2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
146 #include "net-sysfs.h"
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct net_device *dev,
163 struct netdev_notifier_info *info);
166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
171 * Writers must hold the rtnl semaphore while they loop through the
172 * dev_base_head list, and hold dev_base_lock for writing when they do the
173 * actual updates. This allows pure readers to access the list even
174 * while a writer is preparing to update it.
176 * To put it another way, dev_base_lock is held for writing only to
177 * protect against pure readers; the rtnl semaphore provides the
178 * protection against other writers.
180 * See, for example usages, register_netdevice() and
181 * unregister_netdevice(), which must be called with the rtnl
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
193 static seqcount_t devnet_rename_seq;
195 static inline void dev_base_seq_inc(struct net *net)
197 while (++net->dev_base_seq == 0)
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
213 static inline void rps_lock(struct softnet_data *sd)
216 spin_lock(&sd->input_pkt_queue.lock);
220 static inline void rps_unlock(struct softnet_data *sd)
223 spin_unlock(&sd->input_pkt_queue.lock);
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
230 struct net *net = dev_net(dev);
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
241 dev_base_seq_inc(net);
244 /* Device list removal
245 * caller must respect a RCU grace period before freeing/reusing dev
247 static void unlist_netdevice(struct net_device *dev)
251 /* Unlink dev from the device chain */
252 write_lock_bh(&dev_base_lock);
253 list_del_rcu(&dev->dev_list);
254 hlist_del_rcu(&dev->name_hlist);
255 hlist_del_rcu(&dev->index_hlist);
256 write_unlock_bh(&dev_base_lock);
258 dev_base_seq_inc(dev_net(dev));
265 static RAW_NOTIFIER_HEAD(netdev_chain);
268 * Device drivers call our routines to queue packets here. We empty the
269 * queue in the local softnet handler.
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
275 #ifdef CONFIG_LOCKDEP
277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278 * according to dev->type
280 static const unsigned short netdev_lock_type[] = {
281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
297 static const char *const netdev_lock_name[] = {
298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 if (netdev_lock_type[i] == dev_type)
324 /* the last key is used by default */
325 return ARRAY_SIZE(netdev_lock_type) - 1;
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
333 i = netdev_lock_pos(dev_type);
334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 netdev_lock_name[i]);
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 i = netdev_lock_pos(dev->type);
343 lockdep_set_class_and_name(&dev->addr_list_lock,
344 &netdev_addr_lock_key[i],
345 netdev_lock_name[i]);
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 unsigned short dev_type)
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 /*******************************************************************************
359 * Protocol management and registration routines
361 *******************************************************************************/
365 * Add a protocol ID to the list. Now that the input handler is
366 * smarter we can dispense with all the messy stuff that used to be
369 * BEWARE!!! Protocol handlers, mangling input packets,
370 * MUST BE last in hash buckets and checking protocol handlers
371 * MUST start from promiscuous ptype_all chain in net_bh.
372 * It is true now, do not change it.
373 * Explanation follows: if protocol handler, mangling packet, will
374 * be the first on list, it is not able to sense, that packet
375 * is cloned and should be copied-on-write, so that it will
376 * change it and subsequent readers will get broken packet.
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
382 if (pt->type == htons(ETH_P_ALL))
383 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
385 return pt->dev ? &pt->dev->ptype_specific :
386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 * dev_add_pack - add packet handler
391 * @pt: packet type declaration
393 * Add a protocol handler to the networking stack. The passed &packet_type
394 * is linked into kernel lists and may not be freed until it has been
395 * removed from the kernel lists.
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new packet type (until the next received packet).
402 void dev_add_pack(struct packet_type *pt)
404 struct list_head *head = ptype_head(pt);
406 spin_lock(&ptype_lock);
407 list_add_rcu(&pt->list, head);
408 spin_unlock(&ptype_lock);
410 EXPORT_SYMBOL(dev_add_pack);
413 * __dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
421 * The packet type might still be in use by receivers
422 * and must not be freed until after all the CPU's have gone
423 * through a quiescent state.
425 void __dev_remove_pack(struct packet_type *pt)
427 struct list_head *head = ptype_head(pt);
428 struct packet_type *pt1;
430 spin_lock(&ptype_lock);
432 list_for_each_entry(pt1, head, list) {
434 list_del_rcu(&pt->list);
439 pr_warn("dev_remove_pack: %p not found\n", pt);
441 spin_unlock(&ptype_lock);
443 EXPORT_SYMBOL(__dev_remove_pack);
446 * dev_remove_pack - remove packet handler
447 * @pt: packet type declaration
449 * Remove a protocol handler that was previously added to the kernel
450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
451 * from the kernel lists and can be freed or reused once this function
454 * This call sleeps to guarantee that no CPU is looking at the packet
457 void dev_remove_pack(struct packet_type *pt)
459 __dev_remove_pack(pt);
463 EXPORT_SYMBOL(dev_remove_pack);
467 * dev_add_offload - register offload handlers
468 * @po: protocol offload declaration
470 * Add protocol offload handlers to the networking stack. The passed
471 * &proto_offload is linked into kernel lists and may not be freed until
472 * it has been removed from the kernel lists.
474 * This call does not sleep therefore it can not
475 * guarantee all CPU's that are in middle of receiving packets
476 * will see the new offload handlers (until the next received packet).
478 void dev_add_offload(struct packet_offload *po)
480 struct packet_offload *elem;
482 spin_lock(&offload_lock);
483 list_for_each_entry(elem, &offload_base, list) {
484 if (po->priority < elem->priority)
487 list_add_rcu(&po->list, elem->list.prev);
488 spin_unlock(&offload_lock);
490 EXPORT_SYMBOL(dev_add_offload);
493 * __dev_remove_offload - remove offload handler
494 * @po: packet offload declaration
496 * Remove a protocol offload handler that was previously added to the
497 * kernel offload handlers by dev_add_offload(). The passed &offload_type
498 * is removed from the kernel lists and can be freed or reused once this
501 * The packet type might still be in use by receivers
502 * and must not be freed until after all the CPU's have gone
503 * through a quiescent state.
505 static void __dev_remove_offload(struct packet_offload *po)
507 struct list_head *head = &offload_base;
508 struct packet_offload *po1;
510 spin_lock(&offload_lock);
512 list_for_each_entry(po1, head, list) {
514 list_del_rcu(&po->list);
519 pr_warn("dev_remove_offload: %p not found\n", po);
521 spin_unlock(&offload_lock);
525 * dev_remove_offload - remove packet offload handler
526 * @po: packet offload declaration
528 * Remove a packet offload handler that was previously added to the kernel
529 * offload handlers by dev_add_offload(). The passed &offload_type is
530 * removed from the kernel lists and can be freed or reused once this
533 * This call sleeps to guarantee that no CPU is looking at the packet
536 void dev_remove_offload(struct packet_offload *po)
538 __dev_remove_offload(po);
542 EXPORT_SYMBOL(dev_remove_offload);
544 /******************************************************************************
546 * Device Boot-time Settings Routines
548 ******************************************************************************/
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
554 * netdev_boot_setup_add - add new setup entry
555 * @name: name of the device
556 * @map: configured settings for the device
558 * Adds new setup entry to the dev_boot_setup list. The function
559 * returns 0 on error and 1 on success. This is a generic routine to
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
564 struct netdev_boot_setup *s;
568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 memset(s[i].name, 0, sizeof(s[i].name));
571 strlcpy(s[i].name, name, IFNAMSIZ);
572 memcpy(&s[i].map, map, sizeof(s[i].map));
577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 * netdev_boot_setup_check - check boot time settings
582 * @dev: the netdevice
584 * Check boot time settings for the device.
585 * The found settings are set for the device to be used
586 * later in the device probing.
587 * Returns 0 if no settings found, 1 if they are.
589 int netdev_boot_setup_check(struct net_device *dev)
591 struct netdev_boot_setup *s = dev_boot_setup;
594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 !strcmp(dev->name, s[i].name)) {
597 dev->irq = s[i].map.irq;
598 dev->base_addr = s[i].map.base_addr;
599 dev->mem_start = s[i].map.mem_start;
600 dev->mem_end = s[i].map.mem_end;
606 EXPORT_SYMBOL(netdev_boot_setup_check);
610 * netdev_boot_base - get address from boot time settings
611 * @prefix: prefix for network device
612 * @unit: id for network device
614 * Check boot time settings for the base address of device.
615 * The found settings are set for the device to be used
616 * later in the device probing.
617 * Returns 0 if no settings found.
619 unsigned long netdev_boot_base(const char *prefix, int unit)
621 const struct netdev_boot_setup *s = dev_boot_setup;
625 sprintf(name, "%s%d", prefix, unit);
628 * If device already registered then return base of 1
629 * to indicate not to probe for this interface
631 if (__dev_get_by_name(&init_net, name))
634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 if (!strcmp(name, s[i].name))
636 return s[i].map.base_addr;
641 * Saves at boot time configured settings for any netdevice.
643 int __init netdev_boot_setup(char *str)
648 str = get_options(str, ARRAY_SIZE(ints), ints);
653 memset(&map, 0, sizeof(map));
657 map.base_addr = ints[2];
659 map.mem_start = ints[3];
661 map.mem_end = ints[4];
663 /* Add new entry to the list */
664 return netdev_boot_setup_add(str, &map);
667 __setup("netdev=", netdev_boot_setup);
669 /*******************************************************************************
671 * Device Interface Subroutines
673 *******************************************************************************/
676 * dev_get_iflink - get 'iflink' value of a interface
677 * @dev: targeted interface
679 * Indicates the ifindex the interface is linked to.
680 * Physical interfaces have the same 'ifindex' and 'iflink' values.
683 int dev_get_iflink(const struct net_device *dev)
685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 return dev->netdev_ops->ndo_get_iflink(dev);
690 EXPORT_SYMBOL(dev_get_iflink);
693 * dev_fill_metadata_dst - Retrieve tunnel egress information.
694 * @dev: targeted interface
697 * For better visibility of tunnel traffic OVS needs to retrieve
698 * egress tunnel information for a packet. Following API allows
699 * user to get this info.
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
703 struct ip_tunnel_info *info;
705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
708 info = skb_tunnel_info_unclone(skb);
711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
719 * __dev_get_by_name - find a device by its name
720 * @net: the applicable net namespace
721 * @name: name to find
723 * Find an interface by name. Must be called under RTNL semaphore
724 * or @dev_base_lock. If the name is found a pointer to the device
725 * is returned. If the name is not found then %NULL is returned. The
726 * reference counters are not incremented so the caller must be
727 * careful with locks.
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 struct net_device *dev;
733 struct hlist_head *head = dev_name_hash(net, name);
735 hlist_for_each_entry(dev, head, name_hlist)
736 if (!strncmp(dev->name, name, IFNAMSIZ))
741 EXPORT_SYMBOL(__dev_get_by_name);
744 * dev_get_by_name_rcu - find a device by its name
745 * @net: the applicable net namespace
746 * @name: name to find
748 * Find an interface by name.
749 * If the name is found a pointer to the device is returned.
750 * If the name is not found then %NULL is returned.
751 * The reference counters are not incremented so the caller must be
752 * careful with locks. The caller must hold RCU lock.
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
757 struct net_device *dev;
758 struct hlist_head *head = dev_name_hash(net, name);
760 hlist_for_each_entry_rcu(dev, head, name_hlist)
761 if (!strncmp(dev->name, name, IFNAMSIZ))
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
769 * dev_get_by_name - find a device by its name
770 * @net: the applicable net namespace
771 * @name: name to find
773 * Find an interface by name. This can be called from any
774 * context and does its own locking. The returned handle has
775 * the usage count incremented and the caller must use dev_put() to
776 * release it when it is no longer needed. %NULL is returned if no
777 * matching device is found.
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
782 struct net_device *dev;
785 dev = dev_get_by_name_rcu(net, name);
791 EXPORT_SYMBOL(dev_get_by_name);
794 * __dev_get_by_index - find a device by its ifindex
795 * @net: the applicable net namespace
796 * @ifindex: index of device
798 * Search for an interface by index. Returns %NULL if the device
799 * is not found or a pointer to the device. The device has not
800 * had its reference counter increased so the caller must be careful
801 * about locking. The caller must hold either the RTNL semaphore
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
807 struct net_device *dev;
808 struct hlist_head *head = dev_index_hash(net, ifindex);
810 hlist_for_each_entry(dev, head, index_hlist)
811 if (dev->ifindex == ifindex)
816 EXPORT_SYMBOL(__dev_get_by_index);
819 * dev_get_by_index_rcu - find a device by its ifindex
820 * @net: the applicable net namespace
821 * @ifindex: index of device
823 * Search for an interface by index. Returns %NULL if the device
824 * is not found or a pointer to the device. The device has not
825 * had its reference counter increased so the caller must be careful
826 * about locking. The caller must hold RCU lock.
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
834 hlist_for_each_entry_rcu(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
844 * dev_get_by_index - find a device by its ifindex
845 * @net: the applicable net namespace
846 * @ifindex: index of device
848 * Search for an interface by index. Returns NULL if the device
849 * is not found or a pointer to the device. The device returned has
850 * had a reference added and the pointer is safe until the user calls
851 * dev_put to indicate they have finished with it.
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
856 struct net_device *dev;
859 dev = dev_get_by_index_rcu(net, ifindex);
865 EXPORT_SYMBOL(dev_get_by_index);
868 * netdev_get_name - get a netdevice name, knowing its ifindex.
869 * @net: network namespace
870 * @name: a pointer to the buffer where the name will be stored.
871 * @ifindex: the ifindex of the interface to get the name from.
873 * The use of raw_seqcount_begin() and cond_resched() before
874 * retrying is required as we want to give the writers a chance
875 * to complete when CONFIG_PREEMPT is not set.
877 int netdev_get_name(struct net *net, char *name, int ifindex)
879 struct net_device *dev;
883 seq = raw_seqcount_begin(&devnet_rename_seq);
885 dev = dev_get_by_index_rcu(net, ifindex);
891 strcpy(name, dev->name);
893 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
902 * dev_getbyhwaddr_rcu - find a device by its hardware address
903 * @net: the applicable net namespace
904 * @type: media type of device
905 * @ha: hardware address
907 * Search for an interface by MAC address. Returns NULL if the device
908 * is not found or a pointer to the device.
909 * The caller must hold RCU or RTNL.
910 * The returned device has not had its ref count increased
911 * and the caller must therefore be careful about locking
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
918 struct net_device *dev;
920 for_each_netdev_rcu(net, dev)
921 if (dev->type == type &&
922 !memcmp(dev->dev_addr, ha, dev->addr_len))
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
931 struct net_device *dev;
934 for_each_netdev(net, dev)
935 if (dev->type == type)
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
944 struct net_device *dev, *ret = NULL;
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
972 struct net_device *dev, *ret;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
985 EXPORT_SYMBOL(__dev_get_by_flags);
988 * dev_valid_name - check if name is okay for network device
991 * Network device names need to be valid file names to
992 * to allow sysfs to work. We also disallow any kind of
995 bool dev_valid_name(const char *name)
999 if (strlen(name) >= IFNAMSIZ)
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1005 if (*name == '/' || *name == ':' || isspace(*name))
1011 EXPORT_SYMBOL(dev_valid_name);
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1036 p = strnchr(name, IFNAMSIZ-1, '%');
1039 * Verify the string as this thing may have come from
1040 * the user. There must be either one "%d" and no other "%"
1043 if (p[1] != 'd' || strchr(p + 2, '%'))
1046 /* Use one page as a bit array of possible slots */
1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 for_each_netdev(net, d) {
1052 if (!sscanf(d->name, name, &i))
1054 if (i < 0 || i >= max_netdevices)
1057 /* avoid cases where sscanf is not exact inverse of printf */
1058 snprintf(buf, IFNAMSIZ, name, i);
1059 if (!strncmp(buf, d->name, IFNAMSIZ))
1063 i = find_first_zero_bit(inuse, max_netdevices);
1064 free_page((unsigned long) inuse);
1068 snprintf(buf, IFNAMSIZ, name, i);
1069 if (!__dev_get_by_name(net, buf))
1072 /* It is possible to run out of possible slots
1073 * when the name is long and there isn't enough space left
1074 * for the digits, or if all bits are used.
1080 * dev_alloc_name - allocate a name for a device
1082 * @name: name format string
1084 * Passed a format string - eg "lt%d" it will try and find a suitable
1085 * id. It scans list of devices to build up a free map, then chooses
1086 * the first empty slot. The caller must hold the dev_base or rtnl lock
1087 * while allocating the name and adding the device in order to avoid
1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090 * Returns the number of the unit assigned or a negative errno code.
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1099 BUG_ON(!dev_net(dev));
1101 ret = __dev_alloc_name(net, name, buf);
1103 strlcpy(dev->name, buf, IFNAMSIZ);
1106 EXPORT_SYMBOL(dev_alloc_name);
1108 static int dev_alloc_name_ns(struct net *net,
1109 struct net_device *dev,
1115 ret = __dev_alloc_name(net, name, buf);
1117 strlcpy(dev->name, buf, IFNAMSIZ);
1121 static int dev_get_valid_name(struct net *net,
1122 struct net_device *dev,
1127 if (!dev_valid_name(name))
1130 if (strchr(name, '%'))
1131 return dev_alloc_name_ns(net, dev, name);
1132 else if (__dev_get_by_name(net, name))
1134 else if (dev->name != name)
1135 strlcpy(dev->name, name, IFNAMSIZ);
1141 * dev_change_name - change name of a device
1143 * @newname: name (or format string) must be at least IFNAMSIZ
1145 * Change name of a device, can pass format strings "eth%d".
1148 int dev_change_name(struct net_device *dev, const char *newname)
1150 unsigned char old_assign_type;
1151 char oldname[IFNAMSIZ];
1157 BUG_ON(!dev_net(dev));
1160 if (dev->flags & IFF_UP)
1163 write_seqcount_begin(&devnet_rename_seq);
1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 write_seqcount_end(&devnet_rename_seq);
1170 memcpy(oldname, dev->name, IFNAMSIZ);
1172 err = dev_get_valid_name(net, dev, newname);
1174 write_seqcount_end(&devnet_rename_seq);
1178 if (oldname[0] && !strchr(oldname, '%'))
1179 netdev_info(dev, "renamed from %s\n", oldname);
1181 old_assign_type = dev->name_assign_type;
1182 dev->name_assign_type = NET_NAME_RENAMED;
1185 ret = device_rename(&dev->dev, dev->name);
1187 memcpy(dev->name, oldname, IFNAMSIZ);
1188 dev->name_assign_type = old_assign_type;
1189 write_seqcount_end(&devnet_rename_seq);
1193 write_seqcount_end(&devnet_rename_seq);
1195 netdev_adjacent_rename_links(dev, oldname);
1197 write_lock_bh(&dev_base_lock);
1198 hlist_del_rcu(&dev->name_hlist);
1199 write_unlock_bh(&dev_base_lock);
1203 write_lock_bh(&dev_base_lock);
1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 write_unlock_bh(&dev_base_lock);
1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 ret = notifier_to_errno(ret);
1211 /* err >= 0 after dev_alloc_name() or stores the first errno */
1214 write_seqcount_begin(&devnet_rename_seq);
1215 memcpy(dev->name, oldname, IFNAMSIZ);
1216 memcpy(oldname, newname, IFNAMSIZ);
1217 dev->name_assign_type = old_assign_type;
1218 old_assign_type = NET_NAME_RENAMED;
1221 pr_err("%s: name change rollback failed: %d\n",
1230 * dev_set_alias - change ifalias of a device
1232 * @alias: name up to IFALIASZ
1233 * @len: limit of bytes to copy from info
1235 * Set ifalias for a device,
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1243 if (len >= IFALIASZ)
1247 kfree(dev->ifalias);
1248 dev->ifalias = NULL;
1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1255 dev->ifalias = new_ifalias;
1257 strlcpy(dev->ifalias, alias, len+1);
1263 * netdev_features_change - device changes features
1264 * @dev: device to cause notification
1266 * Called to indicate a device has changed features.
1268 void netdev_features_change(struct net_device *dev)
1270 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272 EXPORT_SYMBOL(netdev_features_change);
1275 * netdev_state_change - device changes state
1276 * @dev: device to cause notification
1278 * Called to indicate a device has changed state. This function calls
1279 * the notifier chains for netdev_chain and sends a NEWLINK message
1280 * to the routing socket.
1282 void netdev_state_change(struct net_device *dev)
1284 if (dev->flags & IFF_UP) {
1285 struct netdev_notifier_change_info change_info;
1287 change_info.flags_changed = 0;
1288 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1293 EXPORT_SYMBOL(netdev_state_change);
1296 * netdev_notify_peers - notify network peers about existence of @dev
1297 * @dev: network device
1299 * Generate traffic such that interested network peers are aware of
1300 * @dev, such as by generating a gratuitous ARP. This may be used when
1301 * a device wants to inform the rest of the network about some sort of
1302 * reconfiguration such as a failover event or virtual machine
1305 void netdev_notify_peers(struct net_device *dev)
1308 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1309 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1312 EXPORT_SYMBOL(netdev_notify_peers);
1314 static int __dev_open(struct net_device *dev)
1316 const struct net_device_ops *ops = dev->netdev_ops;
1321 if (!netif_device_present(dev))
1324 /* Block netpoll from trying to do any rx path servicing.
1325 * If we don't do this there is a chance ndo_poll_controller
1326 * or ndo_poll may be running while we open the device
1328 netpoll_poll_disable(dev);
1330 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1331 ret = notifier_to_errno(ret);
1335 set_bit(__LINK_STATE_START, &dev->state);
1337 if (ops->ndo_validate_addr)
1338 ret = ops->ndo_validate_addr(dev);
1340 if (!ret && ops->ndo_open)
1341 ret = ops->ndo_open(dev);
1343 netpoll_poll_enable(dev);
1346 clear_bit(__LINK_STATE_START, &dev->state);
1348 dev->flags |= IFF_UP;
1349 dev_set_rx_mode(dev);
1351 add_device_randomness(dev->dev_addr, dev->addr_len);
1358 * dev_open - prepare an interface for use.
1359 * @dev: device to open
1361 * Takes a device from down to up state. The device's private open
1362 * function is invoked and then the multicast lists are loaded. Finally
1363 * the device is moved into the up state and a %NETDEV_UP message is
1364 * sent to the netdev notifier chain.
1366 * Calling this function on an active interface is a nop. On a failure
1367 * a negative errno code is returned.
1369 int dev_open(struct net_device *dev)
1373 if (dev->flags & IFF_UP)
1376 ret = __dev_open(dev);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1381 call_netdevice_notifiers(NETDEV_UP, dev);
1385 EXPORT_SYMBOL(dev_open);
1387 static int __dev_close_many(struct list_head *head)
1389 struct net_device *dev;
1394 list_for_each_entry(dev, head, close_list) {
1395 /* Temporarily disable netpoll until the interface is down */
1396 netpoll_poll_disable(dev);
1398 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400 clear_bit(__LINK_STATE_START, &dev->state);
1402 /* Synchronize to scheduled poll. We cannot touch poll list, it
1403 * can be even on different cpu. So just clear netif_running().
1405 * dev->stop() will invoke napi_disable() on all of it's
1406 * napi_struct instances on this device.
1408 smp_mb__after_atomic(); /* Commit netif_running(). */
1411 dev_deactivate_many(head);
1413 list_for_each_entry(dev, head, close_list) {
1414 const struct net_device_ops *ops = dev->netdev_ops;
1417 * Call the device specific close. This cannot fail.
1418 * Only if device is UP
1420 * We allow it to be called even after a DETACH hot-plug
1426 dev->flags &= ~IFF_UP;
1427 netpoll_poll_enable(dev);
1433 static int __dev_close(struct net_device *dev)
1438 list_add(&dev->close_list, &single);
1439 retval = __dev_close_many(&single);
1445 int dev_close_many(struct list_head *head, bool unlink)
1447 struct net_device *dev, *tmp;
1449 /* Remove the devices that don't need to be closed */
1450 list_for_each_entry_safe(dev, tmp, head, close_list)
1451 if (!(dev->flags & IFF_UP))
1452 list_del_init(&dev->close_list);
1454 __dev_close_many(head);
1456 list_for_each_entry_safe(dev, tmp, head, close_list) {
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1458 call_netdevice_notifiers(NETDEV_DOWN, dev);
1460 list_del_init(&dev->close_list);
1465 EXPORT_SYMBOL(dev_close_many);
1468 * dev_close - shutdown an interface.
1469 * @dev: device to shutdown
1471 * This function moves an active device into down state. A
1472 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1473 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1476 int dev_close(struct net_device *dev)
1478 if (dev->flags & IFF_UP) {
1481 list_add(&dev->close_list, &single);
1482 dev_close_many(&single, true);
1487 EXPORT_SYMBOL(dev_close);
1491 * dev_disable_lro - disable Large Receive Offload on a device
1494 * Disable Large Receive Offload (LRO) on a net device. Must be
1495 * called under RTNL. This is needed if received packets may be
1496 * forwarded to another interface.
1498 void dev_disable_lro(struct net_device *dev)
1500 struct net_device *lower_dev;
1501 struct list_head *iter;
1503 dev->wanted_features &= ~NETIF_F_LRO;
1504 netdev_update_features(dev);
1506 if (unlikely(dev->features & NETIF_F_LRO))
1507 netdev_WARN(dev, "failed to disable LRO!\n");
1509 netdev_for_each_lower_dev(dev, lower_dev, iter)
1510 dev_disable_lro(lower_dev);
1512 EXPORT_SYMBOL(dev_disable_lro);
1514 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1515 struct net_device *dev)
1517 struct netdev_notifier_info info;
1519 netdev_notifier_info_init(&info, dev);
1520 return nb->notifier_call(nb, val, &info);
1523 static int dev_boot_phase = 1;
1526 * register_netdevice_notifier - register a network notifier block
1529 * Register a notifier to be called when network device events occur.
1530 * The notifier passed is linked into the kernel structures and must
1531 * not be reused until it has been unregistered. A negative errno code
1532 * is returned on a failure.
1534 * When registered all registration and up events are replayed
1535 * to the new notifier to allow device to have a race free
1536 * view of the network device list.
1539 int register_netdevice_notifier(struct notifier_block *nb)
1541 struct net_device *dev;
1542 struct net_device *last;
1547 err = raw_notifier_chain_register(&netdev_chain, nb);
1553 for_each_netdev(net, dev) {
1554 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1555 err = notifier_to_errno(err);
1559 if (!(dev->flags & IFF_UP))
1562 call_netdevice_notifier(nb, NETDEV_UP, dev);
1573 for_each_netdev(net, dev) {
1577 if (dev->flags & IFF_UP) {
1578 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1587 raw_notifier_chain_unregister(&netdev_chain, nb);
1590 EXPORT_SYMBOL(register_netdevice_notifier);
1593 * unregister_netdevice_notifier - unregister a network notifier block
1596 * Unregister a notifier previously registered by
1597 * register_netdevice_notifier(). The notifier is unlinked into the
1598 * kernel structures and may then be reused. A negative errno code
1599 * is returned on a failure.
1601 * After unregistering unregister and down device events are synthesized
1602 * for all devices on the device list to the removed notifier to remove
1603 * the need for special case cleanup code.
1606 int unregister_netdevice_notifier(struct notifier_block *nb)
1608 struct net_device *dev;
1613 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1618 for_each_netdev(net, dev) {
1619 if (dev->flags & IFF_UP) {
1620 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1631 EXPORT_SYMBOL(unregister_netdevice_notifier);
1634 * call_netdevice_notifiers_info - call all network notifier blocks
1635 * @val: value passed unmodified to notifier function
1636 * @dev: net_device pointer passed unmodified to notifier function
1637 * @info: notifier information data
1639 * Call all network notifier blocks. Parameters and return value
1640 * are as for raw_notifier_call_chain().
1643 static int call_netdevice_notifiers_info(unsigned long val,
1644 struct net_device *dev,
1645 struct netdev_notifier_info *info)
1648 netdev_notifier_info_init(info, dev);
1649 return raw_notifier_call_chain(&netdev_chain, val, info);
1653 * call_netdevice_notifiers - call all network notifier blocks
1654 * @val: value passed unmodified to notifier function
1655 * @dev: net_device pointer passed unmodified to notifier function
1657 * Call all network notifier blocks. Parameters and return value
1658 * are as for raw_notifier_call_chain().
1661 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663 struct netdev_notifier_info info;
1665 return call_netdevice_notifiers_info(val, dev, &info);
1667 EXPORT_SYMBOL(call_netdevice_notifiers);
1669 #ifdef CONFIG_NET_INGRESS
1670 static struct static_key ingress_needed __read_mostly;
1672 void net_inc_ingress_queue(void)
1674 static_key_slow_inc(&ingress_needed);
1676 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678 void net_dec_ingress_queue(void)
1680 static_key_slow_dec(&ingress_needed);
1682 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1685 #ifdef CONFIG_NET_EGRESS
1686 static struct static_key egress_needed __read_mostly;
1688 void net_inc_egress_queue(void)
1690 static_key_slow_inc(&egress_needed);
1692 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694 void net_dec_egress_queue(void)
1696 static_key_slow_dec(&egress_needed);
1698 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1701 static struct static_key netstamp_needed __read_mostly;
1702 #ifdef HAVE_JUMP_LABEL
1703 static atomic_t netstamp_needed_deferred;
1704 static atomic_t netstamp_wanted;
1705 static void netstamp_clear(struct work_struct *work)
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 wanted = atomic_add_return(deferred, &netstamp_wanted);
1712 static_key_enable(&netstamp_needed);
1714 static_key_disable(&netstamp_needed);
1716 static DECLARE_WORK(netstamp_work, netstamp_clear);
1719 void net_enable_timestamp(void)
1721 #ifdef HAVE_JUMP_LABEL
1725 wanted = atomic_read(&netstamp_wanted);
1728 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1731 atomic_inc(&netstamp_needed_deferred);
1732 schedule_work(&netstamp_work);
1734 static_key_slow_inc(&netstamp_needed);
1737 EXPORT_SYMBOL(net_enable_timestamp);
1739 void net_disable_timestamp(void)
1741 #ifdef HAVE_JUMP_LABEL
1745 wanted = atomic_read(&netstamp_wanted);
1748 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1751 atomic_dec(&netstamp_needed_deferred);
1752 schedule_work(&netstamp_work);
1754 static_key_slow_dec(&netstamp_needed);
1757 EXPORT_SYMBOL(net_disable_timestamp);
1759 static inline void net_timestamp_set(struct sk_buff *skb)
1762 if (static_key_false(&netstamp_needed))
1763 __net_timestamp(skb);
1766 #define net_timestamp_check(COND, SKB) \
1767 if (static_key_false(&netstamp_needed)) { \
1768 if ((COND) && !(SKB)->tstamp) \
1769 __net_timestamp(SKB); \
1772 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1776 if (!(dev->flags & IFF_UP))
1779 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1780 if (skb->len <= len)
1783 /* if TSO is enabled, we don't care about the length as the packet
1784 * could be forwarded without being segmented before
1786 if (skb_is_gso(skb))
1791 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 int ret = ____dev_forward_skb(dev, skb);
1798 skb->protocol = eth_type_trans(skb, dev);
1799 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1804 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1807 * dev_forward_skb - loopback an skb to another netif
1809 * @dev: destination network device
1810 * @skb: buffer to forward
1813 * NET_RX_SUCCESS (no congestion)
1814 * NET_RX_DROP (packet was dropped, but freed)
1816 * dev_forward_skb can be used for injecting an skb from the
1817 * start_xmit function of one device into the receive queue
1818 * of another device.
1820 * The receiving device may be in another namespace, so
1821 * we have to clear all information in the skb that could
1822 * impact namespace isolation.
1824 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828 EXPORT_SYMBOL_GPL(dev_forward_skb);
1830 static inline int deliver_skb(struct sk_buff *skb,
1831 struct packet_type *pt_prev,
1832 struct net_device *orig_dev)
1834 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836 atomic_inc(&skb->users);
1837 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1840 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1841 struct packet_type **pt,
1842 struct net_device *orig_dev,
1844 struct list_head *ptype_list)
1846 struct packet_type *ptype, *pt_prev = *pt;
1848 list_for_each_entry_rcu(ptype, ptype_list, list) {
1849 if (ptype->type != type)
1852 deliver_skb(skb, pt_prev, orig_dev);
1858 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860 if (!ptype->af_packet_priv || !skb->sk)
1863 if (ptype->id_match)
1864 return ptype->id_match(ptype, skb->sk);
1865 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1872 * Support routine. Sends outgoing frames to any network
1873 * taps currently in use.
1876 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878 struct packet_type *ptype;
1879 struct sk_buff *skb2 = NULL;
1880 struct packet_type *pt_prev = NULL;
1881 struct list_head *ptype_list = &ptype_all;
1885 list_for_each_entry_rcu(ptype, ptype_list, list) {
1886 /* Never send packets back to the socket
1889 if (skb_loop_sk(ptype, skb))
1893 deliver_skb(skb2, pt_prev, skb->dev);
1898 /* need to clone skb, done only once */
1899 skb2 = skb_clone(skb, GFP_ATOMIC);
1903 net_timestamp_set(skb2);
1905 /* skb->nh should be correctly
1906 * set by sender, so that the second statement is
1907 * just protection against buggy protocols.
1909 skb_reset_mac_header(skb2);
1911 if (skb_network_header(skb2) < skb2->data ||
1912 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1913 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1914 ntohs(skb2->protocol),
1916 skb_reset_network_header(skb2);
1919 skb2->transport_header = skb2->network_header;
1920 skb2->pkt_type = PACKET_OUTGOING;
1924 if (ptype_list == &ptype_all) {
1925 ptype_list = &dev->ptype_all;
1930 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1933 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1936 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1937 * @dev: Network device
1938 * @txq: number of queues available
1940 * If real_num_tx_queues is changed the tc mappings may no longer be
1941 * valid. To resolve this verify the tc mapping remains valid and if
1942 * not NULL the mapping. With no priorities mapping to this
1943 * offset/count pair it will no longer be used. In the worst case TC0
1944 * is invalid nothing can be done so disable priority mappings. If is
1945 * expected that drivers will fix this mapping if they can before
1946 * calling netif_set_real_num_tx_queues.
1948 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1951 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953 /* If TC0 is invalidated disable TC mapping */
1954 if (tc->offset + tc->count > txq) {
1955 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1960 /* Invalidated prio to tc mappings set to TC0 */
1961 for (i = 1; i < TC_BITMASK + 1; i++) {
1962 int q = netdev_get_prio_tc_map(dev, i);
1964 tc = &dev->tc_to_txq[q];
1965 if (tc->offset + tc->count > txq) {
1966 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968 netdev_set_prio_tc_map(dev, i, 0);
1973 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1976 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1979 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1980 if ((txq - tc->offset) < tc->count)
1991 static DEFINE_MUTEX(xps_map_mutex);
1992 #define xmap_dereference(P) \
1993 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1998 struct xps_map *map = NULL;
2002 map = xmap_dereference(dev_maps->cpu_map[tci]);
2006 for (pos = map->len; pos--;) {
2007 if (map->queues[pos] != index)
2011 map->queues[pos] = map->queues[--map->len];
2015 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2016 kfree_rcu(map, rcu);
2023 static bool remove_xps_queue_cpu(struct net_device *dev,
2024 struct xps_dev_maps *dev_maps,
2025 int cpu, u16 offset, u16 count)
2027 int num_tc = dev->num_tc ? : 1;
2028 bool active = false;
2031 for (tci = cpu * num_tc; num_tc--; tci++) {
2034 for (i = count, j = offset; i--; j++) {
2035 if (!remove_xps_queue(dev_maps, cpu, j))
2045 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2048 struct xps_dev_maps *dev_maps;
2050 bool active = false;
2052 mutex_lock(&xps_map_mutex);
2053 dev_maps = xmap_dereference(dev->xps_maps);
2058 for_each_possible_cpu(cpu)
2059 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2063 RCU_INIT_POINTER(dev->xps_maps, NULL);
2064 kfree_rcu(dev_maps, rcu);
2067 for (i = offset + (count - 1); count--; i--)
2068 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2072 mutex_unlock(&xps_map_mutex);
2075 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2080 static struct xps_map *expand_xps_map(struct xps_map *map,
2083 struct xps_map *new_map;
2084 int alloc_len = XPS_MIN_MAP_ALLOC;
2087 for (pos = 0; map && pos < map->len; pos++) {
2088 if (map->queues[pos] != index)
2093 /* Need to add queue to this CPU's existing map */
2095 if (pos < map->alloc_len)
2098 alloc_len = map->alloc_len * 2;
2101 /* Need to allocate new map to store queue on this CPU's map */
2102 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2107 for (i = 0; i < pos; i++)
2108 new_map->queues[i] = map->queues[i];
2109 new_map->alloc_len = alloc_len;
2115 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2118 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2119 int i, cpu, tci, numa_node_id = -2;
2120 int maps_sz, num_tc = 1, tc = 0;
2121 struct xps_map *map, *new_map;
2122 bool active = false;
2125 num_tc = dev->num_tc;
2126 tc = netdev_txq_to_tc(dev, index);
2131 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2132 if (maps_sz < L1_CACHE_BYTES)
2133 maps_sz = L1_CACHE_BYTES;
2135 mutex_lock(&xps_map_mutex);
2137 dev_maps = xmap_dereference(dev->xps_maps);
2139 /* allocate memory for queue storage */
2140 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2143 if (!new_dev_maps) {
2144 mutex_unlock(&xps_map_mutex);
2148 tci = cpu * num_tc + tc;
2149 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2152 map = expand_xps_map(map, cpu, index);
2156 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2160 goto out_no_new_maps;
2162 for_each_possible_cpu(cpu) {
2163 /* copy maps belonging to foreign traffic classes */
2164 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 /* We need to explicitly update tci as prevous loop
2171 * could break out early if dev_maps is NULL.
2173 tci = cpu * num_tc + tc;
2175 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2176 /* add queue to CPU maps */
2179 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2180 while ((pos < map->len) && (map->queues[pos] != index))
2183 if (pos == map->len)
2184 map->queues[map->len++] = index;
2186 if (numa_node_id == -2)
2187 numa_node_id = cpu_to_node(cpu);
2188 else if (numa_node_id != cpu_to_node(cpu))
2191 } else if (dev_maps) {
2192 /* fill in the new device map from the old device map */
2193 map = xmap_dereference(dev_maps->cpu_map[tci]);
2194 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197 /* copy maps belonging to foreign traffic classes */
2198 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2199 /* fill in the new device map from the old device map */
2200 map = xmap_dereference(dev_maps->cpu_map[tci]);
2201 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2205 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207 /* Cleanup old maps */
2209 goto out_no_old_maps;
2211 for_each_possible_cpu(cpu) {
2212 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2213 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2214 map = xmap_dereference(dev_maps->cpu_map[tci]);
2215 if (map && map != new_map)
2216 kfree_rcu(map, rcu);
2220 kfree_rcu(dev_maps, rcu);
2223 dev_maps = new_dev_maps;
2227 /* update Tx queue numa node */
2228 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2229 (numa_node_id >= 0) ? numa_node_id :
2235 /* removes queue from unused CPUs */
2236 for_each_possible_cpu(cpu) {
2237 for (i = tc, tci = cpu * num_tc; i--; tci++)
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2240 active |= remove_xps_queue(dev_maps, tci, index);
2241 for (i = num_tc - tc, tci++; --i; tci++)
2242 active |= remove_xps_queue(dev_maps, tci, index);
2245 /* free map if not active */
2247 RCU_INIT_POINTER(dev->xps_maps, NULL);
2248 kfree_rcu(dev_maps, rcu);
2252 mutex_unlock(&xps_map_mutex);
2256 /* remove any maps that we added */
2257 for_each_possible_cpu(cpu) {
2258 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2259 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261 xmap_dereference(dev_maps->cpu_map[tci]) :
2263 if (new_map && new_map != map)
2268 mutex_unlock(&xps_map_mutex);
2270 kfree(new_dev_maps);
2273 EXPORT_SYMBOL(netif_set_xps_queue);
2276 void netdev_reset_tc(struct net_device *dev)
2279 netif_reset_xps_queues_gt(dev, 0);
2282 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2283 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285 EXPORT_SYMBOL(netdev_reset_tc);
2287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289 if (tc >= dev->num_tc)
2293 netif_reset_xps_queues(dev, offset, count);
2295 dev->tc_to_txq[tc].count = count;
2296 dev->tc_to_txq[tc].offset = offset;
2299 EXPORT_SYMBOL(netdev_set_tc_queue);
2301 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303 if (num_tc > TC_MAX_QUEUE)
2307 netif_reset_xps_queues_gt(dev, 0);
2309 dev->num_tc = num_tc;
2312 EXPORT_SYMBOL(netdev_set_num_tc);
2315 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2316 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2322 if (txq < 1 || txq > dev->num_tx_queues)
2325 if (dev->reg_state == NETREG_REGISTERED ||
2326 dev->reg_state == NETREG_UNREGISTERING) {
2329 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2335 netif_setup_tc(dev, txq);
2337 if (txq < dev->real_num_tx_queues) {
2338 qdisc_reset_all_tx_gt(dev, txq);
2340 netif_reset_xps_queues_gt(dev, txq);
2345 dev->real_num_tx_queues = txq;
2348 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2352 * netif_set_real_num_rx_queues - set actual number of RX queues used
2353 * @dev: Network device
2354 * @rxq: Actual number of RX queues
2356 * This must be called either with the rtnl_lock held or before
2357 * registration of the net device. Returns 0 on success, or a
2358 * negative error code. If called before registration, it always
2361 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2365 if (rxq < 1 || rxq > dev->num_rx_queues)
2368 if (dev->reg_state == NETREG_REGISTERED) {
2371 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2377 dev->real_num_rx_queues = rxq;
2380 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2384 * netif_get_num_default_rss_queues - default number of RSS queues
2386 * This routine should set an upper limit on the number of RSS queues
2387 * used by default by multiqueue devices.
2389 int netif_get_num_default_rss_queues(void)
2391 return is_kdump_kernel() ?
2392 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396 static void __netif_reschedule(struct Qdisc *q)
2398 struct softnet_data *sd;
2399 unsigned long flags;
2401 local_irq_save(flags);
2402 sd = this_cpu_ptr(&softnet_data);
2403 q->next_sched = NULL;
2404 *sd->output_queue_tailp = q;
2405 sd->output_queue_tailp = &q->next_sched;
2406 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2407 local_irq_restore(flags);
2410 void __netif_schedule(struct Qdisc *q)
2412 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2413 __netif_reschedule(q);
2415 EXPORT_SYMBOL(__netif_schedule);
2417 struct dev_kfree_skb_cb {
2418 enum skb_free_reason reason;
2421 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423 return (struct dev_kfree_skb_cb *)skb->cb;
2426 void netif_schedule_queue(struct netdev_queue *txq)
2429 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2430 struct Qdisc *q = rcu_dereference(txq->qdisc);
2432 __netif_schedule(q);
2436 EXPORT_SYMBOL(netif_schedule_queue);
2438 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2444 q = rcu_dereference(dev_queue->qdisc);
2445 __netif_schedule(q);
2449 EXPORT_SYMBOL(netif_tx_wake_queue);
2451 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453 unsigned long flags;
2458 if (likely(atomic_read(&skb->users) == 1)) {
2460 atomic_set(&skb->users, 0);
2461 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2464 get_kfree_skb_cb(skb)->reason = reason;
2465 local_irq_save(flags);
2466 skb->next = __this_cpu_read(softnet_data.completion_queue);
2467 __this_cpu_write(softnet_data.completion_queue, skb);
2468 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2469 local_irq_restore(flags);
2471 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475 if (in_irq() || irqs_disabled())
2476 __dev_kfree_skb_irq(skb, reason);
2480 EXPORT_SYMBOL(__dev_kfree_skb_any);
2484 * netif_device_detach - mark device as removed
2485 * @dev: network device
2487 * Mark device as removed from system and therefore no longer available.
2489 void netif_device_detach(struct net_device *dev)
2491 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2492 netif_running(dev)) {
2493 netif_tx_stop_all_queues(dev);
2496 EXPORT_SYMBOL(netif_device_detach);
2499 * netif_device_attach - mark device as attached
2500 * @dev: network device
2502 * Mark device as attached from system and restart if needed.
2504 void netif_device_attach(struct net_device *dev)
2506 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2507 netif_running(dev)) {
2508 netif_tx_wake_all_queues(dev);
2509 __netdev_watchdog_up(dev);
2512 EXPORT_SYMBOL(netif_device_attach);
2515 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2516 * to be used as a distribution range.
2518 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2519 unsigned int num_tx_queues)
2523 u16 qcount = num_tx_queues;
2525 if (skb_rx_queue_recorded(skb)) {
2526 hash = skb_get_rx_queue(skb);
2527 while (unlikely(hash >= num_tx_queues))
2528 hash -= num_tx_queues;
2533 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535 qoffset = dev->tc_to_txq[tc].offset;
2536 qcount = dev->tc_to_txq[tc].count;
2539 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541 EXPORT_SYMBOL(__skb_tx_hash);
2543 static void skb_warn_bad_offload(const struct sk_buff *skb)
2545 static const netdev_features_t null_features;
2546 struct net_device *dev = skb->dev;
2547 const char *name = "";
2549 if (!net_ratelimit())
2553 if (dev->dev.parent)
2554 name = dev_driver_string(dev->dev.parent);
2556 name = netdev_name(dev);
2558 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2559 "gso_type=%d ip_summed=%d\n",
2560 name, dev ? &dev->features : &null_features,
2561 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2562 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2563 skb_shinfo(skb)->gso_type, skb->ip_summed);
2567 * Invalidate hardware checksum when packet is to be mangled, and
2568 * complete checksum manually on outgoing path.
2570 int skb_checksum_help(struct sk_buff *skb)
2573 int ret = 0, offset;
2575 if (skb->ip_summed == CHECKSUM_COMPLETE)
2576 goto out_set_summed;
2578 if (unlikely(skb_shinfo(skb)->gso_size)) {
2579 skb_warn_bad_offload(skb);
2583 /* Before computing a checksum, we should make sure no frag could
2584 * be modified by an external entity : checksum could be wrong.
2586 if (skb_has_shared_frag(skb)) {
2587 ret = __skb_linearize(skb);
2592 offset = skb_checksum_start_offset(skb);
2593 BUG_ON(offset >= skb_headlen(skb));
2594 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596 offset += skb->csum_offset;
2597 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599 if (skb_cloned(skb) &&
2600 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2601 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2606 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608 skb->ip_summed = CHECKSUM_NONE;
2612 EXPORT_SYMBOL(skb_checksum_help);
2614 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616 __be16 type = skb->protocol;
2618 /* Tunnel gso handlers can set protocol to ethernet. */
2619 if (type == htons(ETH_P_TEB)) {
2622 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2625 eth = (struct ethhdr *)skb_mac_header(skb);
2626 type = eth->h_proto;
2629 return __vlan_get_protocol(skb, type, depth);
2633 * skb_mac_gso_segment - mac layer segmentation handler.
2634 * @skb: buffer to segment
2635 * @features: features for the output path (see dev->features)
2637 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2638 netdev_features_t features)
2640 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2641 struct packet_offload *ptype;
2642 int vlan_depth = skb->mac_len;
2643 __be16 type = skb_network_protocol(skb, &vlan_depth);
2645 if (unlikely(!type))
2646 return ERR_PTR(-EINVAL);
2648 __skb_pull(skb, vlan_depth);
2651 list_for_each_entry_rcu(ptype, &offload_base, list) {
2652 if (ptype->type == type && ptype->callbacks.gso_segment) {
2653 segs = ptype->callbacks.gso_segment(skb, features);
2659 __skb_push(skb, skb->data - skb_mac_header(skb));
2663 EXPORT_SYMBOL(skb_mac_gso_segment);
2666 /* openvswitch calls this on rx path, so we need a different check.
2668 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2671 return skb->ip_summed != CHECKSUM_PARTIAL &&
2672 skb->ip_summed != CHECKSUM_NONE;
2674 return skb->ip_summed == CHECKSUM_NONE;
2678 * __skb_gso_segment - Perform segmentation on skb.
2679 * @skb: buffer to segment
2680 * @features: features for the output path (see dev->features)
2681 * @tx_path: whether it is called in TX path
2683 * This function segments the given skb and returns a list of segments.
2685 * It may return NULL if the skb requires no segmentation. This is
2686 * only possible when GSO is used for verifying header integrity.
2688 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2691 netdev_features_t features, bool tx_path)
2693 struct sk_buff *segs;
2695 if (unlikely(skb_needs_check(skb, tx_path))) {
2698 /* We're going to init ->check field in TCP or UDP header */
2699 err = skb_cow_head(skb, 0);
2701 return ERR_PTR(err);
2704 /* Only report GSO partial support if it will enable us to
2705 * support segmentation on this frame without needing additional
2708 if (features & NETIF_F_GSO_PARTIAL) {
2709 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2710 struct net_device *dev = skb->dev;
2712 partial_features |= dev->features & dev->gso_partial_features;
2713 if (!skb_gso_ok(skb, features | partial_features))
2714 features &= ~NETIF_F_GSO_PARTIAL;
2717 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2718 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2721 SKB_GSO_CB(skb)->encap_level = 0;
2723 skb_reset_mac_header(skb);
2724 skb_reset_mac_len(skb);
2726 segs = skb_mac_gso_segment(skb, features);
2728 if (unlikely(skb_needs_check(skb, tx_path)))
2729 skb_warn_bad_offload(skb);
2733 EXPORT_SYMBOL(__skb_gso_segment);
2735 /* Take action when hardware reception checksum errors are detected. */
2737 void netdev_rx_csum_fault(struct net_device *dev)
2739 if (net_ratelimit()) {
2740 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2744 EXPORT_SYMBOL(netdev_rx_csum_fault);
2747 /* Actually, we should eliminate this check as soon as we know, that:
2748 * 1. IOMMU is present and allows to map all the memory.
2749 * 2. No high memory really exists on this machine.
2752 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754 #ifdef CONFIG_HIGHMEM
2757 if (!(dev->features & NETIF_F_HIGHDMA)) {
2758 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761 if (PageHighMem(skb_frag_page(frag)))
2766 if (PCI_DMA_BUS_IS_PHYS) {
2767 struct device *pdev = dev->dev.parent;
2771 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2772 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2773 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2783 /* If MPLS offload request, verify we are testing hardware MPLS features
2784 * instead of standard features for the netdev.
2786 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2787 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2788 netdev_features_t features,
2791 if (eth_p_mpls(type))
2792 features &= skb->dev->mpls_features;
2797 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2798 netdev_features_t features,
2805 static netdev_features_t harmonize_features(struct sk_buff *skb,
2806 netdev_features_t features)
2811 type = skb_network_protocol(skb, &tmp);
2812 features = net_mpls_features(skb, features, type);
2814 if (skb->ip_summed != CHECKSUM_NONE &&
2815 !can_checksum_protocol(features, type)) {
2816 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818 if (illegal_highdma(skb->dev, skb))
2819 features &= ~NETIF_F_SG;
2824 netdev_features_t passthru_features_check(struct sk_buff *skb,
2825 struct net_device *dev,
2826 netdev_features_t features)
2830 EXPORT_SYMBOL(passthru_features_check);
2832 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2833 struct net_device *dev,
2834 netdev_features_t features)
2836 return vlan_features_check(skb, features);
2839 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2840 struct net_device *dev,
2841 netdev_features_t features)
2843 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845 if (gso_segs > dev->gso_max_segs)
2846 return features & ~NETIF_F_GSO_MASK;
2848 /* Support for GSO partial features requires software
2849 * intervention before we can actually process the packets
2850 * so we need to strip support for any partial features now
2851 * and we can pull them back in after we have partially
2852 * segmented the frame.
2854 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2855 features &= ~dev->gso_partial_features;
2857 /* Make sure to clear the IPv4 ID mangling feature if the
2858 * IPv4 header has the potential to be fragmented.
2860 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2861 struct iphdr *iph = skb->encapsulation ?
2862 inner_ip_hdr(skb) : ip_hdr(skb);
2864 if (!(iph->frag_off & htons(IP_DF)))
2865 features &= ~NETIF_F_TSO_MANGLEID;
2871 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 struct net_device *dev = skb->dev;
2874 netdev_features_t features = dev->features;
2876 if (skb_is_gso(skb))
2877 features = gso_features_check(skb, dev, features);
2879 /* If encapsulation offload request, verify we are testing
2880 * hardware encapsulation features instead of standard
2881 * features for the netdev
2883 if (skb->encapsulation)
2884 features &= dev->hw_enc_features;
2886 if (skb_vlan_tagged(skb))
2887 features = netdev_intersect_features(features,
2888 dev->vlan_features |
2889 NETIF_F_HW_VLAN_CTAG_TX |
2890 NETIF_F_HW_VLAN_STAG_TX);
2892 if (dev->netdev_ops->ndo_features_check)
2893 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 features &= dflt_features_check(skb, dev, features);
2898 return harmonize_features(skb, features);
2900 EXPORT_SYMBOL(netif_skb_features);
2902 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2903 struct netdev_queue *txq, bool more)
2908 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2909 dev_queue_xmit_nit(skb, dev);
2912 trace_net_dev_start_xmit(skb, dev);
2913 rc = netdev_start_xmit(skb, dev, txq, more);
2914 trace_net_dev_xmit(skb, rc, dev, len);
2919 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2920 struct netdev_queue *txq, int *ret)
2922 struct sk_buff *skb = first;
2923 int rc = NETDEV_TX_OK;
2926 struct sk_buff *next = skb->next;
2929 rc = xmit_one(skb, dev, txq, next != NULL);
2930 if (unlikely(!dev_xmit_complete(rc))) {
2936 if (netif_xmit_stopped(txq) && skb) {
2937 rc = NETDEV_TX_BUSY;
2947 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2948 netdev_features_t features)
2950 if (skb_vlan_tag_present(skb) &&
2951 !vlan_hw_offload_capable(features, skb->vlan_proto))
2952 skb = __vlan_hwaccel_push_inside(skb);
2956 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 netdev_features_t features;
2960 features = netif_skb_features(skb);
2961 skb = validate_xmit_vlan(skb, features);
2965 if (netif_needs_gso(skb, features)) {
2966 struct sk_buff *segs;
2968 segs = skb_gso_segment(skb, features);
2976 if (skb_needs_linearize(skb, features) &&
2977 __skb_linearize(skb))
2980 if (validate_xmit_xfrm(skb, features))
2983 /* If packet is not checksummed and device does not
2984 * support checksumming for this protocol, complete
2985 * checksumming here.
2987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 if (skb->encapsulation)
2989 skb_set_inner_transport_header(skb,
2990 skb_checksum_start_offset(skb));
2992 skb_set_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 if (!(features & NETIF_F_CSUM_MASK) &&
2995 skb_checksum_help(skb))
3005 atomic_long_inc(&dev->tx_dropped);
3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011 struct sk_buff *next, *head = NULL, *tail;
3013 for (; skb != NULL; skb = next) {
3017 /* in case skb wont be segmented, point to itself */
3020 skb = validate_xmit_skb(skb, dev);
3028 /* If skb was segmented, skb->prev points to
3029 * the last segment. If not, it still contains skb.
3035 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043 /* To get more precise estimation of bytes sent on wire,
3044 * we add to pkt_len the headers size of all segments
3046 if (shinfo->gso_size) {
3047 unsigned int hdr_len;
3048 u16 gso_segs = shinfo->gso_segs;
3050 /* mac layer + network layer */
3051 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053 /* + transport layer */
3054 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3055 hdr_len += tcp_hdrlen(skb);
3057 hdr_len += sizeof(struct udphdr);
3059 if (shinfo->gso_type & SKB_GSO_DODGY)
3060 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3067 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3068 struct net_device *dev,
3069 struct netdev_queue *txq)
3071 spinlock_t *root_lock = qdisc_lock(q);
3072 struct sk_buff *to_free = NULL;
3076 qdisc_calculate_pkt_len(skb, q);
3078 * Heuristic to force contended enqueues to serialize on a
3079 * separate lock before trying to get qdisc main lock.
3080 * This permits qdisc->running owner to get the lock more
3081 * often and dequeue packets faster.
3083 contended = qdisc_is_running(q);
3084 if (unlikely(contended))
3085 spin_lock(&q->busylock);
3087 spin_lock(root_lock);
3088 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3089 __qdisc_drop(skb, &to_free);
3091 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3092 qdisc_run_begin(q)) {
3094 * This is a work-conserving queue; there are no old skbs
3095 * waiting to be sent out; and the qdisc is not running -
3096 * xmit the skb directly.
3099 qdisc_bstats_update(q, skb);
3101 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3102 if (unlikely(contended)) {
3103 spin_unlock(&q->busylock);
3110 rc = NET_XMIT_SUCCESS;
3112 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3113 if (qdisc_run_begin(q)) {
3114 if (unlikely(contended)) {
3115 spin_unlock(&q->busylock);
3121 spin_unlock(root_lock);
3122 if (unlikely(to_free))
3123 kfree_skb_list(to_free);
3124 if (unlikely(contended))
3125 spin_unlock(&q->busylock);
3129 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3130 static void skb_update_prio(struct sk_buff *skb)
3132 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134 if (!skb->priority && skb->sk && map) {
3135 unsigned int prioidx =
3136 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138 if (prioidx < map->priomap_len)
3139 skb->priority = map->priomap[prioidx];
3143 #define skb_update_prio(skb)
3146 DEFINE_PER_CPU(int, xmit_recursion);
3147 EXPORT_SYMBOL(xmit_recursion);
3150 * dev_loopback_xmit - loop back @skb
3151 * @net: network namespace this loopback is happening in
3152 * @sk: sk needed to be a netfilter okfn
3153 * @skb: buffer to transmit
3155 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 skb_reset_mac_header(skb);
3158 __skb_pull(skb, skb_network_offset(skb));
3159 skb->pkt_type = PACKET_LOOPBACK;
3160 skb->ip_summed = CHECKSUM_UNNECESSARY;
3161 WARN_ON(!skb_dst(skb));
3166 EXPORT_SYMBOL(dev_loopback_xmit);
3168 #ifdef CONFIG_NET_EGRESS
3169 static struct sk_buff *
3170 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3173 struct tcf_result cl_res;
3178 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
3193 *ret = NET_XMIT_SUCCESS;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3207 #endif /* CONFIG_NET_EGRESS */
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3217 dev_maps = rcu_dereference(dev->xps_maps);
3219 unsigned int tci = skb->sender_cpu - 1;
3223 tci += netdev_get_prio_tc_map(dev, skb->priority);
3226 map = rcu_dereference(dev_maps->cpu_map[tci]);
3229 queue_index = map->queues[0];
3231 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233 if (unlikely(queue_index >= dev->real_num_tx_queues))
3245 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247 struct sock *sk = skb->sk;
3248 int queue_index = sk_tx_queue_get(sk);
3250 if (queue_index < 0 || skb->ooo_okay ||
3251 queue_index >= dev->real_num_tx_queues) {
3252 int new_index = get_xps_queue(dev, skb);
3255 new_index = skb_tx_hash(dev, skb);
3257 if (queue_index != new_index && sk &&
3259 rcu_access_pointer(sk->sk_dst_cache))
3260 sk_tx_queue_set(sk, new_index);
3262 queue_index = new_index;
3268 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3269 struct sk_buff *skb,
3272 int queue_index = 0;
3275 u32 sender_cpu = skb->sender_cpu - 1;
3277 if (sender_cpu >= (u32)NR_CPUS)
3278 skb->sender_cpu = raw_smp_processor_id() + 1;
3281 if (dev->real_num_tx_queues != 1) {
3282 const struct net_device_ops *ops = dev->netdev_ops;
3284 if (ops->ndo_select_queue)
3285 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3288 queue_index = __netdev_pick_tx(dev, skb);
3291 queue_index = netdev_cap_txqueue(dev, queue_index);
3294 skb_set_queue_mapping(skb, queue_index);
3295 return netdev_get_tx_queue(dev, queue_index);
3299 * __dev_queue_xmit - transmit a buffer
3300 * @skb: buffer to transmit
3301 * @accel_priv: private data used for L2 forwarding offload
3303 * Queue a buffer for transmission to a network device. The caller must
3304 * have set the device and priority and built the buffer before calling
3305 * this function. The function can be called from an interrupt.
3307 * A negative errno code is returned on a failure. A success does not
3308 * guarantee the frame will be transmitted as it may be dropped due
3309 * to congestion or traffic shaping.
3311 * -----------------------------------------------------------------------------------
3312 * I notice this method can also return errors from the queue disciplines,
3313 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3316 * Regardless of the return value, the skb is consumed, so it is currently
3317 * difficult to retry a send to this method. (You can bump the ref count
3318 * before sending to hold a reference for retry if you are careful.)
3320 * When calling this method, interrupts MUST be enabled. This is because
3321 * the BH enable code must have IRQs enabled so that it will not deadlock.
3324 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326 struct net_device *dev = skb->dev;
3327 struct netdev_queue *txq;
3331 skb_reset_mac_header(skb);
3333 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3334 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336 /* Disable soft irqs for various locks below. Also
3337 * stops preemption for RCU.
3341 skb_update_prio(skb);
3343 qdisc_pkt_len_init(skb);
3344 #ifdef CONFIG_NET_CLS_ACT
3345 skb->tc_at_ingress = 0;
3346 # ifdef CONFIG_NET_EGRESS
3347 if (static_key_false(&egress_needed)) {
3348 skb = sch_handle_egress(skb, &rc, dev);
3354 /* If device/qdisc don't need skb->dst, release it right now while
3355 * its hot in this cpu cache.
3357 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3362 txq = netdev_pick_tx(dev, skb, accel_priv);
3363 q = rcu_dereference_bh(txq->qdisc);
3365 trace_net_dev_queue(skb);
3367 rc = __dev_xmit_skb(skb, q, dev, txq);
3371 /* The device has no queue. Common case for software devices:
3372 * loopback, all the sorts of tunnels...
3374 * Really, it is unlikely that netif_tx_lock protection is necessary
3375 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3377 * However, it is possible, that they rely on protection
3380 * Check this and shot the lock. It is not prone from deadlocks.
3381 *Either shot noqueue qdisc, it is even simpler 8)
3383 if (dev->flags & IFF_UP) {
3384 int cpu = smp_processor_id(); /* ok because BHs are off */
3386 if (txq->xmit_lock_owner != cpu) {
3387 if (unlikely(__this_cpu_read(xmit_recursion) >
3388 XMIT_RECURSION_LIMIT))
3389 goto recursion_alert;
3391 skb = validate_xmit_skb(skb, dev);
3395 HARD_TX_LOCK(dev, txq, cpu);
3397 if (!netif_xmit_stopped(txq)) {
3398 __this_cpu_inc(xmit_recursion);
3399 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3400 __this_cpu_dec(xmit_recursion);
3401 if (dev_xmit_complete(rc)) {
3402 HARD_TX_UNLOCK(dev, txq);
3406 HARD_TX_UNLOCK(dev, txq);
3407 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3410 /* Recursion is detected! It is possible,
3414 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3420 rcu_read_unlock_bh();
3422 atomic_long_inc(&dev->tx_dropped);
3423 kfree_skb_list(skb);
3426 rcu_read_unlock_bh();
3430 int dev_queue_xmit(struct sk_buff *skb)
3432 return __dev_queue_xmit(skb, NULL);
3434 EXPORT_SYMBOL(dev_queue_xmit);
3436 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 return __dev_queue_xmit(skb, accel_priv);
3440 EXPORT_SYMBOL(dev_queue_xmit_accel);
3443 /*************************************************************************
3445 *************************************************************************/
3447 int netdev_max_backlog __read_mostly = 1000;
3448 EXPORT_SYMBOL(netdev_max_backlog);
3450 int netdev_tstamp_prequeue __read_mostly = 1;
3451 int netdev_budget __read_mostly = 300;
3452 unsigned int __read_mostly netdev_budget_usecs = 2000;
3453 int weight_p __read_mostly = 64; /* old backlog weight */
3454 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3455 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3456 int dev_rx_weight __read_mostly = 64;
3457 int dev_tx_weight __read_mostly = 64;
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461 struct napi_struct *napi)
3463 list_add_tail(&napi->poll_list, &sd->poll_list);
3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477 struct static_key rfs_needed __read_mostly;
3478 EXPORT_SYMBOL(rfs_needed);
3480 static struct rps_dev_flow *
3481 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3482 struct rps_dev_flow *rflow, u16 next_cpu)
3484 if (next_cpu < nr_cpu_ids) {
3485 #ifdef CONFIG_RFS_ACCEL
3486 struct netdev_rx_queue *rxqueue;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_dev_flow *old_rflow;
3493 /* Should we steer this flow to a different hardware queue? */
3494 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3495 !(dev->features & NETIF_F_NTUPLE))
3497 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3498 if (rxq_index == skb_get_rx_queue(skb))
3501 rxqueue = dev->_rx + rxq_index;
3502 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3505 flow_id = skb_get_hash(skb) & flow_table->mask;
3506 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3507 rxq_index, flow_id);
3511 rflow = &flow_table->flows[flow_id];
3513 if (old_rflow->filter == rflow->filter)
3514 old_rflow->filter = RPS_NO_FILTER;
3518 per_cpu(softnet_data, next_cpu).input_queue_head;
3521 rflow->cpu = next_cpu;
3526 * get_rps_cpu is called from netif_receive_skb and returns the target
3527 * CPU from the RPS map of the receiving queue for a given skb.
3528 * rcu_read_lock must be held on entry.
3530 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3531 struct rps_dev_flow **rflowp)
3533 const struct rps_sock_flow_table *sock_flow_table;
3534 struct netdev_rx_queue *rxqueue = dev->_rx;
3535 struct rps_dev_flow_table *flow_table;
3536 struct rps_map *map;
3541 if (skb_rx_queue_recorded(skb)) {
3542 u16 index = skb_get_rx_queue(skb);
3544 if (unlikely(index >= dev->real_num_rx_queues)) {
3545 WARN_ONCE(dev->real_num_rx_queues > 1,
3546 "%s received packet on queue %u, but number "
3547 "of RX queues is %u\n",
3548 dev->name, index, dev->real_num_rx_queues);
3554 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3557 map = rcu_dereference(rxqueue->rps_map);
3558 if (!flow_table && !map)
3561 skb_reset_network_header(skb);
3562 hash = skb_get_hash(skb);
3566 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3567 if (flow_table && sock_flow_table) {
3568 struct rps_dev_flow *rflow;
3572 /* First check into global flow table if there is a match */
3573 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3574 if ((ident ^ hash) & ~rps_cpu_mask)
3577 next_cpu = ident & rps_cpu_mask;
3579 /* OK, now we know there is a match,
3580 * we can look at the local (per receive queue) flow table
3582 rflow = &flow_table->flows[hash & flow_table->mask];
3586 * If the desired CPU (where last recvmsg was done) is
3587 * different from current CPU (one in the rx-queue flow
3588 * table entry), switch if one of the following holds:
3589 * - Current CPU is unset (>= nr_cpu_ids).
3590 * - Current CPU is offline.
3591 * - The current CPU's queue tail has advanced beyond the
3592 * last packet that was enqueued using this table entry.
3593 * This guarantees that all previous packets for the flow
3594 * have been dequeued, thus preserving in order delivery.
3596 if (unlikely(tcpu != next_cpu) &&
3597 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3598 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3599 rflow->last_qtail)) >= 0)) {
3601 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3604 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3614 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3615 if (cpu_online(tcpu)) {
3625 #ifdef CONFIG_RFS_ACCEL
3628 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3629 * @dev: Device on which the filter was set
3630 * @rxq_index: RX queue index
3631 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3632 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634 * Drivers that implement ndo_rx_flow_steer() should periodically call
3635 * this function for each installed filter and remove the filters for
3636 * which it returns %true.
3638 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3639 u32 flow_id, u16 filter_id)
3641 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3642 struct rps_dev_flow_table *flow_table;
3643 struct rps_dev_flow *rflow;
3648 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3649 if (flow_table && flow_id <= flow_table->mask) {
3650 rflow = &flow_table->flows[flow_id];
3651 cpu = ACCESS_ONCE(rflow->cpu);
3652 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3653 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3654 rflow->last_qtail) <
3655 (int)(10 * flow_table->mask)))
3661 EXPORT_SYMBOL(rps_may_expire_flow);
3663 #endif /* CONFIG_RFS_ACCEL */
3665 /* Called from hardirq (IPI) context */
3666 static void rps_trigger_softirq(void *data)
3668 struct softnet_data *sd = data;
3670 ____napi_schedule(sd, &sd->backlog);
3674 #endif /* CONFIG_RPS */
3677 * Check if this softnet_data structure is another cpu one
3678 * If yes, queue it to our IPI list and return 1
3681 static int rps_ipi_queued(struct softnet_data *sd)
3684 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3687 sd->rps_ipi_next = mysd->rps_ipi_list;
3688 mysd->rps_ipi_list = sd;
3690 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3693 #endif /* CONFIG_RPS */
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3701 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703 #ifdef CONFIG_NET_FLOW_LIMIT
3704 struct sd_flow_limit *fl;
3705 struct softnet_data *sd;
3706 unsigned int old_flow, new_flow;
3708 if (qlen < (netdev_max_backlog >> 1))
3711 sd = this_cpu_ptr(&softnet_data);
3714 fl = rcu_dereference(sd->flow_limit);
3716 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3717 old_flow = fl->history[fl->history_head];
3718 fl->history[fl->history_head] = new_flow;
3721 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723 if (likely(fl->buckets[old_flow]))
3724 fl->buckets[old_flow]--;
3726 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3738 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3739 * queue (may be a remote CPU queue).
3741 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3742 unsigned int *qtail)
3744 struct softnet_data *sd;
3745 unsigned long flags;
3748 sd = &per_cpu(softnet_data, cpu);
3750 local_irq_save(flags);
3753 if (!netif_running(skb->dev))
3755 qlen = skb_queue_len(&sd->input_pkt_queue);
3756 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3759 __skb_queue_tail(&sd->input_pkt_queue, skb);
3760 input_queue_tail_incr_save(sd, qtail);
3762 local_irq_restore(flags);
3763 return NET_RX_SUCCESS;
3766 /* Schedule NAPI for backlog device
3767 * We can use non atomic operation since we own the queue lock
3769 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3770 if (!rps_ipi_queued(sd))
3771 ____napi_schedule(sd, &sd->backlog);
3780 local_irq_restore(flags);
3782 atomic_long_inc(&skb->dev->rx_dropped);
3787 static int netif_rx_internal(struct sk_buff *skb)
3791 net_timestamp_check(netdev_tstamp_prequeue, skb);
3793 trace_netif_rx(skb);
3795 if (static_key_false(&rps_needed)) {
3796 struct rps_dev_flow voidflow, *rflow = &voidflow;
3802 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804 cpu = smp_processor_id();
3806 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3815 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3822 * netif_rx - post buffer to the network code
3823 * @skb: buffer to post
3825 * This function receives a packet from a device driver and queues it for
3826 * the upper (protocol) levels to process. It always succeeds. The buffer
3827 * may be dropped during processing for congestion control or by the
3831 * NET_RX_SUCCESS (no congestion)
3832 * NET_RX_DROP (packet was dropped)
3836 int netif_rx(struct sk_buff *skb)
3838 trace_netif_rx_entry(skb);
3840 return netif_rx_internal(skb);
3842 EXPORT_SYMBOL(netif_rx);
3844 int netif_rx_ni(struct sk_buff *skb)
3848 trace_netif_rx_ni_entry(skb);
3851 err = netif_rx_internal(skb);
3852 if (local_softirq_pending())
3858 EXPORT_SYMBOL(netif_rx_ni);
3860 static __latent_entropy void net_tx_action(struct softirq_action *h)
3862 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864 if (sd->completion_queue) {
3865 struct sk_buff *clist;
3867 local_irq_disable();
3868 clist = sd->completion_queue;
3869 sd->completion_queue = NULL;
3873 struct sk_buff *skb = clist;
3875 clist = clist->next;
3877 WARN_ON(atomic_read(&skb->users));
3878 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3879 trace_consume_skb(skb);
3881 trace_kfree_skb(skb, net_tx_action);
3883 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3886 __kfree_skb_defer(skb);
3889 __kfree_skb_flush();
3892 if (sd->output_queue) {
3895 local_irq_disable();
3896 head = sd->output_queue;
3897 sd->output_queue = NULL;
3898 sd->output_queue_tailp = &sd->output_queue;
3902 struct Qdisc *q = head;
3903 spinlock_t *root_lock;
3905 head = head->next_sched;
3907 root_lock = qdisc_lock(q);
3908 spin_lock(root_lock);
3909 /* We need to make sure head->next_sched is read
3910 * before clearing __QDISC_STATE_SCHED
3912 smp_mb__before_atomic();
3913 clear_bit(__QDISC_STATE_SCHED, &q->state);
3915 spin_unlock(root_lock);
3920 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3921 /* This hook is defined here for ATM LANE */
3922 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3923 unsigned char *addr) __read_mostly;
3924 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3927 static inline struct sk_buff *
3928 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3929 struct net_device *orig_dev)
3931 #ifdef CONFIG_NET_CLS_ACT
3932 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3933 struct tcf_result cl_res;
3935 /* If there's at least one ingress present somewhere (so
3936 * we get here via enabled static key), remaining devices
3937 * that are not configured with an ingress qdisc will bail
3943 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3947 qdisc_skb_cb(skb)->pkt_len = skb->len;
3948 skb->tc_at_ingress = 1;
3949 qdisc_bstats_cpu_update(cl->q, skb);
3951 switch (tc_classify(skb, cl, &cl_res, false)) {
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 qdisc_qstats_cpu_drop(cl->q);
3964 case TC_ACT_REDIRECT:
3965 /* skb_mac_header check was done by cls/act_bpf, so
3966 * we can safely push the L2 header back before
3967 * redirecting to another netdev
3969 __skb_push(skb, skb->mac_len);
3970 skb_do_redirect(skb);
3975 #endif /* CONFIG_NET_CLS_ACT */
3980 * netdev_is_rx_handler_busy - check if receive handler is registered
3981 * @dev: device to check
3983 * Check if a receive handler is already registered for a given device.
3984 * Return true if there one.
3986 * The caller must hold the rtnl_mutex.
3988 bool netdev_is_rx_handler_busy(struct net_device *dev)
3991 return dev && rtnl_dereference(dev->rx_handler);
3993 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3996 * netdev_rx_handler_register - register receive handler
3997 * @dev: device to register a handler for
3998 * @rx_handler: receive handler to register
3999 * @rx_handler_data: data pointer that is used by rx handler
4001 * Register a receive handler for a device. This handler will then be
4002 * called from __netif_receive_skb. A negative errno code is returned
4005 * The caller must hold the rtnl_mutex.
4007 * For a general description of rx_handler, see enum rx_handler_result.
4009 int netdev_rx_handler_register(struct net_device *dev,
4010 rx_handler_func_t *rx_handler,
4011 void *rx_handler_data)
4013 if (netdev_is_rx_handler_busy(dev))
4016 /* Note: rx_handler_data must be set before rx_handler */
4017 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018 rcu_assign_pointer(dev->rx_handler, rx_handler);
4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4025 * netdev_rx_handler_unregister - unregister receive handler
4026 * @dev: device to unregister a handler from
4028 * Unregister a receive handler from a device.
4030 * The caller must hold the rtnl_mutex.
4032 void netdev_rx_handler_unregister(struct net_device *dev)
4036 RCU_INIT_POINTER(dev->rx_handler, NULL);
4037 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038 * section has a guarantee to see a non NULL rx_handler_data
4042 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4047 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048 * the special handling of PFMEMALLOC skbs.
4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052 switch (skb->protocol) {
4053 case htons(ETH_P_ARP):
4054 case htons(ETH_P_IP):
4055 case htons(ETH_P_IPV6):
4056 case htons(ETH_P_8021Q):
4057 case htons(ETH_P_8021AD):
4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065 int *ret, struct net_device *orig_dev)
4067 #ifdef CONFIG_NETFILTER_INGRESS
4068 if (nf_hook_ingress_active(skb)) {
4072 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4077 ingress_retval = nf_hook_ingress(skb);
4079 return ingress_retval;
4081 #endif /* CONFIG_NETFILTER_INGRESS */
4085 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087 struct packet_type *ptype, *pt_prev;
4088 rx_handler_func_t *rx_handler;
4089 struct net_device *orig_dev;
4090 bool deliver_exact = false;
4091 int ret = NET_RX_DROP;
4094 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096 trace_netif_receive_skb(skb);
4098 orig_dev = skb->dev;
4100 skb_reset_network_header(skb);
4101 if (!skb_transport_header_was_set(skb))
4102 skb_reset_transport_header(skb);
4103 skb_reset_mac_len(skb);
4108 skb->skb_iif = skb->dev->ifindex;
4110 __this_cpu_inc(softnet_data.processed);
4112 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4113 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4114 skb = skb_vlan_untag(skb);
4119 if (skb_skip_tc_classify(skb))
4125 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127 ret = deliver_skb(skb, pt_prev, orig_dev);
4131 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133 ret = deliver_skb(skb, pt_prev, orig_dev);
4138 #ifdef CONFIG_NET_INGRESS
4139 if (static_key_false(&ingress_needed)) {
4140 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4144 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4150 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4153 if (skb_vlan_tag_present(skb)) {
4155 ret = deliver_skb(skb, pt_prev, orig_dev);
4158 if (vlan_do_receive(&skb))
4160 else if (unlikely(!skb))
4164 rx_handler = rcu_dereference(skb->dev->rx_handler);
4167 ret = deliver_skb(skb, pt_prev, orig_dev);
4170 switch (rx_handler(&skb)) {
4171 case RX_HANDLER_CONSUMED:
4172 ret = NET_RX_SUCCESS;
4174 case RX_HANDLER_ANOTHER:
4176 case RX_HANDLER_EXACT:
4177 deliver_exact = true;
4178 case RX_HANDLER_PASS:
4185 if (unlikely(skb_vlan_tag_present(skb))) {
4186 if (skb_vlan_tag_get_id(skb))
4187 skb->pkt_type = PACKET_OTHERHOST;
4188 /* Note: we might in the future use prio bits
4189 * and set skb->priority like in vlan_do_receive()
4190 * For the time being, just ignore Priority Code Point
4195 type = skb->protocol;
4197 /* deliver only exact match when indicated */
4198 if (likely(!deliver_exact)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &ptype_base[ntohs(type) &
4204 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 &orig_dev->ptype_specific);
4207 if (unlikely(skb->dev != orig_dev)) {
4208 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4209 &skb->dev->ptype_specific);
4213 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4216 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4220 atomic_long_inc(&skb->dev->rx_dropped);
4222 atomic_long_inc(&skb->dev->rx_nohandler);
4224 /* Jamal, now you will not able to escape explaining
4225 * me how you were going to use this. :-)
4234 static int __netif_receive_skb(struct sk_buff *skb)
4238 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4239 unsigned int noreclaim_flag;
4242 * PFMEMALLOC skbs are special, they should
4243 * - be delivered to SOCK_MEMALLOC sockets only
4244 * - stay away from userspace
4245 * - have bounded memory usage
4247 * Use PF_MEMALLOC as this saves us from propagating the allocation
4248 * context down to all allocation sites.
4250 noreclaim_flag = memalloc_noreclaim_save();
4251 ret = __netif_receive_skb_core(skb, true);
4252 memalloc_noreclaim_restore(noreclaim_flag);
4254 ret = __netif_receive_skb_core(skb, false);
4259 static struct static_key generic_xdp_needed __read_mostly;
4261 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263 struct bpf_prog *new = xdp->prog;
4266 switch (xdp->command) {
4267 case XDP_SETUP_PROG: {
4268 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270 rcu_assign_pointer(dev->xdp_prog, new);
4275 static_key_slow_dec(&generic_xdp_needed);
4276 } else if (new && !old) {
4277 static_key_slow_inc(&generic_xdp_needed);
4278 dev_disable_lro(dev);
4283 case XDP_QUERY_PROG:
4284 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4295 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4296 struct bpf_prog *xdp_prog)
4298 struct xdp_buff xdp;
4304 /* Reinjected packets coming from act_mirred or similar should
4305 * not get XDP generic processing.
4307 if (skb_cloned(skb))
4310 if (skb_linearize(skb))
4313 /* The XDP program wants to see the packet starting at the MAC
4316 mac_len = skb->data - skb_mac_header(skb);
4317 hlen = skb_headlen(skb) + mac_len;
4318 xdp.data = skb->data - mac_len;
4319 xdp.data_end = xdp.data + hlen;
4320 xdp.data_hard_start = skb->data - skb_headroom(skb);
4321 orig_data = xdp.data;
4323 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325 off = xdp.data - orig_data;
4327 __skb_pull(skb, off);
4329 __skb_push(skb, -off);
4333 __skb_push(skb, mac_len);
4339 bpf_warn_invalid_xdp_action(act);
4342 trace_xdp_exception(skb->dev, xdp_prog, act);
4353 /* When doing generic XDP we have to bypass the qdisc layer and the
4354 * network taps in order to match in-driver-XDP behavior.
4356 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358 struct net_device *dev = skb->dev;
4359 struct netdev_queue *txq;
4360 bool free_skb = true;
4363 txq = netdev_pick_tx(dev, skb, NULL);
4364 cpu = smp_processor_id();
4365 HARD_TX_LOCK(dev, txq, cpu);
4366 if (!netif_xmit_stopped(txq)) {
4367 rc = netdev_start_xmit(skb, dev, txq, 0);
4368 if (dev_xmit_complete(rc))
4371 HARD_TX_UNLOCK(dev, txq);
4373 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4378 static int netif_receive_skb_internal(struct sk_buff *skb)
4382 net_timestamp_check(netdev_tstamp_prequeue, skb);
4384 if (skb_defer_rx_timestamp(skb))
4385 return NET_RX_SUCCESS;
4389 if (static_key_false(&generic_xdp_needed)) {
4390 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4393 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395 if (act != XDP_PASS) {
4398 generic_xdp_tx(skb, xdp_prog);
4405 if (static_key_false(&rps_needed)) {
4406 struct rps_dev_flow voidflow, *rflow = &voidflow;
4407 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4410 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4416 ret = __netif_receive_skb(skb);
4422 * netif_receive_skb - process receive buffer from network
4423 * @skb: buffer to process
4425 * netif_receive_skb() is the main receive data processing function.
4426 * It always succeeds. The buffer may be dropped during processing
4427 * for congestion control or by the protocol layers.
4429 * This function may only be called from softirq context and interrupts
4430 * should be enabled.
4432 * Return values (usually ignored):
4433 * NET_RX_SUCCESS: no congestion
4434 * NET_RX_DROP: packet was dropped
4436 int netif_receive_skb(struct sk_buff *skb)
4438 trace_netif_receive_skb_entry(skb);
4440 return netif_receive_skb_internal(skb);
4442 EXPORT_SYMBOL(netif_receive_skb);
4444 DEFINE_PER_CPU(struct work_struct, flush_works);
4446 /* Network device is going away, flush any packets still pending */
4447 static void flush_backlog(struct work_struct *work)
4449 struct sk_buff *skb, *tmp;
4450 struct softnet_data *sd;
4453 sd = this_cpu_ptr(&softnet_data);
4455 local_irq_disable();
4457 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4458 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4459 __skb_unlink(skb, &sd->input_pkt_queue);
4461 input_queue_head_incr(sd);
4467 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4468 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4469 __skb_unlink(skb, &sd->process_queue);
4471 input_queue_head_incr(sd);
4477 static void flush_all_backlogs(void)
4483 for_each_online_cpu(cpu)
4484 queue_work_on(cpu, system_highpri_wq,
4485 per_cpu_ptr(&flush_works, cpu));
4487 for_each_online_cpu(cpu)
4488 flush_work(per_cpu_ptr(&flush_works, cpu));
4493 static int napi_gro_complete(struct sk_buff *skb)
4495 struct packet_offload *ptype;
4496 __be16 type = skb->protocol;
4497 struct list_head *head = &offload_base;
4500 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502 if (NAPI_GRO_CB(skb)->count == 1) {
4503 skb_shinfo(skb)->gso_size = 0;
4508 list_for_each_entry_rcu(ptype, head, list) {
4509 if (ptype->type != type || !ptype->callbacks.gro_complete)
4512 err = ptype->callbacks.gro_complete(skb, 0);
4518 WARN_ON(&ptype->list == head);
4520 return NET_RX_SUCCESS;
4524 return netif_receive_skb_internal(skb);
4527 /* napi->gro_list contains packets ordered by age.
4528 * youngest packets at the head of it.
4529 * Complete skbs in reverse order to reduce latencies.
4531 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533 struct sk_buff *skb, *prev = NULL;
4535 /* scan list and build reverse chain */
4536 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4541 for (skb = prev; skb; skb = prev) {
4544 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4548 napi_gro_complete(skb);
4552 napi->gro_list = NULL;
4554 EXPORT_SYMBOL(napi_gro_flush);
4556 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4559 unsigned int maclen = skb->dev->hard_header_len;
4560 u32 hash = skb_get_hash_raw(skb);
4562 for (p = napi->gro_list; p; p = p->next) {
4563 unsigned long diffs;
4565 NAPI_GRO_CB(p)->flush = 0;
4567 if (hash != skb_get_hash_raw(p)) {
4568 NAPI_GRO_CB(p)->same_flow = 0;
4572 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4573 diffs |= p->vlan_tci ^ skb->vlan_tci;
4574 diffs |= skb_metadata_dst_cmp(p, skb);
4575 if (maclen == ETH_HLEN)
4576 diffs |= compare_ether_header(skb_mac_header(p),
4577 skb_mac_header(skb));
4579 diffs = memcmp(skb_mac_header(p),
4580 skb_mac_header(skb),
4582 NAPI_GRO_CB(p)->same_flow = !diffs;
4586 static void skb_gro_reset_offset(struct sk_buff *skb)
4588 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4589 const skb_frag_t *frag0 = &pinfo->frags[0];
4591 NAPI_GRO_CB(skb)->data_offset = 0;
4592 NAPI_GRO_CB(skb)->frag0 = NULL;
4593 NAPI_GRO_CB(skb)->frag0_len = 0;
4595 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597 !PageHighMem(skb_frag_page(frag0))) {
4598 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4599 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4600 skb_frag_size(frag0),
4601 skb->end - skb->tail);
4605 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607 struct skb_shared_info *pinfo = skb_shinfo(skb);
4609 BUG_ON(skb->end - skb->tail < grow);
4611 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613 skb->data_len -= grow;
4616 pinfo->frags[0].page_offset += grow;
4617 skb_frag_size_sub(&pinfo->frags[0], grow);
4619 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4620 skb_frag_unref(skb, 0);
4621 memmove(pinfo->frags, pinfo->frags + 1,
4622 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4626 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628 struct sk_buff **pp = NULL;
4629 struct packet_offload *ptype;
4630 __be16 type = skb->protocol;
4631 struct list_head *head = &offload_base;
4633 enum gro_result ret;
4636 if (netif_elide_gro(skb->dev))
4642 gro_list_prepare(napi, skb);
4645 list_for_each_entry_rcu(ptype, head, list) {
4646 if (ptype->type != type || !ptype->callbacks.gro_receive)
4649 skb_set_network_header(skb, skb_gro_offset(skb));
4650 skb_reset_mac_len(skb);
4651 NAPI_GRO_CB(skb)->same_flow = 0;
4652 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4653 NAPI_GRO_CB(skb)->free = 0;
4654 NAPI_GRO_CB(skb)->encap_mark = 0;
4655 NAPI_GRO_CB(skb)->recursion_counter = 0;
4656 NAPI_GRO_CB(skb)->is_fou = 0;
4657 NAPI_GRO_CB(skb)->is_atomic = 1;
4658 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660 /* Setup for GRO checksum validation */
4661 switch (skb->ip_summed) {
4662 case CHECKSUM_COMPLETE:
4663 NAPI_GRO_CB(skb)->csum = skb->csum;
4664 NAPI_GRO_CB(skb)->csum_valid = 1;
4665 NAPI_GRO_CB(skb)->csum_cnt = 0;
4667 case CHECKSUM_UNNECESSARY:
4668 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4669 NAPI_GRO_CB(skb)->csum_valid = 0;
4672 NAPI_GRO_CB(skb)->csum_cnt = 0;
4673 NAPI_GRO_CB(skb)->csum_valid = 0;
4676 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4681 if (&ptype->list == head)
4684 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4689 same_flow = NAPI_GRO_CB(skb)->same_flow;
4690 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4693 struct sk_buff *nskb = *pp;
4697 napi_gro_complete(nskb);
4704 if (NAPI_GRO_CB(skb)->flush)
4707 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4708 struct sk_buff *nskb = napi->gro_list;
4710 /* locate the end of the list to select the 'oldest' flow */
4711 while (nskb->next) {
4717 napi_gro_complete(nskb);
4721 NAPI_GRO_CB(skb)->count = 1;
4722 NAPI_GRO_CB(skb)->age = jiffies;
4723 NAPI_GRO_CB(skb)->last = skb;
4724 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4725 skb->next = napi->gro_list;
4726 napi->gro_list = skb;
4730 grow = skb_gro_offset(skb) - skb_headlen(skb);
4732 gro_pull_from_frag0(skb, grow);
4741 struct packet_offload *gro_find_receive_by_type(__be16 type)
4743 struct list_head *offload_head = &offload_base;
4744 struct packet_offload *ptype;
4746 list_for_each_entry_rcu(ptype, offload_head, list) {
4747 if (ptype->type != type || !ptype->callbacks.gro_receive)
4753 EXPORT_SYMBOL(gro_find_receive_by_type);
4755 struct packet_offload *gro_find_complete_by_type(__be16 type)
4757 struct list_head *offload_head = &offload_base;
4758 struct packet_offload *ptype;
4760 list_for_each_entry_rcu(ptype, offload_head, list) {
4761 if (ptype->type != type || !ptype->callbacks.gro_complete)
4767 EXPORT_SYMBOL(gro_find_complete_by_type);
4769 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4773 if (netif_receive_skb_internal(skb))
4781 case GRO_MERGED_FREE:
4782 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4785 kmem_cache_free(skbuff_head_cache, skb);
4800 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4802 skb_mark_napi_id(skb, napi);
4803 trace_napi_gro_receive_entry(skb);
4805 skb_gro_reset_offset(skb);
4807 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4809 EXPORT_SYMBOL(napi_gro_receive);
4811 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4813 if (unlikely(skb->pfmemalloc)) {
4817 __skb_pull(skb, skb_headlen(skb));
4818 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4819 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4821 skb->dev = napi->dev;
4823 skb->encapsulation = 0;
4824 skb_shinfo(skb)->gso_type = 0;
4825 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4831 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4833 struct sk_buff *skb = napi->skb;
4836 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4839 skb_mark_napi_id(skb, napi);
4844 EXPORT_SYMBOL(napi_get_frags);
4846 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4847 struct sk_buff *skb,
4853 __skb_push(skb, ETH_HLEN);
4854 skb->protocol = eth_type_trans(skb, skb->dev);
4855 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4860 case GRO_MERGED_FREE:
4861 napi_reuse_skb(napi, skb);
4872 /* Upper GRO stack assumes network header starts at gro_offset=0
4873 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4874 * We copy ethernet header into skb->data to have a common layout.
4876 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4878 struct sk_buff *skb = napi->skb;
4879 const struct ethhdr *eth;
4880 unsigned int hlen = sizeof(*eth);
4884 skb_reset_mac_header(skb);
4885 skb_gro_reset_offset(skb);
4887 eth = skb_gro_header_fast(skb, 0);
4888 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4889 eth = skb_gro_header_slow(skb, hlen, 0);
4890 if (unlikely(!eth)) {
4891 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4892 __func__, napi->dev->name);
4893 napi_reuse_skb(napi, skb);
4897 gro_pull_from_frag0(skb, hlen);
4898 NAPI_GRO_CB(skb)->frag0 += hlen;
4899 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4901 __skb_pull(skb, hlen);
4904 * This works because the only protocols we care about don't require
4906 * We'll fix it up properly in napi_frags_finish()
4908 skb->protocol = eth->h_proto;
4913 gro_result_t napi_gro_frags(struct napi_struct *napi)
4915 struct sk_buff *skb = napi_frags_skb(napi);
4920 trace_napi_gro_frags_entry(skb);
4922 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4924 EXPORT_SYMBOL(napi_gro_frags);
4926 /* Compute the checksum from gro_offset and return the folded value
4927 * after adding in any pseudo checksum.
4929 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4934 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4936 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4937 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4939 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4940 !skb->csum_complete_sw)
4941 netdev_rx_csum_fault(skb->dev);
4944 NAPI_GRO_CB(skb)->csum = wsum;
4945 NAPI_GRO_CB(skb)->csum_valid = 1;
4949 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4952 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4953 * Note: called with local irq disabled, but exits with local irq enabled.
4955 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4958 struct softnet_data *remsd = sd->rps_ipi_list;
4961 sd->rps_ipi_list = NULL;
4965 /* Send pending IPI's to kick RPS processing on remote cpus. */
4967 struct softnet_data *next = remsd->rps_ipi_next;
4969 if (cpu_online(remsd->cpu))
4970 smp_call_function_single_async(remsd->cpu,
4979 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4982 return sd->rps_ipi_list != NULL;
4988 static int process_backlog(struct napi_struct *napi, int quota)
4990 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4994 /* Check if we have pending ipi, its better to send them now,
4995 * not waiting net_rx_action() end.
4997 if (sd_has_rps_ipi_waiting(sd)) {
4998 local_irq_disable();
4999 net_rps_action_and_irq_enable(sd);
5002 napi->weight = dev_rx_weight;
5004 struct sk_buff *skb;
5006 while ((skb = __skb_dequeue(&sd->process_queue))) {
5008 __netif_receive_skb(skb);
5010 input_queue_head_incr(sd);
5011 if (++work >= quota)
5016 local_irq_disable();
5018 if (skb_queue_empty(&sd->input_pkt_queue)) {
5020 * Inline a custom version of __napi_complete().
5021 * only current cpu owns and manipulates this napi,
5022 * and NAPI_STATE_SCHED is the only possible flag set
5024 * We can use a plain write instead of clear_bit(),
5025 * and we dont need an smp_mb() memory barrier.
5030 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5031 &sd->process_queue);
5041 * __napi_schedule - schedule for receive
5042 * @n: entry to schedule
5044 * The entry's receive function will be scheduled to run.
5045 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5047 void __napi_schedule(struct napi_struct *n)
5049 unsigned long flags;
5051 local_irq_save(flags);
5052 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5053 local_irq_restore(flags);
5055 EXPORT_SYMBOL(__napi_schedule);
5058 * napi_schedule_prep - check if napi can be scheduled
5061 * Test if NAPI routine is already running, and if not mark
5062 * it as running. This is used as a condition variable
5063 * insure only one NAPI poll instance runs. We also make
5064 * sure there is no pending NAPI disable.
5066 bool napi_schedule_prep(struct napi_struct *n)
5068 unsigned long val, new;
5071 val = READ_ONCE(n->state);
5072 if (unlikely(val & NAPIF_STATE_DISABLE))
5074 new = val | NAPIF_STATE_SCHED;
5076 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5077 * This was suggested by Alexander Duyck, as compiler
5078 * emits better code than :
5079 * if (val & NAPIF_STATE_SCHED)
5080 * new |= NAPIF_STATE_MISSED;
5082 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5084 } while (cmpxchg(&n->state, val, new) != val);
5086 return !(val & NAPIF_STATE_SCHED);
5088 EXPORT_SYMBOL(napi_schedule_prep);
5091 * __napi_schedule_irqoff - schedule for receive
5092 * @n: entry to schedule
5094 * Variant of __napi_schedule() assuming hard irqs are masked
5096 void __napi_schedule_irqoff(struct napi_struct *n)
5098 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5100 EXPORT_SYMBOL(__napi_schedule_irqoff);
5102 bool napi_complete_done(struct napi_struct *n, int work_done)
5104 unsigned long flags, val, new;
5107 * 1) Don't let napi dequeue from the cpu poll list
5108 * just in case its running on a different cpu.
5109 * 2) If we are busy polling, do nothing here, we have
5110 * the guarantee we will be called later.
5112 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5113 NAPIF_STATE_IN_BUSY_POLL)))
5117 unsigned long timeout = 0;
5120 timeout = n->dev->gro_flush_timeout;
5123 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5124 HRTIMER_MODE_REL_PINNED);
5126 napi_gro_flush(n, false);
5128 if (unlikely(!list_empty(&n->poll_list))) {
5129 /* If n->poll_list is not empty, we need to mask irqs */
5130 local_irq_save(flags);
5131 list_del_init(&n->poll_list);
5132 local_irq_restore(flags);
5136 val = READ_ONCE(n->state);
5138 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5140 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5142 /* If STATE_MISSED was set, leave STATE_SCHED set,
5143 * because we will call napi->poll() one more time.
5144 * This C code was suggested by Alexander Duyck to help gcc.
5146 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5148 } while (cmpxchg(&n->state, val, new) != val);
5150 if (unlikely(val & NAPIF_STATE_MISSED)) {
5157 EXPORT_SYMBOL(napi_complete_done);
5159 /* must be called under rcu_read_lock(), as we dont take a reference */
5160 static struct napi_struct *napi_by_id(unsigned int napi_id)
5162 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5163 struct napi_struct *napi;
5165 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5166 if (napi->napi_id == napi_id)
5172 #if defined(CONFIG_NET_RX_BUSY_POLL)
5174 #define BUSY_POLL_BUDGET 8
5176 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5180 /* Busy polling means there is a high chance device driver hard irq
5181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5182 * set in napi_schedule_prep().
5183 * Since we are about to call napi->poll() once more, we can safely
5184 * clear NAPI_STATE_MISSED.
5186 * Note: x86 could use a single "lock and ..." instruction
5187 * to perform these two clear_bit()
5189 clear_bit(NAPI_STATE_MISSED, &napi->state);
5190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5194 /* All we really want here is to re-enable device interrupts.
5195 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5197 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5198 netpoll_poll_unlock(have_poll_lock);
5199 if (rc == BUSY_POLL_BUDGET)
5200 __napi_schedule(napi);
5202 if (local_softirq_pending())
5206 void napi_busy_loop(unsigned int napi_id,
5207 bool (*loop_end)(void *, unsigned long),
5210 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5211 int (*napi_poll)(struct napi_struct *napi, int budget);
5212 void *have_poll_lock = NULL;
5213 struct napi_struct *napi;
5220 napi = napi_by_id(napi_id);
5230 unsigned long val = READ_ONCE(napi->state);
5232 /* If multiple threads are competing for this napi,
5233 * we avoid dirtying napi->state as much as we can.
5235 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5236 NAPIF_STATE_IN_BUSY_POLL))
5238 if (cmpxchg(&napi->state, val,
5239 val | NAPIF_STATE_IN_BUSY_POLL |
5240 NAPIF_STATE_SCHED) != val)
5242 have_poll_lock = netpoll_poll_lock(napi);
5243 napi_poll = napi->poll;
5245 work = napi_poll(napi, BUSY_POLL_BUDGET);
5246 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5249 __NET_ADD_STATS(dev_net(napi->dev),
5250 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5253 if (!loop_end || loop_end(loop_end_arg, start_time))
5256 if (unlikely(need_resched())) {
5258 busy_poll_stop(napi, have_poll_lock);
5262 if (loop_end(loop_end_arg, start_time))
5269 busy_poll_stop(napi, have_poll_lock);
5274 EXPORT_SYMBOL(napi_busy_loop);
5276 #endif /* CONFIG_NET_RX_BUSY_POLL */
5278 static void napi_hash_add(struct napi_struct *napi)
5280 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5281 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5284 spin_lock(&napi_hash_lock);
5286 /* 0..NR_CPUS range is reserved for sender_cpu use */
5288 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5289 napi_gen_id = MIN_NAPI_ID;
5290 } while (napi_by_id(napi_gen_id));
5291 napi->napi_id = napi_gen_id;
5293 hlist_add_head_rcu(&napi->napi_hash_node,
5294 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5296 spin_unlock(&napi_hash_lock);
5299 /* Warning : caller is responsible to make sure rcu grace period
5300 * is respected before freeing memory containing @napi
5302 bool napi_hash_del(struct napi_struct *napi)
5304 bool rcu_sync_needed = false;
5306 spin_lock(&napi_hash_lock);
5308 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5309 rcu_sync_needed = true;
5310 hlist_del_rcu(&napi->napi_hash_node);
5312 spin_unlock(&napi_hash_lock);
5313 return rcu_sync_needed;
5315 EXPORT_SYMBOL_GPL(napi_hash_del);
5317 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5319 struct napi_struct *napi;
5321 napi = container_of(timer, struct napi_struct, timer);
5323 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5324 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5326 if (napi->gro_list && !napi_disable_pending(napi) &&
5327 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5328 __napi_schedule_irqoff(napi);
5330 return HRTIMER_NORESTART;
5333 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5334 int (*poll)(struct napi_struct *, int), int weight)
5336 INIT_LIST_HEAD(&napi->poll_list);
5337 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5338 napi->timer.function = napi_watchdog;
5339 napi->gro_count = 0;
5340 napi->gro_list = NULL;
5343 if (weight > NAPI_POLL_WEIGHT)
5344 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5346 napi->weight = weight;
5347 list_add(&napi->dev_list, &dev->napi_list);
5349 #ifdef CONFIG_NETPOLL
5350 napi->poll_owner = -1;
5352 set_bit(NAPI_STATE_SCHED, &napi->state);
5353 napi_hash_add(napi);
5355 EXPORT_SYMBOL(netif_napi_add);
5357 void napi_disable(struct napi_struct *n)
5360 set_bit(NAPI_STATE_DISABLE, &n->state);
5362 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5364 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5367 hrtimer_cancel(&n->timer);
5369 clear_bit(NAPI_STATE_DISABLE, &n->state);
5371 EXPORT_SYMBOL(napi_disable);
5373 /* Must be called in process context */
5374 void netif_napi_del(struct napi_struct *napi)
5377 if (napi_hash_del(napi))
5379 list_del_init(&napi->dev_list);
5380 napi_free_frags(napi);
5382 kfree_skb_list(napi->gro_list);
5383 napi->gro_list = NULL;
5384 napi->gro_count = 0;
5386 EXPORT_SYMBOL(netif_napi_del);
5388 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5393 list_del_init(&n->poll_list);
5395 have = netpoll_poll_lock(n);
5399 /* This NAPI_STATE_SCHED test is for avoiding a race
5400 * with netpoll's poll_napi(). Only the entity which
5401 * obtains the lock and sees NAPI_STATE_SCHED set will
5402 * actually make the ->poll() call. Therefore we avoid
5403 * accidentally calling ->poll() when NAPI is not scheduled.
5406 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5407 work = n->poll(n, weight);
5408 trace_napi_poll(n, work, weight);
5411 WARN_ON_ONCE(work > weight);
5413 if (likely(work < weight))
5416 /* Drivers must not modify the NAPI state if they
5417 * consume the entire weight. In such cases this code
5418 * still "owns" the NAPI instance and therefore can
5419 * move the instance around on the list at-will.
5421 if (unlikely(napi_disable_pending(n))) {
5427 /* flush too old packets
5428 * If HZ < 1000, flush all packets.
5430 napi_gro_flush(n, HZ >= 1000);
5433 /* Some drivers may have called napi_schedule
5434 * prior to exhausting their budget.
5436 if (unlikely(!list_empty(&n->poll_list))) {
5437 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5438 n->dev ? n->dev->name : "backlog");
5442 list_add_tail(&n->poll_list, repoll);
5445 netpoll_poll_unlock(have);
5450 static __latent_entropy void net_rx_action(struct softirq_action *h)
5452 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5453 unsigned long time_limit = jiffies +
5454 usecs_to_jiffies(netdev_budget_usecs);
5455 int budget = netdev_budget;
5459 local_irq_disable();
5460 list_splice_init(&sd->poll_list, &list);
5464 struct napi_struct *n;
5466 if (list_empty(&list)) {
5467 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5472 n = list_first_entry(&list, struct napi_struct, poll_list);
5473 budget -= napi_poll(n, &repoll);
5475 /* If softirq window is exhausted then punt.
5476 * Allow this to run for 2 jiffies since which will allow
5477 * an average latency of 1.5/HZ.
5479 if (unlikely(budget <= 0 ||
5480 time_after_eq(jiffies, time_limit))) {
5486 local_irq_disable();
5488 list_splice_tail_init(&sd->poll_list, &list);
5489 list_splice_tail(&repoll, &list);
5490 list_splice(&list, &sd->poll_list);
5491 if (!list_empty(&sd->poll_list))
5492 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5494 net_rps_action_and_irq_enable(sd);
5496 __kfree_skb_flush();
5499 struct netdev_adjacent {
5500 struct net_device *dev;
5502 /* upper master flag, there can only be one master device per list */
5505 /* counter for the number of times this device was added to us */
5508 /* private field for the users */
5511 struct list_head list;
5512 struct rcu_head rcu;
5515 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5516 struct list_head *adj_list)
5518 struct netdev_adjacent *adj;
5520 list_for_each_entry(adj, adj_list, list) {
5521 if (adj->dev == adj_dev)
5527 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5529 struct net_device *dev = data;
5531 return upper_dev == dev;
5535 * netdev_has_upper_dev - Check if device is linked to an upper device
5537 * @upper_dev: upper device to check
5539 * Find out if a device is linked to specified upper device and return true
5540 * in case it is. Note that this checks only immediate upper device,
5541 * not through a complete stack of devices. The caller must hold the RTNL lock.
5543 bool netdev_has_upper_dev(struct net_device *dev,
5544 struct net_device *upper_dev)
5548 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5551 EXPORT_SYMBOL(netdev_has_upper_dev);
5554 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5556 * @upper_dev: upper device to check
5558 * Find out if a device is linked to specified upper device and return true
5559 * in case it is. Note that this checks the entire upper device chain.
5560 * The caller must hold rcu lock.
5563 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5564 struct net_device *upper_dev)
5566 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5569 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5572 * netdev_has_any_upper_dev - Check if device is linked to some device
5575 * Find out if a device is linked to an upper device and return true in case
5576 * it is. The caller must hold the RTNL lock.
5578 static bool netdev_has_any_upper_dev(struct net_device *dev)
5582 return !list_empty(&dev->adj_list.upper);
5586 * netdev_master_upper_dev_get - Get master upper device
5589 * Find a master upper device and return pointer to it or NULL in case
5590 * it's not there. The caller must hold the RTNL lock.
5592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5594 struct netdev_adjacent *upper;
5598 if (list_empty(&dev->adj_list.upper))
5601 upper = list_first_entry(&dev->adj_list.upper,
5602 struct netdev_adjacent, list);
5603 if (likely(upper->master))
5607 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5610 * netdev_has_any_lower_dev - Check if device is linked to some device
5613 * Find out if a device is linked to a lower device and return true in case
5614 * it is. The caller must hold the RTNL lock.
5616 static bool netdev_has_any_lower_dev(struct net_device *dev)
5620 return !list_empty(&dev->adj_list.lower);
5623 void *netdev_adjacent_get_private(struct list_head *adj_list)
5625 struct netdev_adjacent *adj;
5627 adj = list_entry(adj_list, struct netdev_adjacent, list);
5629 return adj->private;
5631 EXPORT_SYMBOL(netdev_adjacent_get_private);
5634 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5636 * @iter: list_head ** of the current position
5638 * Gets the next device from the dev's upper list, starting from iter
5639 * position. The caller must hold RCU read lock.
5641 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5642 struct list_head **iter)
5644 struct netdev_adjacent *upper;
5646 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5648 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5650 if (&upper->list == &dev->adj_list.upper)
5653 *iter = &upper->list;
5657 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5659 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5660 struct list_head **iter)
5662 struct netdev_adjacent *upper;
5664 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5666 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5668 if (&upper->list == &dev->adj_list.upper)
5671 *iter = &upper->list;
5676 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5677 int (*fn)(struct net_device *dev,
5681 struct net_device *udev;
5682 struct list_head *iter;
5685 for (iter = &dev->adj_list.upper,
5686 udev = netdev_next_upper_dev_rcu(dev, &iter);
5688 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5689 /* first is the upper device itself */
5690 ret = fn(udev, data);
5694 /* then look at all of its upper devices */
5695 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5702 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5705 * netdev_lower_get_next_private - Get the next ->private from the
5706 * lower neighbour list
5708 * @iter: list_head ** of the current position
5710 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5711 * list, starting from iter position. The caller must hold either hold the
5712 * RTNL lock or its own locking that guarantees that the neighbour lower
5713 * list will remain unchanged.
5715 void *netdev_lower_get_next_private(struct net_device *dev,
5716 struct list_head **iter)
5718 struct netdev_adjacent *lower;
5720 lower = list_entry(*iter, struct netdev_adjacent, list);
5722 if (&lower->list == &dev->adj_list.lower)
5725 *iter = lower->list.next;
5727 return lower->private;
5729 EXPORT_SYMBOL(netdev_lower_get_next_private);
5732 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5733 * lower neighbour list, RCU
5736 * @iter: list_head ** of the current position
5738 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5739 * list, starting from iter position. The caller must hold RCU read lock.
5741 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5742 struct list_head **iter)
5744 struct netdev_adjacent *lower;
5746 WARN_ON_ONCE(!rcu_read_lock_held());
5748 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5750 if (&lower->list == &dev->adj_list.lower)
5753 *iter = &lower->list;
5755 return lower->private;
5757 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5760 * netdev_lower_get_next - Get the next device from the lower neighbour
5763 * @iter: list_head ** of the current position
5765 * Gets the next netdev_adjacent from the dev's lower neighbour
5766 * list, starting from iter position. The caller must hold RTNL lock or
5767 * its own locking that guarantees that the neighbour lower
5768 * list will remain unchanged.
5770 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5772 struct netdev_adjacent *lower;
5774 lower = list_entry(*iter, struct netdev_adjacent, list);
5776 if (&lower->list == &dev->adj_list.lower)
5779 *iter = lower->list.next;
5783 EXPORT_SYMBOL(netdev_lower_get_next);
5785 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5786 struct list_head **iter)
5788 struct netdev_adjacent *lower;
5790 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5792 if (&lower->list == &dev->adj_list.lower)
5795 *iter = &lower->list;
5800 int netdev_walk_all_lower_dev(struct net_device *dev,
5801 int (*fn)(struct net_device *dev,
5805 struct net_device *ldev;
5806 struct list_head *iter;
5809 for (iter = &dev->adj_list.lower,
5810 ldev = netdev_next_lower_dev(dev, &iter);
5812 ldev = netdev_next_lower_dev(dev, &iter)) {
5813 /* first is the lower device itself */
5814 ret = fn(ldev, data);
5818 /* then look at all of its lower devices */
5819 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5826 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5828 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5829 struct list_head **iter)
5831 struct netdev_adjacent *lower;
5833 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834 if (&lower->list == &dev->adj_list.lower)
5837 *iter = &lower->list;
5842 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5843 int (*fn)(struct net_device *dev,
5847 struct net_device *ldev;
5848 struct list_head *iter;
5851 for (iter = &dev->adj_list.lower,
5852 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5854 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5855 /* first is the lower device itself */
5856 ret = fn(ldev, data);
5860 /* then look at all of its lower devices */
5861 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5868 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5871 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5872 * lower neighbour list, RCU
5876 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5877 * list. The caller must hold RCU read lock.
5879 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5881 struct netdev_adjacent *lower;
5883 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5884 struct netdev_adjacent, list);
5886 return lower->private;
5889 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5892 * netdev_master_upper_dev_get_rcu - Get master upper device
5895 * Find a master upper device and return pointer to it or NULL in case
5896 * it's not there. The caller must hold the RCU read lock.
5898 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5900 struct netdev_adjacent *upper;
5902 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5903 struct netdev_adjacent, list);
5904 if (upper && likely(upper->master))
5908 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5910 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5911 struct net_device *adj_dev,
5912 struct list_head *dev_list)
5914 char linkname[IFNAMSIZ+7];
5916 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5917 "upper_%s" : "lower_%s", adj_dev->name);
5918 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5921 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5923 struct list_head *dev_list)
5925 char linkname[IFNAMSIZ+7];
5927 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5928 "upper_%s" : "lower_%s", name);
5929 sysfs_remove_link(&(dev->dev.kobj), linkname);
5932 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5933 struct net_device *adj_dev,
5934 struct list_head *dev_list)
5936 return (dev_list == &dev->adj_list.upper ||
5937 dev_list == &dev->adj_list.lower) &&
5938 net_eq(dev_net(dev), dev_net(adj_dev));
5941 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5942 struct net_device *adj_dev,
5943 struct list_head *dev_list,
5944 void *private, bool master)
5946 struct netdev_adjacent *adj;
5949 adj = __netdev_find_adj(adj_dev, dev_list);
5953 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5954 dev->name, adj_dev->name, adj->ref_nr);
5959 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5964 adj->master = master;
5966 adj->private = private;
5969 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5970 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5972 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5973 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5978 /* Ensure that master link is always the first item in list. */
5980 ret = sysfs_create_link(&(dev->dev.kobj),
5981 &(adj_dev->dev.kobj), "master");
5983 goto remove_symlinks;
5985 list_add_rcu(&adj->list, dev_list);
5987 list_add_tail_rcu(&adj->list, dev_list);
5993 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5994 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6002 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6003 struct net_device *adj_dev,
6005 struct list_head *dev_list)
6007 struct netdev_adjacent *adj;
6009 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6010 dev->name, adj_dev->name, ref_nr);
6012 adj = __netdev_find_adj(adj_dev, dev_list);
6015 pr_err("Adjacency does not exist for device %s from %s\n",
6016 dev->name, adj_dev->name);
6021 if (adj->ref_nr > ref_nr) {
6022 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6023 dev->name, adj_dev->name, ref_nr,
6024 adj->ref_nr - ref_nr);
6025 adj->ref_nr -= ref_nr;
6030 sysfs_remove_link(&(dev->dev.kobj), "master");
6032 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6033 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6035 list_del_rcu(&adj->list);
6036 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6037 adj_dev->name, dev->name, adj_dev->name);
6039 kfree_rcu(adj, rcu);
6042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6043 struct net_device *upper_dev,
6044 struct list_head *up_list,
6045 struct list_head *down_list,
6046 void *private, bool master)
6050 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6055 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6058 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6066 struct net_device *upper_dev,
6068 struct list_head *up_list,
6069 struct list_head *down_list)
6071 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6072 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6076 struct net_device *upper_dev,
6077 void *private, bool master)
6079 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6080 &dev->adj_list.upper,
6081 &upper_dev->adj_list.lower,
6085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6086 struct net_device *upper_dev)
6088 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6089 &dev->adj_list.upper,
6090 &upper_dev->adj_list.lower);
6093 static int __netdev_upper_dev_link(struct net_device *dev,
6094 struct net_device *upper_dev, bool master,
6095 void *upper_priv, void *upper_info)
6097 struct netdev_notifier_changeupper_info changeupper_info;
6102 if (dev == upper_dev)
6105 /* To prevent loops, check if dev is not upper device to upper_dev. */
6106 if (netdev_has_upper_dev(upper_dev, dev))
6109 if (netdev_has_upper_dev(dev, upper_dev))
6112 if (master && netdev_master_upper_dev_get(dev))
6115 changeupper_info.upper_dev = upper_dev;
6116 changeupper_info.master = master;
6117 changeupper_info.linking = true;
6118 changeupper_info.upper_info = upper_info;
6120 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6121 &changeupper_info.info);
6122 ret = notifier_to_errno(ret);
6126 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6131 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6132 &changeupper_info.info);
6133 ret = notifier_to_errno(ret);
6140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6146 * netdev_upper_dev_link - Add a link to the upper device
6148 * @upper_dev: new upper device
6150 * Adds a link to device which is upper to this one. The caller must hold
6151 * the RTNL lock. On a failure a negative errno code is returned.
6152 * On success the reference counts are adjusted and the function
6155 int netdev_upper_dev_link(struct net_device *dev,
6156 struct net_device *upper_dev)
6158 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6160 EXPORT_SYMBOL(netdev_upper_dev_link);
6163 * netdev_master_upper_dev_link - Add a master link to the upper device
6165 * @upper_dev: new upper device
6166 * @upper_priv: upper device private
6167 * @upper_info: upper info to be passed down via notifier
6169 * Adds a link to device which is upper to this one. In this case, only
6170 * one master upper device can be linked, although other non-master devices
6171 * might be linked as well. The caller must hold the RTNL lock.
6172 * On a failure a negative errno code is returned. On success the reference
6173 * counts are adjusted and the function returns zero.
6175 int netdev_master_upper_dev_link(struct net_device *dev,
6176 struct net_device *upper_dev,
6177 void *upper_priv, void *upper_info)
6179 return __netdev_upper_dev_link(dev, upper_dev, true,
6180 upper_priv, upper_info);
6182 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6185 * netdev_upper_dev_unlink - Removes a link to upper device
6187 * @upper_dev: new upper device
6189 * Removes a link to device which is upper to this one. The caller must hold
6192 void netdev_upper_dev_unlink(struct net_device *dev,
6193 struct net_device *upper_dev)
6195 struct netdev_notifier_changeupper_info changeupper_info;
6199 changeupper_info.upper_dev = upper_dev;
6200 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6201 changeupper_info.linking = false;
6203 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6204 &changeupper_info.info);
6206 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6208 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6209 &changeupper_info.info);
6211 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6214 * netdev_bonding_info_change - Dispatch event about slave change
6216 * @bonding_info: info to dispatch
6218 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6219 * The caller must hold the RTNL lock.
6221 void netdev_bonding_info_change(struct net_device *dev,
6222 struct netdev_bonding_info *bonding_info)
6224 struct netdev_notifier_bonding_info info;
6226 memcpy(&info.bonding_info, bonding_info,
6227 sizeof(struct netdev_bonding_info));
6228 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6231 EXPORT_SYMBOL(netdev_bonding_info_change);
6233 static void netdev_adjacent_add_links(struct net_device *dev)
6235 struct netdev_adjacent *iter;
6237 struct net *net = dev_net(dev);
6239 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6240 if (!net_eq(net, dev_net(iter->dev)))
6242 netdev_adjacent_sysfs_add(iter->dev, dev,
6243 &iter->dev->adj_list.lower);
6244 netdev_adjacent_sysfs_add(dev, iter->dev,
6245 &dev->adj_list.upper);
6248 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6249 if (!net_eq(net, dev_net(iter->dev)))
6251 netdev_adjacent_sysfs_add(iter->dev, dev,
6252 &iter->dev->adj_list.upper);
6253 netdev_adjacent_sysfs_add(dev, iter->dev,
6254 &dev->adj_list.lower);
6258 static void netdev_adjacent_del_links(struct net_device *dev)
6260 struct netdev_adjacent *iter;
6262 struct net *net = dev_net(dev);
6264 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6265 if (!net_eq(net, dev_net(iter->dev)))
6267 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6268 &iter->dev->adj_list.lower);
6269 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6270 &dev->adj_list.upper);
6273 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6274 if (!net_eq(net, dev_net(iter->dev)))
6276 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6277 &iter->dev->adj_list.upper);
6278 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6279 &dev->adj_list.lower);
6283 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6285 struct netdev_adjacent *iter;
6287 struct net *net = dev_net(dev);
6289 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6290 if (!net_eq(net, dev_net(iter->dev)))
6292 netdev_adjacent_sysfs_del(iter->dev, oldname,
6293 &iter->dev->adj_list.lower);
6294 netdev_adjacent_sysfs_add(iter->dev, dev,
6295 &iter->dev->adj_list.lower);
6298 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6299 if (!net_eq(net, dev_net(iter->dev)))
6301 netdev_adjacent_sysfs_del(iter->dev, oldname,
6302 &iter->dev->adj_list.upper);
6303 netdev_adjacent_sysfs_add(iter->dev, dev,
6304 &iter->dev->adj_list.upper);
6308 void *netdev_lower_dev_get_private(struct net_device *dev,
6309 struct net_device *lower_dev)
6311 struct netdev_adjacent *lower;
6315 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6319 return lower->private;
6321 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6324 int dev_get_nest_level(struct net_device *dev)
6326 struct net_device *lower = NULL;
6327 struct list_head *iter;
6333 netdev_for_each_lower_dev(dev, lower, iter) {
6334 nest = dev_get_nest_level(lower);
6335 if (max_nest < nest)
6339 return max_nest + 1;
6341 EXPORT_SYMBOL(dev_get_nest_level);
6344 * netdev_lower_change - Dispatch event about lower device state change
6345 * @lower_dev: device
6346 * @lower_state_info: state to dispatch
6348 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6349 * The caller must hold the RTNL lock.
6351 void netdev_lower_state_changed(struct net_device *lower_dev,
6352 void *lower_state_info)
6354 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6357 changelowerstate_info.lower_state_info = lower_state_info;
6358 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6359 &changelowerstate_info.info);
6361 EXPORT_SYMBOL(netdev_lower_state_changed);
6363 static void dev_change_rx_flags(struct net_device *dev, int flags)
6365 const struct net_device_ops *ops = dev->netdev_ops;
6367 if (ops->ndo_change_rx_flags)
6368 ops->ndo_change_rx_flags(dev, flags);
6371 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6373 unsigned int old_flags = dev->flags;
6379 dev->flags |= IFF_PROMISC;
6380 dev->promiscuity += inc;
6381 if (dev->promiscuity == 0) {
6384 * If inc causes overflow, untouch promisc and return error.
6387 dev->flags &= ~IFF_PROMISC;
6389 dev->promiscuity -= inc;
6390 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6395 if (dev->flags != old_flags) {
6396 pr_info("device %s %s promiscuous mode\n",
6398 dev->flags & IFF_PROMISC ? "entered" : "left");
6399 if (audit_enabled) {
6400 current_uid_gid(&uid, &gid);
6401 audit_log(current->audit_context, GFP_ATOMIC,
6402 AUDIT_ANOM_PROMISCUOUS,
6403 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6404 dev->name, (dev->flags & IFF_PROMISC),
6405 (old_flags & IFF_PROMISC),
6406 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6407 from_kuid(&init_user_ns, uid),
6408 from_kgid(&init_user_ns, gid),
6409 audit_get_sessionid(current));
6412 dev_change_rx_flags(dev, IFF_PROMISC);
6415 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6420 * dev_set_promiscuity - update promiscuity count on a device
6424 * Add or remove promiscuity from a device. While the count in the device
6425 * remains above zero the interface remains promiscuous. Once it hits zero
6426 * the device reverts back to normal filtering operation. A negative inc
6427 * value is used to drop promiscuity on the device.
6428 * Return 0 if successful or a negative errno code on error.
6430 int dev_set_promiscuity(struct net_device *dev, int inc)
6432 unsigned int old_flags = dev->flags;
6435 err = __dev_set_promiscuity(dev, inc, true);
6438 if (dev->flags != old_flags)
6439 dev_set_rx_mode(dev);
6442 EXPORT_SYMBOL(dev_set_promiscuity);
6444 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6446 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6450 dev->flags |= IFF_ALLMULTI;
6451 dev->allmulti += inc;
6452 if (dev->allmulti == 0) {
6455 * If inc causes overflow, untouch allmulti and return error.
6458 dev->flags &= ~IFF_ALLMULTI;
6460 dev->allmulti -= inc;
6461 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6466 if (dev->flags ^ old_flags) {
6467 dev_change_rx_flags(dev, IFF_ALLMULTI);
6468 dev_set_rx_mode(dev);
6470 __dev_notify_flags(dev, old_flags,
6471 dev->gflags ^ old_gflags);
6477 * dev_set_allmulti - update allmulti count on a device
6481 * Add or remove reception of all multicast frames to a device. While the
6482 * count in the device remains above zero the interface remains listening
6483 * to all interfaces. Once it hits zero the device reverts back to normal
6484 * filtering operation. A negative @inc value is used to drop the counter
6485 * when releasing a resource needing all multicasts.
6486 * Return 0 if successful or a negative errno code on error.
6489 int dev_set_allmulti(struct net_device *dev, int inc)
6491 return __dev_set_allmulti(dev, inc, true);
6493 EXPORT_SYMBOL(dev_set_allmulti);
6496 * Upload unicast and multicast address lists to device and
6497 * configure RX filtering. When the device doesn't support unicast
6498 * filtering it is put in promiscuous mode while unicast addresses
6501 void __dev_set_rx_mode(struct net_device *dev)
6503 const struct net_device_ops *ops = dev->netdev_ops;
6505 /* dev_open will call this function so the list will stay sane. */
6506 if (!(dev->flags&IFF_UP))
6509 if (!netif_device_present(dev))
6512 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6513 /* Unicast addresses changes may only happen under the rtnl,
6514 * therefore calling __dev_set_promiscuity here is safe.
6516 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6517 __dev_set_promiscuity(dev, 1, false);
6518 dev->uc_promisc = true;
6519 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6520 __dev_set_promiscuity(dev, -1, false);
6521 dev->uc_promisc = false;
6525 if (ops->ndo_set_rx_mode)
6526 ops->ndo_set_rx_mode(dev);
6529 void dev_set_rx_mode(struct net_device *dev)
6531 netif_addr_lock_bh(dev);
6532 __dev_set_rx_mode(dev);
6533 netif_addr_unlock_bh(dev);
6537 * dev_get_flags - get flags reported to userspace
6540 * Get the combination of flag bits exported through APIs to userspace.
6542 unsigned int dev_get_flags(const struct net_device *dev)
6546 flags = (dev->flags & ~(IFF_PROMISC |
6551 (dev->gflags & (IFF_PROMISC |
6554 if (netif_running(dev)) {
6555 if (netif_oper_up(dev))
6556 flags |= IFF_RUNNING;
6557 if (netif_carrier_ok(dev))
6558 flags |= IFF_LOWER_UP;
6559 if (netif_dormant(dev))
6560 flags |= IFF_DORMANT;
6565 EXPORT_SYMBOL(dev_get_flags);
6567 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6569 unsigned int old_flags = dev->flags;
6575 * Set the flags on our device.
6578 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6579 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6581 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6585 * Load in the correct multicast list now the flags have changed.
6588 if ((old_flags ^ flags) & IFF_MULTICAST)
6589 dev_change_rx_flags(dev, IFF_MULTICAST);
6591 dev_set_rx_mode(dev);
6594 * Have we downed the interface. We handle IFF_UP ourselves
6595 * according to user attempts to set it, rather than blindly
6600 if ((old_flags ^ flags) & IFF_UP)
6601 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6603 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6604 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6605 unsigned int old_flags = dev->flags;
6607 dev->gflags ^= IFF_PROMISC;
6609 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6610 if (dev->flags != old_flags)
6611 dev_set_rx_mode(dev);
6614 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6615 * is important. Some (broken) drivers set IFF_PROMISC, when
6616 * IFF_ALLMULTI is requested not asking us and not reporting.
6618 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6619 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6621 dev->gflags ^= IFF_ALLMULTI;
6622 __dev_set_allmulti(dev, inc, false);
6628 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6629 unsigned int gchanges)
6631 unsigned int changes = dev->flags ^ old_flags;
6634 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6636 if (changes & IFF_UP) {
6637 if (dev->flags & IFF_UP)
6638 call_netdevice_notifiers(NETDEV_UP, dev);
6640 call_netdevice_notifiers(NETDEV_DOWN, dev);
6643 if (dev->flags & IFF_UP &&
6644 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6645 struct netdev_notifier_change_info change_info;
6647 change_info.flags_changed = changes;
6648 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6654 * dev_change_flags - change device settings
6656 * @flags: device state flags
6658 * Change settings on device based state flags. The flags are
6659 * in the userspace exported format.
6661 int dev_change_flags(struct net_device *dev, unsigned int flags)
6664 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6666 ret = __dev_change_flags(dev, flags);
6670 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6671 __dev_notify_flags(dev, old_flags, changes);
6674 EXPORT_SYMBOL(dev_change_flags);
6676 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6678 const struct net_device_ops *ops = dev->netdev_ops;
6680 if (ops->ndo_change_mtu)
6681 return ops->ndo_change_mtu(dev, new_mtu);
6688 * dev_set_mtu - Change maximum transfer unit
6690 * @new_mtu: new transfer unit
6692 * Change the maximum transfer size of the network device.
6694 int dev_set_mtu(struct net_device *dev, int new_mtu)
6698 if (new_mtu == dev->mtu)
6701 /* MTU must be positive, and in range */
6702 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6703 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6704 dev->name, new_mtu, dev->min_mtu);
6708 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6709 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6710 dev->name, new_mtu, dev->max_mtu);
6714 if (!netif_device_present(dev))
6717 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6718 err = notifier_to_errno(err);
6722 orig_mtu = dev->mtu;
6723 err = __dev_set_mtu(dev, new_mtu);
6726 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6727 err = notifier_to_errno(err);
6729 /* setting mtu back and notifying everyone again,
6730 * so that they have a chance to revert changes.
6732 __dev_set_mtu(dev, orig_mtu);
6733 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6738 EXPORT_SYMBOL(dev_set_mtu);
6741 * dev_set_group - Change group this device belongs to
6743 * @new_group: group this device should belong to
6745 void dev_set_group(struct net_device *dev, int new_group)
6747 dev->group = new_group;
6749 EXPORT_SYMBOL(dev_set_group);
6752 * dev_set_mac_address - Change Media Access Control Address
6756 * Change the hardware (MAC) address of the device
6758 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6760 const struct net_device_ops *ops = dev->netdev_ops;
6763 if (!ops->ndo_set_mac_address)
6765 if (sa->sa_family != dev->type)
6767 if (!netif_device_present(dev))
6769 err = ops->ndo_set_mac_address(dev, sa);
6772 dev->addr_assign_type = NET_ADDR_SET;
6773 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6774 add_device_randomness(dev->dev_addr, dev->addr_len);
6777 EXPORT_SYMBOL(dev_set_mac_address);
6780 * dev_change_carrier - Change device carrier
6782 * @new_carrier: new value
6784 * Change device carrier
6786 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6788 const struct net_device_ops *ops = dev->netdev_ops;
6790 if (!ops->ndo_change_carrier)
6792 if (!netif_device_present(dev))
6794 return ops->ndo_change_carrier(dev, new_carrier);
6796 EXPORT_SYMBOL(dev_change_carrier);
6799 * dev_get_phys_port_id - Get device physical port ID
6803 * Get device physical port ID
6805 int dev_get_phys_port_id(struct net_device *dev,
6806 struct netdev_phys_item_id *ppid)
6808 const struct net_device_ops *ops = dev->netdev_ops;
6810 if (!ops->ndo_get_phys_port_id)
6812 return ops->ndo_get_phys_port_id(dev, ppid);
6814 EXPORT_SYMBOL(dev_get_phys_port_id);
6817 * dev_get_phys_port_name - Get device physical port name
6820 * @len: limit of bytes to copy to name
6822 * Get device physical port name
6824 int dev_get_phys_port_name(struct net_device *dev,
6825 char *name, size_t len)
6827 const struct net_device_ops *ops = dev->netdev_ops;
6829 if (!ops->ndo_get_phys_port_name)
6831 return ops->ndo_get_phys_port_name(dev, name, len);
6833 EXPORT_SYMBOL(dev_get_phys_port_name);
6836 * dev_change_proto_down - update protocol port state information
6838 * @proto_down: new value
6840 * This info can be used by switch drivers to set the phys state of the
6843 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6845 const struct net_device_ops *ops = dev->netdev_ops;
6847 if (!ops->ndo_change_proto_down)
6849 if (!netif_device_present(dev))
6851 return ops->ndo_change_proto_down(dev, proto_down);
6853 EXPORT_SYMBOL(dev_change_proto_down);
6855 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6857 struct netdev_xdp xdp;
6859 memset(&xdp, 0, sizeof(xdp));
6860 xdp.command = XDP_QUERY_PROG;
6862 /* Query must always succeed. */
6863 WARN_ON(xdp_op(dev, &xdp) < 0);
6864 return xdp.prog_attached;
6867 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6868 struct netlink_ext_ack *extack,
6869 struct bpf_prog *prog)
6871 struct netdev_xdp xdp;
6873 memset(&xdp, 0, sizeof(xdp));
6874 xdp.command = XDP_SETUP_PROG;
6875 xdp.extack = extack;
6878 return xdp_op(dev, &xdp);
6882 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6884 * @extack: netlink extended ack
6885 * @fd: new program fd or negative value to clear
6886 * @flags: xdp-related flags
6888 * Set or clear a bpf program for a device
6890 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6893 const struct net_device_ops *ops = dev->netdev_ops;
6894 struct bpf_prog *prog = NULL;
6895 xdp_op_t xdp_op, xdp_chk;
6900 xdp_op = xdp_chk = ops->ndo_xdp;
6901 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6903 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6904 xdp_op = generic_xdp_install;
6905 if (xdp_op == xdp_chk)
6906 xdp_chk = generic_xdp_install;
6909 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6911 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6912 __dev_xdp_attached(dev, xdp_op))
6915 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6917 return PTR_ERR(prog);
6920 err = dev_xdp_install(dev, xdp_op, extack, prog);
6921 if (err < 0 && prog)
6928 * dev_new_index - allocate an ifindex
6929 * @net: the applicable net namespace
6931 * Returns a suitable unique value for a new device interface
6932 * number. The caller must hold the rtnl semaphore or the
6933 * dev_base_lock to be sure it remains unique.
6935 static int dev_new_index(struct net *net)
6937 int ifindex = net->ifindex;
6942 if (!__dev_get_by_index(net, ifindex))
6943 return net->ifindex = ifindex;
6947 /* Delayed registration/unregisteration */
6948 static LIST_HEAD(net_todo_list);
6949 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6951 static void net_set_todo(struct net_device *dev)
6953 list_add_tail(&dev->todo_list, &net_todo_list);
6954 dev_net(dev)->dev_unreg_count++;
6957 static void rollback_registered_many(struct list_head *head)
6959 struct net_device *dev, *tmp;
6960 LIST_HEAD(close_head);
6962 BUG_ON(dev_boot_phase);
6965 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6966 /* Some devices call without registering
6967 * for initialization unwind. Remove those
6968 * devices and proceed with the remaining.
6970 if (dev->reg_state == NETREG_UNINITIALIZED) {
6971 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6975 list_del(&dev->unreg_list);
6978 dev->dismantle = true;
6979 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6982 /* If device is running, close it first. */
6983 list_for_each_entry(dev, head, unreg_list)
6984 list_add_tail(&dev->close_list, &close_head);
6985 dev_close_many(&close_head, true);
6987 list_for_each_entry(dev, head, unreg_list) {
6988 /* And unlink it from device chain. */
6989 unlist_netdevice(dev);
6991 dev->reg_state = NETREG_UNREGISTERING;
6993 flush_all_backlogs();
6997 list_for_each_entry(dev, head, unreg_list) {
6998 struct sk_buff *skb = NULL;
7000 /* Shutdown queueing discipline. */
7004 /* Notify protocols, that we are about to destroy
7005 * this device. They should clean all the things.
7007 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7009 if (!dev->rtnl_link_ops ||
7010 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7011 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7015 * Flush the unicast and multicast chains
7020 if (dev->netdev_ops->ndo_uninit)
7021 dev->netdev_ops->ndo_uninit(dev);
7024 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7026 /* Notifier chain MUST detach us all upper devices. */
7027 WARN_ON(netdev_has_any_upper_dev(dev));
7028 WARN_ON(netdev_has_any_lower_dev(dev));
7030 /* Remove entries from kobject tree */
7031 netdev_unregister_kobject(dev);
7033 /* Remove XPS queueing entries */
7034 netif_reset_xps_queues_gt(dev, 0);
7040 list_for_each_entry(dev, head, unreg_list)
7044 static void rollback_registered(struct net_device *dev)
7048 list_add(&dev->unreg_list, &single);
7049 rollback_registered_many(&single);
7053 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7054 struct net_device *upper, netdev_features_t features)
7056 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7057 netdev_features_t feature;
7060 for_each_netdev_feature(&upper_disables, feature_bit) {
7061 feature = __NETIF_F_BIT(feature_bit);
7062 if (!(upper->wanted_features & feature)
7063 && (features & feature)) {
7064 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7065 &feature, upper->name);
7066 features &= ~feature;
7073 static void netdev_sync_lower_features(struct net_device *upper,
7074 struct net_device *lower, netdev_features_t features)
7076 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7077 netdev_features_t feature;
7080 for_each_netdev_feature(&upper_disables, feature_bit) {
7081 feature = __NETIF_F_BIT(feature_bit);
7082 if (!(features & feature) && (lower->features & feature)) {
7083 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7084 &feature, lower->name);
7085 lower->wanted_features &= ~feature;
7086 netdev_update_features(lower);
7088 if (unlikely(lower->features & feature))
7089 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7090 &feature, lower->name);
7095 static netdev_features_t netdev_fix_features(struct net_device *dev,
7096 netdev_features_t features)
7098 /* Fix illegal checksum combinations */
7099 if ((features & NETIF_F_HW_CSUM) &&
7100 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7101 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7102 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7105 /* TSO requires that SG is present as well. */
7106 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7107 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7108 features &= ~NETIF_F_ALL_TSO;
7111 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7112 !(features & NETIF_F_IP_CSUM)) {
7113 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7114 features &= ~NETIF_F_TSO;
7115 features &= ~NETIF_F_TSO_ECN;
7118 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7119 !(features & NETIF_F_IPV6_CSUM)) {
7120 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7121 features &= ~NETIF_F_TSO6;
7124 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7125 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7126 features &= ~NETIF_F_TSO_MANGLEID;
7128 /* TSO ECN requires that TSO is present as well. */
7129 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7130 features &= ~NETIF_F_TSO_ECN;
7132 /* Software GSO depends on SG. */
7133 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7134 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7135 features &= ~NETIF_F_GSO;
7138 /* UFO needs SG and checksumming */
7139 if (features & NETIF_F_UFO) {
7140 /* maybe split UFO into V4 and V6? */
7141 if (!(features & NETIF_F_HW_CSUM) &&
7142 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7143 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7145 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7146 features &= ~NETIF_F_UFO;
7149 if (!(features & NETIF_F_SG)) {
7151 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7152 features &= ~NETIF_F_UFO;
7156 /* GSO partial features require GSO partial be set */
7157 if ((features & dev->gso_partial_features) &&
7158 !(features & NETIF_F_GSO_PARTIAL)) {
7160 "Dropping partially supported GSO features since no GSO partial.\n");
7161 features &= ~dev->gso_partial_features;
7167 int __netdev_update_features(struct net_device *dev)
7169 struct net_device *upper, *lower;
7170 netdev_features_t features;
7171 struct list_head *iter;
7176 features = netdev_get_wanted_features(dev);
7178 if (dev->netdev_ops->ndo_fix_features)
7179 features = dev->netdev_ops->ndo_fix_features(dev, features);
7181 /* driver might be less strict about feature dependencies */
7182 features = netdev_fix_features(dev, features);
7184 /* some features can't be enabled if they're off an an upper device */
7185 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7186 features = netdev_sync_upper_features(dev, upper, features);
7188 if (dev->features == features)
7191 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7192 &dev->features, &features);
7194 if (dev->netdev_ops->ndo_set_features)
7195 err = dev->netdev_ops->ndo_set_features(dev, features);
7199 if (unlikely(err < 0)) {
7201 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7202 err, &features, &dev->features);
7203 /* return non-0 since some features might have changed and
7204 * it's better to fire a spurious notification than miss it
7210 /* some features must be disabled on lower devices when disabled
7211 * on an upper device (think: bonding master or bridge)
7213 netdev_for_each_lower_dev(dev, lower, iter)
7214 netdev_sync_lower_features(dev, lower, features);
7217 dev->features = features;
7219 return err < 0 ? 0 : 1;
7223 * netdev_update_features - recalculate device features
7224 * @dev: the device to check
7226 * Recalculate dev->features set and send notifications if it
7227 * has changed. Should be called after driver or hardware dependent
7228 * conditions might have changed that influence the features.
7230 void netdev_update_features(struct net_device *dev)
7232 if (__netdev_update_features(dev))
7233 netdev_features_change(dev);
7235 EXPORT_SYMBOL(netdev_update_features);
7238 * netdev_change_features - recalculate device features
7239 * @dev: the device to check
7241 * Recalculate dev->features set and send notifications even
7242 * if they have not changed. Should be called instead of
7243 * netdev_update_features() if also dev->vlan_features might
7244 * have changed to allow the changes to be propagated to stacked
7247 void netdev_change_features(struct net_device *dev)
7249 __netdev_update_features(dev);
7250 netdev_features_change(dev);
7252 EXPORT_SYMBOL(netdev_change_features);
7255 * netif_stacked_transfer_operstate - transfer operstate
7256 * @rootdev: the root or lower level device to transfer state from
7257 * @dev: the device to transfer operstate to
7259 * Transfer operational state from root to device. This is normally
7260 * called when a stacking relationship exists between the root
7261 * device and the device(a leaf device).
7263 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7264 struct net_device *dev)
7266 if (rootdev->operstate == IF_OPER_DORMANT)
7267 netif_dormant_on(dev);
7269 netif_dormant_off(dev);
7271 if (netif_carrier_ok(rootdev))
7272 netif_carrier_on(dev);
7274 netif_carrier_off(dev);
7276 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7279 static int netif_alloc_rx_queues(struct net_device *dev)
7281 unsigned int i, count = dev->num_rx_queues;
7282 struct netdev_rx_queue *rx;
7283 size_t sz = count * sizeof(*rx);
7287 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7293 for (i = 0; i < count; i++)
7299 static void netdev_init_one_queue(struct net_device *dev,
7300 struct netdev_queue *queue, void *_unused)
7302 /* Initialize queue lock */
7303 spin_lock_init(&queue->_xmit_lock);
7304 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7305 queue->xmit_lock_owner = -1;
7306 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7309 dql_init(&queue->dql, HZ);
7313 static void netif_free_tx_queues(struct net_device *dev)
7318 static int netif_alloc_netdev_queues(struct net_device *dev)
7320 unsigned int count = dev->num_tx_queues;
7321 struct netdev_queue *tx;
7322 size_t sz = count * sizeof(*tx);
7324 if (count < 1 || count > 0xffff)
7327 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7333 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7334 spin_lock_init(&dev->tx_global_lock);
7339 void netif_tx_stop_all_queues(struct net_device *dev)
7343 for (i = 0; i < dev->num_tx_queues; i++) {
7344 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7346 netif_tx_stop_queue(txq);
7349 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7352 * register_netdevice - register a network device
7353 * @dev: device to register
7355 * Take a completed network device structure and add it to the kernel
7356 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7357 * chain. 0 is returned on success. A negative errno code is returned
7358 * on a failure to set up the device, or if the name is a duplicate.
7360 * Callers must hold the rtnl semaphore. You may want
7361 * register_netdev() instead of this.
7364 * The locking appears insufficient to guarantee two parallel registers
7365 * will not get the same name.
7368 int register_netdevice(struct net_device *dev)
7371 struct net *net = dev_net(dev);
7373 BUG_ON(dev_boot_phase);
7378 /* When net_device's are persistent, this will be fatal. */
7379 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7382 spin_lock_init(&dev->addr_list_lock);
7383 netdev_set_addr_lockdep_class(dev);
7385 ret = dev_get_valid_name(net, dev, dev->name);
7389 /* Init, if this function is available */
7390 if (dev->netdev_ops->ndo_init) {
7391 ret = dev->netdev_ops->ndo_init(dev);
7399 if (((dev->hw_features | dev->features) &
7400 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7401 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7402 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7403 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7410 dev->ifindex = dev_new_index(net);
7411 else if (__dev_get_by_index(net, dev->ifindex))
7414 /* Transfer changeable features to wanted_features and enable
7415 * software offloads (GSO and GRO).
7417 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7418 dev->features |= NETIF_F_SOFT_FEATURES;
7419 dev->wanted_features = dev->features & dev->hw_features;
7421 if (!(dev->flags & IFF_LOOPBACK))
7422 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7424 /* If IPv4 TCP segmentation offload is supported we should also
7425 * allow the device to enable segmenting the frame with the option
7426 * of ignoring a static IP ID value. This doesn't enable the
7427 * feature itself but allows the user to enable it later.
7429 if (dev->hw_features & NETIF_F_TSO)
7430 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7431 if (dev->vlan_features & NETIF_F_TSO)
7432 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7433 if (dev->mpls_features & NETIF_F_TSO)
7434 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7435 if (dev->hw_enc_features & NETIF_F_TSO)
7436 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7438 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7440 dev->vlan_features |= NETIF_F_HIGHDMA;
7442 /* Make NETIF_F_SG inheritable to tunnel devices.
7444 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7446 /* Make NETIF_F_SG inheritable to MPLS.
7448 dev->mpls_features |= NETIF_F_SG;
7450 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7451 ret = notifier_to_errno(ret);
7455 ret = netdev_register_kobject(dev);
7458 dev->reg_state = NETREG_REGISTERED;
7460 __netdev_update_features(dev);
7463 * Default initial state at registry is that the
7464 * device is present.
7467 set_bit(__LINK_STATE_PRESENT, &dev->state);
7469 linkwatch_init_dev(dev);
7471 dev_init_scheduler(dev);
7473 list_netdevice(dev);
7474 add_device_randomness(dev->dev_addr, dev->addr_len);
7476 /* If the device has permanent device address, driver should
7477 * set dev_addr and also addr_assign_type should be set to
7478 * NET_ADDR_PERM (default value).
7480 if (dev->addr_assign_type == NET_ADDR_PERM)
7481 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7483 /* Notify protocols, that a new device appeared. */
7484 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7485 ret = notifier_to_errno(ret);
7487 rollback_registered(dev);
7488 dev->reg_state = NETREG_UNREGISTERED;
7491 * Prevent userspace races by waiting until the network
7492 * device is fully setup before sending notifications.
7494 if (!dev->rtnl_link_ops ||
7495 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7496 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7502 if (dev->netdev_ops->ndo_uninit)
7503 dev->netdev_ops->ndo_uninit(dev);
7506 EXPORT_SYMBOL(register_netdevice);
7509 * init_dummy_netdev - init a dummy network device for NAPI
7510 * @dev: device to init
7512 * This takes a network device structure and initialize the minimum
7513 * amount of fields so it can be used to schedule NAPI polls without
7514 * registering a full blown interface. This is to be used by drivers
7515 * that need to tie several hardware interfaces to a single NAPI
7516 * poll scheduler due to HW limitations.
7518 int init_dummy_netdev(struct net_device *dev)
7520 /* Clear everything. Note we don't initialize spinlocks
7521 * are they aren't supposed to be taken by any of the
7522 * NAPI code and this dummy netdev is supposed to be
7523 * only ever used for NAPI polls
7525 memset(dev, 0, sizeof(struct net_device));
7527 /* make sure we BUG if trying to hit standard
7528 * register/unregister code path
7530 dev->reg_state = NETREG_DUMMY;
7532 /* NAPI wants this */
7533 INIT_LIST_HEAD(&dev->napi_list);
7535 /* a dummy interface is started by default */
7536 set_bit(__LINK_STATE_PRESENT, &dev->state);
7537 set_bit(__LINK_STATE_START, &dev->state);
7539 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7540 * because users of this 'device' dont need to change
7546 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7550 * register_netdev - register a network device
7551 * @dev: device to register
7553 * Take a completed network device structure and add it to the kernel
7554 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7555 * chain. 0 is returned on success. A negative errno code is returned
7556 * on a failure to set up the device, or if the name is a duplicate.
7558 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7559 * and expands the device name if you passed a format string to
7562 int register_netdev(struct net_device *dev)
7567 err = register_netdevice(dev);
7571 EXPORT_SYMBOL(register_netdev);
7573 int netdev_refcnt_read(const struct net_device *dev)
7577 for_each_possible_cpu(i)
7578 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7581 EXPORT_SYMBOL(netdev_refcnt_read);
7584 * netdev_wait_allrefs - wait until all references are gone.
7585 * @dev: target net_device
7587 * This is called when unregistering network devices.
7589 * Any protocol or device that holds a reference should register
7590 * for netdevice notification, and cleanup and put back the
7591 * reference if they receive an UNREGISTER event.
7592 * We can get stuck here if buggy protocols don't correctly
7595 static void netdev_wait_allrefs(struct net_device *dev)
7597 unsigned long rebroadcast_time, warning_time;
7600 linkwatch_forget_dev(dev);
7602 rebroadcast_time = warning_time = jiffies;
7603 refcnt = netdev_refcnt_read(dev);
7605 while (refcnt != 0) {
7606 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7609 /* Rebroadcast unregister notification */
7610 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7616 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7617 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7619 /* We must not have linkwatch events
7620 * pending on unregister. If this
7621 * happens, we simply run the queue
7622 * unscheduled, resulting in a noop
7625 linkwatch_run_queue();
7630 rebroadcast_time = jiffies;
7635 refcnt = netdev_refcnt_read(dev);
7637 if (time_after(jiffies, warning_time + 10 * HZ)) {
7638 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7640 warning_time = jiffies;
7649 * register_netdevice(x1);
7650 * register_netdevice(x2);
7652 * unregister_netdevice(y1);
7653 * unregister_netdevice(y2);
7659 * We are invoked by rtnl_unlock().
7660 * This allows us to deal with problems:
7661 * 1) We can delete sysfs objects which invoke hotplug
7662 * without deadlocking with linkwatch via keventd.
7663 * 2) Since we run with the RTNL semaphore not held, we can sleep
7664 * safely in order to wait for the netdev refcnt to drop to zero.
7666 * We must not return until all unregister events added during
7667 * the interval the lock was held have been completed.
7669 void netdev_run_todo(void)
7671 struct list_head list;
7673 /* Snapshot list, allow later requests */
7674 list_replace_init(&net_todo_list, &list);
7679 /* Wait for rcu callbacks to finish before next phase */
7680 if (!list_empty(&list))
7683 while (!list_empty(&list)) {
7684 struct net_device *dev
7685 = list_first_entry(&list, struct net_device, todo_list);
7686 list_del(&dev->todo_list);
7689 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7692 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7693 pr_err("network todo '%s' but state %d\n",
7694 dev->name, dev->reg_state);
7699 dev->reg_state = NETREG_UNREGISTERED;
7701 netdev_wait_allrefs(dev);
7704 BUG_ON(netdev_refcnt_read(dev));
7705 BUG_ON(!list_empty(&dev->ptype_all));
7706 BUG_ON(!list_empty(&dev->ptype_specific));
7707 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7708 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7709 WARN_ON(dev->dn_ptr);
7711 if (dev->destructor)
7712 dev->destructor(dev);
7714 /* Report a network device has been unregistered */
7716 dev_net(dev)->dev_unreg_count--;
7718 wake_up(&netdev_unregistering_wq);
7720 /* Free network device */
7721 kobject_put(&dev->dev.kobj);
7725 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7726 * all the same fields in the same order as net_device_stats, with only
7727 * the type differing, but rtnl_link_stats64 may have additional fields
7728 * at the end for newer counters.
7730 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7731 const struct net_device_stats *netdev_stats)
7733 #if BITS_PER_LONG == 64
7734 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7735 memcpy(stats64, netdev_stats, sizeof(*stats64));
7736 /* zero out counters that only exist in rtnl_link_stats64 */
7737 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7738 sizeof(*stats64) - sizeof(*netdev_stats));
7740 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7741 const unsigned long *src = (const unsigned long *)netdev_stats;
7742 u64 *dst = (u64 *)stats64;
7744 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7745 for (i = 0; i < n; i++)
7747 /* zero out counters that only exist in rtnl_link_stats64 */
7748 memset((char *)stats64 + n * sizeof(u64), 0,
7749 sizeof(*stats64) - n * sizeof(u64));
7752 EXPORT_SYMBOL(netdev_stats_to_stats64);
7755 * dev_get_stats - get network device statistics
7756 * @dev: device to get statistics from
7757 * @storage: place to store stats
7759 * Get network statistics from device. Return @storage.
7760 * The device driver may provide its own method by setting
7761 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7762 * otherwise the internal statistics structure is used.
7764 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7765 struct rtnl_link_stats64 *storage)
7767 const struct net_device_ops *ops = dev->netdev_ops;
7769 if (ops->ndo_get_stats64) {
7770 memset(storage, 0, sizeof(*storage));
7771 ops->ndo_get_stats64(dev, storage);
7772 } else if (ops->ndo_get_stats) {
7773 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7775 netdev_stats_to_stats64(storage, &dev->stats);
7777 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7778 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7779 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7782 EXPORT_SYMBOL(dev_get_stats);
7784 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7786 struct netdev_queue *queue = dev_ingress_queue(dev);
7788 #ifdef CONFIG_NET_CLS_ACT
7791 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7794 netdev_init_one_queue(dev, queue, NULL);
7795 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7796 queue->qdisc_sleeping = &noop_qdisc;
7797 rcu_assign_pointer(dev->ingress_queue, queue);
7802 static const struct ethtool_ops default_ethtool_ops;
7804 void netdev_set_default_ethtool_ops(struct net_device *dev,
7805 const struct ethtool_ops *ops)
7807 if (dev->ethtool_ops == &default_ethtool_ops)
7808 dev->ethtool_ops = ops;
7810 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7812 void netdev_freemem(struct net_device *dev)
7814 char *addr = (char *)dev - dev->padded;
7820 * alloc_netdev_mqs - allocate network device
7821 * @sizeof_priv: size of private data to allocate space for
7822 * @name: device name format string
7823 * @name_assign_type: origin of device name
7824 * @setup: callback to initialize device
7825 * @txqs: the number of TX subqueues to allocate
7826 * @rxqs: the number of RX subqueues to allocate
7828 * Allocates a struct net_device with private data area for driver use
7829 * and performs basic initialization. Also allocates subqueue structs
7830 * for each queue on the device.
7832 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7833 unsigned char name_assign_type,
7834 void (*setup)(struct net_device *),
7835 unsigned int txqs, unsigned int rxqs)
7837 struct net_device *dev;
7839 struct net_device *p;
7841 BUG_ON(strlen(name) >= sizeof(dev->name));
7844 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7850 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7855 alloc_size = sizeof(struct net_device);
7857 /* ensure 32-byte alignment of private area */
7858 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7859 alloc_size += sizeof_priv;
7861 /* ensure 32-byte alignment of whole construct */
7862 alloc_size += NETDEV_ALIGN - 1;
7864 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7868 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7869 dev->padded = (char *)dev - (char *)p;
7871 dev->pcpu_refcnt = alloc_percpu(int);
7872 if (!dev->pcpu_refcnt)
7875 if (dev_addr_init(dev))
7881 dev_net_set(dev, &init_net);
7883 dev->gso_max_size = GSO_MAX_SIZE;
7884 dev->gso_max_segs = GSO_MAX_SEGS;
7886 INIT_LIST_HEAD(&dev->napi_list);
7887 INIT_LIST_HEAD(&dev->unreg_list);
7888 INIT_LIST_HEAD(&dev->close_list);
7889 INIT_LIST_HEAD(&dev->link_watch_list);
7890 INIT_LIST_HEAD(&dev->adj_list.upper);
7891 INIT_LIST_HEAD(&dev->adj_list.lower);
7892 INIT_LIST_HEAD(&dev->ptype_all);
7893 INIT_LIST_HEAD(&dev->ptype_specific);
7894 #ifdef CONFIG_NET_SCHED
7895 hash_init(dev->qdisc_hash);
7897 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7900 if (!dev->tx_queue_len) {
7901 dev->priv_flags |= IFF_NO_QUEUE;
7902 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7905 dev->num_tx_queues = txqs;
7906 dev->real_num_tx_queues = txqs;
7907 if (netif_alloc_netdev_queues(dev))
7911 dev->num_rx_queues = rxqs;
7912 dev->real_num_rx_queues = rxqs;
7913 if (netif_alloc_rx_queues(dev))
7917 strcpy(dev->name, name);
7918 dev->name_assign_type = name_assign_type;
7919 dev->group = INIT_NETDEV_GROUP;
7920 if (!dev->ethtool_ops)
7921 dev->ethtool_ops = &default_ethtool_ops;
7923 nf_hook_ingress_init(dev);
7932 free_percpu(dev->pcpu_refcnt);
7934 netdev_freemem(dev);
7937 EXPORT_SYMBOL(alloc_netdev_mqs);
7940 * free_netdev - free network device
7943 * This function does the last stage of destroying an allocated device
7944 * interface. The reference to the device object is released. If this
7945 * is the last reference then it will be freed.Must be called in process
7948 void free_netdev(struct net_device *dev)
7950 struct napi_struct *p, *n;
7951 struct bpf_prog *prog;
7954 netif_free_tx_queues(dev);
7959 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7961 /* Flush device addresses */
7962 dev_addr_flush(dev);
7964 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7967 free_percpu(dev->pcpu_refcnt);
7968 dev->pcpu_refcnt = NULL;
7970 prog = rcu_dereference_protected(dev->xdp_prog, 1);
7973 static_key_slow_dec(&generic_xdp_needed);
7976 /* Compatibility with error handling in drivers */
7977 if (dev->reg_state == NETREG_UNINITIALIZED) {
7978 netdev_freemem(dev);
7982 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7983 dev->reg_state = NETREG_RELEASED;
7985 /* will free via device release */
7986 put_device(&dev->dev);
7988 EXPORT_SYMBOL(free_netdev);
7991 * synchronize_net - Synchronize with packet receive processing
7993 * Wait for packets currently being received to be done.
7994 * Does not block later packets from starting.
7996 void synchronize_net(void)
7999 if (rtnl_is_locked())
8000 synchronize_rcu_expedited();
8004 EXPORT_SYMBOL(synchronize_net);
8007 * unregister_netdevice_queue - remove device from the kernel
8011 * This function shuts down a device interface and removes it
8012 * from the kernel tables.
8013 * If head not NULL, device is queued to be unregistered later.
8015 * Callers must hold the rtnl semaphore. You may want
8016 * unregister_netdev() instead of this.
8019 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8024 list_move_tail(&dev->unreg_list, head);
8026 rollback_registered(dev);
8027 /* Finish processing unregister after unlock */
8031 EXPORT_SYMBOL(unregister_netdevice_queue);
8034 * unregister_netdevice_many - unregister many devices
8035 * @head: list of devices
8037 * Note: As most callers use a stack allocated list_head,
8038 * we force a list_del() to make sure stack wont be corrupted later.
8040 void unregister_netdevice_many(struct list_head *head)
8042 struct net_device *dev;
8044 if (!list_empty(head)) {
8045 rollback_registered_many(head);
8046 list_for_each_entry(dev, head, unreg_list)
8051 EXPORT_SYMBOL(unregister_netdevice_many);
8054 * unregister_netdev - remove device from the kernel
8057 * This function shuts down a device interface and removes it
8058 * from the kernel tables.
8060 * This is just a wrapper for unregister_netdevice that takes
8061 * the rtnl semaphore. In general you want to use this and not
8062 * unregister_netdevice.
8064 void unregister_netdev(struct net_device *dev)
8067 unregister_netdevice(dev);
8070 EXPORT_SYMBOL(unregister_netdev);
8073 * dev_change_net_namespace - move device to different nethost namespace
8075 * @net: network namespace
8076 * @pat: If not NULL name pattern to try if the current device name
8077 * is already taken in the destination network namespace.
8079 * This function shuts down a device interface and moves it
8080 * to a new network namespace. On success 0 is returned, on
8081 * a failure a netagive errno code is returned.
8083 * Callers must hold the rtnl semaphore.
8086 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8092 /* Don't allow namespace local devices to be moved. */
8094 if (dev->features & NETIF_F_NETNS_LOCAL)
8097 /* Ensure the device has been registrered */
8098 if (dev->reg_state != NETREG_REGISTERED)
8101 /* Get out if there is nothing todo */
8103 if (net_eq(dev_net(dev), net))
8106 /* Pick the destination device name, and ensure
8107 * we can use it in the destination network namespace.
8110 if (__dev_get_by_name(net, dev->name)) {
8111 /* We get here if we can't use the current device name */
8114 if (dev_get_valid_name(net, dev, pat) < 0)
8119 * And now a mini version of register_netdevice unregister_netdevice.
8122 /* If device is running close it first. */
8125 /* And unlink it from device chain */
8127 unlist_netdevice(dev);
8131 /* Shutdown queueing discipline. */
8134 /* Notify protocols, that we are about to destroy
8135 * this device. They should clean all the things.
8137 * Note that dev->reg_state stays at NETREG_REGISTERED.
8138 * This is wanted because this way 8021q and macvlan know
8139 * the device is just moving and can keep their slaves up.
8141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8143 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8144 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8147 * Flush the unicast and multicast chains
8152 /* Send a netdev-removed uevent to the old namespace */
8153 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8154 netdev_adjacent_del_links(dev);
8156 /* Actually switch the network namespace */
8157 dev_net_set(dev, net);
8159 /* If there is an ifindex conflict assign a new one */
8160 if (__dev_get_by_index(net, dev->ifindex))
8161 dev->ifindex = dev_new_index(net);
8163 /* Send a netdev-add uevent to the new namespace */
8164 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8165 netdev_adjacent_add_links(dev);
8167 /* Fixup kobjects */
8168 err = device_rename(&dev->dev, dev->name);
8171 /* Add the device back in the hashes */
8172 list_netdevice(dev);
8174 /* Notify protocols, that a new device appeared. */
8175 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8178 * Prevent userspace races by waiting until the network
8179 * device is fully setup before sending notifications.
8181 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8188 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8190 static int dev_cpu_dead(unsigned int oldcpu)
8192 struct sk_buff **list_skb;
8193 struct sk_buff *skb;
8195 struct softnet_data *sd, *oldsd;
8197 local_irq_disable();
8198 cpu = smp_processor_id();
8199 sd = &per_cpu(softnet_data, cpu);
8200 oldsd = &per_cpu(softnet_data, oldcpu);
8202 /* Find end of our completion_queue. */
8203 list_skb = &sd->completion_queue;
8205 list_skb = &(*list_skb)->next;
8206 /* Append completion queue from offline CPU. */
8207 *list_skb = oldsd->completion_queue;
8208 oldsd->completion_queue = NULL;
8210 /* Append output queue from offline CPU. */
8211 if (oldsd->output_queue) {
8212 *sd->output_queue_tailp = oldsd->output_queue;
8213 sd->output_queue_tailp = oldsd->output_queue_tailp;
8214 oldsd->output_queue = NULL;
8215 oldsd->output_queue_tailp = &oldsd->output_queue;
8217 /* Append NAPI poll list from offline CPU, with one exception :
8218 * process_backlog() must be called by cpu owning percpu backlog.
8219 * We properly handle process_queue & input_pkt_queue later.
8221 while (!list_empty(&oldsd->poll_list)) {
8222 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8226 list_del_init(&napi->poll_list);
8227 if (napi->poll == process_backlog)
8230 ____napi_schedule(sd, napi);
8233 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8236 /* Process offline CPU's input_pkt_queue */
8237 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8239 input_queue_head_incr(oldsd);
8241 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8243 input_queue_head_incr(oldsd);
8250 * netdev_increment_features - increment feature set by one
8251 * @all: current feature set
8252 * @one: new feature set
8253 * @mask: mask feature set
8255 * Computes a new feature set after adding a device with feature set
8256 * @one to the master device with current feature set @all. Will not
8257 * enable anything that is off in @mask. Returns the new feature set.
8259 netdev_features_t netdev_increment_features(netdev_features_t all,
8260 netdev_features_t one, netdev_features_t mask)
8262 if (mask & NETIF_F_HW_CSUM)
8263 mask |= NETIF_F_CSUM_MASK;
8264 mask |= NETIF_F_VLAN_CHALLENGED;
8266 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8267 all &= one | ~NETIF_F_ALL_FOR_ALL;
8269 /* If one device supports hw checksumming, set for all. */
8270 if (all & NETIF_F_HW_CSUM)
8271 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8275 EXPORT_SYMBOL(netdev_increment_features);
8277 static struct hlist_head * __net_init netdev_create_hash(void)
8280 struct hlist_head *hash;
8282 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8284 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8285 INIT_HLIST_HEAD(&hash[i]);
8290 /* Initialize per network namespace state */
8291 static int __net_init netdev_init(struct net *net)
8293 if (net != &init_net)
8294 INIT_LIST_HEAD(&net->dev_base_head);
8296 net->dev_name_head = netdev_create_hash();
8297 if (net->dev_name_head == NULL)
8300 net->dev_index_head = netdev_create_hash();
8301 if (net->dev_index_head == NULL)
8307 kfree(net->dev_name_head);
8313 * netdev_drivername - network driver for the device
8314 * @dev: network device
8316 * Determine network driver for device.
8318 const char *netdev_drivername(const struct net_device *dev)
8320 const struct device_driver *driver;
8321 const struct device *parent;
8322 const char *empty = "";
8324 parent = dev->dev.parent;
8328 driver = parent->driver;
8329 if (driver && driver->name)
8330 return driver->name;
8334 static void __netdev_printk(const char *level, const struct net_device *dev,
8335 struct va_format *vaf)
8337 if (dev && dev->dev.parent) {
8338 dev_printk_emit(level[1] - '0',
8341 dev_driver_string(dev->dev.parent),
8342 dev_name(dev->dev.parent),
8343 netdev_name(dev), netdev_reg_state(dev),
8346 printk("%s%s%s: %pV",
8347 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8349 printk("%s(NULL net_device): %pV", level, vaf);
8353 void netdev_printk(const char *level, const struct net_device *dev,
8354 const char *format, ...)
8356 struct va_format vaf;
8359 va_start(args, format);
8364 __netdev_printk(level, dev, &vaf);
8368 EXPORT_SYMBOL(netdev_printk);
8370 #define define_netdev_printk_level(func, level) \
8371 void func(const struct net_device *dev, const char *fmt, ...) \
8373 struct va_format vaf; \
8376 va_start(args, fmt); \
8381 __netdev_printk(level, dev, &vaf); \
8385 EXPORT_SYMBOL(func);
8387 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8388 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8389 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8390 define_netdev_printk_level(netdev_err, KERN_ERR);
8391 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8392 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8393 define_netdev_printk_level(netdev_info, KERN_INFO);
8395 static void __net_exit netdev_exit(struct net *net)
8397 kfree(net->dev_name_head);
8398 kfree(net->dev_index_head);
8401 static struct pernet_operations __net_initdata netdev_net_ops = {
8402 .init = netdev_init,
8403 .exit = netdev_exit,
8406 static void __net_exit default_device_exit(struct net *net)
8408 struct net_device *dev, *aux;
8410 * Push all migratable network devices back to the
8411 * initial network namespace
8414 for_each_netdev_safe(net, dev, aux) {
8416 char fb_name[IFNAMSIZ];
8418 /* Ignore unmoveable devices (i.e. loopback) */
8419 if (dev->features & NETIF_F_NETNS_LOCAL)
8422 /* Leave virtual devices for the generic cleanup */
8423 if (dev->rtnl_link_ops)
8426 /* Push remaining network devices to init_net */
8427 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8428 err = dev_change_net_namespace(dev, &init_net, fb_name);
8430 pr_emerg("%s: failed to move %s to init_net: %d\n",
8431 __func__, dev->name, err);
8438 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8440 /* Return with the rtnl_lock held when there are no network
8441 * devices unregistering in any network namespace in net_list.
8445 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8447 add_wait_queue(&netdev_unregistering_wq, &wait);
8449 unregistering = false;
8451 list_for_each_entry(net, net_list, exit_list) {
8452 if (net->dev_unreg_count > 0) {
8453 unregistering = true;
8461 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8463 remove_wait_queue(&netdev_unregistering_wq, &wait);
8466 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8468 /* At exit all network devices most be removed from a network
8469 * namespace. Do this in the reverse order of registration.
8470 * Do this across as many network namespaces as possible to
8471 * improve batching efficiency.
8473 struct net_device *dev;
8475 LIST_HEAD(dev_kill_list);
8477 /* To prevent network device cleanup code from dereferencing
8478 * loopback devices or network devices that have been freed
8479 * wait here for all pending unregistrations to complete,
8480 * before unregistring the loopback device and allowing the
8481 * network namespace be freed.
8483 * The netdev todo list containing all network devices
8484 * unregistrations that happen in default_device_exit_batch
8485 * will run in the rtnl_unlock() at the end of
8486 * default_device_exit_batch.
8488 rtnl_lock_unregistering(net_list);
8489 list_for_each_entry(net, net_list, exit_list) {
8490 for_each_netdev_reverse(net, dev) {
8491 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8492 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8494 unregister_netdevice_queue(dev, &dev_kill_list);
8497 unregister_netdevice_many(&dev_kill_list);
8501 static struct pernet_operations __net_initdata default_device_ops = {
8502 .exit = default_device_exit,
8503 .exit_batch = default_device_exit_batch,
8507 * Initialize the DEV module. At boot time this walks the device list and
8508 * unhooks any devices that fail to initialise (normally hardware not
8509 * present) and leaves us with a valid list of present and active devices.
8514 * This is called single threaded during boot, so no need
8515 * to take the rtnl semaphore.
8517 static int __init net_dev_init(void)
8519 int i, rc = -ENOMEM;
8521 BUG_ON(!dev_boot_phase);
8523 if (dev_proc_init())
8526 if (netdev_kobject_init())
8529 INIT_LIST_HEAD(&ptype_all);
8530 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8531 INIT_LIST_HEAD(&ptype_base[i]);
8533 INIT_LIST_HEAD(&offload_base);
8535 if (register_pernet_subsys(&netdev_net_ops))
8539 * Initialise the packet receive queues.
8542 for_each_possible_cpu(i) {
8543 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8544 struct softnet_data *sd = &per_cpu(softnet_data, i);
8546 INIT_WORK(flush, flush_backlog);
8548 skb_queue_head_init(&sd->input_pkt_queue);
8549 skb_queue_head_init(&sd->process_queue);
8550 INIT_LIST_HEAD(&sd->poll_list);
8551 sd->output_queue_tailp = &sd->output_queue;
8553 sd->csd.func = rps_trigger_softirq;
8558 sd->backlog.poll = process_backlog;
8559 sd->backlog.weight = weight_p;
8564 /* The loopback device is special if any other network devices
8565 * is present in a network namespace the loopback device must
8566 * be present. Since we now dynamically allocate and free the
8567 * loopback device ensure this invariant is maintained by
8568 * keeping the loopback device as the first device on the
8569 * list of network devices. Ensuring the loopback devices
8570 * is the first device that appears and the last network device
8573 if (register_pernet_device(&loopback_net_ops))
8576 if (register_pernet_device(&default_device_ops))
8579 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8580 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8582 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8583 NULL, dev_cpu_dead);
8591 subsys_initcall(net_dev_init);