1 // SPDX-License-Identifier: MIT
3 //! This is a simple QR encoder for DRM panic.
5 //! It is called from a panic handler, so it should't allocate memory and
6 //! does all the work on the stack or on the provided buffers. For
7 //! simplification, it only supports low error correction, and applies the
8 //! first mask (checkerboard). It will draw the smallest QRcode that can
9 //! contain the string passed as parameter. To get the most compact
10 //! QR code, the start of the URL is encoded as binary, and the
11 //! compressed kmsg is encoded as numeric.
13 //! The binary data must be a valid URL parameter, so the easiest way is
14 //! to use base64 encoding. But this wastes 25% of data space, so the
15 //! whole stack trace won't fit in the QR code. So instead it encodes
16 //! every 13bits of input into 4 decimal digits, and then uses the
17 //! efficient numeric encoding, that encode 3 decimal digits into
18 //! 10bits. This makes 39bits of compressed data into 12 decimal digits,
19 //! into 40bits in the QR code, so wasting only 2.5%. And the numbers are
20 //! valid URL parameter, so the website can do the reverse, to get the
23 //! Inspired by these 3 projects, all under MIT license:
25 //! * <https://github.com/kennytm/qrcode-rust>
26 //! * <https://github.com/erwanvivien/fast_qr>
27 //! * <https://github.com/bjguillot/qr>
30 use kernel::str::CStr;
32 #[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd)]
33 struct Version(usize);
35 // Generator polynomials for ECC, only those that are needed for low quality.
36 const P7: [u8; 7] = [87, 229, 146, 149, 238, 102, 21];
37 const P10: [u8; 10] = [251, 67, 46, 61, 118, 70, 64, 94, 32, 45];
38 const P15: [u8; 15] = [
39 8, 183, 61, 91, 202, 37, 51, 58, 58, 237, 140, 124, 5, 99, 105,
41 const P18: [u8; 18] = [
42 215, 234, 158, 94, 184, 97, 118, 170, 79, 187, 152, 148, 252, 179, 5, 98, 96, 153,
44 const P20: [u8; 20] = [
45 17, 60, 79, 50, 61, 163, 26, 187, 202, 180, 221, 225, 83, 239, 156, 164, 212, 212, 188, 190,
47 const P22: [u8; 22] = [
48 210, 171, 247, 242, 93, 230, 14, 109, 221, 53, 200, 74, 8, 172, 98, 80, 219, 134, 160, 105,
51 const P24: [u8; 24] = [
52 229, 121, 135, 48, 211, 117, 251, 126, 159, 180, 169, 152, 192, 226, 228, 218, 111, 0, 117,
55 const P26: [u8; 26] = [
56 173, 125, 158, 2, 103, 182, 118, 17, 145, 201, 111, 28, 165, 53, 161, 21, 245, 142, 13, 102,
57 48, 227, 153, 145, 218, 70,
59 const P28: [u8; 28] = [
60 168, 223, 200, 104, 224, 234, 108, 180, 110, 190, 195, 147, 205, 27, 232, 201, 21, 43, 245, 87,
61 42, 195, 212, 119, 242, 37, 9, 123,
63 const P30: [u8; 30] = [
64 41, 173, 145, 152, 216, 31, 179, 182, 50, 48, 110, 86, 239, 96, 222, 125, 42, 173, 226, 193,
65 224, 130, 156, 37, 251, 216, 238, 40, 192, 180,
68 /// QR Code parameters for Low quality ECC:
69 /// - Error Correction polynomial.
70 /// - Number of blocks in group 1.
71 /// - Number of blocks in group 2.
72 /// - Block size in group 1.
74 /// (Block size in group 2 is one more than group 1).
75 struct VersionParameter(&'static [u8], u8, u8, u8);
76 const VPARAM: [VersionParameter; 40] = [
77 VersionParameter(&P7, 1, 0, 19), // V1
78 VersionParameter(&P10, 1, 0, 34), // V2
79 VersionParameter(&P15, 1, 0, 55), // V3
80 VersionParameter(&P20, 1, 0, 80), // V4
81 VersionParameter(&P26, 1, 0, 108), // V5
82 VersionParameter(&P18, 2, 0, 68), // V6
83 VersionParameter(&P20, 2, 0, 78), // V7
84 VersionParameter(&P24, 2, 0, 97), // V8
85 VersionParameter(&P30, 2, 0, 116), // V9
86 VersionParameter(&P18, 2, 2, 68), // V10
87 VersionParameter(&P20, 4, 0, 81), // V11
88 VersionParameter(&P24, 2, 2, 92), // V12
89 VersionParameter(&P26, 4, 0, 107), // V13
90 VersionParameter(&P30, 3, 1, 115), // V14
91 VersionParameter(&P22, 5, 1, 87), // V15
92 VersionParameter(&P24, 5, 1, 98), // V16
93 VersionParameter(&P28, 1, 5, 107), // V17
94 VersionParameter(&P30, 5, 1, 120), // V18
95 VersionParameter(&P28, 3, 4, 113), // V19
96 VersionParameter(&P28, 3, 5, 107), // V20
97 VersionParameter(&P28, 4, 4, 116), // V21
98 VersionParameter(&P28, 2, 7, 111), // V22
99 VersionParameter(&P30, 4, 5, 121), // V23
100 VersionParameter(&P30, 6, 4, 117), // V24
101 VersionParameter(&P26, 8, 4, 106), // V25
102 VersionParameter(&P28, 10, 2, 114), // V26
103 VersionParameter(&P30, 8, 4, 122), // V27
104 VersionParameter(&P30, 3, 10, 117), // V28
105 VersionParameter(&P30, 7, 7, 116), // V29
106 VersionParameter(&P30, 5, 10, 115), // V30
107 VersionParameter(&P30, 13, 3, 115), // V31
108 VersionParameter(&P30, 17, 0, 115), // V32
109 VersionParameter(&P30, 17, 1, 115), // V33
110 VersionParameter(&P30, 13, 6, 115), // V34
111 VersionParameter(&P30, 12, 7, 121), // V35
112 VersionParameter(&P30, 6, 14, 121), // V36
113 VersionParameter(&P30, 17, 4, 122), // V37
114 VersionParameter(&P30, 4, 18, 122), // V38
115 VersionParameter(&P30, 20, 4, 117), // V39
116 VersionParameter(&P30, 19, 6, 118), // V40
119 const MAX_EC_SIZE: usize = 30;
120 const MAX_BLK_SIZE: usize = 123;
122 /// Position of the alignment pattern grid.
123 const ALIGNMENT_PATTERNS: [&[u8]; 40] = [
144 &[6, 28, 50, 72, 94],
145 &[6, 26, 50, 74, 98],
146 &[6, 30, 54, 78, 102],
147 &[6, 28, 54, 80, 106],
148 &[6, 32, 58, 84, 110],
149 &[6, 30, 58, 86, 114],
150 &[6, 34, 62, 90, 118],
151 &[6, 26, 50, 74, 98, 122],
152 &[6, 30, 54, 78, 102, 126],
153 &[6, 26, 52, 78, 104, 130],
154 &[6, 30, 56, 82, 108, 134],
155 &[6, 34, 60, 86, 112, 138],
156 &[6, 30, 58, 86, 114, 142],
157 &[6, 34, 62, 90, 118, 146],
158 &[6, 30, 54, 78, 102, 126, 150],
159 &[6, 24, 50, 76, 102, 128, 154],
160 &[6, 28, 54, 80, 106, 132, 158],
161 &[6, 32, 58, 84, 110, 136, 162],
162 &[6, 26, 54, 82, 110, 138, 166],
163 &[6, 30, 58, 86, 114, 142, 170],
166 /// Version information for format V7-V40.
167 const VERSION_INFORMATION: [u32; 34] = [
168 0b00_0111_1100_1001_0100,
169 0b00_1000_0101_1011_1100,
170 0b00_1001_1010_1001_1001,
171 0b00_1010_0100_1101_0011,
172 0b00_1011_1011_1111_0110,
173 0b00_1100_0111_0110_0010,
174 0b00_1101_1000_0100_0111,
175 0b00_1110_0110_0000_1101,
176 0b00_1111_1001_0010_1000,
177 0b01_0000_1011_0111_1000,
178 0b01_0001_0100_0101_1101,
179 0b01_0010_1010_0001_0111,
180 0b01_0011_0101_0011_0010,
181 0b01_0100_1001_1010_0110,
182 0b01_0101_0110_1000_0011,
183 0b01_0110_1000_1100_1001,
184 0b01_0111_0111_1110_1100,
185 0b01_1000_1110_1100_0100,
186 0b01_1001_0001_1110_0001,
187 0b01_1010_1111_1010_1011,
188 0b01_1011_0000_1000_1110,
189 0b01_1100_1100_0001_1010,
190 0b01_1101_0011_0011_1111,
191 0b01_1110_1101_0111_0101,
192 0b01_1111_0010_0101_0000,
193 0b10_0000_1001_1101_0101,
194 0b10_0001_0110_1111_0000,
195 0b10_0010_1000_1011_1010,
196 0b10_0011_0111_1001_1111,
197 0b10_0100_1011_0000_1011,
198 0b10_0101_0100_0010_1110,
199 0b10_0110_1010_0110_0100,
200 0b10_0111_0101_0100_0001,
201 0b10_1000_1100_0110_1001,
204 /// Format info for low quality ECC.
205 const FORMAT_INFOS_QR_L: [u16; 8] = [
206 0x77c4, 0x72f3, 0x7daa, 0x789d, 0x662f, 0x6318, 0x6c41, 0x6976,
210 /// Returns the smallest QR version than can hold these segments.
211 fn from_segments(segments: &[&Segment<'_>]) -> Option<Version> {
212 for v in (1..=40).map(|k| Version(k)) {
213 if v.max_data() * 8 >= segments.iter().map(|s| s.total_size_bits(v)).sum() {
220 fn width(&self) -> u8 {
221 (self.0 as u8) * 4 + 17
224 fn max_data(&self) -> usize {
225 self.g1_blk_size() * self.g1_blocks() + (self.g1_blk_size() + 1) * self.g2_blocks()
228 fn ec_size(&self) -> usize {
229 VPARAM[self.0 - 1].0.len()
232 fn g1_blocks(&self) -> usize {
233 VPARAM[self.0 - 1].1 as usize
236 fn g2_blocks(&self) -> usize {
237 VPARAM[self.0 - 1].2 as usize
240 fn g1_blk_size(&self) -> usize {
241 VPARAM[self.0 - 1].3 as usize
244 fn alignment_pattern(&self) -> &'static [u8] {
245 &ALIGNMENT_PATTERNS[self.0 - 1]
248 fn poly(&self) -> &'static [u8] {
252 fn version_info(&self) -> u32 {
253 if *self >= Version(7) {
254 VERSION_INFORMATION[self.0 - 7]
261 /// Exponential table for Galois Field GF(256).
262 const EXP_TABLE: [u8; 256] = [
263 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117,
264 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181,
265 119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161,
266 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187,
267 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136,
268 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197,
269 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168,
270 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198,
271 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149,
272 55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167,
273 83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72,
274 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207,
275 131, 27, 54, 108, 216, 173, 71, 142, 1,
278 /// Reverse exponential table for Galois Field GF(256).
279 const LOG_TABLE: [u8; 256] = [
280 175, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141,
281 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142,
282 218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114,
283 166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148,
284 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126,
285 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172,
286 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24,
287 227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149,
288 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132,
289 60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12,
290 111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95,
291 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173,
292 232, 116, 214, 244, 234, 168, 80, 88, 175,
295 // 4 bits segment header.
296 const MODE_STOP: u16 = 0;
297 const MODE_NUMERIC: u16 = 1;
298 const MODE_BINARY: u16 = 4;
300 const PADDING: [u8; 2] = [236, 17];
302 /// Get the next 13 bits of data, starting at specified offset (in bits).
303 fn get_next_13b(data: &[u8], offset: usize) -> Option<(u16, usize)> {
304 if offset < data.len() * 8 {
305 let size = cmp::min(13, data.len() * 8 - offset);
306 let byte_off = offset / 8;
307 let bit_off = offset % 8;
308 // `b` is 20 at max (`bit_off` <= 7 and `size` <= 13).
309 let b = (bit_off + size) as u16;
311 let first_byte = (data[byte_off] << bit_off >> bit_off) as u16;
313 let number = match b {
314 0..=8 => first_byte >> (8 - b),
315 9..=16 => (first_byte << (b - 8)) + (data[byte_off + 1] >> (16 - b)) as u16,
317 (first_byte << (b - 8))
318 + ((data[byte_off + 1] as u16) << (b - 16))
319 + (data[byte_off + 2] >> (24 - b)) as u16
328 /// Number of bits to encode characters in numeric mode.
329 const NUM_CHARS_BITS: [usize; 4] = [0, 4, 7, 10];
330 const POW10: [u16; 4] = [1, 10, 100, 1000];
338 fn get_header(&self) -> (u16, usize) {
340 Segment::Binary(_) => (MODE_BINARY, 4),
341 Segment::Numeric(_) => (MODE_NUMERIC, 4),
345 // Returns the size of the length field in bits, depending on QR Version.
346 fn length_bits_count(&self, version: Version) -> usize {
347 let Version(v) = version;
349 Segment::Binary(_) => match v {
353 Segment::Numeric(_) => match v {
361 // Number of characters in the segment.
362 fn character_count(&self) -> usize {
364 Segment::Binary(data) => data.len(),
365 Segment::Numeric(data) => {
366 let data_bits = data.len() * 8;
367 let last_chars = match data_bits % 13 {
371 // 4 decimal numbers per 13bits + remainder.
372 4 * (data_bits / 13) + last_chars
377 fn get_length_field(&self, version: Version) -> (u16, usize) {
379 self.character_count() as u16,
380 self.length_bits_count(version),
384 fn total_size_bits(&self, version: Version) -> usize {
385 let data_size = match self {
386 Segment::Binary(data) => data.len() * 8,
387 Segment::Numeric(_) => {
388 let digits = self.character_count();
389 10 * (digits / 3) + NUM_CHARS_BITS[digits % 3]
392 // header + length + data.
393 4 + self.length_bits_count(version) + data_size
396 fn iter(&self) -> SegmentIterator<'_> {
406 struct SegmentIterator<'a> {
407 segment: &'a Segment<'a>,
413 impl Iterator for SegmentIterator<'_> {
414 type Item = (u16, usize);
416 fn next(&mut self) -> Option<Self::Item> {
418 Segment::Binary(data) => {
419 if self.offset < data.len() {
420 let byte = data[self.offset] as u16;
427 Segment::Numeric(data) => {
428 if self.carry_len == 3 {
429 let out = (self.carry, NUM_CHARS_BITS[self.carry_len]);
433 } else if let Some((bits, size)) = get_next_13b(data, self.offset) {
435 let new_chars = match size {
439 if self.carry_len + new_chars > 3 {
440 self.carry_len = new_chars + self.carry_len - 3;
442 self.carry * POW10[new_chars - self.carry_len]
443 + bits / POW10[self.carry_len],
446 self.carry = bits % POW10[self.carry_len];
450 self.carry * POW10[new_chars] + bits,
451 NUM_CHARS_BITS[self.carry_len + new_chars],
456 } else if self.carry_len > 0 {
457 let out = (self.carry, NUM_CHARS_BITS[self.carry_len]);
468 struct EncodedMsg<'a> {
479 /// Data to be put in the QR code, with correct segment encoding, padding, and
480 /// Error Code Correction.
481 impl EncodedMsg<'_> {
482 fn new<'a, 'b>(segments: &[&Segment<'b>], data: &'a mut [u8]) -> Option<EncodedMsg<'a>> {
483 let version = Version::from_segments(segments)?;
484 let ec_size = version.ec_size();
485 let g1_blocks = version.g1_blocks();
486 let g2_blocks = version.g2_blocks();
487 let g1_blk_size = version.g1_blk_size();
488 let g2_blk_size = g1_blk_size + 1;
489 let poly = version.poly();
494 let mut em = EncodedMsg {
508 /// Push bits of data at an offset (in bits).
509 fn push(&mut self, offset: &mut usize, bits: (u16, usize)) {
510 let (number, len_bits) = bits;
511 let byte_off = *offset / 8;
512 let bit_off = *offset % 8;
513 let b = bit_off + len_bits;
517 self.data[byte_off] = (number << (8 - b)) as u8;
520 self.data[byte_off] = (number >> (b - 8)) as u8;
521 self.data[byte_off + 1] = (number << (16 - b)) as u8;
524 self.data[byte_off] |= (number << (8 - b)) as u8;
527 self.data[byte_off] |= (number >> (b - 8)) as u8;
528 self.data[byte_off + 1] = (number << (16 - b)) as u8;
531 self.data[byte_off] |= (number >> (b - 8)) as u8;
532 self.data[byte_off + 1] = (number >> (b - 16)) as u8;
533 self.data[byte_off + 2] = (number << (24 - b)) as u8;
539 fn add_segments(&mut self, segments: &[&Segment<'_>]) {
540 let mut offset: usize = 0;
542 for s in segments.iter() {
543 self.push(&mut offset, s.get_header());
544 self.push(&mut offset, s.get_length_field(self.version));
545 for bits in s.iter() {
546 self.push(&mut offset, bits);
549 self.push(&mut offset, (MODE_STOP, 4));
551 let pad_offset = (offset + 7) / 8;
552 for i in pad_offset..self.version.max_data() {
553 self.data[i] = PADDING[(i & 1) ^ (pad_offset & 1)];
557 fn error_code_for_blocks(&mut self, offset: usize, size: usize, ec_offset: usize) {
558 let mut tmp: [u8; MAX_BLK_SIZE + MAX_EC_SIZE] = [0; MAX_BLK_SIZE + MAX_EC_SIZE];
560 tmp[0..size].copy_from_slice(&self.data[offset..offset + size]);
562 let lead_coeff = tmp[i] as usize;
566 let log_lead_coeff = usize::from(LOG_TABLE[lead_coeff]);
567 for (u, &v) in tmp[i + 1..].iter_mut().zip(self.poly.iter()) {
568 *u ^= EXP_TABLE[(usize::from(v) + log_lead_coeff) % 255];
571 self.data[ec_offset..ec_offset + self.ec_size]
572 .copy_from_slice(&tmp[size..size + self.ec_size]);
575 fn compute_error_code(&mut self) {
577 let mut ec_offset = self.g1_blocks * self.g1_blk_size + self.g2_blocks * self.g2_blk_size;
579 for _ in 0..self.g1_blocks {
580 self.error_code_for_blocks(offset, self.g1_blk_size, ec_offset);
581 offset += self.g1_blk_size;
582 ec_offset += self.ec_size;
584 for _ in 0..self.g2_blocks {
585 self.error_code_for_blocks(offset, self.g2_blk_size, ec_offset);
586 offset += self.g2_blk_size;
587 ec_offset += self.ec_size;
591 fn encode(&mut self, segments: &[&Segment<'_>]) {
592 self.add_segments(segments);
593 self.compute_error_code();
596 fn iter(&self) -> EncodedMsgIterator<'_> {
604 /// Iterator, to retrieve the data in the interleaved order needed by QR code.
605 struct EncodedMsgIterator<'a> {
606 em: &'a EncodedMsg<'a>,
610 impl Iterator for EncodedMsgIterator<'_> {
613 // Send the bytes in interleaved mode, first byte of first block of group1,
614 // then first byte of second block of group1, ...
615 fn next(&mut self) -> Option<Self::Item> {
617 let blocks = em.g1_blocks + em.g2_blocks;
618 let g1_end = em.g1_blocks * em.g1_blk_size;
619 let g2_end = g1_end + em.g2_blocks * em.g2_blk_size;
620 let ec_end = g2_end + em.ec_size * blocks;
622 if self.offset >= ec_end {
626 let offset = if self.offset < em.g1_blk_size * blocks {
627 // group1 and group2 interleaved
628 let blk = self.offset % blocks;
629 let blk_off = self.offset / blocks;
630 if blk < em.g1_blocks {
631 blk * em.g1_blk_size + blk_off
633 g1_end + em.g2_blk_size * (blk - em.g1_blocks) + blk_off
635 } else if self.offset < g2_end {
636 // last byte of group2 blocks
637 let blk2 = self.offset - blocks * em.g1_blk_size;
638 em.g1_blk_size * em.g1_blocks + blk2 * em.g2_blk_size + em.g2_blk_size - 1
641 let ec_offset = self.offset - g2_end;
642 let blk = ec_offset % blocks;
643 let blk_off = ec_offset / blocks;
645 g2_end + blk * em.ec_size + blk_off
648 Some(em.data[offset])
652 /// A QR code image, encoded as a linear binary framebuffer.
653 /// 1 bit per module (pixel), each new line start at next byte boundary.
654 /// Max width is 177 for V40 QR code, so `u8` is enough for coordinate.
663 fn new<'a, 'b>(em: &'b EncodedMsg<'b>, qrdata: &'a mut [u8]) -> QrImage<'a> {
664 let width = em.version.width();
665 let stride = (width + 7) / 8;
668 let mut qr_image = QrImage {
674 qr_image.draw_all(em.iter());
678 fn clear(&mut self) {
682 // Set pixel to light color.
683 fn set(&mut self, x: u8, y: u8) {
684 let off = y as usize * self.stride as usize + x as usize / 8;
685 let mut v = self.data[off];
686 v |= 0x80 >> (x % 8);
690 // Invert a module color.
691 fn xor(&mut self, x: u8, y: u8) {
692 let off = y as usize * self.stride as usize + x as usize / 8;
693 self.data[off] ^= 0x80 >> (x % 8);
696 // Draw a light square at (x, y) top left corner.
697 fn draw_square(&mut self, x: u8, y: u8, size: u8) {
700 self.set(x, y + k + 1);
701 self.set(x + size, y + k);
702 self.set(x + k + 1, y + size);
706 // Finder pattern: 3 8x8 square at the corners.
707 fn draw_finders(&mut self) {
708 self.draw_square(1, 1, 4);
709 self.draw_square(self.width - 6, 1, 4);
710 self.draw_square(1, self.width - 6, 4);
713 self.set(self.width - k - 1, 7);
714 self.set(k, self.width - 8);
718 self.set(self.width - 8, k);
719 self.set(7, self.width - 1 - k);
723 fn is_finder(&self, x: u8, y: u8) -> bool {
724 let end = self.width - 8;
725 (x < 8 && y < 8) || (x < 8 && y >= end) || (x >= end && y < 8)
728 // Alignment pattern: 5x5 squares in a grid.
729 fn draw_alignments(&mut self) {
730 let positions = self.version.alignment_pattern();
731 for &x in positions.iter() {
732 for &y in positions.iter() {
733 if !self.is_finder(x, y) {
734 self.draw_square(x - 1, y - 1, 2);
740 fn is_alignment(&self, x: u8, y: u8) -> bool {
741 let positions = self.version.alignment_pattern();
742 for &ax in positions.iter() {
743 for &ay in positions.iter() {
744 if self.is_finder(ax, ay) {
747 if x >= ax - 2 && x <= ax + 2 && y >= ay - 2 && y <= ay + 2 {
755 // Timing pattern: 2 dotted line between the finder patterns.
756 fn draw_timing_patterns(&mut self) {
757 let end = self.width - 8;
759 for x in (9..end).step_by(2) {
765 fn is_timing(&self, x: u8, y: u8) -> bool {
769 // Mask info: 15 bits around the finders, written twice for redundancy.
770 fn draw_maskinfo(&mut self) {
771 let info: u16 = FORMAT_INFOS_QR_L[0];
778 if info & (1 << (14 - k)) == 0 {
779 self.set(k + skip, 8);
780 self.set(8, self.width - 1 - k);
788 if info & (1 << (7 - k)) == 0 {
789 self.set(8, 8 - skip - k);
790 self.set(self.width - 8 + k, 8);
795 fn is_maskinfo(&self, x: u8, y: u8) -> bool {
796 let end = self.width - 8;
797 // Count the dark module as mask info.
798 (x <= 8 && y == 8) || (y <= 8 && x == 8) || (x == 8 && y >= end) || (x >= end && y == 8)
801 // Version info: 18bits written twice, close to the finders.
802 fn draw_version_info(&mut self) {
803 let vinfo = self.version.version_info();
804 let pos = self.width - 11;
809 if vinfo & (1 << (x + y * 3)) == 0 {
810 self.set(x + pos, y);
811 self.set(y, x + pos);
818 fn is_version_info(&self, x: u8, y: u8) -> bool {
819 let vinfo = self.version.version_info();
820 let pos = self.width - 11;
822 vinfo != 0 && ((x >= pos && x < pos + 3 && y < 6) || (y >= pos && y < pos + 3 && x < 6))
825 // Returns true if the module is reserved (Not usable for data and EC).
826 fn is_reserved(&self, x: u8, y: u8) -> bool {
827 self.is_alignment(x, y)
828 || self.is_finder(x, y)
829 || self.is_timing(x, y)
830 || self.is_maskinfo(x, y)
831 || self.is_version_info(x, y)
834 // Last module to draw, at bottom left corner.
835 fn is_last(&self, x: u8, y: u8) -> bool {
836 x == 0 && y == self.width - 1
839 // Move to the next module according to QR code order.
840 // From bottom right corner, to bottom left corner.
841 fn next(&self, x: u8, y: u8) -> (u8, u8) {
842 let x_adj = if x <= 6 { x + 1 } else { x };
843 let column_type = (self.width - x_adj) % 4;
846 2 if y > 0 => (x + 1, y - 1),
847 0 if y < self.width - 1 => (x + 1, y + 1),
848 0 | 2 if x == 7 => (x - 2, y),
853 // Find next module that can hold data.
854 fn next_available(&self, x: u8, y: u8) -> (u8, u8) {
855 let (mut x, mut y) = self.next(x, y);
856 while self.is_reserved(x, y) && !self.is_last(x, y) {
857 (x, y) = self.next(x, y);
862 fn draw_data(&mut self, data: impl Iterator<Item = u8>) {
863 let (mut x, mut y) = (self.width - 1, self.width - 1);
866 if byte & (0x80 >> s) == 0 {
869 (x, y) = self.next_available(x, y);
872 // Set the remaining modules (0, 3 or 7 depending on version).
873 // because 0 correspond to a light module.
874 while !self.is_last(x, y) {
875 if !self.is_reserved(x, y) {
878 (x, y) = self.next(x, y);
882 // Apply checkerboard mask to all non-reserved modules.
883 fn apply_mask(&mut self) {
884 for x in 0..self.width {
885 for y in 0..self.width {
886 if (x ^ y) % 2 == 0 && !self.is_reserved(x, y) {
893 // Draw the QR code with the provided data iterator.
894 fn draw_all(&mut self, data: impl Iterator<Item = u8>) {
895 // First clear the table, as it may have already some data.
898 self.draw_alignments();
899 self.draw_timing_patterns();
900 self.draw_version_info();
901 self.draw_data(data);
902 self.draw_maskinfo();
907 /// C entry point for the rust QR Code generator.
909 /// Write the QR code image in the data buffer, and return the QR code width,
910 /// or 0, if the data doesn't fit in a QR code.
912 /// * `url`: The base URL of the QR code. It will be encoded as Binary segment.
913 /// * `data`: A pointer to the binary data, to be encoded. if URL is NULL, it
914 /// will be encoded as binary segment, otherwise it will be encoded
915 /// efficiently as a numeric segment, and appended to the URL.
916 /// * `data_len`: Length of the data, that needs to be encoded, must be less
918 /// * `data_size`: Size of data buffer, it should be at least 4071 bytes to hold
919 /// a V40 QR code. It will then be overwritten with the QR code image.
920 /// * `tmp`: A temporary buffer that the QR code encoder will use, to write the
921 /// segments and ECC.
922 /// * `tmp_size`: Size of the temporary buffer, it must be at least 3706 bytes
927 /// * `url` must be null or point at a nul-terminated string.
928 /// * `data` must be valid for reading and writing for `data_size` bytes.
929 /// * `tmp` must be valid for reading and writing for `tmp_size` bytes.
931 /// They must remain valid for the duration of the function call.
934 pub unsafe extern "C" fn drm_panic_qr_generate(
942 if data_size < 4071 || tmp_size < 3706 || data_len > data_size {
945 // SAFETY: The caller ensures that `data` is a valid pointer for reading and
946 // writing `data_size` bytes.
947 let data_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(data, data_size) };
948 // SAFETY: The caller ensures that `tmp` is a valid pointer for reading and
949 // writing `tmp_size` bytes.
950 let tmp_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(tmp, tmp_size) };
952 match EncodedMsg::new(&[&Segment::Binary(&data_slice[0..data_len])], tmp_slice) {
955 let qr_image = QrImage::new(&em, data_slice);
960 // SAFETY: The caller ensures that `url` is a valid pointer to a
961 // nul-terminated string.
962 let url_cstr: &CStr = unsafe { CStr::from_char_ptr(url) };
964 &Segment::Binary(url_cstr.as_bytes()),
965 &Segment::Numeric(&data_slice[0..data_len]),
967 match EncodedMsg::new(segments, tmp_slice) {
970 let qr_image = QrImage::new(&em, data_slice);
977 /// Returns the maximum data size that can fit in a QR code of this version.
978 /// * `version`: QR code version, between 1-40.
979 /// * `url_len`: Length of the URL.
981 /// * If `url_len` > 0, remove the 2 segments header/length and also count the
982 /// conversion to numeric segments.
983 /// * If `url_len` = 0, only removes 3 bytes for 1 binary segment.
985 pub extern "C" fn drm_panic_qr_max_data_size(version: u8, url_len: usize) -> usize {
986 if version < 1 || version > 40 {
989 let max_data = Version(version as usize).max_data();
992 // Binary segment (URL) 4 + 16 bits, numeric segment (kmsg) 4 + 12 bits => 5 bytes.
993 if url_len + 5 >= max_data {
996 let max = max_data - url_len - 5;
1000 // Remove 3 bytes for the binary segment (header 4 bits, length 16 bits, stop 4bits).