2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
31 #include <linux/seq_file.h>
32 #include <linux/atomic.h>
33 #include <linux/wait.h>
34 #include <linux/kref.h>
35 #include <linux/slab.h>
36 #include <linux/firmware.h>
37 #include <linux/pm_runtime.h>
39 #include <drm/drm_drv.h>
41 #include "amdgpu_trace.h"
45 * Fences mark an event in the GPUs pipeline and are used
46 * for GPU/CPU synchronization. When the fence is written,
47 * it is expected that all buffers associated with that fence
48 * are no longer in use by the associated ring on the GPU and
49 * that the the relevant GPU caches have been flushed.
53 struct dma_fence base;
56 struct amdgpu_ring *ring;
59 static struct kmem_cache *amdgpu_fence_slab;
61 int amdgpu_fence_slab_init(void)
63 amdgpu_fence_slab = kmem_cache_create(
64 "amdgpu_fence", sizeof(struct amdgpu_fence), 0,
65 SLAB_HWCACHE_ALIGN, NULL);
66 if (!amdgpu_fence_slab)
71 void amdgpu_fence_slab_fini(void)
74 kmem_cache_destroy(amdgpu_fence_slab);
79 static const struct dma_fence_ops amdgpu_fence_ops;
80 static inline struct amdgpu_fence *to_amdgpu_fence(struct dma_fence *f)
82 struct amdgpu_fence *__f = container_of(f, struct amdgpu_fence, base);
84 if (__f->base.ops == &amdgpu_fence_ops)
91 * amdgpu_fence_write - write a fence value
93 * @ring: ring the fence is associated with
94 * @seq: sequence number to write
96 * Writes a fence value to memory (all asics).
98 static void amdgpu_fence_write(struct amdgpu_ring *ring, u32 seq)
100 struct amdgpu_fence_driver *drv = &ring->fence_drv;
103 *drv->cpu_addr = cpu_to_le32(seq);
107 * amdgpu_fence_read - read a fence value
109 * @ring: ring the fence is associated with
111 * Reads a fence value from memory (all asics).
112 * Returns the value of the fence read from memory.
114 static u32 amdgpu_fence_read(struct amdgpu_ring *ring)
116 struct amdgpu_fence_driver *drv = &ring->fence_drv;
120 seq = le32_to_cpu(*drv->cpu_addr);
122 seq = atomic_read(&drv->last_seq);
128 * amdgpu_fence_emit - emit a fence on the requested ring
130 * @ring: ring the fence is associated with
131 * @f: resulting fence object
132 * @job: job the fence is embedded in
133 * @flags: flags to pass into the subordinate .emit_fence() call
135 * Emits a fence command on the requested ring (all asics).
136 * Returns 0 on success, -ENOMEM on failure.
138 int amdgpu_fence_emit(struct amdgpu_ring *ring, struct dma_fence **f, struct amdgpu_job *job,
141 struct amdgpu_device *adev = ring->adev;
142 struct dma_fence *fence;
143 struct amdgpu_fence *am_fence;
144 struct dma_fence __rcu **ptr;
149 /* create a sperate hw fence */
150 am_fence = kmem_cache_alloc(amdgpu_fence_slab, GFP_ATOMIC);
151 if (am_fence == NULL)
153 fence = &am_fence->base;
154 am_fence->ring = ring;
156 /* take use of job-embedded fence */
157 fence = &job->hw_fence;
160 seq = ++ring->fence_drv.sync_seq;
161 if (job != NULL && job->job_run_counter) {
162 /* reinit seq for resubmitted jobs */
165 dma_fence_init(fence, &amdgpu_fence_ops,
166 &ring->fence_drv.lock,
167 adev->fence_context + ring->idx,
172 /* mark this fence has a parent job */
173 set_bit(AMDGPU_FENCE_FLAG_EMBED_IN_JOB_BIT, &fence->flags);
176 amdgpu_ring_emit_fence(ring, ring->fence_drv.gpu_addr,
177 seq, flags | AMDGPU_FENCE_FLAG_INT);
178 pm_runtime_get_noresume(adev_to_drm(adev)->dev);
179 ptr = &ring->fence_drv.fences[seq & ring->fence_drv.num_fences_mask];
180 if (unlikely(rcu_dereference_protected(*ptr, 1))) {
181 struct dma_fence *old;
184 old = dma_fence_get_rcu_safe(ptr);
188 r = dma_fence_wait(old, false);
195 /* This function can't be called concurrently anyway, otherwise
196 * emitting the fence would mess up the hardware ring buffer.
198 rcu_assign_pointer(*ptr, dma_fence_get(fence));
206 * amdgpu_fence_emit_polling - emit a fence on the requeste ring
208 * @ring: ring the fence is associated with
209 * @s: resulting sequence number
210 * @timeout: the timeout for waiting in usecs
212 * Emits a fence command on the requested ring (all asics).
213 * Used For polling fence.
214 * Returns 0 on success, -ENOMEM on failure.
216 int amdgpu_fence_emit_polling(struct amdgpu_ring *ring, uint32_t *s,
225 seq = ++ring->fence_drv.sync_seq;
226 r = amdgpu_fence_wait_polling(ring,
227 seq - ring->fence_drv.num_fences_mask,
232 amdgpu_ring_emit_fence(ring, ring->fence_drv.gpu_addr,
241 * amdgpu_fence_schedule_fallback - schedule fallback check
243 * @ring: pointer to struct amdgpu_ring
245 * Start a timer as fallback to our interrupts.
247 static void amdgpu_fence_schedule_fallback(struct amdgpu_ring *ring)
249 mod_timer(&ring->fence_drv.fallback_timer,
250 jiffies + AMDGPU_FENCE_JIFFIES_TIMEOUT);
254 * amdgpu_fence_process - check for fence activity
256 * @ring: pointer to struct amdgpu_ring
258 * Checks the current fence value and calculates the last
259 * signalled fence value. Wakes the fence queue if the
260 * sequence number has increased.
262 * Returns true if fence was processed
264 bool amdgpu_fence_process(struct amdgpu_ring *ring)
266 struct amdgpu_fence_driver *drv = &ring->fence_drv;
267 struct amdgpu_device *adev = ring->adev;
268 uint32_t seq, last_seq;
272 last_seq = atomic_read(&ring->fence_drv.last_seq);
273 seq = amdgpu_fence_read(ring);
275 } while (atomic_cmpxchg(&drv->last_seq, last_seq, seq) != last_seq);
277 if (del_timer(&ring->fence_drv.fallback_timer) &&
278 seq != ring->fence_drv.sync_seq)
279 amdgpu_fence_schedule_fallback(ring);
281 if (unlikely(seq == last_seq))
284 last_seq &= drv->num_fences_mask;
285 seq &= drv->num_fences_mask;
288 struct dma_fence *fence, **ptr;
291 last_seq &= drv->num_fences_mask;
292 ptr = &drv->fences[last_seq];
294 /* There is always exactly one thread signaling this fence slot */
295 fence = rcu_dereference_protected(*ptr, 1);
296 RCU_INIT_POINTER(*ptr, NULL);
301 r = dma_fence_signal(fence);
303 DMA_FENCE_TRACE(fence, "signaled from irq context\n");
307 dma_fence_put(fence);
308 pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
309 pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
310 } while (last_seq != seq);
316 * amdgpu_fence_fallback - fallback for hardware interrupts
318 * @t: timer context used to obtain the pointer to ring structure
320 * Checks for fence activity.
322 static void amdgpu_fence_fallback(struct timer_list *t)
324 struct amdgpu_ring *ring = from_timer(ring, t,
325 fence_drv.fallback_timer);
327 if (amdgpu_fence_process(ring))
328 DRM_WARN("Fence fallback timer expired on ring %s\n", ring->name);
332 * amdgpu_fence_wait_empty - wait for all fences to signal
334 * @ring: ring index the fence is associated with
336 * Wait for all fences on the requested ring to signal (all asics).
337 * Returns 0 if the fences have passed, error for all other cases.
339 int amdgpu_fence_wait_empty(struct amdgpu_ring *ring)
341 uint64_t seq = READ_ONCE(ring->fence_drv.sync_seq);
342 struct dma_fence *fence, **ptr;
348 ptr = &ring->fence_drv.fences[seq & ring->fence_drv.num_fences_mask];
350 fence = rcu_dereference(*ptr);
351 if (!fence || !dma_fence_get_rcu(fence)) {
357 r = dma_fence_wait(fence, false);
358 dma_fence_put(fence);
363 * amdgpu_fence_wait_polling - busy wait for givn sequence number
365 * @ring: ring index the fence is associated with
366 * @wait_seq: sequence number to wait
367 * @timeout: the timeout for waiting in usecs
369 * Wait for all fences on the requested ring to signal (all asics).
370 * Returns left time if no timeout, 0 or minus if timeout.
372 signed long amdgpu_fence_wait_polling(struct amdgpu_ring *ring,
379 seq = amdgpu_fence_read(ring);
382 } while ((int32_t)(wait_seq - seq) > 0 && timeout > 0);
384 return timeout > 0 ? timeout : 0;
387 * amdgpu_fence_count_emitted - get the count of emitted fences
389 * @ring: ring the fence is associated with
391 * Get the number of fences emitted on the requested ring (all asics).
392 * Returns the number of emitted fences on the ring. Used by the
393 * dynpm code to ring track activity.
395 unsigned amdgpu_fence_count_emitted(struct amdgpu_ring *ring)
399 /* We are not protected by ring lock when reading the last sequence
400 * but it's ok to report slightly wrong fence count here.
402 amdgpu_fence_process(ring);
403 emitted = 0x100000000ull;
404 emitted -= atomic_read(&ring->fence_drv.last_seq);
405 emitted += READ_ONCE(ring->fence_drv.sync_seq);
406 return lower_32_bits(emitted);
410 * amdgpu_fence_driver_start_ring - make the fence driver
411 * ready for use on the requested ring.
413 * @ring: ring to start the fence driver on
414 * @irq_src: interrupt source to use for this ring
415 * @irq_type: interrupt type to use for this ring
417 * Make the fence driver ready for processing (all asics).
418 * Not all asics have all rings, so each asic will only
419 * start the fence driver on the rings it has.
420 * Returns 0 for success, errors for failure.
422 int amdgpu_fence_driver_start_ring(struct amdgpu_ring *ring,
423 struct amdgpu_irq_src *irq_src,
426 struct amdgpu_device *adev = ring->adev;
429 if (ring->funcs->type != AMDGPU_RING_TYPE_UVD) {
430 ring->fence_drv.cpu_addr = &adev->wb.wb[ring->fence_offs];
431 ring->fence_drv.gpu_addr = adev->wb.gpu_addr + (ring->fence_offs * 4);
433 /* put fence directly behind firmware */
434 index = ALIGN(adev->uvd.fw->size, 8);
435 ring->fence_drv.cpu_addr = adev->uvd.inst[ring->me].cpu_addr + index;
436 ring->fence_drv.gpu_addr = adev->uvd.inst[ring->me].gpu_addr + index;
438 amdgpu_fence_write(ring, atomic_read(&ring->fence_drv.last_seq));
440 ring->fence_drv.irq_src = irq_src;
441 ring->fence_drv.irq_type = irq_type;
442 ring->fence_drv.initialized = true;
444 DRM_DEV_DEBUG(adev->dev, "fence driver on ring %s use gpu addr 0x%016llx\n",
445 ring->name, ring->fence_drv.gpu_addr);
450 * amdgpu_fence_driver_init_ring - init the fence driver
451 * for the requested ring.
453 * @ring: ring to init the fence driver on
454 * @num_hw_submission: number of entries on the hardware queue
455 * @sched_score: optional score atomic shared with other schedulers
457 * Init the fence driver for the requested ring (all asics).
458 * Helper function for amdgpu_fence_driver_init().
460 int amdgpu_fence_driver_init_ring(struct amdgpu_ring *ring,
461 unsigned num_hw_submission,
462 atomic_t *sched_score)
464 struct amdgpu_device *adev = ring->adev;
471 if (!is_power_of_2(num_hw_submission))
474 ring->fence_drv.cpu_addr = NULL;
475 ring->fence_drv.gpu_addr = 0;
476 ring->fence_drv.sync_seq = 0;
477 atomic_set(&ring->fence_drv.last_seq, 0);
478 ring->fence_drv.initialized = false;
480 timer_setup(&ring->fence_drv.fallback_timer, amdgpu_fence_fallback, 0);
482 ring->fence_drv.num_fences_mask = num_hw_submission * 2 - 1;
483 spin_lock_init(&ring->fence_drv.lock);
484 ring->fence_drv.fences = kcalloc(num_hw_submission * 2, sizeof(void *),
486 if (!ring->fence_drv.fences)
489 /* No need to setup the GPU scheduler for rings that don't need it */
490 if (ring->no_scheduler)
493 switch (ring->funcs->type) {
494 case AMDGPU_RING_TYPE_GFX:
495 timeout = adev->gfx_timeout;
497 case AMDGPU_RING_TYPE_COMPUTE:
498 timeout = adev->compute_timeout;
500 case AMDGPU_RING_TYPE_SDMA:
501 timeout = adev->sdma_timeout;
504 timeout = adev->video_timeout;
508 r = drm_sched_init(&ring->sched, &amdgpu_sched_ops,
509 num_hw_submission, amdgpu_job_hang_limit,
510 timeout, NULL, sched_score, ring->name);
512 DRM_ERROR("Failed to create scheduler on ring %s.\n",
521 * amdgpu_fence_driver_sw_init - init the fence driver
522 * for all possible rings.
524 * @adev: amdgpu device pointer
526 * Init the fence driver for all possible rings (all asics).
527 * Not all asics have all rings, so each asic will only
528 * start the fence driver on the rings it has using
529 * amdgpu_fence_driver_start_ring().
530 * Returns 0 for success.
532 int amdgpu_fence_driver_sw_init(struct amdgpu_device *adev)
538 * amdgpu_fence_driver_hw_fini - tear down the fence driver
539 * for all possible rings.
541 * @adev: amdgpu device pointer
543 * Tear down the fence driver for all possible rings (all asics).
545 void amdgpu_fence_driver_hw_fini(struct amdgpu_device *adev)
549 for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
550 struct amdgpu_ring *ring = adev->rings[i];
552 if (!ring || !ring->fence_drv.initialized)
555 if (!ring->no_scheduler)
556 drm_sched_stop(&ring->sched, NULL);
558 /* You can't wait for HW to signal if it's gone */
559 if (!drm_dev_is_unplugged(&adev->ddev))
560 r = amdgpu_fence_wait_empty(ring);
563 /* no need to trigger GPU reset as we are unloading */
565 amdgpu_fence_driver_force_completion(ring);
567 if (ring->fence_drv.irq_src)
568 amdgpu_irq_put(adev, ring->fence_drv.irq_src,
569 ring->fence_drv.irq_type);
571 del_timer_sync(&ring->fence_drv.fallback_timer);
575 void amdgpu_fence_driver_sw_fini(struct amdgpu_device *adev)
579 for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
580 struct amdgpu_ring *ring = adev->rings[i];
582 if (!ring || !ring->fence_drv.initialized)
585 if (!ring->no_scheduler)
586 drm_sched_fini(&ring->sched);
588 for (j = 0; j <= ring->fence_drv.num_fences_mask; ++j)
589 dma_fence_put(ring->fence_drv.fences[j]);
590 kfree(ring->fence_drv.fences);
591 ring->fence_drv.fences = NULL;
592 ring->fence_drv.initialized = false;
597 * amdgpu_fence_driver_hw_init - enable the fence driver
598 * for all possible rings.
600 * @adev: amdgpu device pointer
602 * Enable the fence driver for all possible rings (all asics).
603 * Not all asics have all rings, so each asic will only
604 * start the fence driver on the rings it has using
605 * amdgpu_fence_driver_start_ring().
606 * Returns 0 for success.
608 void amdgpu_fence_driver_hw_init(struct amdgpu_device *adev)
612 for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
613 struct amdgpu_ring *ring = adev->rings[i];
614 if (!ring || !ring->fence_drv.initialized)
617 if (!ring->no_scheduler) {
618 drm_sched_resubmit_jobs(&ring->sched);
619 drm_sched_start(&ring->sched, true);
622 /* enable the interrupt */
623 if (ring->fence_drv.irq_src)
624 amdgpu_irq_get(adev, ring->fence_drv.irq_src,
625 ring->fence_drv.irq_type);
630 * amdgpu_fence_driver_force_completion - force signal latest fence of ring
632 * @ring: fence of the ring to signal
635 void amdgpu_fence_driver_force_completion(struct amdgpu_ring *ring)
637 amdgpu_fence_write(ring, ring->fence_drv.sync_seq);
638 amdgpu_fence_process(ring);
642 * Common fence implementation
645 static const char *amdgpu_fence_get_driver_name(struct dma_fence *fence)
650 static const char *amdgpu_fence_get_timeline_name(struct dma_fence *f)
652 struct amdgpu_ring *ring;
654 if (test_bit(AMDGPU_FENCE_FLAG_EMBED_IN_JOB_BIT, &f->flags)) {
655 struct amdgpu_job *job = container_of(f, struct amdgpu_job, hw_fence);
657 ring = to_amdgpu_ring(job->base.sched);
659 ring = to_amdgpu_fence(f)->ring;
661 return (const char *)ring->name;
665 * amdgpu_fence_enable_signaling - enable signalling on fence
668 * This function is called with fence_queue lock held, and adds a callback
669 * to fence_queue that checks if this fence is signaled, and if so it
670 * signals the fence and removes itself.
672 static bool amdgpu_fence_enable_signaling(struct dma_fence *f)
674 struct amdgpu_ring *ring;
676 if (test_bit(AMDGPU_FENCE_FLAG_EMBED_IN_JOB_BIT, &f->flags)) {
677 struct amdgpu_job *job = container_of(f, struct amdgpu_job, hw_fence);
679 ring = to_amdgpu_ring(job->base.sched);
681 ring = to_amdgpu_fence(f)->ring;
684 if (!timer_pending(&ring->fence_drv.fallback_timer))
685 amdgpu_fence_schedule_fallback(ring);
687 DMA_FENCE_TRACE(f, "armed on ring %i!\n", ring->idx);
693 * amdgpu_fence_free - free up the fence memory
695 * @rcu: RCU callback head
697 * Free up the fence memory after the RCU grace period.
699 static void amdgpu_fence_free(struct rcu_head *rcu)
701 struct dma_fence *f = container_of(rcu, struct dma_fence, rcu);
703 if (test_bit(AMDGPU_FENCE_FLAG_EMBED_IN_JOB_BIT, &f->flags)) {
704 /* free job if fence has a parent job */
705 struct amdgpu_job *job;
707 job = container_of(f, struct amdgpu_job, hw_fence);
710 /* free fence_slab if it's separated fence*/
711 struct amdgpu_fence *fence;
713 fence = to_amdgpu_fence(f);
714 kmem_cache_free(amdgpu_fence_slab, fence);
719 * amdgpu_fence_release - callback that fence can be freed
723 * This function is called when the reference count becomes zero.
724 * It just RCU schedules freeing up the fence.
726 static void amdgpu_fence_release(struct dma_fence *f)
728 call_rcu(&f->rcu, amdgpu_fence_free);
731 static const struct dma_fence_ops amdgpu_fence_ops = {
732 .get_driver_name = amdgpu_fence_get_driver_name,
733 .get_timeline_name = amdgpu_fence_get_timeline_name,
734 .enable_signaling = amdgpu_fence_enable_signaling,
735 .release = amdgpu_fence_release,
742 #if defined(CONFIG_DEBUG_FS)
743 static int amdgpu_debugfs_fence_info_show(struct seq_file *m, void *unused)
745 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
748 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
749 struct amdgpu_ring *ring = adev->rings[i];
750 if (!ring || !ring->fence_drv.initialized)
753 amdgpu_fence_process(ring);
755 seq_printf(m, "--- ring %d (%s) ---\n", i, ring->name);
756 seq_printf(m, "Last signaled fence 0x%08x\n",
757 atomic_read(&ring->fence_drv.last_seq));
758 seq_printf(m, "Last emitted 0x%08x\n",
759 ring->fence_drv.sync_seq);
761 if (ring->funcs->type == AMDGPU_RING_TYPE_GFX ||
762 ring->funcs->type == AMDGPU_RING_TYPE_SDMA) {
763 seq_printf(m, "Last signaled trailing fence 0x%08x\n",
764 le32_to_cpu(*ring->trail_fence_cpu_addr));
765 seq_printf(m, "Last emitted 0x%08x\n",
769 if (ring->funcs->type != AMDGPU_RING_TYPE_GFX)
772 /* set in CP_VMID_PREEMPT and preemption occurred */
773 seq_printf(m, "Last preempted 0x%08x\n",
774 le32_to_cpu(*(ring->fence_drv.cpu_addr + 2)));
775 /* set in CP_VMID_RESET and reset occurred */
776 seq_printf(m, "Last reset 0x%08x\n",
777 le32_to_cpu(*(ring->fence_drv.cpu_addr + 4)));
778 /* Both preemption and reset occurred */
779 seq_printf(m, "Last both 0x%08x\n",
780 le32_to_cpu(*(ring->fence_drv.cpu_addr + 6)));
786 * amdgpu_debugfs_gpu_recover - manually trigger a gpu reset & recover
788 * Manually trigger a gpu reset at the next fence wait.
790 static int gpu_recover_get(void *data, u64 *val)
792 struct amdgpu_device *adev = (struct amdgpu_device *)data;
793 struct drm_device *dev = adev_to_drm(adev);
796 r = pm_runtime_get_sync(dev->dev);
798 pm_runtime_put_autosuspend(dev->dev);
802 *val = amdgpu_device_gpu_recover(adev, NULL);
804 pm_runtime_mark_last_busy(dev->dev);
805 pm_runtime_put_autosuspend(dev->dev);
810 DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_fence_info);
811 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gpu_recover_fops, gpu_recover_get, NULL,
816 void amdgpu_debugfs_fence_init(struct amdgpu_device *adev)
818 #if defined(CONFIG_DEBUG_FS)
819 struct drm_minor *minor = adev_to_drm(adev)->primary;
820 struct dentry *root = minor->debugfs_root;
822 debugfs_create_file("amdgpu_fence_info", 0444, root, adev,
823 &amdgpu_debugfs_fence_info_fops);
825 if (!amdgpu_sriov_vf(adev))
826 debugfs_create_file("amdgpu_gpu_recover", 0444, root, adev,
827 &amdgpu_debugfs_gpu_recover_fops);