(kvm, &vm_list, vm_list)
3030 *val += *(u32 *)((void *)kvm + offset);
3031 spin_unlock(&kvm_lock);
3035 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3037 static int vcpu_stat_get(void *_offset, u64 *val)
3039 unsigned offset = (long)_offset;
3041 struct kvm_vcpu *vcpu;
3045 spin_lock(&kvm_lock);
3046 list_for_each_entry(kvm, &vm_list, vm_list)
3047 kvm_for_each_vcpu(i, vcpu, kvm)
3048 *val += *(u32 *)((void *)vcpu + offset);
3050 spin_unlock(&kvm_lock);
3054 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3056 static const struct file_operations *stat_fops[] = {
3057 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3058 [KVM_STAT_VM] = &vm_stat_fops,
3061 static int kvm_init_debug(void)
3064 struct kvm_stats_debugfs_item *p;
3066 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3067 if (kvm_debugfs_dir == NULL)
3070 for (p = debugfs_entries; p->name; ++p) {
3071 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3072 (void *)(long)p->offset,
3073 stat_fops[p->kind]);
3074 if (p->dentry == NULL)
3081 debugfs_remove_recursive(kvm_debugfs_dir);
3086 static void kvm_exit_debug(void)
3088 struct kvm_stats_debugfs_item *p;
3090 for (p = debugfs_entries; p->name; ++p)
3091 debugfs_remove(p->dentry);
3092 debugfs_remove(kvm_debugfs_dir);
3095 static int kvm_suspend(void)
3097 if (kvm_usage_count)
3098 hardware_disable_nolock(NULL);
3102 static void kvm_resume(void)
3104 if (kvm_usage_count) {
3105 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3106 hardware_enable_nolock(NULL);
3110 static struct syscore_ops kvm_syscore_ops = {
3111 .suspend = kvm_suspend,
3112 .resume = kvm_resume,
3116 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3118 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3121 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3123 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3124 if (vcpu->preempted)
3125 vcpu->preempted = false;
3127 kvm_arch_sched_in(vcpu, cpu);
3129 kvm_arch_vcpu_load(vcpu, cpu);
3132 static void kvm_sched_out(struct preempt_notifier *pn,
3133 struct task_struct *next)
3135 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3137 if (current->state == TASK_RUNNING)
3138 vcpu->preempted = true;
3139 kvm_arch_vcpu_put(vcpu);
3142 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3143 struct module *module)
3148 r = kvm_arch_init(opaque);
3153 * kvm_arch_init makes sure there's at most one caller
3154 * for architectures that support multiple implementations,
3155 * like intel and amd on x86.
3156 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3157 * conflicts in case kvm is already setup for another implementation.
3159 r = kvm_irqfd_init();
3163 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3168 r = kvm_arch_hardware_setup();
3172 for_each_online_cpu(cpu) {
3173 smp_call_function_single(cpu,
3174 kvm_arch_check_processor_compat,
3180 r = register_cpu_notifier(&kvm_cpu_notifier);
3183 register_reboot_notifier(&kvm_reboot_notifier);
3185 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3187 vcpu_align = __alignof__(struct kvm_vcpu);
3188 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3190 if (!kvm_vcpu_cache) {
3195 r = kvm_async_pf_init();
3199 kvm_chardev_ops.owner = module;
3200 kvm_vm_fops.owner = module;
3201 kvm_vcpu_fops.owner = module;
3203 r = misc_register(&kvm_dev);
3205 printk(KERN_ERR "kvm: misc device register failed\n");
3209 register_syscore_ops(&kvm_syscore_ops);
3211 kvm_preempt_ops.sched_in = kvm_sched_in;
3212 kvm_preempt_ops.sched_out = kvm_sched_out;
3214 r = kvm_init_debug();
3216 printk(KERN_ERR "kvm: create debugfs files failed\n");
3223 unregister_syscore_ops(&kvm_syscore_ops);
3224 misc_deregister(&kvm_dev);
3226 kvm_async_pf_deinit();
3228 kmem_cache_destroy(kvm_vcpu_cache);
3230 unregister_reboot_notifier(&kvm_reboot_notifier);
3231 unregister_cpu_notifier(&kvm_cpu_notifier);
3234 kvm_arch_hardware_unsetup();
3236 free_cpumask_var(cpus_hardware_enabled);
3244 EXPORT_SYMBOL_GPL(kvm_init);
3249 misc_deregister(&kvm_dev);
3250 kmem_cache_destroy(kvm_vcpu_cache);
3251 kvm_async_pf_deinit();
3252 unregister_syscore_ops(&kvm_syscore_ops);
3253 unregister_reboot_notifier(&kvm_reboot_notifier);
3254 unregister_cpu_notifier(&kvm_cpu_notifier);
3255 on_each_cpu(hardware_disable_nolock, NULL, 1);
3256 kvm_arch_hardware_unsetup();
3259 free_cpumask_var(cpus_hardware_enabled);
3261 EXPORT_SYMBOL_GPL(kvm_exit);