4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
29 #include <linux/debugfs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37 #include <linux/xarray.h>
39 #include <drm/drm_accel.h>
40 #include <drm/drm_cache.h>
41 #include <drm/drm_client.h>
42 #include <drm/drm_color_mgmt.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_file.h>
45 #include <drm/drm_managed.h>
46 #include <drm/drm_mode_object.h>
47 #include <drm/drm_panic.h>
48 #include <drm/drm_print.h>
49 #include <drm/drm_privacy_screen_machine.h>
51 #include "drm_crtc_internal.h"
52 #include "drm_internal.h"
54 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
55 MODULE_DESCRIPTION("DRM shared core routines");
56 MODULE_LICENSE("GPL and additional rights");
58 DEFINE_XARRAY_ALLOC(drm_minors_xa);
61 * If the drm core fails to init for whatever reason,
62 * we should prevent any drivers from registering with it.
63 * It's best to check this at drm_dev_init(), as some drivers
64 * prefer to embed struct drm_device into their own device
65 * structure and call drm_dev_init() themselves.
67 static bool drm_core_init_complete;
69 static struct dentry *drm_debugfs_root;
71 DEFINE_STATIC_SRCU(drm_unplug_srcu);
75 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
76 * of them is represented by a drm_minor object. Depending on the capabilities
77 * of the device-driver, different interfaces are registered.
79 * Minors can be accessed via dev->$minor_name. This pointer is either
80 * NULL or a valid drm_minor pointer and stays valid as long as the device is
81 * valid. This means, DRM minors have the same life-time as the underlying
82 * device. However, this doesn't mean that the minor is active. Minors are
83 * registered and unregistered dynamically according to device-state.
86 static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
88 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
89 return &drm_minors_xa;
90 #if IS_ENABLED(CONFIG_DRM_ACCEL)
91 else if (type == DRM_MINOR_ACCEL)
92 return &accel_minors_xa;
95 return ERR_PTR(-EOPNOTSUPP);
98 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
99 enum drm_minor_type type)
102 case DRM_MINOR_PRIMARY:
103 return &dev->primary;
104 case DRM_MINOR_RENDER:
106 case DRM_MINOR_ACCEL:
113 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
115 struct drm_minor *minor = data;
117 WARN_ON(dev != minor->dev);
119 put_device(minor->kdev);
121 xa_erase(drm_minor_get_xa(minor->type), minor->index);
125 * DRM used to support 64 devices, for backwards compatibility we need to maintain the
126 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
127 * and 128-191 are render nodes.
128 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
129 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
132 #define DRM_MINOR_LIMIT(t) ({ \
133 typeof(t) _t = (t); \
134 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
136 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
138 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
140 struct drm_minor *minor;
143 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
150 r = xa_alloc(drm_minor_get_xa(type), &minor->index,
151 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
152 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
153 r = xa_alloc(&drm_minors_xa, &minor->index,
154 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
158 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
162 minor->kdev = drm_sysfs_minor_alloc(minor);
163 if (IS_ERR(minor->kdev))
164 return PTR_ERR(minor->kdev);
166 *drm_minor_get_slot(dev, type) = minor;
170 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
172 struct drm_minor *minor;
178 minor = *drm_minor_get_slot(dev, type);
182 if (minor->type != DRM_MINOR_ACCEL) {
183 ret = drm_debugfs_register(minor, minor->index,
186 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
191 ret = device_add(minor->kdev);
195 /* replace NULL with @minor so lookups will succeed from now on */
196 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
197 if (xa_is_err(entry)) {
203 DRM_DEBUG("new minor registered %d\n", minor->index);
207 drm_debugfs_unregister(minor);
211 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
213 struct drm_minor *minor;
215 minor = *drm_minor_get_slot(dev, type);
216 if (!minor || !device_is_registered(minor->kdev))
219 /* replace @minor with NULL so lookups will fail from now on */
220 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
222 device_del(minor->kdev);
223 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
224 drm_debugfs_unregister(minor);
228 * Looks up the given minor-ID and returns the respective DRM-minor object. The
229 * refence-count of the underlying device is increased so you must release this
230 * object with drm_minor_release().
232 * As long as you hold this minor, it is guaranteed that the object and the
233 * minor->dev pointer will stay valid! However, the device may get unplugged and
234 * unregistered while you hold the minor.
236 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
238 struct drm_minor *minor;
241 minor = xa_load(minor_xa, minor_id);
243 drm_dev_get(minor->dev);
247 return ERR_PTR(-ENODEV);
248 } else if (drm_dev_is_unplugged(minor->dev)) {
249 drm_dev_put(minor->dev);
250 return ERR_PTR(-ENODEV);
256 void drm_minor_release(struct drm_minor *minor)
258 drm_dev_put(minor->dev);
262 * DOC: driver instance overview
264 * A device instance for a drm driver is represented by &struct drm_device. This
265 * is allocated and initialized with devm_drm_dev_alloc(), usually from
266 * bus-specific ->probe() callbacks implemented by the driver. The driver then
267 * needs to initialize all the various subsystems for the drm device like memory
268 * management, vblank handling, modesetting support and initial output
269 * configuration plus obviously initialize all the corresponding hardware bits.
270 * Finally when everything is up and running and ready for userspace the device
271 * instance can be published using drm_dev_register().
273 * There is also deprecated support for initializing device instances using
274 * bus-specific helpers and the &drm_driver.load callback. But due to
275 * backwards-compatibility needs the device instance have to be published too
276 * early, which requires unpretty global locking to make safe and is therefore
277 * only support for existing drivers not yet converted to the new scheme.
279 * When cleaning up a device instance everything needs to be done in reverse:
280 * First unpublish the device instance with drm_dev_unregister(). Then clean up
281 * any other resources allocated at device initialization and drop the driver's
282 * reference to &drm_device using drm_dev_put().
284 * Note that any allocation or resource which is visible to userspace must be
285 * released only when the final drm_dev_put() is called, and not when the
286 * driver is unbound from the underlying physical struct &device. Best to use
287 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
290 * devres managed resources like devm_kmalloc() can only be used for resources
291 * directly related to the underlying hardware device, and only used in code
292 * paths fully protected by drm_dev_enter() and drm_dev_exit().
294 * Display driver example
295 * ~~~~~~~~~~~~~~~~~~~~~~
297 * The following example shows a typical structure of a DRM display driver.
298 * The example focus on the probe() function and the other functions that is
299 * almost always present and serves as a demonstration of devm_drm_dev_alloc().
303 * struct driver_device {
304 * struct drm_device drm;
305 * void *userspace_facing;
309 * static const struct drm_driver driver_drm_driver = {
313 * static int driver_probe(struct platform_device *pdev)
315 * struct driver_device *priv;
316 * struct drm_device *drm;
319 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
320 * struct driver_device, drm);
322 * return PTR_ERR(priv);
325 * ret = drmm_mode_config_init(drm);
329 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
330 * if (!priv->userspace_facing)
333 * priv->pclk = devm_clk_get(dev, "PCLK");
334 * if (IS_ERR(priv->pclk))
335 * return PTR_ERR(priv->pclk);
337 * // Further setup, display pipeline etc
339 * platform_set_drvdata(pdev, drm);
341 * drm_mode_config_reset(drm);
343 * ret = drm_dev_register(drm);
347 * drm_fbdev_{...}_setup(drm, 32);
352 * // This function is called before the devm_ resources are released
353 * static int driver_remove(struct platform_device *pdev)
355 * struct drm_device *drm = platform_get_drvdata(pdev);
357 * drm_dev_unregister(drm);
358 * drm_atomic_helper_shutdown(drm)
363 * // This function is called on kernel restart and shutdown
364 * static void driver_shutdown(struct platform_device *pdev)
366 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
369 * static int __maybe_unused driver_pm_suspend(struct device *dev)
371 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
374 * static int __maybe_unused driver_pm_resume(struct device *dev)
376 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
381 * static const struct dev_pm_ops driver_pm_ops = {
382 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
385 * static struct platform_driver driver_driver = {
388 * .pm = &driver_pm_ops,
390 * .probe = driver_probe,
391 * .remove = driver_remove,
392 * .shutdown = driver_shutdown,
394 * module_platform_driver(driver_driver);
396 * Drivers that want to support device unplugging (USB, DT overlay unload) should
397 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
398 * regions that is accessing device resources to prevent use after they're
399 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
400 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
401 * drm_atomic_helper_shutdown() is called. This means that if the disable code
402 * paths are protected, they will not run on regular driver module unload,
403 * possibly leaving the hardware enabled.
407 * drm_put_dev - Unregister and release a DRM device
410 * Called at module unload time or when a PCI device is unplugged.
412 * Cleans up all DRM device, calling drm_lastclose().
414 * Note: Use of this function is deprecated. It will eventually go away
415 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
416 * instead to make sure that the device isn't userspace accessible any more
417 * while teardown is in progress, ensuring that userspace can't access an
418 * inconsistent state.
420 void drm_put_dev(struct drm_device *dev)
425 DRM_ERROR("cleanup called no dev\n");
429 drm_dev_unregister(dev);
432 EXPORT_SYMBOL(drm_put_dev);
435 * drm_dev_enter - Enter device critical section
437 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
439 * This function marks and protects the beginning of a section that should not
440 * be entered after the device has been unplugged. The section end is marked
441 * with drm_dev_exit(). Calls to this function can be nested.
444 * True if it is OK to enter the section, false otherwise.
446 bool drm_dev_enter(struct drm_device *dev, int *idx)
448 *idx = srcu_read_lock(&drm_unplug_srcu);
450 if (dev->unplugged) {
451 srcu_read_unlock(&drm_unplug_srcu, *idx);
457 EXPORT_SYMBOL(drm_dev_enter);
460 * drm_dev_exit - Exit device critical section
461 * @idx: index returned from drm_dev_enter()
463 * This function marks the end of a section that should not be entered after
464 * the device has been unplugged.
466 void drm_dev_exit(int idx)
468 srcu_read_unlock(&drm_unplug_srcu, idx);
470 EXPORT_SYMBOL(drm_dev_exit);
473 * drm_dev_unplug - unplug a DRM device
476 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
477 * userspace operations. Entry-points can use drm_dev_enter() and
478 * drm_dev_exit() to protect device resources in a race free manner. This
479 * essentially unregisters the device like drm_dev_unregister(), but can be
480 * called while there are still open users of @dev.
482 void drm_dev_unplug(struct drm_device *dev)
485 * After synchronizing any critical read section is guaranteed to see
486 * the new value of ->unplugged, and any critical section which might
487 * still have seen the old value of ->unplugged is guaranteed to have
490 dev->unplugged = true;
491 synchronize_srcu(&drm_unplug_srcu);
493 drm_dev_unregister(dev);
495 /* Clear all CPU mappings pointing to this device */
496 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
498 EXPORT_SYMBOL(drm_dev_unplug);
502 * We want to be able to allocate our own "struct address_space" to control
503 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
504 * stand-alone address_space objects, so we need an underlying inode. As there
505 * is no way to allocate an independent inode easily, we need a fake internal
508 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
509 * frees it again. You are allowed to use iget() and iput() to get references to
510 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
511 * drm_fs_inode_free() call (which does not have to be the last iput()).
512 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
513 * between multiple inode-users. You could, technically, call
514 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
515 * iput(), but this way you'd end up with a new vfsmount for each inode.
518 static int drm_fs_cnt;
519 static struct vfsmount *drm_fs_mnt;
521 static int drm_fs_init_fs_context(struct fs_context *fc)
523 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
526 static struct file_system_type drm_fs_type = {
528 .owner = THIS_MODULE,
529 .init_fs_context = drm_fs_init_fs_context,
530 .kill_sb = kill_anon_super,
533 static struct inode *drm_fs_inode_new(void)
538 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
540 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
544 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
546 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
551 static void drm_fs_inode_free(struct inode *inode)
555 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
560 * DOC: component helper usage recommendations
562 * DRM drivers that drive hardware where a logical device consists of a pile of
563 * independent hardware blocks are recommended to use the :ref:`component helper
564 * library<component>`. For consistency and better options for code reuse the
565 * following guidelines apply:
567 * - The entire device initialization procedure should be run from the
568 * &component_master_ops.master_bind callback, starting with
569 * devm_drm_dev_alloc(), then binding all components with
570 * component_bind_all() and finishing with drm_dev_register().
572 * - The opaque pointer passed to all components through component_bind_all()
573 * should point at &struct drm_device of the device instance, not some driver
574 * specific private structure.
576 * - The component helper fills the niche where further standardization of
577 * interfaces is not practical. When there already is, or will be, a
578 * standardized interface like &drm_bridge or &drm_panel, providing its own
579 * functions to find such components at driver load time, like
580 * drm_of_find_panel_or_bridge(), then the component helper should not be
584 static void drm_dev_init_release(struct drm_device *dev, void *res)
586 drm_fs_inode_free(dev->anon_inode);
588 put_device(dev->dev);
589 /* Prevent use-after-free in drm_managed_release when debugging is
590 * enabled. Slightly awkward, but can't really be helped. */
592 mutex_destroy(&dev->master_mutex);
593 mutex_destroy(&dev->clientlist_mutex);
594 mutex_destroy(&dev->filelist_mutex);
595 mutex_destroy(&dev->struct_mutex);
598 static int drm_dev_init(struct drm_device *dev,
599 const struct drm_driver *driver,
600 struct device *parent)
605 if (!drm_core_init_complete) {
606 DRM_ERROR("DRM core is not initialized\n");
610 if (WARN_ON(!parent))
613 kref_init(&dev->ref);
614 dev->dev = get_device(parent);
615 dev->driver = driver;
617 INIT_LIST_HEAD(&dev->managed.resources);
618 spin_lock_init(&dev->managed.lock);
620 /* no per-device feature limits by default */
621 dev->driver_features = ~0u;
623 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
624 (drm_core_check_feature(dev, DRIVER_RENDER) ||
625 drm_core_check_feature(dev, DRIVER_MODESET))) {
626 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
630 INIT_LIST_HEAD(&dev->filelist);
631 INIT_LIST_HEAD(&dev->filelist_internal);
632 INIT_LIST_HEAD(&dev->clientlist);
633 INIT_LIST_HEAD(&dev->vblank_event_list);
635 spin_lock_init(&dev->event_lock);
636 mutex_init(&dev->struct_mutex);
637 mutex_init(&dev->filelist_mutex);
638 mutex_init(&dev->clientlist_mutex);
639 mutex_init(&dev->master_mutex);
640 raw_spin_lock_init(&dev->mode_config.panic_lock);
642 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
646 inode = drm_fs_inode_new();
648 ret = PTR_ERR(inode);
649 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
653 dev->anon_inode = inode;
655 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
656 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
660 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
661 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
666 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
671 if (drm_core_check_feature(dev, DRIVER_GEM)) {
672 ret = drm_gem_init(dev);
674 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
679 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
685 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
686 accel_debugfs_init(dev);
688 drm_debugfs_dev_init(dev, drm_debugfs_root);
693 drm_managed_release(dev);
698 static void devm_drm_dev_init_release(void *data)
703 static int devm_drm_dev_init(struct device *parent,
704 struct drm_device *dev,
705 const struct drm_driver *driver)
709 ret = drm_dev_init(dev, driver, parent);
713 return devm_add_action_or_reset(parent,
714 devm_drm_dev_init_release, dev);
717 void *__devm_drm_dev_alloc(struct device *parent,
718 const struct drm_driver *driver,
719 size_t size, size_t offset)
722 struct drm_device *drm;
725 container = kzalloc(size, GFP_KERNEL);
727 return ERR_PTR(-ENOMEM);
729 drm = container + offset;
730 ret = devm_drm_dev_init(parent, drm, driver);
735 drmm_add_final_kfree(drm, container);
739 EXPORT_SYMBOL(__devm_drm_dev_alloc);
742 * drm_dev_alloc - Allocate new DRM device
743 * @driver: DRM driver to allocate device for
744 * @parent: Parent device object
746 * This is the deprecated version of devm_drm_dev_alloc(), which does not support
747 * subclassing through embedding the struct &drm_device in a driver private
748 * structure, and which does not support automatic cleanup through devres.
751 * Pointer to new DRM device, or ERR_PTR on failure.
753 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
754 struct device *parent)
756 struct drm_device *dev;
759 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
761 return ERR_PTR(-ENOMEM);
763 ret = drm_dev_init(dev, driver, parent);
769 drmm_add_final_kfree(dev, dev);
773 EXPORT_SYMBOL(drm_dev_alloc);
775 static void drm_dev_release(struct kref *ref)
777 struct drm_device *dev = container_of(ref, struct drm_device, ref);
779 /* Just in case register/unregister was never called */
780 drm_debugfs_dev_fini(dev);
782 if (dev->driver->release)
783 dev->driver->release(dev);
785 drm_managed_release(dev);
787 kfree(dev->managed.final_kfree);
791 * drm_dev_get - Take reference of a DRM device
792 * @dev: device to take reference of or NULL
794 * This increases the ref-count of @dev by one. You *must* already own a
795 * reference when calling this. Use drm_dev_put() to drop this reference
798 * This function never fails. However, this function does not provide *any*
799 * guarantee whether the device is alive or running. It only provides a
800 * reference to the object and the memory associated with it.
802 void drm_dev_get(struct drm_device *dev)
807 EXPORT_SYMBOL(drm_dev_get);
810 * drm_dev_put - Drop reference of a DRM device
811 * @dev: device to drop reference of or NULL
813 * This decreases the ref-count of @dev by one. The device is destroyed if the
814 * ref-count drops to zero.
816 void drm_dev_put(struct drm_device *dev)
819 kref_put(&dev->ref, drm_dev_release);
821 EXPORT_SYMBOL(drm_dev_put);
823 static int create_compat_control_link(struct drm_device *dev)
825 struct drm_minor *minor;
829 if (!drm_core_check_feature(dev, DRIVER_MODESET))
832 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
837 * Some existing userspace out there uses the existing of the controlD*
838 * sysfs files to figure out whether it's a modeset driver. It only does
839 * readdir, hence a symlink is sufficient (and the least confusing
840 * option). Otherwise controlD* is entirely unused.
842 * Old controlD chardev have been allocated in the range
845 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
849 ret = sysfs_create_link(minor->kdev->kobj.parent,
858 static void remove_compat_control_link(struct drm_device *dev)
860 struct drm_minor *minor;
863 if (!drm_core_check_feature(dev, DRIVER_MODESET))
866 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
870 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
874 sysfs_remove_link(minor->kdev->kobj.parent, name);
880 * drm_dev_register - Register DRM device
881 * @dev: Device to register
882 * @flags: Flags passed to the driver's .load() function
884 * Register the DRM device @dev with the system, advertise device to user-space
885 * and start normal device operation. @dev must be initialized via drm_dev_init()
888 * Never call this twice on any device!
890 * NOTE: To ensure backward compatibility with existing drivers method this
891 * function calls the &drm_driver.load method after registering the device
892 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
893 * therefore deprecated, drivers must perform all initialization before calling
894 * drm_dev_register().
897 * 0 on success, negative error code on failure.
899 int drm_dev_register(struct drm_device *dev, unsigned long flags)
901 const struct drm_driver *driver = dev->driver;
905 drm_mode_config_validate(dev);
907 WARN_ON(!dev->managed.final_kfree);
909 if (drm_dev_needs_global_mutex(dev))
910 mutex_lock(&drm_global_mutex);
912 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
913 accel_debugfs_register(dev);
915 drm_debugfs_dev_register(dev);
917 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
921 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
925 ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
929 ret = create_compat_control_link(dev);
933 dev->registered = true;
936 ret = driver->load(dev, flags);
941 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
942 ret = drm_modeset_register_all(dev);
946 drm_panic_register(dev);
948 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
949 driver->name, driver->major, driver->minor,
951 dev->dev ? dev_name(dev->dev) : "virtual device",
952 dev->primary ? dev->primary->index : dev->accel->index);
957 if (dev->driver->unload)
958 dev->driver->unload(dev);
960 remove_compat_control_link(dev);
961 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
962 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
963 drm_minor_unregister(dev, DRM_MINOR_RENDER);
965 if (drm_dev_needs_global_mutex(dev))
966 mutex_unlock(&drm_global_mutex);
969 EXPORT_SYMBOL(drm_dev_register);
972 * drm_dev_unregister - Unregister DRM device
973 * @dev: Device to unregister
975 * Unregister the DRM device from the system. This does the reverse of
976 * drm_dev_register() but does not deallocate the device. The caller must call
977 * drm_dev_put() to drop their final reference, unless it is managed with devres
978 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is
979 * already an unwind action registered.
981 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
982 * which can be called while there are still open users of @dev.
984 * This should be called first in the device teardown code to make sure
985 * userspace can't access the device instance any more.
987 void drm_dev_unregister(struct drm_device *dev)
989 dev->registered = false;
991 drm_panic_unregister(dev);
993 drm_client_dev_unregister(dev);
995 if (drm_core_check_feature(dev, DRIVER_MODESET))
996 drm_modeset_unregister_all(dev);
998 if (dev->driver->unload)
999 dev->driver->unload(dev);
1001 remove_compat_control_link(dev);
1002 drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1003 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1004 drm_minor_unregister(dev, DRM_MINOR_RENDER);
1005 drm_debugfs_dev_fini(dev);
1007 EXPORT_SYMBOL(drm_dev_unregister);
1011 * The DRM core module initializes all global DRM objects and makes them
1012 * available to drivers. Once setup, drivers can probe their respective
1014 * Currently, core management includes:
1015 * - The "DRM-Global" key/value database
1016 * - Global ID management for connectors
1017 * - DRM major number allocation
1018 * - DRM minor management
1020 * - DRM debugfs root
1022 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
1023 * interface registered on a DRM device, you can request minor numbers from DRM
1024 * core. DRM core takes care of major-number management and char-dev
1025 * registration. A stub ->open() callback forwards any open() requests to the
1029 static int drm_stub_open(struct inode *inode, struct file *filp)
1031 const struct file_operations *new_fops;
1032 struct drm_minor *minor;
1037 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1039 return PTR_ERR(minor);
1041 new_fops = fops_get(minor->dev->driver->fops);
1047 replace_fops(filp, new_fops);
1048 if (filp->f_op->open)
1049 err = filp->f_op->open(inode, filp);
1054 drm_minor_release(minor);
1059 static const struct file_operations drm_stub_fops = {
1060 .owner = THIS_MODULE,
1061 .open = drm_stub_open,
1062 .llseek = noop_llseek,
1065 static void drm_core_exit(void)
1067 drm_privacy_screen_lookup_exit();
1070 unregister_chrdev(DRM_MAJOR, "drm");
1071 debugfs_remove(drm_debugfs_root);
1072 drm_sysfs_destroy();
1073 WARN_ON(!xa_empty(&drm_minors_xa));
1074 drm_connector_ida_destroy();
1077 static int __init drm_core_init(void)
1081 drm_connector_ida_init();
1082 drm_memcpy_init_early();
1084 ret = drm_sysfs_init();
1086 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1090 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1092 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1096 ret = accel_core_init();
1102 drm_privacy_screen_lookup_init();
1104 drm_core_init_complete = true;
1106 DRM_DEBUG("Initialized\n");
1114 module_init(drm_core_init);
1115 module_exit(drm_core_exit);