1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains common generic and tag-based KASAN code.
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/linkage.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/stacktrace.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/vmalloc.h>
35 #include <linux/bug.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
43 depot_stack_handle_t kasan_save_stack(gfp_t flags)
45 unsigned long entries[KASAN_STACK_DEPTH];
46 unsigned int nr_entries;
48 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
49 nr_entries = filter_irq_stacks(entries, nr_entries);
50 return stack_depot_save(entries, nr_entries, flags);
53 void kasan_set_track(struct kasan_track *track, gfp_t flags)
55 track->pid = current->pid;
56 track->stack = kasan_save_stack(flags);
59 void kasan_enable_current(void)
61 current->kasan_depth++;
64 void kasan_disable_current(void)
66 current->kasan_depth--;
69 bool __kasan_check_read(const volatile void *p, unsigned int size)
71 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
73 EXPORT_SYMBOL(__kasan_check_read);
75 bool __kasan_check_write(const volatile void *p, unsigned int size)
77 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
79 EXPORT_SYMBOL(__kasan_check_write);
82 void *memset(void *addr, int c, size_t len)
84 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
87 return __memset(addr, c, len);
90 #ifdef __HAVE_ARCH_MEMMOVE
92 void *memmove(void *dest, const void *src, size_t len)
94 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
95 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
98 return __memmove(dest, src, len);
103 void *memcpy(void *dest, const void *src, size_t len)
105 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
106 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
109 return __memcpy(dest, src, len);
113 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
114 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
116 void kasan_poison_shadow(const void *address, size_t size, u8 value)
118 void *shadow_start, *shadow_end;
121 * Perform shadow offset calculation based on untagged address, as
122 * some of the callers (e.g. kasan_poison_object_data) pass tagged
123 * addresses to this function.
125 address = reset_tag(address);
127 shadow_start = kasan_mem_to_shadow(address);
128 shadow_end = kasan_mem_to_shadow(address + size);
130 __memset(shadow_start, value, shadow_end - shadow_start);
133 void kasan_unpoison_shadow(const void *address, size_t size)
135 u8 tag = get_tag(address);
138 * Perform shadow offset calculation based on untagged address, as
139 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
140 * addresses to this function.
142 address = reset_tag(address);
144 kasan_poison_shadow(address, size, tag);
146 if (size & KASAN_SHADOW_MASK) {
147 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
149 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
152 *shadow = size & KASAN_SHADOW_MASK;
156 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
158 void *base = task_stack_page(task);
159 size_t size = sp - base;
161 kasan_unpoison_shadow(base, size);
164 /* Unpoison the entire stack for a task. */
165 void kasan_unpoison_task_stack(struct task_struct *task)
167 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
170 /* Unpoison the stack for the current task beyond a watermark sp value. */
171 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
174 * Calculate the task stack base address. Avoid using 'current'
175 * because this function is called by early resume code which hasn't
176 * yet set up the percpu register (%gs).
178 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
180 kasan_unpoison_shadow(base, watermark - base);
183 void kasan_alloc_pages(struct page *page, unsigned int order)
188 if (unlikely(PageHighMem(page)))
192 for (i = 0; i < (1 << order); i++)
193 page_kasan_tag_set(page + i, tag);
194 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
197 void kasan_free_pages(struct page *page, unsigned int order)
199 if (likely(!PageHighMem(page)))
200 kasan_poison_shadow(page_address(page),
206 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
207 * For larger allocations larger redzones are used.
209 static inline unsigned int optimal_redzone(unsigned int object_size)
211 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
215 object_size <= 64 - 16 ? 16 :
216 object_size <= 128 - 32 ? 32 :
217 object_size <= 512 - 64 ? 64 :
218 object_size <= 4096 - 128 ? 128 :
219 object_size <= (1 << 14) - 256 ? 256 :
220 object_size <= (1 << 15) - 512 ? 512 :
221 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
224 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
227 unsigned int orig_size = *size;
228 unsigned int redzone_size;
231 /* Add alloc meta. */
232 cache->kasan_info.alloc_meta_offset = *size;
233 *size += sizeof(struct kasan_alloc_meta);
236 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
237 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
238 cache->object_size < sizeof(struct kasan_free_meta))) {
239 cache->kasan_info.free_meta_offset = *size;
240 *size += sizeof(struct kasan_free_meta);
243 redzone_size = optimal_redzone(cache->object_size);
244 redzone_adjust = redzone_size - (*size - cache->object_size);
245 if (redzone_adjust > 0)
246 *size += redzone_adjust;
248 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
249 max(*size, cache->object_size + redzone_size));
252 * If the metadata doesn't fit, don't enable KASAN at all.
254 if (*size <= cache->kasan_info.alloc_meta_offset ||
255 *size <= cache->kasan_info.free_meta_offset) {
256 cache->kasan_info.alloc_meta_offset = 0;
257 cache->kasan_info.free_meta_offset = 0;
262 *flags |= SLAB_KASAN;
265 size_t kasan_metadata_size(struct kmem_cache *cache)
267 return (cache->kasan_info.alloc_meta_offset ?
268 sizeof(struct kasan_alloc_meta) : 0) +
269 (cache->kasan_info.free_meta_offset ?
270 sizeof(struct kasan_free_meta) : 0);
273 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
276 return (void *)object + cache->kasan_info.alloc_meta_offset;
279 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
282 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
283 return (void *)object + cache->kasan_info.free_meta_offset;
286 void kasan_poison_slab(struct page *page)
290 for (i = 0; i < compound_nr(page); i++)
291 page_kasan_tag_reset(page + i);
292 kasan_poison_shadow(page_address(page), page_size(page),
293 KASAN_KMALLOC_REDZONE);
296 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
298 kasan_unpoison_shadow(object, cache->object_size);
301 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
303 kasan_poison_shadow(object,
304 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
305 KASAN_KMALLOC_REDZONE);
309 * This function assigns a tag to an object considering the following:
310 * 1. A cache might have a constructor, which might save a pointer to a slab
311 * object somewhere (e.g. in the object itself). We preassign a tag for
312 * each object in caches with constructors during slab creation and reuse
313 * the same tag each time a particular object is allocated.
314 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
315 * accessed after being freed. We preassign tags for objects in these
317 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
318 * is stored as an array of indexes instead of a linked list. Assign tags
319 * based on objects indexes, so that objects that are next to each other
320 * get different tags.
322 static u8 assign_tag(struct kmem_cache *cache, const void *object,
323 bool init, bool keep_tag)
326 * 1. When an object is kmalloc()'ed, two hooks are called:
327 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
328 * tag only in the first one.
329 * 2. We reuse the same tag for krealloc'ed objects.
332 return get_tag(object);
335 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
336 * set, assign a tag when the object is being allocated (init == false).
338 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
339 return init ? KASAN_TAG_KERNEL : random_tag();
341 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
343 /* For SLAB assign tags based on the object index in the freelist. */
344 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
347 * For SLUB assign a random tag during slab creation, otherwise reuse
348 * the already assigned tag.
350 return init ? random_tag() : get_tag(object);
354 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
357 struct kasan_alloc_meta *alloc_info;
359 if (!(cache->flags & SLAB_KASAN))
360 return (void *)object;
362 alloc_info = get_alloc_info(cache, object);
363 __memset(alloc_info, 0, sizeof(*alloc_info));
365 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
366 object = set_tag(object,
367 assign_tag(cache, object, true, false));
369 return (void *)object;
372 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
374 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
375 return shadow_byte < 0 ||
376 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
378 /* else CONFIG_KASAN_SW_TAGS: */
379 if ((u8)shadow_byte == KASAN_TAG_INVALID)
381 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
387 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
388 unsigned long ip, bool quarantine)
393 unsigned long rounded_up_size;
395 tag = get_tag(object);
396 tagged_object = object;
397 object = reset_tag(object);
399 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
401 kasan_report_invalid_free(tagged_object, ip);
405 /* RCU slabs could be legally used after free within the RCU period */
406 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
409 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
410 if (shadow_invalid(tag, shadow_byte)) {
411 kasan_report_invalid_free(tagged_object, ip);
415 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
416 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
418 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
419 unlikely(!(cache->flags & SLAB_KASAN)))
422 kasan_set_free_info(cache, object, tag);
424 quarantine_put(get_free_info(cache, object), cache);
426 return IS_ENABLED(CONFIG_KASAN_GENERIC);
429 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
431 return __kasan_slab_free(cache, object, ip, true);
434 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
435 size_t size, gfp_t flags, bool keep_tag)
437 unsigned long redzone_start;
438 unsigned long redzone_end;
441 if (gfpflags_allow_blocking(flags))
444 if (unlikely(object == NULL))
447 redzone_start = round_up((unsigned long)(object + size),
448 KASAN_SHADOW_SCALE_SIZE);
449 redzone_end = round_up((unsigned long)object + cache->object_size,
450 KASAN_SHADOW_SCALE_SIZE);
452 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
453 tag = assign_tag(cache, object, false, keep_tag);
455 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
456 kasan_unpoison_shadow(set_tag(object, tag), size);
457 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
458 KASAN_KMALLOC_REDZONE);
460 if (cache->flags & SLAB_KASAN)
461 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
463 return set_tag(object, tag);
466 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
469 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
472 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
473 size_t size, gfp_t flags)
475 return __kasan_kmalloc(cache, object, size, flags, true);
477 EXPORT_SYMBOL(kasan_kmalloc);
479 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
483 unsigned long redzone_start;
484 unsigned long redzone_end;
486 if (gfpflags_allow_blocking(flags))
489 if (unlikely(ptr == NULL))
492 page = virt_to_page(ptr);
493 redzone_start = round_up((unsigned long)(ptr + size),
494 KASAN_SHADOW_SCALE_SIZE);
495 redzone_end = (unsigned long)ptr + page_size(page);
497 kasan_unpoison_shadow(ptr, size);
498 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
504 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
508 if (unlikely(object == ZERO_SIZE_PTR))
509 return (void *)object;
511 page = virt_to_head_page(object);
513 if (unlikely(!PageSlab(page)))
514 return kasan_kmalloc_large(object, size, flags);
516 return __kasan_kmalloc(page->slab_cache, object, size,
520 void kasan_poison_kfree(void *ptr, unsigned long ip)
524 page = virt_to_head_page(ptr);
526 if (unlikely(!PageSlab(page))) {
527 if (ptr != page_address(page)) {
528 kasan_report_invalid_free(ptr, ip);
531 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
533 __kasan_slab_free(page->slab_cache, ptr, ip, false);
537 void kasan_kfree_large(void *ptr, unsigned long ip)
539 if (ptr != page_address(virt_to_head_page(ptr)))
540 kasan_report_invalid_free(ptr, ip);
541 /* The object will be poisoned by page_alloc. */
544 #ifndef CONFIG_KASAN_VMALLOC
545 int kasan_module_alloc(void *addr, size_t size)
550 unsigned long shadow_start;
552 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
553 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
554 shadow_size = round_up(scaled_size, PAGE_SIZE);
556 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
559 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
560 shadow_start + shadow_size,
562 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
563 __builtin_return_address(0));
566 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
567 find_vm_area(addr)->flags |= VM_KASAN;
568 kmemleak_ignore(ret);
575 void kasan_free_shadow(const struct vm_struct *vm)
577 if (vm->flags & VM_KASAN)
578 vfree(kasan_mem_to_shadow(vm->addr));
582 #ifdef CONFIG_MEMORY_HOTPLUG
583 static bool shadow_mapped(unsigned long addr)
585 pgd_t *pgd = pgd_offset_k(addr);
593 p4d = p4d_offset(pgd, addr);
596 pud = pud_offset(p4d, addr);
601 * We can't use pud_large() or pud_huge(), the first one is
602 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
603 * pud_bad(), if pud is bad then it's bad because it's huge.
607 pmd = pmd_offset(pud, addr);
613 pte = pte_offset_kernel(pmd, addr);
614 return !pte_none(*pte);
617 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
618 unsigned long action, void *data)
620 struct memory_notify *mem_data = data;
621 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
622 unsigned long shadow_end, shadow_size;
624 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
625 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
626 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
627 shadow_size = nr_shadow_pages << PAGE_SHIFT;
628 shadow_end = shadow_start + shadow_size;
630 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
631 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
635 case MEM_GOING_ONLINE: {
639 * If shadow is mapped already than it must have been mapped
640 * during the boot. This could happen if we onlining previously
643 if (shadow_mapped(shadow_start))
646 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
647 shadow_end, GFP_KERNEL,
648 PAGE_KERNEL, VM_NO_GUARD,
649 pfn_to_nid(mem_data->start_pfn),
650 __builtin_return_address(0));
654 kmemleak_ignore(ret);
657 case MEM_CANCEL_ONLINE:
659 struct vm_struct *vm;
662 * shadow_start was either mapped during boot by kasan_init()
663 * or during memory online by __vmalloc_node_range().
664 * In the latter case we can use vfree() to free shadow.
665 * Non-NULL result of the find_vm_area() will tell us if
666 * that was the second case.
668 * Currently it's not possible to free shadow mapped
669 * during boot by kasan_init(). It's because the code
670 * to do that hasn't been written yet. So we'll just
673 vm = find_vm_area((void *)shadow_start);
675 vfree((void *)shadow_start);
682 static int __init kasan_memhotplug_init(void)
684 hotplug_memory_notifier(kasan_mem_notifier, 0);
689 core_initcall(kasan_memhotplug_init);
692 #ifdef CONFIG_KASAN_VMALLOC
693 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
699 if (likely(!pte_none(*ptep)))
702 page = __get_free_page(GFP_KERNEL);
706 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
707 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
709 spin_lock(&init_mm.page_table_lock);
710 if (likely(pte_none(*ptep))) {
711 set_pte_at(&init_mm, addr, ptep, pte);
714 spin_unlock(&init_mm.page_table_lock);
720 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
722 unsigned long shadow_start, shadow_end;
725 if (!is_vmalloc_or_module_addr((void *)addr))
728 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
729 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
730 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
731 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
733 ret = apply_to_page_range(&init_mm, shadow_start,
734 shadow_end - shadow_start,
735 kasan_populate_vmalloc_pte, NULL);
739 flush_cache_vmap(shadow_start, shadow_end);
742 * We need to be careful about inter-cpu effects here. Consider:
745 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
748 * With compiler instrumentation, that ends up looking like this:
751 * // vmalloc() allocates memory
752 * // let a = area->addr
753 * // we reach kasan_populate_vmalloc
754 * // and call kasan_unpoison_shadow:
755 * STORE shadow(a), unpoison_val
757 * STORE shadow(a+99), unpoison_val x = LOAD p
758 * // rest of vmalloc process <data dependency>
759 * STORE p, a LOAD shadow(x+99)
761 * If there is no barrier between the end of unpoisioning the shadow
762 * and the store of the result to p, the stores could be committed
763 * in a different order by CPU#0, and CPU#1 could erroneously observe
764 * poison in the shadow.
766 * We need some sort of barrier between the stores.
768 * In the vmalloc() case, this is provided by a smp_wmb() in
769 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
770 * get_vm_area() and friends, the caller gets shadow allocated but
771 * doesn't have any pages mapped into the virtual address space that
772 * has been reserved. Mapping those pages in will involve taking and
773 * releasing a page-table lock, which will provide the barrier.
780 * Poison the shadow for a vmalloc region. Called as part of the
781 * freeing process at the time the region is freed.
783 void kasan_poison_vmalloc(const void *start, unsigned long size)
785 if (!is_vmalloc_or_module_addr(start))
788 size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
789 kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
792 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
794 if (!is_vmalloc_or_module_addr(start))
797 kasan_unpoison_shadow(start, size);
800 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
805 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
807 spin_lock(&init_mm.page_table_lock);
809 if (likely(!pte_none(*ptep))) {
810 pte_clear(&init_mm, addr, ptep);
813 spin_unlock(&init_mm.page_table_lock);
819 * Release the backing for the vmalloc region [start, end), which
820 * lies within the free region [free_region_start, free_region_end).
822 * This can be run lazily, long after the region was freed. It runs
823 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
826 * How does this work?
827 * -------------------
829 * We have a region that is page aligned, labelled as A.
830 * That might not map onto the shadow in a way that is page-aligned:
834 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
835 * -------- -------- -------- -------- --------
838 * \-------\|/------/ |/---------------/
840 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
843 * First we align the start upwards and the end downwards, so that the
844 * shadow of the region aligns with shadow page boundaries. In the
845 * example, this gives us the shadow page (2). This is the shadow entirely
846 * covered by this allocation.
848 * Then we have the tricky bits. We want to know if we can free the
849 * partially covered shadow pages - (1) and (3) in the example. For this,
850 * we are given the start and end of the free region that contains this
851 * allocation. Extending our previous example, we could have:
853 * free_region_start free_region_end
856 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
857 * -------- -------- -------- -------- --------
860 * \-------\|/------/ |/---------------/
862 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
865 * Once again, we align the start of the free region up, and the end of
866 * the free region down so that the shadow is page aligned. So we can free
867 * page (1) - we know no allocation currently uses anything in that page,
868 * because all of it is in the vmalloc free region. But we cannot free
869 * page (3), because we can't be sure that the rest of it is unused.
871 * We only consider pages that contain part of the original region for
872 * freeing: we don't try to free other pages from the free region or we'd
873 * end up trying to free huge chunks of virtual address space.
878 * How do we know that we're not freeing a page that is simultaneously
879 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
881 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
882 * at the same time. While we run under free_vmap_area_lock, the population
885 * free_vmap_area_lock instead operates to ensure that the larger range
886 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
887 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
888 * no space identified as free will become used while we are running. This
889 * means that so long as we are careful with alignment and only free shadow
890 * pages entirely covered by the free region, we will not run in to any
891 * trouble - any simultaneous allocations will be for disjoint regions.
893 void kasan_release_vmalloc(unsigned long start, unsigned long end,
894 unsigned long free_region_start,
895 unsigned long free_region_end)
897 void *shadow_start, *shadow_end;
898 unsigned long region_start, region_end;
901 region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
902 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
904 free_region_start = ALIGN(free_region_start,
905 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
907 if (start != region_start &&
908 free_region_start < region_start)
909 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
911 free_region_end = ALIGN_DOWN(free_region_end,
912 PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
914 if (end != region_end &&
915 free_region_end > region_end)
916 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
918 shadow_start = kasan_mem_to_shadow((void *)region_start);
919 shadow_end = kasan_mem_to_shadow((void *)region_end);
921 if (shadow_end > shadow_start) {
922 size = shadow_end - shadow_start;
923 apply_to_existing_page_range(&init_mm,
924 (unsigned long)shadow_start,
925 size, kasan_depopulate_vmalloc_pte,
927 flush_tlb_kernel_range((unsigned long)shadow_start,
928 (unsigned long)shadow_end);