2 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
34 * Rewrote canonical mode and added more termios flags.
37 * Reorganized FASYNC support so mouse code can share it.
40 * New TIOCLINUX variants added.
43 * Restrict vt switching via ioctl()
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * Added devfs support.
56 * Added support for a Unix98-style ptmx device.
59 * Reduced memory usage for older ARM systems
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 #define tty_compat_ioctl NULL
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
168 struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 void free_tty_struct(struct tty_struct *tty)
185 put_device(tty->dev);
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
191 static inline struct tty_struct *file_tty(struct file *file)
193 return ((struct tty_file_private *)file->private_data)->tty;
196 int tty_alloc_file(struct file *file)
198 struct tty_file_private *priv;
200 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204 file->private_data = priv;
209 /* Associate a new file with the tty structure */
210 void tty_add_file(struct tty_struct *tty, struct file *file)
212 struct tty_file_private *priv = file->private_data;
217 spin_lock(&tty_files_lock);
218 list_add(&priv->list, &tty->tty_files);
219 spin_unlock(&tty_files_lock);
223 * tty_free_file - free file->private_data
225 * This shall be used only for fail path handling when tty_add_file was not
228 void tty_free_file(struct file *file)
230 struct tty_file_private *priv = file->private_data;
232 file->private_data = NULL;
236 /* Delete file from its tty */
237 void tty_del_file(struct file *file)
239 struct tty_file_private *priv = file->private_data;
241 spin_lock(&tty_files_lock);
242 list_del(&priv->list);
243 spin_unlock(&tty_files_lock);
248 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 * tty_name - return tty naming
252 * @tty: tty structure
253 * @buf: buffer for output
255 * Convert a tty structure into a name. The name reflects the kernel
256 * naming policy and if udev is in use may not reflect user space
261 char *tty_name(struct tty_struct *tty, char *buf)
263 if (!tty) /* Hmm. NULL pointer. That's fun. */
264 strcpy(buf, "NULL tty");
266 strcpy(buf, tty->name);
270 EXPORT_SYMBOL(tty_name);
272 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 #ifdef TTY_PARANOIA_CHECK
278 "null TTY for (%d:%d) in %s\n",
279 imajor(inode), iminor(inode), routine);
282 if (tty->magic != TTY_MAGIC) {
284 "bad magic number for tty struct (%d:%d) in %s\n",
285 imajor(inode), iminor(inode), routine);
292 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 #ifdef CHECK_TTY_COUNT
298 spin_lock(&tty_files_lock);
299 list_for_each(p, &tty->tty_files) {
302 spin_unlock(&tty_files_lock);
303 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304 tty->driver->subtype == PTY_TYPE_SLAVE &&
305 tty->link && tty->link->count)
307 if (tty->count != count) {
308 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309 "!= #fd's(%d) in %s\n",
310 tty->name, tty->count, count, routine);
318 * get_tty_driver - find device of a tty
319 * @dev_t: device identifier
320 * @index: returns the index of the tty
322 * This routine returns a tty driver structure, given a device number
323 * and also passes back the index number.
325 * Locking: caller must hold tty_mutex
328 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 struct tty_driver *p;
332 list_for_each_entry(p, &tty_drivers, tty_drivers) {
333 dev_t base = MKDEV(p->major, p->minor_start);
334 if (device < base || device >= base + p->num)
336 *index = device - base;
337 return tty_driver_kref_get(p);
342 #ifdef CONFIG_CONSOLE_POLL
345 * tty_find_polling_driver - find device of a polled tty
346 * @name: name string to match
347 * @line: pointer to resulting tty line nr
349 * This routine returns a tty driver structure, given a name
350 * and the condition that the tty driver is capable of polled
353 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 struct tty_driver *p, *res = NULL;
360 for (str = name; *str; str++)
361 if ((*str >= '0' && *str <= '9') || *str == ',')
367 tty_line = simple_strtoul(str, &str, 10);
369 mutex_lock(&tty_mutex);
370 /* Search through the tty devices to look for a match */
371 list_for_each_entry(p, &tty_drivers, tty_drivers) {
372 if (strncmp(name, p->name, len) != 0)
380 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382 res = tty_driver_kref_get(p);
387 mutex_unlock(&tty_mutex);
391 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395 * tty_check_change - check for POSIX terminal changes
398 * If we try to write to, or set the state of, a terminal and we're
399 * not in the foreground, send a SIGTTOU. If the signal is blocked or
400 * ignored, go ahead and perform the operation. (POSIX 7.2)
405 int tty_check_change(struct tty_struct *tty)
410 if (current->signal->tty != tty)
413 spin_lock_irqsave(&tty->ctrl_lock, flags);
416 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 if (task_pgrp(current) == tty->pgrp)
421 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422 if (is_ignored(SIGTTOU))
424 if (is_current_pgrp_orphaned()) {
428 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429 set_thread_flag(TIF_SIGPENDING);
434 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438 EXPORT_SYMBOL(tty_check_change);
440 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441 size_t count, loff_t *ppos)
446 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447 size_t count, loff_t *ppos)
452 /* No kernel lock held - none needed ;) */
453 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 static long hung_up_tty_compat_ioctl(struct file *file,
465 unsigned int cmd, unsigned long arg)
467 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 static const struct file_operations tty_fops = {
475 .unlocked_ioctl = tty_ioctl,
476 .compat_ioctl = tty_compat_ioctl,
478 .release = tty_release,
479 .fasync = tty_fasync,
482 static const struct file_operations console_fops = {
485 .write = redirected_tty_write,
487 .unlocked_ioctl = tty_ioctl,
488 .compat_ioctl = tty_compat_ioctl,
490 .release = tty_release,
491 .fasync = tty_fasync,
494 static const struct file_operations hung_up_tty_fops = {
496 .read = hung_up_tty_read,
497 .write = hung_up_tty_write,
498 .poll = hung_up_tty_poll,
499 .unlocked_ioctl = hung_up_tty_ioctl,
500 .compat_ioctl = hung_up_tty_compat_ioctl,
501 .release = tty_release,
504 static DEFINE_SPINLOCK(redirect_lock);
505 static struct file *redirect;
508 * tty_wakeup - request more data
511 * Internal and external helper for wakeups of tty. This function
512 * informs the line discipline if present that the driver is ready
513 * to receive more output data.
516 void tty_wakeup(struct tty_struct *tty)
518 struct tty_ldisc *ld;
520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 ld = tty_ldisc_ref(tty);
523 if (ld->ops->write_wakeup)
524 ld->ops->write_wakeup(tty);
528 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 EXPORT_SYMBOL_GPL(tty_wakeup);
534 * __tty_hangup - actual handler for hangup events
537 * This can be called by the "eventd" kernel thread. That is process
538 * synchronous but doesn't hold any locks, so we need to make sure we
539 * have the appropriate locks for what we're doing.
541 * The hangup event clears any pending redirections onto the hung up
542 * device. It ensures future writes will error and it does the needed
543 * line discipline hangup and signal delivery. The tty object itself
548 * redirect lock for undoing redirection
549 * file list lock for manipulating list of ttys
550 * tty_ldisc_lock from called functions
551 * termios_mutex resetting termios data
552 * tasklist_lock to walk task list for hangup event
553 * ->siglock to protect ->signal/->sighand
555 void __tty_hangup(struct tty_struct *tty)
557 struct file *cons_filp = NULL;
558 struct file *filp, *f = NULL;
559 struct task_struct *p;
560 struct tty_file_private *priv;
561 int closecount = 0, n;
569 spin_lock(&redirect_lock);
570 if (redirect && file_tty(redirect) == tty) {
574 spin_unlock(&redirect_lock);
578 /* some functions below drop BTM, so we need this bit */
579 set_bit(TTY_HUPPING, &tty->flags);
581 /* inuse_filps is protected by the single tty lock,
582 this really needs to change if we want to flush the
583 workqueue with the lock held */
584 check_tty_count(tty, "tty_hangup");
586 spin_lock(&tty_files_lock);
587 /* This breaks for file handles being sent over AF_UNIX sockets ? */
588 list_for_each_entry(priv, &tty->tty_files, list) {
590 if (filp->f_op->write == redirected_tty_write)
592 if (filp->f_op->write != tty_write)
595 __tty_fasync(-1, filp, 0); /* can't block */
596 filp->f_op = &hung_up_tty_fops;
598 spin_unlock(&tty_files_lock);
601 * it drops BTM and thus races with reopen
602 * we protect the race by TTY_HUPPING
604 tty_ldisc_hangup(tty);
606 read_lock(&tasklist_lock);
608 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 spin_lock_irq(&p->sighand->siglock);
610 if (p->signal->tty == tty) {
611 p->signal->tty = NULL;
612 /* We defer the dereferences outside fo
616 if (!p->signal->leader) {
617 spin_unlock_irq(&p->sighand->siglock);
620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 put_pid(p->signal->tty_old_pgrp); /* A noop */
623 spin_lock_irqsave(&tty->ctrl_lock, flags);
625 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 spin_unlock_irq(&p->sighand->siglock);
628 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630 read_unlock(&tasklist_lock);
632 spin_lock_irqsave(&tty->ctrl_lock, flags);
633 clear_bit(TTY_THROTTLED, &tty->flags);
634 clear_bit(TTY_PUSH, &tty->flags);
635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 put_pid(tty->session);
640 tty->ctrl_status = 0;
641 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643 /* Account for the p->signal references we killed */
648 * If one of the devices matches a console pointer, we
649 * cannot just call hangup() because that will cause
650 * tty->count and state->count to go out of sync.
651 * So we just call close() the right number of times.
655 for (n = 0; n < closecount; n++)
656 tty->ops->close(tty, cons_filp);
657 } else if (tty->ops->hangup)
658 (tty->ops->hangup)(tty);
660 * We don't want to have driver/ldisc interactions beyond
661 * the ones we did here. The driver layer expects no
662 * calls after ->hangup() from the ldisc side. However we
663 * can't yet guarantee all that.
665 set_bit(TTY_HUPPED, &tty->flags);
666 clear_bit(TTY_HUPPING, &tty->flags);
667 tty_ldisc_enable(tty);
675 static void do_tty_hangup(struct work_struct *work)
677 struct tty_struct *tty =
678 container_of(work, struct tty_struct, hangup_work);
684 * tty_hangup - trigger a hangup event
685 * @tty: tty to hangup
687 * A carrier loss (virtual or otherwise) has occurred on this like
688 * schedule a hangup sequence to run after this event.
691 void tty_hangup(struct tty_struct *tty)
693 #ifdef TTY_DEBUG_HANGUP
695 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 schedule_work(&tty->hangup_work);
700 EXPORT_SYMBOL(tty_hangup);
703 * tty_vhangup - process vhangup
704 * @tty: tty to hangup
706 * The user has asked via system call for the terminal to be hung up.
707 * We do this synchronously so that when the syscall returns the process
708 * is complete. That guarantee is necessary for security reasons.
711 void tty_vhangup(struct tty_struct *tty)
713 #ifdef TTY_DEBUG_HANGUP
716 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
721 EXPORT_SYMBOL(tty_vhangup);
725 * tty_vhangup_self - process vhangup for own ctty
727 * Perform a vhangup on the current controlling tty
730 void tty_vhangup_self(void)
732 struct tty_struct *tty;
734 tty = get_current_tty();
742 * tty_hung_up_p - was tty hung up
743 * @filp: file pointer of tty
745 * Return true if the tty has been subject to a vhangup or a carrier
749 int tty_hung_up_p(struct file *filp)
751 return (filp->f_op == &hung_up_tty_fops);
754 EXPORT_SYMBOL(tty_hung_up_p);
756 static void session_clear_tty(struct pid *session)
758 struct task_struct *p;
759 do_each_pid_task(session, PIDTYPE_SID, p) {
761 } while_each_pid_task(session, PIDTYPE_SID, p);
765 * disassociate_ctty - disconnect controlling tty
766 * @on_exit: true if exiting so need to "hang up" the session
768 * This function is typically called only by the session leader, when
769 * it wants to disassociate itself from its controlling tty.
771 * It performs the following functions:
772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
773 * (2) Clears the tty from being controlling the session
774 * (3) Clears the controlling tty for all processes in the
777 * The argument on_exit is set to 1 if called when a process is
778 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
781 * BTM is taken for hysterical raisins, and held when
782 * called from no_tty().
783 * tty_mutex is taken to protect tty
784 * ->siglock is taken to protect ->signal/->sighand
785 * tasklist_lock is taken to walk process list for sessions
786 * ->siglock is taken to protect ->signal/->sighand
789 void disassociate_ctty(int on_exit)
791 struct tty_struct *tty;
793 if (!current->signal->leader)
796 tty = get_current_tty();
798 struct pid *tty_pgrp = get_pid(tty->pgrp);
800 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
805 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
807 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
810 } else if (on_exit) {
811 struct pid *old_pgrp;
812 spin_lock_irq(¤t->sighand->siglock);
813 old_pgrp = current->signal->tty_old_pgrp;
814 current->signal->tty_old_pgrp = NULL;
815 spin_unlock_irq(¤t->sighand->siglock);
817 kill_pgrp(old_pgrp, SIGHUP, on_exit);
818 kill_pgrp(old_pgrp, SIGCONT, on_exit);
824 spin_lock_irq(¤t->sighand->siglock);
825 put_pid(current->signal->tty_old_pgrp);
826 current->signal->tty_old_pgrp = NULL;
827 spin_unlock_irq(¤t->sighand->siglock);
829 tty = get_current_tty();
832 spin_lock_irqsave(&tty->ctrl_lock, flags);
833 put_pid(tty->session);
837 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840 #ifdef TTY_DEBUG_HANGUP
841 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
846 /* Now clear signal->tty under the lock */
847 read_lock(&tasklist_lock);
848 session_clear_tty(task_session(current));
849 read_unlock(&tasklist_lock);
854 * no_tty - Ensure the current process does not have a controlling tty
858 struct task_struct *tsk = current;
860 disassociate_ctty(0);
867 * stop_tty - propagate flow control
870 * Perform flow control to the driver. For PTY/TTY pairs we
871 * must also propagate the TIOCKPKT status. May be called
872 * on an already stopped device and will not re-call the driver
875 * This functionality is used by both the line disciplines for
876 * halting incoming flow and by the driver. It may therefore be
877 * called from any context, may be under the tty atomic_write_lock
881 * Uses the tty control lock internally
884 void stop_tty(struct tty_struct *tty)
887 spin_lock_irqsave(&tty->ctrl_lock, flags);
889 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893 if (tty->link && tty->link->packet) {
894 tty->ctrl_status &= ~TIOCPKT_START;
895 tty->ctrl_status |= TIOCPKT_STOP;
896 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 (tty->ops->stop)(tty);
903 EXPORT_SYMBOL(stop_tty);
906 * start_tty - propagate flow control
909 * Start a tty that has been stopped if at all possible. Perform
910 * any necessary wakeups and propagate the TIOCPKT status. If this
911 * is the tty was previous stopped and is being started then the
912 * driver start method is invoked and the line discipline woken.
918 void start_tty(struct tty_struct *tty)
921 spin_lock_irqsave(&tty->ctrl_lock, flags);
922 if (!tty->stopped || tty->flow_stopped) {
923 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927 if (tty->link && tty->link->packet) {
928 tty->ctrl_status &= ~TIOCPKT_STOP;
929 tty->ctrl_status |= TIOCPKT_START;
930 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 (tty->ops->start)(tty);
935 /* If we have a running line discipline it may need kicking */
939 EXPORT_SYMBOL(start_tty);
942 * tty_read - read method for tty device files
943 * @file: pointer to tty file
945 * @count: size of user buffer
948 * Perform the read system call function on this terminal device. Checks
949 * for hung up devices before calling the line discipline method.
952 * Locks the line discipline internally while needed. Multiple
953 * read calls may be outstanding in parallel.
956 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960 struct inode *inode = file->f_path.dentry->d_inode;
961 struct tty_struct *tty = file_tty(file);
962 struct tty_ldisc *ld;
964 if (tty_paranoia_check(tty, inode, "tty_read"))
966 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969 /* We want to wait for the line discipline to sort out in this
971 ld = tty_ldisc_ref_wait(tty);
973 i = (ld->ops->read)(tty, file, buf, count);
978 inode->i_atime = current_fs_time(inode->i_sb);
982 void tty_write_unlock(struct tty_struct *tty)
983 __releases(&tty->atomic_write_lock)
985 mutex_unlock(&tty->atomic_write_lock);
986 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 int tty_write_lock(struct tty_struct *tty, int ndelay)
990 __acquires(&tty->atomic_write_lock)
992 if (!mutex_trylock(&tty->atomic_write_lock)) {
995 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1002 * Split writes up in sane blocksizes to avoid
1003 * denial-of-service type attacks
1005 static inline ssize_t do_tty_write(
1006 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1007 struct tty_struct *tty,
1009 const char __user *buf,
1012 ssize_t ret, written = 0;
1015 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1020 * We chunk up writes into a temporary buffer. This
1021 * simplifies low-level drivers immensely, since they
1022 * don't have locking issues and user mode accesses.
1024 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027 * The default chunk-size is 2kB, because the NTTY
1028 * layer has problems with bigger chunks. It will
1029 * claim to be able to handle more characters than
1032 * FIXME: This can probably go away now except that 64K chunks
1033 * are too likely to fail unless switched to vmalloc...
1036 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1041 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1042 if (tty->write_cnt < chunk) {
1043 unsigned char *buf_chunk;
1048 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1053 kfree(tty->write_buf);
1054 tty->write_cnt = chunk;
1055 tty->write_buf = buf_chunk;
1058 /* Do the write .. */
1060 size_t size = count;
1064 if (copy_from_user(tty->write_buf, buf, size))
1066 ret = write(tty, file, tty->write_buf, size);
1075 if (signal_pending(current))
1080 struct inode *inode = file->f_path.dentry->d_inode;
1081 inode->i_mtime = current_fs_time(inode->i_sb);
1085 tty_write_unlock(tty);
1090 * tty_write_message - write a message to a certain tty, not just the console.
1091 * @tty: the destination tty_struct
1092 * @msg: the message to write
1094 * This is used for messages that need to be redirected to a specific tty.
1095 * We don't put it into the syslog queue right now maybe in the future if
1098 * We must still hold the BTM and test the CLOSING flag for the moment.
1101 void tty_write_message(struct tty_struct *tty, char *msg)
1104 mutex_lock(&tty->atomic_write_lock);
1106 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 tty->ops->write(tty, msg, strlen(msg));
1111 tty_write_unlock(tty);
1118 * tty_write - write method for tty device file
1119 * @file: tty file pointer
1120 * @buf: user data to write
1121 * @count: bytes to write
1124 * Write data to a tty device via the line discipline.
1127 * Locks the line discipline as required
1128 * Writes to the tty driver are serialized by the atomic_write_lock
1129 * and are then processed in chunks to the device. The line discipline
1130 * write method will not be invoked in parallel for each device.
1133 static ssize_t tty_write(struct file *file, const char __user *buf,
1134 size_t count, loff_t *ppos)
1136 struct inode *inode = file->f_path.dentry->d_inode;
1137 struct tty_struct *tty = file_tty(file);
1138 struct tty_ldisc *ld;
1141 if (tty_paranoia_check(tty, inode, "tty_write"))
1143 if (!tty || !tty->ops->write ||
1144 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146 /* Short term debug to catch buggy drivers */
1147 if (tty->ops->write_room == NULL)
1148 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 ld = tty_ldisc_ref_wait(tty);
1151 if (!ld->ops->write)
1154 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1155 tty_ldisc_deref(ld);
1159 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1160 size_t count, loff_t *ppos)
1162 struct file *p = NULL;
1164 spin_lock(&redirect_lock);
1169 spin_unlock(&redirect_lock);
1173 res = vfs_write(p, buf, count, &p->f_pos);
1177 return tty_write(file, buf, count, ppos);
1180 static char ptychar[] = "pqrstuvwxyzabcde";
1183 * pty_line_name - generate name for a pty
1184 * @driver: the tty driver in use
1185 * @index: the minor number
1186 * @p: output buffer of at least 6 bytes
1188 * Generate a name from a driver reference and write it to the output
1193 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195 int i = index + driver->name_base;
1196 /* ->name is initialized to "ttyp", but "tty" is expected */
1197 sprintf(p, "%s%c%x",
1198 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1199 ptychar[i >> 4 & 0xf], i & 0xf);
1203 * tty_line_name - generate name for a tty
1204 * @driver: the tty driver in use
1205 * @index: the minor number
1206 * @p: output buffer of at least 7 bytes
1208 * Generate a name from a driver reference and write it to the output
1213 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1219 * tty_driver_lookup_tty() - find an existing tty, if any
1220 * @driver: the driver for the tty
1221 * @idx: the minor number
1223 * Return the tty, if found or ERR_PTR() otherwise.
1225 * Locking: tty_mutex must be held. If tty is found, the mutex must
1226 * be held until the 'fast-open' is also done. Will change once we
1227 * have refcounting in the driver and per driver locking
1229 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1230 struct inode *inode, int idx)
1232 if (driver->ops->lookup)
1233 return driver->ops->lookup(driver, inode, idx);
1235 return driver->ttys[idx];
1239 * tty_init_termios - helper for termios setup
1240 * @tty: the tty to set up
1242 * Initialise the termios structures for this tty. Thus runs under
1243 * the tty_mutex currently so we can be relaxed about ordering.
1246 int tty_init_termios(struct tty_struct *tty)
1248 struct ktermios *tp;
1249 int idx = tty->index;
1251 tp = tty->driver->termios[idx];
1253 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1256 memcpy(tp, &tty->driver->init_termios,
1257 sizeof(struct ktermios));
1258 tty->driver->termios[idx] = tp;
1261 tty->termios_locked = tp + 1;
1263 /* Compatibility until drivers always set this */
1264 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1265 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1268 EXPORT_SYMBOL_GPL(tty_init_termios);
1270 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272 int ret = tty_init_termios(tty);
1276 tty_driver_kref_get(driver);
1278 driver->ttys[tty->index] = tty;
1281 EXPORT_SYMBOL_GPL(tty_standard_install);
1284 * tty_driver_install_tty() - install a tty entry in the driver
1285 * @driver: the driver for the tty
1288 * Install a tty object into the driver tables. The tty->index field
1289 * will be set by the time this is called. This method is responsible
1290 * for ensuring any need additional structures are allocated and
1293 * Locking: tty_mutex for now
1295 static int tty_driver_install_tty(struct tty_driver *driver,
1296 struct tty_struct *tty)
1298 return driver->ops->install ? driver->ops->install(driver, tty) :
1299 tty_standard_install(driver, tty);
1303 * tty_driver_remove_tty() - remove a tty from the driver tables
1304 * @driver: the driver for the tty
1305 * @idx: the minor number
1307 * Remvoe a tty object from the driver tables. The tty->index field
1308 * will be set by the time this is called.
1310 * Locking: tty_mutex for now
1312 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314 if (driver->ops->remove)
1315 driver->ops->remove(driver, tty);
1317 driver->ttys[tty->index] = NULL;
1321 * tty_reopen() - fast re-open of an open tty
1322 * @tty - the tty to open
1324 * Return 0 on success, -errno on error.
1326 * Locking: tty_mutex must be held from the time the tty was found
1327 * till this open completes.
1329 static int tty_reopen(struct tty_struct *tty)
1331 struct tty_driver *driver = tty->driver;
1333 if (test_bit(TTY_CLOSING, &tty->flags) ||
1334 test_bit(TTY_HUPPING, &tty->flags) ||
1335 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1338 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339 driver->subtype == PTY_TYPE_MASTER) {
1341 * special case for PTY masters: only one open permitted,
1342 * and the slave side open count is incremented as well.
1351 mutex_lock(&tty->ldisc_mutex);
1352 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1353 mutex_unlock(&tty->ldisc_mutex);
1359 * tty_init_dev - initialise a tty device
1360 * @driver: tty driver we are opening a device on
1361 * @idx: device index
1362 * @ret_tty: returned tty structure
1364 * Prepare a tty device. This may not be a "new" clean device but
1365 * could also be an active device. The pty drivers require special
1366 * handling because of this.
1369 * The function is called under the tty_mutex, which
1370 * protects us from the tty struct or driver itself going away.
1372 * On exit the tty device has the line discipline attached and
1373 * a reference count of 1. If a pair was created for pty/tty use
1374 * and the other was a pty master then it too has a reference count of 1.
1376 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1377 * failed open. The new code protects the open with a mutex, so it's
1378 * really quite straightforward. The mutex locking can probably be
1379 * relaxed for the (most common) case of reopening a tty.
1382 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384 struct tty_struct *tty;
1388 * First time open is complex, especially for PTY devices.
1389 * This code guarantees that either everything succeeds and the
1390 * TTY is ready for operation, or else the table slots are vacated
1391 * and the allocated memory released. (Except that the termios
1392 * and locked termios may be retained.)
1395 if (!try_module_get(driver->owner))
1396 return ERR_PTR(-ENODEV);
1398 tty = alloc_tty_struct();
1401 goto err_module_put;
1403 initialize_tty_struct(tty, driver, idx);
1405 retval = tty_driver_install_tty(driver, tty);
1407 goto err_deinit_tty;
1410 * Structures all installed ... call the ldisc open routines.
1411 * If we fail here just call release_tty to clean up. No need
1412 * to decrement the use counts, as release_tty doesn't care.
1414 retval = tty_ldisc_setup(tty, tty->link);
1416 goto err_release_tty;
1420 deinitialize_tty_struct(tty);
1421 free_tty_struct(tty);
1423 module_put(driver->owner);
1424 return ERR_PTR(retval);
1426 /* call the tty release_tty routine to clean out this slot */
1428 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1429 "clearing slot %d\n", idx);
1430 release_tty(tty, idx);
1431 return ERR_PTR(retval);
1434 void tty_free_termios(struct tty_struct *tty)
1436 struct ktermios *tp;
1437 int idx = tty->index;
1438 /* Kill this flag and push into drivers for locking etc */
1439 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1440 /* FIXME: Locking on ->termios array */
1442 tty->driver->termios[idx] = NULL;
1446 EXPORT_SYMBOL(tty_free_termios);
1448 void tty_shutdown(struct tty_struct *tty)
1450 tty_driver_remove_tty(tty->driver, tty);
1451 tty_free_termios(tty);
1453 EXPORT_SYMBOL(tty_shutdown);
1456 * release_one_tty - release tty structure memory
1457 * @kref: kref of tty we are obliterating
1459 * Releases memory associated with a tty structure, and clears out the
1460 * driver table slots. This function is called when a device is no longer
1461 * in use. It also gets called when setup of a device fails.
1464 * tty_mutex - sometimes only
1465 * takes the file list lock internally when working on the list
1466 * of ttys that the driver keeps.
1468 * This method gets called from a work queue so that the driver private
1469 * cleanup ops can sleep (needed for USB at least)
1471 static void release_one_tty(struct work_struct *work)
1473 struct tty_struct *tty =
1474 container_of(work, struct tty_struct, hangup_work);
1475 struct tty_driver *driver = tty->driver;
1477 if (tty->ops->cleanup)
1478 tty->ops->cleanup(tty);
1481 tty_driver_kref_put(driver);
1482 module_put(driver->owner);
1484 spin_lock(&tty_files_lock);
1485 list_del_init(&tty->tty_files);
1486 spin_unlock(&tty_files_lock);
1489 put_pid(tty->session);
1490 free_tty_struct(tty);
1493 static void queue_release_one_tty(struct kref *kref)
1495 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497 if (tty->ops->shutdown)
1498 tty->ops->shutdown(tty);
1502 /* The hangup queue is now free so we can reuse it rather than
1503 waste a chunk of memory for each port */
1504 INIT_WORK(&tty->hangup_work, release_one_tty);
1505 schedule_work(&tty->hangup_work);
1509 * tty_kref_put - release a tty kref
1512 * Release a reference to a tty device and if need be let the kref
1513 * layer destruct the object for us
1516 void tty_kref_put(struct tty_struct *tty)
1519 kref_put(&tty->kref, queue_release_one_tty);
1521 EXPORT_SYMBOL(tty_kref_put);
1524 * release_tty - release tty structure memory
1526 * Release both @tty and a possible linked partner (think pty pair),
1527 * and decrement the refcount of the backing module.
1530 * tty_mutex - sometimes only
1531 * takes the file list lock internally when working on the list
1532 * of ttys that the driver keeps.
1533 * FIXME: should we require tty_mutex is held here ??
1536 static void release_tty(struct tty_struct *tty, int idx)
1538 /* This should always be true but check for the moment */
1539 WARN_ON(tty->index != idx);
1542 tty_kref_put(tty->link);
1547 * tty_release_checks - check a tty before real release
1548 * @tty: tty to check
1549 * @o_tty: link of @tty (if any)
1550 * @idx: index of the tty
1552 * Performs some paranoid checking before true release of the @tty.
1553 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1558 #ifdef TTY_PARANOIA_CHECK
1559 if (idx < 0 || idx >= tty->driver->num) {
1560 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1561 __func__, tty->name);
1565 /* not much to check for devpts */
1566 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1569 if (tty != tty->driver->ttys[idx]) {
1570 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1571 __func__, idx, tty->name);
1574 if (tty->termios != tty->driver->termios[idx]) {
1575 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1576 __func__, idx, tty->name);
1579 if (tty->driver->other) {
1580 if (o_tty != tty->driver->other->ttys[idx]) {
1581 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1582 __func__, idx, tty->name);
1585 if (o_tty->termios != tty->driver->other->termios[idx]) {
1586 printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1587 __func__, idx, tty->name);
1590 if (o_tty->link != tty) {
1591 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1600 * tty_release - vfs callback for close
1601 * @inode: inode of tty
1602 * @filp: file pointer for handle to tty
1604 * Called the last time each file handle is closed that references
1605 * this tty. There may however be several such references.
1608 * Takes bkl. See tty_release_dev
1610 * Even releasing the tty structures is a tricky business.. We have
1611 * to be very careful that the structures are all released at the
1612 * same time, as interrupts might otherwise get the wrong pointers.
1614 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1615 * lead to double frees or releasing memory still in use.
1618 int tty_release(struct inode *inode, struct file *filp)
1620 struct tty_struct *tty = file_tty(filp);
1621 struct tty_struct *o_tty;
1622 int pty_master, tty_closing, o_tty_closing, do_sleep;
1627 if (tty_paranoia_check(tty, inode, __func__))
1631 check_tty_count(tty, __func__);
1633 __tty_fasync(-1, filp, 0);
1636 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1637 tty->driver->subtype == PTY_TYPE_MASTER);
1638 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1641 if (tty_release_checks(tty, o_tty, idx)) {
1646 #ifdef TTY_DEBUG_HANGUP
1647 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1648 tty_name(tty, buf), tty->count);
1651 if (tty->ops->close)
1652 tty->ops->close(tty, filp);
1656 * Sanity check: if tty->count is going to zero, there shouldn't be
1657 * any waiters on tty->read_wait or tty->write_wait. We test the
1658 * wait queues and kick everyone out _before_ actually starting to
1659 * close. This ensures that we won't block while releasing the tty
1662 * The test for the o_tty closing is necessary, since the master and
1663 * slave sides may close in any order. If the slave side closes out
1664 * first, its count will be one, since the master side holds an open.
1665 * Thus this test wouldn't be triggered at the time the slave closes,
1668 * Note that it's possible for the tty to be opened again while we're
1669 * flushing out waiters. By recalculating the closing flags before
1670 * each iteration we avoid any problems.
1673 /* Guard against races with tty->count changes elsewhere and
1674 opens on /dev/tty */
1676 mutex_lock(&tty_mutex);
1678 tty_closing = tty->count <= 1;
1679 o_tty_closing = o_tty &&
1680 (o_tty->count <= (pty_master ? 1 : 0));
1684 if (waitqueue_active(&tty->read_wait)) {
1685 wake_up_poll(&tty->read_wait, POLLIN);
1688 if (waitqueue_active(&tty->write_wait)) {
1689 wake_up_poll(&tty->write_wait, POLLOUT);
1693 if (o_tty_closing) {
1694 if (waitqueue_active(&o_tty->read_wait)) {
1695 wake_up_poll(&o_tty->read_wait, POLLIN);
1698 if (waitqueue_active(&o_tty->write_wait)) {
1699 wake_up_poll(&o_tty->write_wait, POLLOUT);
1706 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1707 __func__, tty_name(tty, buf));
1709 mutex_unlock(&tty_mutex);
1714 * The closing flags are now consistent with the open counts on
1715 * both sides, and we've completed the last operation that could
1716 * block, so it's safe to proceed with closing.
1719 if (--o_tty->count < 0) {
1720 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1721 __func__, o_tty->count, tty_name(o_tty, buf));
1725 if (--tty->count < 0) {
1726 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1727 __func__, tty->count, tty_name(tty, buf));
1732 * We've decremented tty->count, so we need to remove this file
1733 * descriptor off the tty->tty_files list; this serves two
1735 * - check_tty_count sees the correct number of file descriptors
1736 * associated with this tty.
1737 * - do_tty_hangup no longer sees this file descriptor as
1738 * something that needs to be handled for hangups.
1743 * Perform some housekeeping before deciding whether to return.
1745 * Set the TTY_CLOSING flag if this was the last open. In the
1746 * case of a pty we may have to wait around for the other side
1747 * to close, and TTY_CLOSING makes sure we can't be reopened.
1750 set_bit(TTY_CLOSING, &tty->flags);
1752 set_bit(TTY_CLOSING, &o_tty->flags);
1755 * If _either_ side is closing, make sure there aren't any
1756 * processes that still think tty or o_tty is their controlling
1759 if (tty_closing || o_tty_closing) {
1760 read_lock(&tasklist_lock);
1761 session_clear_tty(tty->session);
1763 session_clear_tty(o_tty->session);
1764 read_unlock(&tasklist_lock);
1767 mutex_unlock(&tty_mutex);
1769 /* check whether both sides are closing ... */
1770 if (!tty_closing || (o_tty && !o_tty_closing)) {
1775 #ifdef TTY_DEBUG_HANGUP
1776 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1779 * Ask the line discipline code to release its structures
1781 tty_ldisc_release(tty, o_tty);
1783 * The release_tty function takes care of the details of clearing
1784 * the slots and preserving the termios structure.
1786 release_tty(tty, idx);
1788 /* Make this pty number available for reallocation */
1790 devpts_kill_index(inode, idx);
1796 * tty_open_current_tty - get tty of current task for open
1797 * @device: device number
1798 * @filp: file pointer to tty
1799 * @return: tty of the current task iff @device is /dev/tty
1801 * We cannot return driver and index like for the other nodes because
1802 * devpts will not work then. It expects inodes to be from devpts FS.
1804 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1806 struct tty_struct *tty;
1808 if (device != MKDEV(TTYAUX_MAJOR, 0))
1811 tty = get_current_tty();
1813 return ERR_PTR(-ENXIO);
1815 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1818 /* FIXME: we put a reference and return a TTY! */
1823 * tty_lookup_driver - lookup a tty driver for a given device file
1824 * @device: device number
1825 * @filp: file pointer to tty
1826 * @noctty: set if the device should not become a controlling tty
1827 * @index: index for the device in the @return driver
1828 * @return: driver for this inode (with increased refcount)
1830 * If @return is not erroneous, the caller is responsible to decrement the
1831 * refcount by tty_driver_kref_put.
1833 * Locking: tty_mutex protects get_tty_driver
1835 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1836 int *noctty, int *index)
1838 struct tty_driver *driver;
1842 case MKDEV(TTY_MAJOR, 0): {
1843 extern struct tty_driver *console_driver;
1844 driver = tty_driver_kref_get(console_driver);
1845 *index = fg_console;
1850 case MKDEV(TTYAUX_MAJOR, 1): {
1851 struct tty_driver *console_driver = console_device(index);
1852 if (console_driver) {
1853 driver = tty_driver_kref_get(console_driver);
1855 /* Don't let /dev/console block */
1856 filp->f_flags |= O_NONBLOCK;
1861 return ERR_PTR(-ENODEV);
1864 driver = get_tty_driver(device, index);
1866 return ERR_PTR(-ENODEV);
1873 * tty_open - open a tty device
1874 * @inode: inode of device file
1875 * @filp: file pointer to tty
1877 * tty_open and tty_release keep up the tty count that contains the
1878 * number of opens done on a tty. We cannot use the inode-count, as
1879 * different inodes might point to the same tty.
1881 * Open-counting is needed for pty masters, as well as for keeping
1882 * track of serial lines: DTR is dropped when the last close happens.
1883 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1885 * The termios state of a pty is reset on first open so that
1886 * settings don't persist across reuse.
1888 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1889 * tty->count should protect the rest.
1890 * ->siglock protects ->signal/->sighand
1893 static int tty_open(struct inode *inode, struct file *filp)
1895 struct tty_struct *tty;
1897 struct tty_driver *driver = NULL;
1899 dev_t device = inode->i_rdev;
1900 unsigned saved_flags = filp->f_flags;
1902 nonseekable_open(inode, filp);
1905 retval = tty_alloc_file(filp);
1909 noctty = filp->f_flags & O_NOCTTY;
1913 mutex_lock(&tty_mutex);
1916 tty = tty_open_current_tty(device, filp);
1918 retval = PTR_ERR(tty);
1921 driver = tty_lookup_driver(device, filp, &noctty, &index);
1922 if (IS_ERR(driver)) {
1923 retval = PTR_ERR(driver);
1927 /* check whether we're reopening an existing tty */
1928 tty = tty_driver_lookup_tty(driver, inode, index);
1930 retval = PTR_ERR(tty);
1936 retval = tty_reopen(tty);
1938 tty = ERR_PTR(retval);
1940 tty = tty_init_dev(driver, index);
1942 mutex_unlock(&tty_mutex);
1944 tty_driver_kref_put(driver);
1947 retval = PTR_ERR(tty);
1951 tty_add_file(tty, filp);
1953 check_tty_count(tty, __func__);
1954 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1955 tty->driver->subtype == PTY_TYPE_MASTER)
1957 #ifdef TTY_DEBUG_HANGUP
1958 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1961 retval = tty->ops->open(tty, filp);
1964 filp->f_flags = saved_flags;
1966 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1967 !capable(CAP_SYS_ADMIN))
1971 #ifdef TTY_DEBUG_HANGUP
1972 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1975 tty_unlock(); /* need to call tty_release without BTM */
1976 tty_release(inode, filp);
1977 if (retval != -ERESTARTSYS)
1980 if (signal_pending(current))
1985 * Need to reset f_op in case a hangup happened.
1988 if (filp->f_op == &hung_up_tty_fops)
1989 filp->f_op = &tty_fops;
1996 mutex_lock(&tty_mutex);
1998 spin_lock_irq(¤t->sighand->siglock);
2000 current->signal->leader &&
2001 !current->signal->tty &&
2002 tty->session == NULL)
2003 __proc_set_tty(current, tty);
2004 spin_unlock_irq(¤t->sighand->siglock);
2006 mutex_unlock(&tty_mutex);
2010 mutex_unlock(&tty_mutex);
2011 /* after locks to avoid deadlock */
2012 if (!IS_ERR_OR_NULL(driver))
2013 tty_driver_kref_put(driver);
2015 tty_free_file(filp);
2022 * tty_poll - check tty status
2023 * @filp: file being polled
2024 * @wait: poll wait structures to update
2026 * Call the line discipline polling method to obtain the poll
2027 * status of the device.
2029 * Locking: locks called line discipline but ldisc poll method
2030 * may be re-entered freely by other callers.
2033 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2035 struct tty_struct *tty = file_tty(filp);
2036 struct tty_ldisc *ld;
2039 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2042 ld = tty_ldisc_ref_wait(tty);
2044 ret = (ld->ops->poll)(tty, filp, wait);
2045 tty_ldisc_deref(ld);
2049 static int __tty_fasync(int fd, struct file *filp, int on)
2051 struct tty_struct *tty = file_tty(filp);
2052 unsigned long flags;
2055 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2058 retval = fasync_helper(fd, filp, on, &tty->fasync);
2065 if (!waitqueue_active(&tty->read_wait))
2066 tty->minimum_to_wake = 1;
2067 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070 type = PIDTYPE_PGID;
2072 pid = task_pid(current);
2076 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2077 retval = __f_setown(filp, pid, type, 0);
2082 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2083 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2090 static int tty_fasync(int fd, struct file *filp, int on)
2094 retval = __tty_fasync(fd, filp, on);
2100 * tiocsti - fake input character
2101 * @tty: tty to fake input into
2102 * @p: pointer to character
2104 * Fake input to a tty device. Does the necessary locking and
2107 * FIXME: does not honour flow control ??
2110 * Called functions take tty_ldisc_lock
2111 * current->signal->tty check is safe without locks
2113 * FIXME: may race normal receive processing
2116 static int tiocsti(struct tty_struct *tty, char __user *p)
2119 struct tty_ldisc *ld;
2121 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2123 if (get_user(ch, p))
2125 tty_audit_tiocsti(tty, ch);
2126 ld = tty_ldisc_ref_wait(tty);
2127 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2128 tty_ldisc_deref(ld);
2133 * tiocgwinsz - implement window query ioctl
2135 * @arg: user buffer for result
2137 * Copies the kernel idea of the window size into the user buffer.
2139 * Locking: tty->termios_mutex is taken to ensure the winsize data
2143 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2147 mutex_lock(&tty->termios_mutex);
2148 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2149 mutex_unlock(&tty->termios_mutex);
2151 return err ? -EFAULT: 0;
2155 * tty_do_resize - resize event
2156 * @tty: tty being resized
2157 * @rows: rows (character)
2158 * @cols: cols (character)
2160 * Update the termios variables and send the necessary signals to
2161 * peform a terminal resize correctly
2164 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2167 unsigned long flags;
2170 mutex_lock(&tty->termios_mutex);
2171 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2173 /* Get the PID values and reference them so we can
2174 avoid holding the tty ctrl lock while sending signals */
2175 spin_lock_irqsave(&tty->ctrl_lock, flags);
2176 pgrp = get_pid(tty->pgrp);
2177 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2180 kill_pgrp(pgrp, SIGWINCH, 1);
2185 mutex_unlock(&tty->termios_mutex);
2190 * tiocswinsz - implement window size set ioctl
2191 * @tty; tty side of tty
2192 * @arg: user buffer for result
2194 * Copies the user idea of the window size to the kernel. Traditionally
2195 * this is just advisory information but for the Linux console it
2196 * actually has driver level meaning and triggers a VC resize.
2199 * Driver dependent. The default do_resize method takes the
2200 * tty termios mutex and ctrl_lock. The console takes its own lock
2201 * then calls into the default method.
2204 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2206 struct winsize tmp_ws;
2207 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2210 if (tty->ops->resize)
2211 return tty->ops->resize(tty, &tmp_ws);
2213 return tty_do_resize(tty, &tmp_ws);
2217 * tioccons - allow admin to move logical console
2218 * @file: the file to become console
2220 * Allow the administrator to move the redirected console device
2222 * Locking: uses redirect_lock to guard the redirect information
2225 static int tioccons(struct file *file)
2227 if (!capable(CAP_SYS_ADMIN))
2229 if (file->f_op->write == redirected_tty_write) {
2231 spin_lock(&redirect_lock);
2234 spin_unlock(&redirect_lock);
2239 spin_lock(&redirect_lock);
2241 spin_unlock(&redirect_lock);
2246 spin_unlock(&redirect_lock);
2251 * fionbio - non blocking ioctl
2252 * @file: file to set blocking value
2253 * @p: user parameter
2255 * Historical tty interfaces had a blocking control ioctl before
2256 * the generic functionality existed. This piece of history is preserved
2257 * in the expected tty API of posix OS's.
2259 * Locking: none, the open file handle ensures it won't go away.
2262 static int fionbio(struct file *file, int __user *p)
2266 if (get_user(nonblock, p))
2269 spin_lock(&file->f_lock);
2271 file->f_flags |= O_NONBLOCK;
2273 file->f_flags &= ~O_NONBLOCK;
2274 spin_unlock(&file->f_lock);
2279 * tiocsctty - set controlling tty
2280 * @tty: tty structure
2281 * @arg: user argument
2283 * This ioctl is used to manage job control. It permits a session
2284 * leader to set this tty as the controlling tty for the session.
2287 * Takes tty_mutex() to protect tty instance
2288 * Takes tasklist_lock internally to walk sessions
2289 * Takes ->siglock() when updating signal->tty
2292 static int tiocsctty(struct tty_struct *tty, int arg)
2295 if (current->signal->leader && (task_session(current) == tty->session))
2298 mutex_lock(&tty_mutex);
2300 * The process must be a session leader and
2301 * not have a controlling tty already.
2303 if (!current->signal->leader || current->signal->tty) {
2310 * This tty is already the controlling
2311 * tty for another session group!
2313 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2317 read_lock(&tasklist_lock);
2318 session_clear_tty(tty->session);
2319 read_unlock(&tasklist_lock);
2325 proc_set_tty(current, tty);
2327 mutex_unlock(&tty_mutex);
2332 * tty_get_pgrp - return a ref counted pgrp pid
2335 * Returns a refcounted instance of the pid struct for the process
2336 * group controlling the tty.
2339 struct pid *tty_get_pgrp(struct tty_struct *tty)
2341 unsigned long flags;
2344 spin_lock_irqsave(&tty->ctrl_lock, flags);
2345 pgrp = get_pid(tty->pgrp);
2346 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2350 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2353 * tiocgpgrp - get process group
2354 * @tty: tty passed by user
2355 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2358 * Obtain the process group of the tty. If there is no process group
2361 * Locking: none. Reference to current->signal->tty is safe.
2364 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2369 * (tty == real_tty) is a cheap way of
2370 * testing if the tty is NOT a master pty.
2372 if (tty == real_tty && current->signal->tty != real_tty)
2374 pid = tty_get_pgrp(real_tty);
2375 ret = put_user(pid_vnr(pid), p);
2381 * tiocspgrp - attempt to set process group
2382 * @tty: tty passed by user
2383 * @real_tty: tty side device matching tty passed by user
2386 * Set the process group of the tty to the session passed. Only
2387 * permitted where the tty session is our session.
2389 * Locking: RCU, ctrl lock
2392 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2396 int retval = tty_check_change(real_tty);
2397 unsigned long flags;
2403 if (!current->signal->tty ||
2404 (current->signal->tty != real_tty) ||
2405 (real_tty->session != task_session(current)))
2407 if (get_user(pgrp_nr, p))
2412 pgrp = find_vpid(pgrp_nr);
2417 if (session_of_pgrp(pgrp) != task_session(current))
2420 spin_lock_irqsave(&tty->ctrl_lock, flags);
2421 put_pid(real_tty->pgrp);
2422 real_tty->pgrp = get_pid(pgrp);
2423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2430 * tiocgsid - get session id
2431 * @tty: tty passed by user
2432 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2433 * @p: pointer to returned session id
2435 * Obtain the session id of the tty. If there is no session
2438 * Locking: none. Reference to current->signal->tty is safe.
2441 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2444 * (tty == real_tty) is a cheap way of
2445 * testing if the tty is NOT a master pty.
2447 if (tty == real_tty && current->signal->tty != real_tty)
2449 if (!real_tty->session)
2451 return put_user(pid_vnr(real_tty->session), p);
2455 * tiocsetd - set line discipline
2457 * @p: pointer to user data
2459 * Set the line discipline according to user request.
2461 * Locking: see tty_set_ldisc, this function is just a helper
2464 static int tiocsetd(struct tty_struct *tty, int __user *p)
2469 if (get_user(ldisc, p))
2472 ret = tty_set_ldisc(tty, ldisc);
2478 * send_break - performed time break
2479 * @tty: device to break on
2480 * @duration: timeout in mS
2482 * Perform a timed break on hardware that lacks its own driver level
2483 * timed break functionality.
2486 * atomic_write_lock serializes
2490 static int send_break(struct tty_struct *tty, unsigned int duration)
2494 if (tty->ops->break_ctl == NULL)
2497 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2498 retval = tty->ops->break_ctl(tty, duration);
2500 /* Do the work ourselves */
2501 if (tty_write_lock(tty, 0) < 0)
2503 retval = tty->ops->break_ctl(tty, -1);
2506 if (!signal_pending(current))
2507 msleep_interruptible(duration);
2508 retval = tty->ops->break_ctl(tty, 0);
2510 tty_write_unlock(tty);
2511 if (signal_pending(current))
2518 * tty_tiocmget - get modem status
2520 * @file: user file pointer
2521 * @p: pointer to result
2523 * Obtain the modem status bits from the tty driver if the feature
2524 * is supported. Return -EINVAL if it is not available.
2526 * Locking: none (up to the driver)
2529 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2531 int retval = -EINVAL;
2533 if (tty->ops->tiocmget) {
2534 retval = tty->ops->tiocmget(tty);
2537 retval = put_user(retval, p);
2543 * tty_tiocmset - set modem status
2545 * @cmd: command - clear bits, set bits or set all
2546 * @p: pointer to desired bits
2548 * Set the modem status bits from the tty driver if the feature
2549 * is supported. Return -EINVAL if it is not available.
2551 * Locking: none (up to the driver)
2554 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2558 unsigned int set, clear, val;
2560 if (tty->ops->tiocmset == NULL)
2563 retval = get_user(val, p);
2579 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2580 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2581 return tty->ops->tiocmset(tty, set, clear);
2584 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2586 int retval = -EINVAL;
2587 struct serial_icounter_struct icount;
2588 memset(&icount, 0, sizeof(icount));
2589 if (tty->ops->get_icount)
2590 retval = tty->ops->get_icount(tty, &icount);
2593 if (copy_to_user(arg, &icount, sizeof(icount)))
2598 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2600 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2601 tty->driver->subtype == PTY_TYPE_MASTER)
2605 EXPORT_SYMBOL(tty_pair_get_tty);
2607 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2609 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2610 tty->driver->subtype == PTY_TYPE_MASTER)
2614 EXPORT_SYMBOL(tty_pair_get_pty);
2617 * Split this up, as gcc can choke on it otherwise..
2619 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2621 struct tty_struct *tty = file_tty(file);
2622 struct tty_struct *real_tty;
2623 void __user *p = (void __user *)arg;
2625 struct tty_ldisc *ld;
2626 struct inode *inode = file->f_dentry->d_inode;
2628 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2631 real_tty = tty_pair_get_tty(tty);
2634 * Factor out some common prep work
2642 retval = tty_check_change(tty);
2645 if (cmd != TIOCCBRK) {
2646 tty_wait_until_sent(tty, 0);
2647 if (signal_pending(current))
2658 return tiocsti(tty, p);
2660 return tiocgwinsz(real_tty, p);
2662 return tiocswinsz(real_tty, p);
2664 return real_tty != tty ? -EINVAL : tioccons(file);
2666 return fionbio(file, p);
2668 set_bit(TTY_EXCLUSIVE, &tty->flags);
2671 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2674 if (current->signal->tty != tty)
2679 return tiocsctty(tty, arg);
2681 return tiocgpgrp(tty, real_tty, p);
2683 return tiocspgrp(tty, real_tty, p);
2685 return tiocgsid(tty, real_tty, p);
2687 return put_user(tty->ldisc->ops->num, (int __user *)p);
2689 return tiocsetd(tty, p);
2691 if (!capable(CAP_SYS_ADMIN))
2697 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2698 return put_user(ret, (unsigned int __user *)p);
2703 case TIOCSBRK: /* Turn break on, unconditionally */
2704 if (tty->ops->break_ctl)
2705 return tty->ops->break_ctl(tty, -1);
2707 case TIOCCBRK: /* Turn break off, unconditionally */
2708 if (tty->ops->break_ctl)
2709 return tty->ops->break_ctl(tty, 0);
2711 case TCSBRK: /* SVID version: non-zero arg --> no break */
2712 /* non-zero arg means wait for all output data
2713 * to be sent (performed above) but don't send break.
2714 * This is used by the tcdrain() termios function.
2717 return send_break(tty, 250);
2719 case TCSBRKP: /* support for POSIX tcsendbreak() */
2720 return send_break(tty, arg ? arg*100 : 250);
2723 return tty_tiocmget(tty, p);
2727 return tty_tiocmset(tty, cmd, p);
2729 retval = tty_tiocgicount(tty, p);
2730 /* For the moment allow fall through to the old method */
2731 if (retval != -EINVAL)
2738 /* flush tty buffer and allow ldisc to process ioctl */
2739 tty_buffer_flush(tty);
2744 if (tty->ops->ioctl) {
2745 retval = (tty->ops->ioctl)(tty, cmd, arg);
2746 if (retval != -ENOIOCTLCMD)
2749 ld = tty_ldisc_ref_wait(tty);
2751 if (ld->ops->ioctl) {
2752 retval = ld->ops->ioctl(tty, file, cmd, arg);
2753 if (retval == -ENOIOCTLCMD)
2756 tty_ldisc_deref(ld);
2760 #ifdef CONFIG_COMPAT
2761 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2764 struct inode *inode = file->f_dentry->d_inode;
2765 struct tty_struct *tty = file_tty(file);
2766 struct tty_ldisc *ld;
2767 int retval = -ENOIOCTLCMD;
2769 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2772 if (tty->ops->compat_ioctl) {
2773 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2774 if (retval != -ENOIOCTLCMD)
2778 ld = tty_ldisc_ref_wait(tty);
2779 if (ld->ops->compat_ioctl)
2780 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2782 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2783 tty_ldisc_deref(ld);
2790 * This implements the "Secure Attention Key" --- the idea is to
2791 * prevent trojan horses by killing all processes associated with this
2792 * tty when the user hits the "Secure Attention Key". Required for
2793 * super-paranoid applications --- see the Orange Book for more details.
2795 * This code could be nicer; ideally it should send a HUP, wait a few
2796 * seconds, then send a INT, and then a KILL signal. But you then
2797 * have to coordinate with the init process, since all processes associated
2798 * with the current tty must be dead before the new getty is allowed
2801 * Now, if it would be correct ;-/ The current code has a nasty hole -
2802 * it doesn't catch files in flight. We may send the descriptor to ourselves
2803 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2805 * Nasty bug: do_SAK is being called in interrupt context. This can
2806 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2808 void __do_SAK(struct tty_struct *tty)
2813 struct task_struct *g, *p;
2814 struct pid *session;
2817 struct fdtable *fdt;
2821 session = tty->session;
2823 tty_ldisc_flush(tty);
2825 tty_driver_flush_buffer(tty);
2827 read_lock(&tasklist_lock);
2828 /* Kill the entire session */
2829 do_each_pid_task(session, PIDTYPE_SID, p) {
2830 printk(KERN_NOTICE "SAK: killed process %d"
2831 " (%s): task_session(p)==tty->session\n",
2832 task_pid_nr(p), p->comm);
2833 send_sig(SIGKILL, p, 1);
2834 } while_each_pid_task(session, PIDTYPE_SID, p);
2835 /* Now kill any processes that happen to have the
2838 do_each_thread(g, p) {
2839 if (p->signal->tty == tty) {
2840 printk(KERN_NOTICE "SAK: killed process %d"
2841 " (%s): task_session(p)==tty->session\n",
2842 task_pid_nr(p), p->comm);
2843 send_sig(SIGKILL, p, 1);
2849 * We don't take a ref to the file, so we must
2850 * hold ->file_lock instead.
2852 spin_lock(&p->files->file_lock);
2853 fdt = files_fdtable(p->files);
2854 for (i = 0; i < fdt->max_fds; i++) {
2855 filp = fcheck_files(p->files, i);
2858 if (filp->f_op->read == tty_read &&
2859 file_tty(filp) == tty) {
2860 printk(KERN_NOTICE "SAK: killed process %d"
2861 " (%s): fd#%d opened to the tty\n",
2862 task_pid_nr(p), p->comm, i);
2863 force_sig(SIGKILL, p);
2867 spin_unlock(&p->files->file_lock);
2870 } while_each_thread(g, p);
2871 read_unlock(&tasklist_lock);
2875 static void do_SAK_work(struct work_struct *work)
2877 struct tty_struct *tty =
2878 container_of(work, struct tty_struct, SAK_work);
2883 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2884 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2885 * the values which we write to it will be identical to the values which it
2886 * already has. --akpm
2888 void do_SAK(struct tty_struct *tty)
2892 schedule_work(&tty->SAK_work);
2895 EXPORT_SYMBOL(do_SAK);
2897 static int dev_match_devt(struct device *dev, void *data)
2900 return dev->devt == *devt;
2903 /* Must put_device() after it's unused! */
2904 static struct device *tty_get_device(struct tty_struct *tty)
2906 dev_t devt = tty_devnum(tty);
2907 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2912 * initialize_tty_struct
2913 * @tty: tty to initialize
2915 * This subroutine initializes a tty structure that has been newly
2918 * Locking: none - tty in question must not be exposed at this point
2921 void initialize_tty_struct(struct tty_struct *tty,
2922 struct tty_driver *driver, int idx)
2924 memset(tty, 0, sizeof(struct tty_struct));
2925 kref_init(&tty->kref);
2926 tty->magic = TTY_MAGIC;
2927 tty_ldisc_init(tty);
2928 tty->session = NULL;
2930 tty->overrun_time = jiffies;
2931 tty_buffer_init(tty);
2932 mutex_init(&tty->termios_mutex);
2933 mutex_init(&tty->ldisc_mutex);
2934 init_waitqueue_head(&tty->write_wait);
2935 init_waitqueue_head(&tty->read_wait);
2936 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2937 mutex_init(&tty->atomic_read_lock);
2938 mutex_init(&tty->atomic_write_lock);
2939 mutex_init(&tty->output_lock);
2940 mutex_init(&tty->echo_lock);
2941 spin_lock_init(&tty->read_lock);
2942 spin_lock_init(&tty->ctrl_lock);
2943 INIT_LIST_HEAD(&tty->tty_files);
2944 INIT_WORK(&tty->SAK_work, do_SAK_work);
2946 tty->driver = driver;
2947 tty->ops = driver->ops;
2949 tty_line_name(driver, idx, tty->name);
2950 tty->dev = tty_get_device(tty);
2954 * deinitialize_tty_struct
2955 * @tty: tty to deinitialize
2957 * This subroutine deinitializes a tty structure that has been newly
2958 * allocated but tty_release cannot be called on that yet.
2960 * Locking: none - tty in question must not be exposed at this point
2962 void deinitialize_tty_struct(struct tty_struct *tty)
2964 tty_ldisc_deinit(tty);
2968 * tty_put_char - write one character to a tty
2972 * Write one byte to the tty using the provided put_char method
2973 * if present. Returns the number of characters successfully output.
2975 * Note: the specific put_char operation in the driver layer may go
2976 * away soon. Don't call it directly, use this method
2979 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2981 if (tty->ops->put_char)
2982 return tty->ops->put_char(tty, ch);
2983 return tty->ops->write(tty, &ch, 1);
2985 EXPORT_SYMBOL_GPL(tty_put_char);
2987 struct class *tty_class;
2990 * tty_register_device - register a tty device
2991 * @driver: the tty driver that describes the tty device
2992 * @index: the index in the tty driver for this tty device
2993 * @device: a struct device that is associated with this tty device.
2994 * This field is optional, if there is no known struct device
2995 * for this tty device it can be set to NULL safely.
2997 * Returns a pointer to the struct device for this tty device
2998 * (or ERR_PTR(-EFOO) on error).
3000 * This call is required to be made to register an individual tty device
3001 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3002 * that bit is not set, this function should not be called by a tty
3008 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3009 struct device *device)
3012 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3014 if (index >= driver->num) {
3015 printk(KERN_ERR "Attempt to register invalid tty line number "
3017 return ERR_PTR(-EINVAL);
3020 if (driver->type == TTY_DRIVER_TYPE_PTY)
3021 pty_line_name(driver, index, name);
3023 tty_line_name(driver, index, name);
3025 return device_create(tty_class, device, dev, NULL, name);
3027 EXPORT_SYMBOL(tty_register_device);
3030 * tty_unregister_device - unregister a tty device
3031 * @driver: the tty driver that describes the tty device
3032 * @index: the index in the tty driver for this tty device
3034 * If a tty device is registered with a call to tty_register_device() then
3035 * this function must be called when the tty device is gone.
3040 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3042 device_destroy(tty_class,
3043 MKDEV(driver->major, driver->minor_start) + index);
3045 EXPORT_SYMBOL(tty_unregister_device);
3047 struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3049 struct tty_driver *driver;
3051 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3053 kref_init(&driver->kref);
3054 driver->magic = TTY_DRIVER_MAGIC;
3055 driver->num = lines;
3056 driver->owner = owner;
3057 /* later we'll move allocation of tables here */
3061 EXPORT_SYMBOL(__alloc_tty_driver);
3063 static void destruct_tty_driver(struct kref *kref)
3065 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3067 struct ktermios *tp;
3070 if (driver->flags & TTY_DRIVER_INSTALLED) {
3072 * Free the termios and termios_locked structures because
3073 * we don't want to get memory leaks when modular tty
3074 * drivers are removed from the kernel.
3076 for (i = 0; i < driver->num; i++) {
3077 tp = driver->termios[i];
3079 driver->termios[i] = NULL;
3082 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3083 tty_unregister_device(driver, i);
3086 proc_tty_unregister_driver(driver);
3087 driver->ttys = NULL;
3088 driver->termios = NULL;
3090 cdev_del(&driver->cdev);
3095 void tty_driver_kref_put(struct tty_driver *driver)
3097 kref_put(&driver->kref, destruct_tty_driver);
3099 EXPORT_SYMBOL(tty_driver_kref_put);
3101 void tty_set_operations(struct tty_driver *driver,
3102 const struct tty_operations *op)
3106 EXPORT_SYMBOL(tty_set_operations);
3108 void put_tty_driver(struct tty_driver *d)
3110 tty_driver_kref_put(d);
3112 EXPORT_SYMBOL(put_tty_driver);
3115 * Called by a tty driver to register itself.
3117 int tty_register_driver(struct tty_driver *driver)
3125 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3126 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3131 if (!driver->major) {
3132 error = alloc_chrdev_region(&dev, driver->minor_start,
3133 driver->num, driver->name);
3135 driver->major = MAJOR(dev);
3136 driver->minor_start = MINOR(dev);
3139 dev = MKDEV(driver->major, driver->minor_start);
3140 error = register_chrdev_region(dev, driver->num, driver->name);
3148 driver->ttys = (struct tty_struct **)p;
3149 driver->termios = (struct ktermios **)(p + driver->num);
3151 driver->ttys = NULL;
3152 driver->termios = NULL;
3155 cdev_init(&driver->cdev, &tty_fops);
3156 driver->cdev.owner = driver->owner;
3157 error = cdev_add(&driver->cdev, dev, driver->num);
3159 unregister_chrdev_region(dev, driver->num);
3160 driver->ttys = NULL;
3161 driver->termios = NULL;
3166 mutex_lock(&tty_mutex);
3167 list_add(&driver->tty_drivers, &tty_drivers);
3168 mutex_unlock(&tty_mutex);
3170 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3171 for (i = 0; i < driver->num; i++) {
3172 d = tty_register_device(driver, i, NULL);
3179 proc_tty_register_driver(driver);
3180 driver->flags |= TTY_DRIVER_INSTALLED;
3184 for (i--; i >= 0; i--)
3185 tty_unregister_device(driver, i);
3187 mutex_lock(&tty_mutex);
3188 list_del(&driver->tty_drivers);
3189 mutex_unlock(&tty_mutex);
3191 unregister_chrdev_region(dev, driver->num);
3192 driver->ttys = NULL;
3193 driver->termios = NULL;
3198 EXPORT_SYMBOL(tty_register_driver);
3201 * Called by a tty driver to unregister itself.
3203 int tty_unregister_driver(struct tty_driver *driver)
3207 if (driver->refcount)
3210 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3212 mutex_lock(&tty_mutex);
3213 list_del(&driver->tty_drivers);
3214 mutex_unlock(&tty_mutex);
3218 EXPORT_SYMBOL(tty_unregister_driver);
3220 dev_t tty_devnum(struct tty_struct *tty)
3222 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3224 EXPORT_SYMBOL(tty_devnum);
3226 void proc_clear_tty(struct task_struct *p)
3228 unsigned long flags;
3229 struct tty_struct *tty;
3230 spin_lock_irqsave(&p->sighand->siglock, flags);
3231 tty = p->signal->tty;
3232 p->signal->tty = NULL;
3233 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3237 /* Called under the sighand lock */
3239 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3242 unsigned long flags;
3243 /* We should not have a session or pgrp to put here but.... */
3244 spin_lock_irqsave(&tty->ctrl_lock, flags);
3245 put_pid(tty->session);
3247 tty->pgrp = get_pid(task_pgrp(tsk));
3248 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3249 tty->session = get_pid(task_session(tsk));
3250 if (tsk->signal->tty) {
3251 printk(KERN_DEBUG "tty not NULL!!\n");
3252 tty_kref_put(tsk->signal->tty);
3255 put_pid(tsk->signal->tty_old_pgrp);
3256 tsk->signal->tty = tty_kref_get(tty);
3257 tsk->signal->tty_old_pgrp = NULL;
3260 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3262 spin_lock_irq(&tsk->sighand->siglock);
3263 __proc_set_tty(tsk, tty);
3264 spin_unlock_irq(&tsk->sighand->siglock);
3267 struct tty_struct *get_current_tty(void)
3269 struct tty_struct *tty;
3270 unsigned long flags;
3272 spin_lock_irqsave(¤t->sighand->siglock, flags);
3273 tty = tty_kref_get(current->signal->tty);
3274 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3277 EXPORT_SYMBOL_GPL(get_current_tty);
3279 void tty_default_fops(struct file_operations *fops)
3285 * Initialize the console device. This is called *early*, so
3286 * we can't necessarily depend on lots of kernel help here.
3287 * Just do some early initializations, and do the complex setup
3290 void __init console_init(void)
3294 /* Setup the default TTY line discipline. */
3298 * set up the console device so that later boot sequences can
3299 * inform about problems etc..
3301 call = __con_initcall_start;
3302 while (call < __con_initcall_end) {
3308 static char *tty_devnode(struct device *dev, umode_t *mode)
3312 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3313 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3318 static int __init tty_class_init(void)
3320 tty_class = class_create(THIS_MODULE, "tty");
3321 if (IS_ERR(tty_class))
3322 return PTR_ERR(tty_class);
3323 tty_class->devnode = tty_devnode;
3327 postcore_initcall(tty_class_init);
3329 /* 3/2004 jmc: why do these devices exist? */
3330 static struct cdev tty_cdev, console_cdev;
3332 static ssize_t show_cons_active(struct device *dev,
3333 struct device_attribute *attr, char *buf)
3335 struct console *cs[16];
3341 for_each_console(c) {
3346 if ((c->flags & CON_ENABLED) == 0)
3349 if (i >= ARRAY_SIZE(cs))
3353 count += sprintf(buf + count, "%s%d%c",
3354 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3359 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3361 static struct device *consdev;
3363 void console_sysfs_notify(void)
3366 sysfs_notify(&consdev->kobj, NULL, "active");
3370 * Ok, now we can initialize the rest of the tty devices and can count
3371 * on memory allocations, interrupts etc..
3373 int __init tty_init(void)
3375 cdev_init(&tty_cdev, &tty_fops);
3376 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3377 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3378 panic("Couldn't register /dev/tty driver\n");
3379 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3381 cdev_init(&console_cdev, &console_fops);
3382 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3383 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3384 panic("Couldn't register /dev/console driver\n");
3385 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3387 if (IS_ERR(consdev))
3390 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3393 vty_init(&console_fops);