2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
135 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
136 * in the operation structures but are done directly via the socketcall() multiplexor.
139 static const struct file_operations socket_file_ops = {
140 .owner = THIS_MODULE,
142 .read_iter = sock_read_iter,
143 .write_iter = sock_write_iter,
145 .unlocked_ioctl = sock_ioctl,
147 .compat_ioctl = compat_sock_ioctl,
150 .release = sock_close,
151 .fasync = sock_fasync,
152 .sendpage = sock_sendpage,
153 .splice_write = generic_splice_sendpage,
154 .splice_read = sock_splice_read,
158 * The protocol list. Each protocol is registered in here.
161 static DEFINE_SPINLOCK(net_family_lock);
162 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Move socket addresses back and forth across the kernel/user
167 * divide and look after the messy bits.
171 * move_addr_to_kernel - copy a socket address into kernel space
172 * @uaddr: Address in user space
173 * @kaddr: Address in kernel space
174 * @ulen: Length in user space
176 * The address is copied into kernel space. If the provided address is
177 * too long an error code of -EINVAL is returned. If the copy gives
178 * invalid addresses -EFAULT is returned. On a success 0 is returned.
181 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 if (copy_from_user(kaddr, uaddr, ulen))
189 return audit_sockaddr(ulen, kaddr);
193 * move_addr_to_user - copy an address to user space
194 * @kaddr: kernel space address
195 * @klen: length of address in kernel
196 * @uaddr: user space address
197 * @ulen: pointer to user length field
199 * The value pointed to by ulen on entry is the buffer length available.
200 * This is overwritten with the buffer space used. -EINVAL is returned
201 * if an overlong buffer is specified or a negative buffer size. -EFAULT
202 * is returned if either the buffer or the length field are not
204 * After copying the data up to the limit the user specifies, the true
205 * length of the data is written over the length limit the user
206 * specified. Zero is returned for a success.
209 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
210 void __user *uaddr, int __user *ulen)
215 BUG_ON(klen > sizeof(struct sockaddr_storage));
216 err = get_user(len, ulen);
224 if (audit_sockaddr(klen, kaddr))
226 if (copy_to_user(uaddr, kaddr, len))
230 * "fromlen shall refer to the value before truncation.."
233 return __put_user(klen, ulen);
236 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 static struct inode *sock_alloc_inode(struct super_block *sb)
240 struct socket_alloc *ei;
241 struct socket_wq *wq;
243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 kmem_cache_free(sock_inode_cachep, ei);
251 init_waitqueue_head(&wq->wait);
252 wq->fasync_list = NULL;
254 RCU_INIT_POINTER(ei->socket.wq, wq);
256 ei->socket.state = SS_UNCONNECTED;
257 ei->socket.flags = 0;
258 ei->socket.ops = NULL;
259 ei->socket.sk = NULL;
260 ei->socket.file = NULL;
262 return &ei->vfs_inode;
265 static void sock_destroy_inode(struct inode *inode)
267 struct socket_alloc *ei;
268 struct socket_wq *wq;
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kmem_cache_free(sock_inode_cachep, ei);
276 static void init_once(void *foo)
278 struct socket_alloc *ei = (struct socket_alloc *)foo;
280 inode_init_once(&ei->vfs_inode);
283 static void init_inodecache(void)
285 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 sizeof(struct socket_alloc),
288 (SLAB_HWCACHE_ALIGN |
289 SLAB_RECLAIM_ACCOUNT |
290 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 BUG_ON(sock_inode_cachep == NULL);
295 static const struct super_operations sockfs_ops = {
296 .alloc_inode = sock_alloc_inode,
297 .destroy_inode = sock_destroy_inode,
298 .statfs = simple_statfs,
302 * sockfs_dname() is called from d_path().
304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 d_inode(dentry)->i_ino);
310 static const struct dentry_operations sockfs_dentry_operations = {
311 .d_dname = sockfs_dname,
314 static int sockfs_xattr_get(const struct xattr_handler *handler,
315 struct dentry *dentry, struct inode *inode,
316 const char *suffix, void *value, size_t size)
319 if (dentry->d_name.len + 1 > size)
321 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 return dentry->d_name.len + 1;
326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 static const struct xattr_handler sockfs_xattr_handler = {
331 .name = XATTR_NAME_SOCKPROTONAME,
332 .get = sockfs_xattr_get,
335 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 struct dentry *dentry, struct inode *inode,
337 const char *suffix, const void *value,
338 size_t size, int flags)
340 /* Handled by LSM. */
344 static const struct xattr_handler sockfs_security_xattr_handler = {
345 .prefix = XATTR_SECURITY_PREFIX,
346 .set = sockfs_security_xattr_set,
349 static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 &sockfs_xattr_handler,
351 &sockfs_security_xattr_handler,
355 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
356 int flags, const char *dev_name, void *data)
358 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
359 sockfs_xattr_handlers,
360 &sockfs_dentry_operations, SOCKFS_MAGIC);
363 static struct vfsmount *sock_mnt __read_mostly;
365 static struct file_system_type sock_fs_type = {
367 .mount = sockfs_mount,
368 .kill_sb = kill_anon_super,
372 * Obtains the first available file descriptor and sets it up for use.
374 * These functions create file structures and maps them to fd space
375 * of the current process. On success it returns file descriptor
376 * and file struct implicitly stored in sock->file.
377 * Note that another thread may close file descriptor before we return
378 * from this function. We use the fact that now we do not refer
379 * to socket after mapping. If one day we will need it, this
380 * function will increment ref. count on file by 1.
382 * In any case returned fd MAY BE not valid!
383 * This race condition is unavoidable
384 * with shared fd spaces, we cannot solve it inside kernel,
385 * but we take care of internal coherence yet.
388 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
390 struct qstr name = { .name = "" };
396 name.len = strlen(name.name);
397 } else if (sock->sk) {
398 name.name = sock->sk->sk_prot_creator->name;
399 name.len = strlen(name.name);
401 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
402 if (unlikely(!path.dentry)) {
404 return ERR_PTR(-ENOMEM);
406 path.mnt = mntget(sock_mnt);
408 d_instantiate(path.dentry, SOCK_INODE(sock));
410 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
413 /* drop dentry, keep inode for a bit */
414 ihold(d_inode(path.dentry));
416 /* ... and now kill it properly */
422 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
423 file->private_data = sock;
426 EXPORT_SYMBOL(sock_alloc_file);
428 static int sock_map_fd(struct socket *sock, int flags)
430 struct file *newfile;
431 int fd = get_unused_fd_flags(flags);
432 if (unlikely(fd < 0)) {
437 newfile = sock_alloc_file(sock, flags, NULL);
438 if (likely(!IS_ERR(newfile))) {
439 fd_install(fd, newfile);
444 return PTR_ERR(newfile);
447 struct socket *sock_from_file(struct file *file, int *err)
449 if (file->f_op == &socket_file_ops)
450 return file->private_data; /* set in sock_map_fd */
455 EXPORT_SYMBOL(sock_from_file);
458 * sockfd_lookup - Go from a file number to its socket slot
460 * @err: pointer to an error code return
462 * The file handle passed in is locked and the socket it is bound
463 * to is returned. If an error occurs the err pointer is overwritten
464 * with a negative errno code and NULL is returned. The function checks
465 * for both invalid handles and passing a handle which is not a socket.
467 * On a success the socket object pointer is returned.
470 struct socket *sockfd_lookup(int fd, int *err)
481 sock = sock_from_file(file, err);
486 EXPORT_SYMBOL(sockfd_lookup);
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 struct fd f = fdget(fd);
495 sock = sock_from_file(f.file, err);
497 *fput_needed = f.flags;
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
511 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 int err = simple_setattr(dentry, iattr);
537 if (!err && (iattr->ia_valid & ATTR_UID)) {
538 struct socket *sock = SOCKET_I(d_inode(dentry));
541 sock->sk->sk_uid = iattr->ia_uid;
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
555 * sock_alloc - allocate a socket
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
562 struct socket *sock_alloc(void)
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
571 sock = SOCKET_I(inode);
573 inode->i_ino = get_next_ino();
574 inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 inode->i_uid = current_fsuid();
576 inode->i_gid = current_fsgid();
577 inode->i_op = &sockfs_inode_ops;
581 EXPORT_SYMBOL(sock_alloc);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 static void __sock_release(struct socket *sock, struct inode *inode)
595 struct module *owner = sock->ops->owner;
599 sock->ops->release(sock);
606 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
607 pr_err("%s: fasync list not empty!\n", __func__);
610 iput(SOCK_INODE(sock));
616 void sock_release(struct socket *sock)
618 __sock_release(sock, NULL);
620 EXPORT_SYMBOL(sock_release);
622 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
624 u8 flags = *tx_flags;
626 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
627 flags |= SKBTX_HW_TSTAMP;
629 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
630 flags |= SKBTX_SW_TSTAMP;
632 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
633 flags |= SKBTX_SCHED_TSTAMP;
637 EXPORT_SYMBOL(__sock_tx_timestamp);
639 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
641 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
642 BUG_ON(ret == -EIOCBQUEUED);
646 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
648 int err = security_socket_sendmsg(sock, msg,
651 return err ?: sock_sendmsg_nosec(sock, msg);
653 EXPORT_SYMBOL(sock_sendmsg);
655 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
656 struct kvec *vec, size_t num, size_t size)
658 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
659 return sock_sendmsg(sock, msg);
661 EXPORT_SYMBOL(kernel_sendmsg);
663 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
664 struct kvec *vec, size_t num, size_t size)
666 struct socket *sock = sk->sk_socket;
668 if (!sock->ops->sendmsg_locked)
669 return sock_no_sendmsg_locked(sk, msg, size);
671 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
673 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
675 EXPORT_SYMBOL(kernel_sendmsg_locked);
677 static bool skb_is_err_queue(const struct sk_buff *skb)
679 /* pkt_type of skbs enqueued on the error queue are set to
680 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
681 * in recvmsg, since skbs received on a local socket will never
682 * have a pkt_type of PACKET_OUTGOING.
684 return skb->pkt_type == PACKET_OUTGOING;
687 /* On transmit, software and hardware timestamps are returned independently.
688 * As the two skb clones share the hardware timestamp, which may be updated
689 * before the software timestamp is received, a hardware TX timestamp may be
690 * returned only if there is no software TX timestamp. Ignore false software
691 * timestamps, which may be made in the __sock_recv_timestamp() call when the
692 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
693 * hardware timestamp.
695 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
697 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
700 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
702 struct scm_ts_pktinfo ts_pktinfo;
703 struct net_device *orig_dev;
705 if (!skb_mac_header_was_set(skb))
708 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
711 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
713 ts_pktinfo.if_index = orig_dev->ifindex;
716 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
718 sizeof(ts_pktinfo), &ts_pktinfo);
722 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
724 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
727 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
728 struct scm_timestamping tss;
729 int empty = 1, false_tstamp = 0;
730 struct skb_shared_hwtstamps *shhwtstamps =
733 /* Race occurred between timestamp enabling and packet
734 receiving. Fill in the current time for now. */
735 if (need_software_tstamp && skb->tstamp == 0) {
736 __net_timestamp(skb);
740 if (need_software_tstamp) {
741 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
743 skb_get_timestamp(skb, &tv);
744 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
748 skb_get_timestampns(skb, &ts);
749 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
754 memset(&tss, 0, sizeof(tss));
755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
756 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
759 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
760 !skb_is_swtx_tstamp(skb, false_tstamp) &&
761 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
763 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
764 !skb_is_err_queue(skb))
765 put_ts_pktinfo(msg, skb);
768 put_cmsg(msg, SOL_SOCKET,
769 SCM_TIMESTAMPING, sizeof(tss), &tss);
771 if (skb_is_err_queue(skb) && skb->len &&
772 SKB_EXT_ERR(skb)->opt_stats)
773 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
774 skb->len, skb->data);
777 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
779 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
784 if (!sock_flag(sk, SOCK_WIFI_STATUS))
786 if (!skb->wifi_acked_valid)
789 ack = skb->wifi_acked;
791 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
793 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
795 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
798 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
799 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
800 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
803 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
806 sock_recv_timestamp(msg, sk, skb);
807 sock_recv_drops(msg, sk, skb);
809 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
811 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
814 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
817 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
819 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
821 return err ?: sock_recvmsg_nosec(sock, msg, flags);
823 EXPORT_SYMBOL(sock_recvmsg);
826 * kernel_recvmsg - Receive a message from a socket (kernel space)
827 * @sock: The socket to receive the message from
828 * @msg: Received message
829 * @vec: Input s/g array for message data
830 * @num: Size of input s/g array
831 * @size: Number of bytes to read
832 * @flags: Message flags (MSG_DONTWAIT, etc...)
834 * On return the msg structure contains the scatter/gather array passed in the
835 * vec argument. The array is modified so that it consists of the unfilled
836 * portion of the original array.
838 * The returned value is the total number of bytes received, or an error.
840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 struct kvec *vec, size_t num, size_t size, int flags)
843 mm_segment_t oldfs = get_fs();
846 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
848 result = sock_recvmsg(sock, msg, flags);
852 EXPORT_SYMBOL(kernel_recvmsg);
854 static ssize_t sock_sendpage(struct file *file, struct page *page,
855 int offset, size_t size, loff_t *ppos, int more)
860 sock = file->private_data;
862 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
863 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
866 return kernel_sendpage(sock, page, offset, size, flags);
869 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
870 struct pipe_inode_info *pipe, size_t len,
873 struct socket *sock = file->private_data;
875 if (unlikely(!sock->ops->splice_read))
878 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
881 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
883 struct file *file = iocb->ki_filp;
884 struct socket *sock = file->private_data;
885 struct msghdr msg = {.msg_iter = *to,
889 if (file->f_flags & O_NONBLOCK)
890 msg.msg_flags = MSG_DONTWAIT;
892 if (iocb->ki_pos != 0)
895 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
898 res = sock_recvmsg(sock, &msg, msg.msg_flags);
903 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
905 struct file *file = iocb->ki_filp;
906 struct socket *sock = file->private_data;
907 struct msghdr msg = {.msg_iter = *from,
911 if (iocb->ki_pos != 0)
914 if (file->f_flags & O_NONBLOCK)
915 msg.msg_flags = MSG_DONTWAIT;
917 if (sock->type == SOCK_SEQPACKET)
918 msg.msg_flags |= MSG_EOR;
920 res = sock_sendmsg(sock, &msg);
921 *from = msg.msg_iter;
926 * Atomic setting of ioctl hooks to avoid race
927 * with module unload.
930 static DEFINE_MUTEX(br_ioctl_mutex);
931 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
933 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
935 mutex_lock(&br_ioctl_mutex);
936 br_ioctl_hook = hook;
937 mutex_unlock(&br_ioctl_mutex);
939 EXPORT_SYMBOL(brioctl_set);
941 static DEFINE_MUTEX(vlan_ioctl_mutex);
942 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
944 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
946 mutex_lock(&vlan_ioctl_mutex);
947 vlan_ioctl_hook = hook;
948 mutex_unlock(&vlan_ioctl_mutex);
950 EXPORT_SYMBOL(vlan_ioctl_set);
952 static DEFINE_MUTEX(dlci_ioctl_mutex);
953 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
955 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
957 mutex_lock(&dlci_ioctl_mutex);
958 dlci_ioctl_hook = hook;
959 mutex_unlock(&dlci_ioctl_mutex);
961 EXPORT_SYMBOL(dlci_ioctl_set);
963 static long sock_do_ioctl(struct net *net, struct socket *sock,
964 unsigned int cmd, unsigned long arg)
967 void __user *argp = (void __user *)arg;
969 err = sock->ops->ioctl(sock, cmd, arg);
972 * If this ioctl is unknown try to hand it down
975 if (err != -ENOIOCTLCMD)
978 if (cmd == SIOCGIFCONF) {
980 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
983 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
985 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
990 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
992 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
993 if (!err && need_copyout)
994 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1001 * With an ioctl, arg may well be a user mode pointer, but we don't know
1002 * what to do with it - that's up to the protocol still.
1005 struct ns_common *get_net_ns(struct ns_common *ns)
1007 return &get_net(container_of(ns, struct net, ns))->ns;
1009 EXPORT_SYMBOL_GPL(get_net_ns);
1011 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1013 struct socket *sock;
1015 void __user *argp = (void __user *)arg;
1019 sock = file->private_data;
1022 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1025 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1027 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1028 if (!err && need_copyout)
1029 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1032 #ifdef CONFIG_WEXT_CORE
1033 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1034 err = wext_handle_ioctl(net, cmd, argp);
1041 if (get_user(pid, (int __user *)argp))
1043 err = f_setown(sock->file, pid, 1);
1047 err = put_user(f_getown(sock->file),
1048 (int __user *)argp);
1056 request_module("bridge");
1058 mutex_lock(&br_ioctl_mutex);
1060 err = br_ioctl_hook(net, cmd, argp);
1061 mutex_unlock(&br_ioctl_mutex);
1066 if (!vlan_ioctl_hook)
1067 request_module("8021q");
1069 mutex_lock(&vlan_ioctl_mutex);
1070 if (vlan_ioctl_hook)
1071 err = vlan_ioctl_hook(net, argp);
1072 mutex_unlock(&vlan_ioctl_mutex);
1077 if (!dlci_ioctl_hook)
1078 request_module("dlci");
1080 mutex_lock(&dlci_ioctl_mutex);
1081 if (dlci_ioctl_hook)
1082 err = dlci_ioctl_hook(cmd, argp);
1083 mutex_unlock(&dlci_ioctl_mutex);
1087 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1090 err = open_related_ns(&net->ns, get_net_ns);
1093 err = sock_do_ioctl(net, sock, cmd, arg);
1099 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1102 struct socket *sock = NULL;
1104 err = security_socket_create(family, type, protocol, 1);
1108 sock = sock_alloc();
1115 err = security_socket_post_create(sock, family, type, protocol, 1);
1127 EXPORT_SYMBOL(sock_create_lite);
1129 /* No kernel lock held - perfect */
1130 static __poll_t sock_poll(struct file *file, poll_table *wait)
1132 struct socket *sock = file->private_data;
1133 __poll_t events = poll_requested_events(wait), flag = 0;
1135 if (!sock->ops->poll)
1138 if (sk_can_busy_loop(sock->sk)) {
1139 /* poll once if requested by the syscall */
1140 if (events & POLL_BUSY_LOOP)
1141 sk_busy_loop(sock->sk, 1);
1143 /* if this socket can poll_ll, tell the system call */
1144 flag = POLL_BUSY_LOOP;
1147 return sock->ops->poll(file, sock, wait) | flag;
1150 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1152 struct socket *sock = file->private_data;
1154 return sock->ops->mmap(file, sock, vma);
1157 static int sock_close(struct inode *inode, struct file *filp)
1159 __sock_release(SOCKET_I(inode), inode);
1164 * Update the socket async list
1166 * Fasync_list locking strategy.
1168 * 1. fasync_list is modified only under process context socket lock
1169 * i.e. under semaphore.
1170 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1171 * or under socket lock
1174 static int sock_fasync(int fd, struct file *filp, int on)
1176 struct socket *sock = filp->private_data;
1177 struct sock *sk = sock->sk;
1178 struct socket_wq *wq;
1184 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1185 fasync_helper(fd, filp, on, &wq->fasync_list);
1187 if (!wq->fasync_list)
1188 sock_reset_flag(sk, SOCK_FASYNC);
1190 sock_set_flag(sk, SOCK_FASYNC);
1196 /* This function may be called only under rcu_lock */
1198 int sock_wake_async(struct socket_wq *wq, int how, int band)
1200 if (!wq || !wq->fasync_list)
1204 case SOCK_WAKE_WAITD:
1205 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1208 case SOCK_WAKE_SPACE:
1209 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1214 kill_fasync(&wq->fasync_list, SIGIO, band);
1217 kill_fasync(&wq->fasync_list, SIGURG, band);
1222 EXPORT_SYMBOL(sock_wake_async);
1224 int __sock_create(struct net *net, int family, int type, int protocol,
1225 struct socket **res, int kern)
1228 struct socket *sock;
1229 const struct net_proto_family *pf;
1232 * Check protocol is in range
1234 if (family < 0 || family >= NPROTO)
1235 return -EAFNOSUPPORT;
1236 if (type < 0 || type >= SOCK_MAX)
1241 This uglymoron is moved from INET layer to here to avoid
1242 deadlock in module load.
1244 if (family == PF_INET && type == SOCK_PACKET) {
1245 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1250 err = security_socket_create(family, type, protocol, kern);
1255 * Allocate the socket and allow the family to set things up. if
1256 * the protocol is 0, the family is instructed to select an appropriate
1259 sock = sock_alloc();
1261 net_warn_ratelimited("socket: no more sockets\n");
1262 return -ENFILE; /* Not exactly a match, but its the
1263 closest posix thing */
1268 #ifdef CONFIG_MODULES
1269 /* Attempt to load a protocol module if the find failed.
1271 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1272 * requested real, full-featured networking support upon configuration.
1273 * Otherwise module support will break!
1275 if (rcu_access_pointer(net_families[family]) == NULL)
1276 request_module("net-pf-%d", family);
1280 pf = rcu_dereference(net_families[family]);
1281 err = -EAFNOSUPPORT;
1286 * We will call the ->create function, that possibly is in a loadable
1287 * module, so we have to bump that loadable module refcnt first.
1289 if (!try_module_get(pf->owner))
1292 /* Now protected by module ref count */
1295 err = pf->create(net, sock, protocol, kern);
1297 goto out_module_put;
1300 * Now to bump the refcnt of the [loadable] module that owns this
1301 * socket at sock_release time we decrement its refcnt.
1303 if (!try_module_get(sock->ops->owner))
1304 goto out_module_busy;
1307 * Now that we're done with the ->create function, the [loadable]
1308 * module can have its refcnt decremented
1310 module_put(pf->owner);
1311 err = security_socket_post_create(sock, family, type, protocol, kern);
1313 goto out_sock_release;
1319 err = -EAFNOSUPPORT;
1322 module_put(pf->owner);
1329 goto out_sock_release;
1331 EXPORT_SYMBOL(__sock_create);
1333 int sock_create(int family, int type, int protocol, struct socket **res)
1335 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1337 EXPORT_SYMBOL(sock_create);
1339 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1341 return __sock_create(net, family, type, protocol, res, 1);
1343 EXPORT_SYMBOL(sock_create_kern);
1345 int __sys_socket(int family, int type, int protocol)
1348 struct socket *sock;
1351 /* Check the SOCK_* constants for consistency. */
1352 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1353 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1354 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1355 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1357 flags = type & ~SOCK_TYPE_MASK;
1358 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1360 type &= SOCK_TYPE_MASK;
1362 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1363 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1365 retval = sock_create(family, type, protocol, &sock);
1369 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1374 return __sys_socket(family, type, protocol);
1378 * Create a pair of connected sockets.
1381 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1383 struct socket *sock1, *sock2;
1385 struct file *newfile1, *newfile2;
1388 flags = type & ~SOCK_TYPE_MASK;
1389 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391 type &= SOCK_TYPE_MASK;
1393 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1394 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1397 * reserve descriptors and make sure we won't fail
1398 * to return them to userland.
1400 fd1 = get_unused_fd_flags(flags);
1401 if (unlikely(fd1 < 0))
1404 fd2 = get_unused_fd_flags(flags);
1405 if (unlikely(fd2 < 0)) {
1410 err = put_user(fd1, &usockvec[0]);
1414 err = put_user(fd2, &usockvec[1]);
1419 * Obtain the first socket and check if the underlying protocol
1420 * supports the socketpair call.
1423 err = sock_create(family, type, protocol, &sock1);
1424 if (unlikely(err < 0))
1427 err = sock_create(family, type, protocol, &sock2);
1428 if (unlikely(err < 0)) {
1429 sock_release(sock1);
1433 err = security_socket_socketpair(sock1, sock2);
1434 if (unlikely(err)) {
1435 sock_release(sock2);
1436 sock_release(sock1);
1440 err = sock1->ops->socketpair(sock1, sock2);
1441 if (unlikely(err < 0)) {
1442 sock_release(sock2);
1443 sock_release(sock1);
1447 newfile1 = sock_alloc_file(sock1, flags, NULL);
1448 if (IS_ERR(newfile1)) {
1449 err = PTR_ERR(newfile1);
1450 sock_release(sock2);
1454 newfile2 = sock_alloc_file(sock2, flags, NULL);
1455 if (IS_ERR(newfile2)) {
1456 err = PTR_ERR(newfile2);
1461 audit_fd_pair(fd1, fd2);
1463 fd_install(fd1, newfile1);
1464 fd_install(fd2, newfile2);
1473 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1474 int __user *, usockvec)
1476 return __sys_socketpair(family, type, protocol, usockvec);
1480 * Bind a name to a socket. Nothing much to do here since it's
1481 * the protocol's responsibility to handle the local address.
1483 * We move the socket address to kernel space before we call
1484 * the protocol layer (having also checked the address is ok).
1487 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1489 struct socket *sock;
1490 struct sockaddr_storage address;
1491 int err, fput_needed;
1493 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1495 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1497 err = security_socket_bind(sock,
1498 (struct sockaddr *)&address,
1501 err = sock->ops->bind(sock,
1505 fput_light(sock->file, fput_needed);
1510 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1512 return __sys_bind(fd, umyaddr, addrlen);
1516 * Perform a listen. Basically, we allow the protocol to do anything
1517 * necessary for a listen, and if that works, we mark the socket as
1518 * ready for listening.
1521 int __sys_listen(int fd, int backlog)
1523 struct socket *sock;
1524 int err, fput_needed;
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1530 if ((unsigned int)backlog > somaxconn)
1531 backlog = somaxconn;
1533 err = security_socket_listen(sock, backlog);
1535 err = sock->ops->listen(sock, backlog);
1537 fput_light(sock->file, fput_needed);
1542 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1544 return __sys_listen(fd, backlog);
1548 * For accept, we attempt to create a new socket, set up the link
1549 * with the client, wake up the client, then return the new
1550 * connected fd. We collect the address of the connector in kernel
1551 * space and move it to user at the very end. This is unclean because
1552 * we open the socket then return an error.
1554 * 1003.1g adds the ability to recvmsg() to query connection pending
1555 * status to recvmsg. We need to add that support in a way thats
1556 * clean when we restructure accept also.
1559 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1560 int __user *upeer_addrlen, int flags)
1562 struct socket *sock, *newsock;
1563 struct file *newfile;
1564 int err, len, newfd, fput_needed;
1565 struct sockaddr_storage address;
1567 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1571 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1573 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 newsock = sock_alloc();
1582 newsock->type = sock->type;
1583 newsock->ops = sock->ops;
1586 * We don't need try_module_get here, as the listening socket (sock)
1587 * has the protocol module (sock->ops->owner) held.
1589 __module_get(newsock->ops->owner);
1591 newfd = get_unused_fd_flags(flags);
1592 if (unlikely(newfd < 0)) {
1594 sock_release(newsock);
1597 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1598 if (IS_ERR(newfile)) {
1599 err = PTR_ERR(newfile);
1600 put_unused_fd(newfd);
1604 err = security_socket_accept(sock, newsock);
1608 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1612 if (upeer_sockaddr) {
1613 len = newsock->ops->getname(newsock,
1614 (struct sockaddr *)&address, 2);
1616 err = -ECONNABORTED;
1619 err = move_addr_to_user(&address,
1620 len, upeer_sockaddr, upeer_addrlen);
1625 /* File flags are not inherited via accept() unlike another OSes. */
1627 fd_install(newfd, newfile);
1631 fput_light(sock->file, fput_needed);
1636 put_unused_fd(newfd);
1640 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1641 int __user *, upeer_addrlen, int, flags)
1643 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1646 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1647 int __user *, upeer_addrlen)
1649 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1653 * Attempt to connect to a socket with the server address. The address
1654 * is in user space so we verify it is OK and move it to kernel space.
1656 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1659 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1660 * other SEQPACKET protocols that take time to connect() as it doesn't
1661 * include the -EINPROGRESS status for such sockets.
1664 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1666 struct socket *sock;
1667 struct sockaddr_storage address;
1668 int err, fput_needed;
1670 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1673 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1678 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1682 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1683 sock->file->f_flags);
1685 fput_light(sock->file, fput_needed);
1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1693 return __sys_connect(fd, uservaddr, addrlen);
1697 * Get the local address ('name') of a socket object. Move the obtained
1698 * name to user space.
1701 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1702 int __user *usockaddr_len)
1704 struct socket *sock;
1705 struct sockaddr_storage address;
1706 int err, fput_needed;
1708 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 err = security_socket_getsockname(sock);
1716 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1719 /* "err" is actually length in this case */
1720 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1723 fput_light(sock->file, fput_needed);
1728 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1729 int __user *, usockaddr_len)
1731 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1735 * Get the remote address ('name') of a socket object. Move the obtained
1736 * name to user space.
1739 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1740 int __user *usockaddr_len)
1742 struct socket *sock;
1743 struct sockaddr_storage address;
1744 int err, fput_needed;
1746 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1748 err = security_socket_getpeername(sock);
1750 fput_light(sock->file, fput_needed);
1754 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1756 /* "err" is actually length in this case */
1757 err = move_addr_to_user(&address, err, usockaddr,
1759 fput_light(sock->file, fput_needed);
1764 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1765 int __user *, usockaddr_len)
1767 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1771 * Send a datagram to a given address. We move the address into kernel
1772 * space and check the user space data area is readable before invoking
1775 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1776 struct sockaddr __user *addr, int addr_len)
1778 struct socket *sock;
1779 struct sockaddr_storage address;
1785 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1792 msg.msg_name = NULL;
1793 msg.msg_control = NULL;
1794 msg.msg_controllen = 0;
1795 msg.msg_namelen = 0;
1797 err = move_addr_to_kernel(addr, addr_len, &address);
1800 msg.msg_name = (struct sockaddr *)&address;
1801 msg.msg_namelen = addr_len;
1803 if (sock->file->f_flags & O_NONBLOCK)
1804 flags |= MSG_DONTWAIT;
1805 msg.msg_flags = flags;
1806 err = sock_sendmsg(sock, &msg);
1809 fput_light(sock->file, fput_needed);
1814 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1815 unsigned int, flags, struct sockaddr __user *, addr,
1818 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1822 * Send a datagram down a socket.
1825 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1826 unsigned int, flags)
1828 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1832 * Receive a frame from the socket and optionally record the address of the
1833 * sender. We verify the buffers are writable and if needed move the
1834 * sender address from kernel to user space.
1836 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1837 struct sockaddr __user *addr, int __user *addr_len)
1839 struct socket *sock;
1842 struct sockaddr_storage address;
1846 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 msg.msg_control = NULL;
1854 msg.msg_controllen = 0;
1855 /* Save some cycles and don't copy the address if not needed */
1856 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1857 /* We assume all kernel code knows the size of sockaddr_storage */
1858 msg.msg_namelen = 0;
1859 msg.msg_iocb = NULL;
1861 if (sock->file->f_flags & O_NONBLOCK)
1862 flags |= MSG_DONTWAIT;
1863 err = sock_recvmsg(sock, &msg, flags);
1865 if (err >= 0 && addr != NULL) {
1866 err2 = move_addr_to_user(&address,
1867 msg.msg_namelen, addr, addr_len);
1872 fput_light(sock->file, fput_needed);
1877 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1878 unsigned int, flags, struct sockaddr __user *, addr,
1879 int __user *, addr_len)
1881 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1885 * Receive a datagram from a socket.
1888 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1889 unsigned int, flags)
1891 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 * Set a socket option. Because we don't know the option lengths we have
1896 * to pass the user mode parameter for the protocols to sort out.
1899 static int __sys_setsockopt(int fd, int level, int optname,
1900 char __user *optval, int optlen)
1902 int err, fput_needed;
1903 struct socket *sock;
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 err = security_socket_setsockopt(sock, level, optname);
1914 if (level == SOL_SOCKET)
1916 sock_setsockopt(sock, level, optname, optval,
1920 sock->ops->setsockopt(sock, level, optname, optval,
1923 fput_light(sock->file, fput_needed);
1928 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1929 char __user *, optval, int, optlen)
1931 return __sys_setsockopt(fd, level, optname, optval, optlen);
1935 * Get a socket option. Because we don't know the option lengths we have
1936 * to pass a user mode parameter for the protocols to sort out.
1939 static int __sys_getsockopt(int fd, int level, int optname,
1940 char __user *optval, int __user *optlen)
1942 int err, fput_needed;
1943 struct socket *sock;
1945 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 err = security_socket_getsockopt(sock, level, optname);
1951 if (level == SOL_SOCKET)
1953 sock_getsockopt(sock, level, optname, optval,
1957 sock->ops->getsockopt(sock, level, optname, optval,
1960 fput_light(sock->file, fput_needed);
1965 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1966 char __user *, optval, int __user *, optlen)
1968 return __sys_getsockopt(fd, level, optname, optval, optlen);
1972 * Shutdown a socket.
1975 int __sys_shutdown(int fd, int how)
1977 int err, fput_needed;
1978 struct socket *sock;
1980 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1982 err = security_socket_shutdown(sock, how);
1984 err = sock->ops->shutdown(sock, how);
1985 fput_light(sock->file, fput_needed);
1990 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1992 return __sys_shutdown(fd, how);
1995 /* A couple of helpful macros for getting the address of the 32/64 bit
1996 * fields which are the same type (int / unsigned) on our platforms.
1998 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1999 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2000 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2002 struct used_address {
2003 struct sockaddr_storage name;
2004 unsigned int name_len;
2007 static int copy_msghdr_from_user(struct msghdr *kmsg,
2008 struct user_msghdr __user *umsg,
2009 struct sockaddr __user **save_addr,
2012 struct user_msghdr msg;
2015 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2018 kmsg->msg_control = (void __force *)msg.msg_control;
2019 kmsg->msg_controllen = msg.msg_controllen;
2020 kmsg->msg_flags = msg.msg_flags;
2022 kmsg->msg_namelen = msg.msg_namelen;
2024 kmsg->msg_namelen = 0;
2026 if (kmsg->msg_namelen < 0)
2029 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2030 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2033 *save_addr = msg.msg_name;
2035 if (msg.msg_name && kmsg->msg_namelen) {
2037 err = move_addr_to_kernel(msg.msg_name,
2044 kmsg->msg_name = NULL;
2045 kmsg->msg_namelen = 0;
2048 if (msg.msg_iovlen > UIO_MAXIOV)
2051 kmsg->msg_iocb = NULL;
2053 return import_iovec(save_addr ? READ : WRITE,
2054 msg.msg_iov, msg.msg_iovlen,
2055 UIO_FASTIOV, iov, &kmsg->msg_iter);
2058 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2059 struct msghdr *msg_sys, unsigned int flags,
2060 struct used_address *used_address,
2061 unsigned int allowed_msghdr_flags)
2063 struct compat_msghdr __user *msg_compat =
2064 (struct compat_msghdr __user *)msg;
2065 struct sockaddr_storage address;
2066 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2067 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2068 __aligned(sizeof(__kernel_size_t));
2069 /* 20 is size of ipv6_pktinfo */
2070 unsigned char *ctl_buf = ctl;
2074 msg_sys->msg_name = &address;
2076 if (MSG_CMSG_COMPAT & flags)
2077 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2079 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2085 if (msg_sys->msg_controllen > INT_MAX)
2087 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2088 ctl_len = msg_sys->msg_controllen;
2089 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2091 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2095 ctl_buf = msg_sys->msg_control;
2096 ctl_len = msg_sys->msg_controllen;
2097 } else if (ctl_len) {
2098 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2099 CMSG_ALIGN(sizeof(struct cmsghdr)));
2100 if (ctl_len > sizeof(ctl)) {
2101 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2102 if (ctl_buf == NULL)
2107 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2108 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2109 * checking falls down on this.
2111 if (copy_from_user(ctl_buf,
2112 (void __user __force *)msg_sys->msg_control,
2115 msg_sys->msg_control = ctl_buf;
2117 msg_sys->msg_flags = flags;
2119 if (sock->file->f_flags & O_NONBLOCK)
2120 msg_sys->msg_flags |= MSG_DONTWAIT;
2122 * If this is sendmmsg() and current destination address is same as
2123 * previously succeeded address, omit asking LSM's decision.
2124 * used_address->name_len is initialized to UINT_MAX so that the first
2125 * destination address never matches.
2127 if (used_address && msg_sys->msg_name &&
2128 used_address->name_len == msg_sys->msg_namelen &&
2129 !memcmp(&used_address->name, msg_sys->msg_name,
2130 used_address->name_len)) {
2131 err = sock_sendmsg_nosec(sock, msg_sys);
2134 err = sock_sendmsg(sock, msg_sys);
2136 * If this is sendmmsg() and sending to current destination address was
2137 * successful, remember it.
2139 if (used_address && err >= 0) {
2140 used_address->name_len = msg_sys->msg_namelen;
2141 if (msg_sys->msg_name)
2142 memcpy(&used_address->name, msg_sys->msg_name,
2143 used_address->name_len);
2148 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2155 * BSD sendmsg interface
2158 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2159 bool forbid_cmsg_compat)
2161 int fput_needed, err;
2162 struct msghdr msg_sys;
2163 struct socket *sock;
2165 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2168 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2174 fput_light(sock->file, fput_needed);
2179 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2181 return __sys_sendmsg(fd, msg, flags, true);
2185 * Linux sendmmsg interface
2188 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2189 unsigned int flags, bool forbid_cmsg_compat)
2191 int fput_needed, err, datagrams;
2192 struct socket *sock;
2193 struct mmsghdr __user *entry;
2194 struct compat_mmsghdr __user *compat_entry;
2195 struct msghdr msg_sys;
2196 struct used_address used_address;
2197 unsigned int oflags = flags;
2199 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2202 if (vlen > UIO_MAXIOV)
2207 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2211 used_address.name_len = UINT_MAX;
2213 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2217 while (datagrams < vlen) {
2218 if (datagrams == vlen - 1)
2221 if (MSG_CMSG_COMPAT & flags) {
2222 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2223 &msg_sys, flags, &used_address, MSG_EOR);
2226 err = __put_user(err, &compat_entry->msg_len);
2229 err = ___sys_sendmsg(sock,
2230 (struct user_msghdr __user *)entry,
2231 &msg_sys, flags, &used_address, MSG_EOR);
2234 err = put_user(err, &entry->msg_len);
2241 if (msg_data_left(&msg_sys))
2246 fput_light(sock->file, fput_needed);
2248 /* We only return an error if no datagrams were able to be sent */
2255 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2256 unsigned int, vlen, unsigned int, flags)
2258 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2261 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2262 struct msghdr *msg_sys, unsigned int flags, int nosec)
2264 struct compat_msghdr __user *msg_compat =
2265 (struct compat_msghdr __user *)msg;
2266 struct iovec iovstack[UIO_FASTIOV];
2267 struct iovec *iov = iovstack;
2268 unsigned long cmsg_ptr;
2272 /* kernel mode address */
2273 struct sockaddr_storage addr;
2275 /* user mode address pointers */
2276 struct sockaddr __user *uaddr;
2277 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2279 msg_sys->msg_name = &addr;
2281 if (MSG_CMSG_COMPAT & flags)
2282 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2284 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2288 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2289 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2291 /* We assume all kernel code knows the size of sockaddr_storage */
2292 msg_sys->msg_namelen = 0;
2294 if (sock->file->f_flags & O_NONBLOCK)
2295 flags |= MSG_DONTWAIT;
2296 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2301 if (uaddr != NULL) {
2302 err = move_addr_to_user(&addr,
2303 msg_sys->msg_namelen, uaddr,
2308 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2312 if (MSG_CMSG_COMPAT & flags)
2313 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2314 &msg_compat->msg_controllen);
2316 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2317 &msg->msg_controllen);
2328 * BSD recvmsg interface
2331 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2332 bool forbid_cmsg_compat)
2334 int fput_needed, err;
2335 struct msghdr msg_sys;
2336 struct socket *sock;
2338 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2341 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2345 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2347 fput_light(sock->file, fput_needed);
2352 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2353 unsigned int, flags)
2355 return __sys_recvmsg(fd, msg, flags, true);
2359 * Linux recvmmsg interface
2362 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2363 unsigned int flags, struct timespec *timeout)
2365 int fput_needed, err, datagrams;
2366 struct socket *sock;
2367 struct mmsghdr __user *entry;
2368 struct compat_mmsghdr __user *compat_entry;
2369 struct msghdr msg_sys;
2370 struct timespec64 end_time;
2371 struct timespec64 timeout64;
2374 poll_select_set_timeout(&end_time, timeout->tv_sec,
2380 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2384 if (likely(!(flags & MSG_ERRQUEUE))) {
2385 err = sock_error(sock->sk);
2393 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2395 while (datagrams < vlen) {
2397 * No need to ask LSM for more than the first datagram.
2399 if (MSG_CMSG_COMPAT & flags) {
2400 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2401 &msg_sys, flags & ~MSG_WAITFORONE,
2405 err = __put_user(err, &compat_entry->msg_len);
2408 err = ___sys_recvmsg(sock,
2409 (struct user_msghdr __user *)entry,
2410 &msg_sys, flags & ~MSG_WAITFORONE,
2414 err = put_user(err, &entry->msg_len);
2422 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2423 if (flags & MSG_WAITFORONE)
2424 flags |= MSG_DONTWAIT;
2427 ktime_get_ts64(&timeout64);
2428 *timeout = timespec64_to_timespec(
2429 timespec64_sub(end_time, timeout64));
2430 if (timeout->tv_sec < 0) {
2431 timeout->tv_sec = timeout->tv_nsec = 0;
2435 /* Timeout, return less than vlen datagrams */
2436 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2440 /* Out of band data, return right away */
2441 if (msg_sys.msg_flags & MSG_OOB)
2449 if (datagrams == 0) {
2455 * We may return less entries than requested (vlen) if the
2456 * sock is non block and there aren't enough datagrams...
2458 if (err != -EAGAIN) {
2460 * ... or if recvmsg returns an error after we
2461 * received some datagrams, where we record the
2462 * error to return on the next call or if the
2463 * app asks about it using getsockopt(SO_ERROR).
2465 sock->sk->sk_err = -err;
2468 fput_light(sock->file, fput_needed);
2473 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2474 unsigned int vlen, unsigned int flags,
2475 struct timespec __user *timeout)
2478 struct timespec timeout_sys;
2480 if (flags & MSG_CMSG_COMPAT)
2484 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2486 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2489 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2491 if (datagrams > 0 &&
2492 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2493 datagrams = -EFAULT;
2498 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2499 unsigned int, vlen, unsigned int, flags,
2500 struct timespec __user *, timeout)
2502 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2505 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2506 /* Argument list sizes for sys_socketcall */
2507 #define AL(x) ((x) * sizeof(unsigned long))
2508 static const unsigned char nargs[21] = {
2509 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2510 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2511 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2518 * System call vectors.
2520 * Argument checking cleaned up. Saved 20% in size.
2521 * This function doesn't need to set the kernel lock because
2522 * it is set by the callees.
2525 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2527 unsigned long a[AUDITSC_ARGS];
2528 unsigned long a0, a1;
2532 if (call < 1 || call > SYS_SENDMMSG)
2536 if (len > sizeof(a))
2539 /* copy_from_user should be SMP safe. */
2540 if (copy_from_user(a, args, len))
2543 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2552 err = __sys_socket(a0, a1, a[2]);
2555 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2558 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2561 err = __sys_listen(a0, a1);
2564 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2565 (int __user *)a[2], 0);
2567 case SYS_GETSOCKNAME:
2569 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2570 (int __user *)a[2]);
2572 case SYS_GETPEERNAME:
2574 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2575 (int __user *)a[2]);
2577 case SYS_SOCKETPAIR:
2578 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2581 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2585 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2586 (struct sockaddr __user *)a[4], a[5]);
2589 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2593 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2594 (struct sockaddr __user *)a[4],
2595 (int __user *)a[5]);
2598 err = __sys_shutdown(a0, a1);
2600 case SYS_SETSOCKOPT:
2601 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2604 case SYS_GETSOCKOPT:
2606 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2607 (int __user *)a[4]);
2610 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2614 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2618 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2622 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2623 a[3], (struct timespec __user *)a[4]);
2626 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2627 (int __user *)a[2], a[3]);
2636 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2639 * sock_register - add a socket protocol handler
2640 * @ops: description of protocol
2642 * This function is called by a protocol handler that wants to
2643 * advertise its address family, and have it linked into the
2644 * socket interface. The value ops->family corresponds to the
2645 * socket system call protocol family.
2647 int sock_register(const struct net_proto_family *ops)
2651 if (ops->family >= NPROTO) {
2652 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2656 spin_lock(&net_family_lock);
2657 if (rcu_dereference_protected(net_families[ops->family],
2658 lockdep_is_held(&net_family_lock)))
2661 rcu_assign_pointer(net_families[ops->family], ops);
2664 spin_unlock(&net_family_lock);
2666 pr_info("NET: Registered protocol family %d\n", ops->family);
2669 EXPORT_SYMBOL(sock_register);
2672 * sock_unregister - remove a protocol handler
2673 * @family: protocol family to remove
2675 * This function is called by a protocol handler that wants to
2676 * remove its address family, and have it unlinked from the
2677 * new socket creation.
2679 * If protocol handler is a module, then it can use module reference
2680 * counts to protect against new references. If protocol handler is not
2681 * a module then it needs to provide its own protection in
2682 * the ops->create routine.
2684 void sock_unregister(int family)
2686 BUG_ON(family < 0 || family >= NPROTO);
2688 spin_lock(&net_family_lock);
2689 RCU_INIT_POINTER(net_families[family], NULL);
2690 spin_unlock(&net_family_lock);
2694 pr_info("NET: Unregistered protocol family %d\n", family);
2696 EXPORT_SYMBOL(sock_unregister);
2698 bool sock_is_registered(int family)
2700 return family < NPROTO && rcu_access_pointer(net_families[family]);
2703 static int __init sock_init(void)
2707 * Initialize the network sysctl infrastructure.
2709 err = net_sysctl_init();
2714 * Initialize skbuff SLAB cache
2719 * Initialize the protocols module.
2724 err = register_filesystem(&sock_fs_type);
2727 sock_mnt = kern_mount(&sock_fs_type);
2728 if (IS_ERR(sock_mnt)) {
2729 err = PTR_ERR(sock_mnt);
2733 /* The real protocol initialization is performed in later initcalls.
2736 #ifdef CONFIG_NETFILTER
2737 err = netfilter_init();
2742 ptp_classifier_init();
2748 unregister_filesystem(&sock_fs_type);
2753 core_initcall(sock_init); /* early initcall */
2755 #ifdef CONFIG_PROC_FS
2756 void socket_seq_show(struct seq_file *seq)
2758 seq_printf(seq, "sockets: used %d\n",
2759 sock_inuse_get(seq->private));
2761 #endif /* CONFIG_PROC_FS */
2763 #ifdef CONFIG_COMPAT
2764 static int do_siocgstamp(struct net *net, struct socket *sock,
2765 unsigned int cmd, void __user *up)
2767 mm_segment_t old_fs = get_fs();
2772 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2775 err = compat_put_timeval(&ktv, up);
2780 static int do_siocgstampns(struct net *net, struct socket *sock,
2781 unsigned int cmd, void __user *up)
2783 mm_segment_t old_fs = get_fs();
2784 struct timespec kts;
2788 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2791 err = compat_put_timespec(&kts, up);
2796 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2798 struct compat_ifconf ifc32;
2802 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2805 ifc.ifc_len = ifc32.ifc_len;
2806 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2809 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2814 ifc32.ifc_len = ifc.ifc_len;
2815 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2821 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2823 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2824 bool convert_in = false, convert_out = false;
2825 size_t buf_size = 0;
2826 struct ethtool_rxnfc __user *rxnfc = NULL;
2828 u32 rule_cnt = 0, actual_rule_cnt;
2833 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2836 compat_rxnfc = compat_ptr(data);
2838 if (get_user(ethcmd, &compat_rxnfc->cmd))
2841 /* Most ethtool structures are defined without padding.
2842 * Unfortunately struct ethtool_rxnfc is an exception.
2847 case ETHTOOL_GRXCLSRLALL:
2848 /* Buffer size is variable */
2849 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2851 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2853 buf_size += rule_cnt * sizeof(u32);
2855 case ETHTOOL_GRXRINGS:
2856 case ETHTOOL_GRXCLSRLCNT:
2857 case ETHTOOL_GRXCLSRULE:
2858 case ETHTOOL_SRXCLSRLINS:
2861 case ETHTOOL_SRXCLSRLDEL:
2862 buf_size += sizeof(struct ethtool_rxnfc);
2864 rxnfc = compat_alloc_user_space(buf_size);
2868 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2871 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2874 /* We expect there to be holes between fs.m_ext and
2875 * fs.ring_cookie and at the end of fs, but nowhere else.
2877 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2878 sizeof(compat_rxnfc->fs.m_ext) !=
2879 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2880 sizeof(rxnfc->fs.m_ext));
2882 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2883 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2884 offsetof(struct ethtool_rxnfc, fs.location) -
2885 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2887 if (copy_in_user(rxnfc, compat_rxnfc,
2888 (void __user *)(&rxnfc->fs.m_ext + 1) -
2889 (void __user *)rxnfc) ||
2890 copy_in_user(&rxnfc->fs.ring_cookie,
2891 &compat_rxnfc->fs.ring_cookie,
2892 (void __user *)(&rxnfc->fs.location + 1) -
2893 (void __user *)&rxnfc->fs.ring_cookie) ||
2894 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2895 sizeof(rxnfc->rule_cnt)))
2899 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2904 if (copy_in_user(compat_rxnfc, rxnfc,
2905 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2906 (const void __user *)rxnfc) ||
2907 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2908 &rxnfc->fs.ring_cookie,
2909 (const void __user *)(&rxnfc->fs.location + 1) -
2910 (const void __user *)&rxnfc->fs.ring_cookie) ||
2911 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2912 sizeof(rxnfc->rule_cnt)))
2915 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2916 /* As an optimisation, we only copy the actual
2917 * number of rules that the underlying
2918 * function returned. Since Mallory might
2919 * change the rule count in user memory, we
2920 * check that it is less than the rule count
2921 * originally given (as the user buffer size),
2922 * which has been range-checked.
2924 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2926 if (actual_rule_cnt < rule_cnt)
2927 rule_cnt = actual_rule_cnt;
2928 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2929 &rxnfc->rule_locs[0],
2930 rule_cnt * sizeof(u32)))
2938 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2940 compat_uptr_t uptr32;
2945 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2948 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2951 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2952 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2954 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2956 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2957 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2963 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2964 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2965 struct compat_ifreq __user *u_ifreq32)
2970 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2972 if (get_user(data32, &u_ifreq32->ifr_data))
2974 ifreq.ifr_data = compat_ptr(data32);
2976 return dev_ioctl(net, cmd, &ifreq, NULL);
2979 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2980 struct compat_ifreq __user *uifr32)
2983 struct compat_ifmap __user *uifmap32;
2986 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2987 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2988 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2989 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2990 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2991 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2992 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2993 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2997 err = dev_ioctl(net, cmd, &ifr, NULL);
2999 if (cmd == SIOCGIFMAP && !err) {
3000 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3001 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3002 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3003 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3004 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3005 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3006 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3015 struct sockaddr rt_dst; /* target address */
3016 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3017 struct sockaddr rt_genmask; /* target network mask (IP) */
3018 unsigned short rt_flags;
3021 unsigned char rt_tos;
3022 unsigned char rt_class;
3024 short rt_metric; /* +1 for binary compatibility! */
3025 /* char * */ u32 rt_dev; /* forcing the device at add */
3026 u32 rt_mtu; /* per route MTU/Window */
3027 u32 rt_window; /* Window clamping */
3028 unsigned short rt_irtt; /* Initial RTT */
3031 struct in6_rtmsg32 {
3032 struct in6_addr rtmsg_dst;
3033 struct in6_addr rtmsg_src;
3034 struct in6_addr rtmsg_gateway;
3044 static int routing_ioctl(struct net *net, struct socket *sock,
3045 unsigned int cmd, void __user *argp)
3049 struct in6_rtmsg r6;
3053 mm_segment_t old_fs = get_fs();
3055 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3056 struct in6_rtmsg32 __user *ur6 = argp;
3057 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3058 3 * sizeof(struct in6_addr));
3059 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3060 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3061 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3062 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3063 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3064 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3065 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3069 struct rtentry32 __user *ur4 = argp;
3070 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3071 3 * sizeof(struct sockaddr));
3072 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3073 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3074 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3075 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3076 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3077 ret |= get_user(rtdev, &(ur4->rt_dev));
3079 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3080 r4.rt_dev = (char __user __force *)devname;
3094 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3101 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3102 * for some operations; this forces use of the newer bridge-utils that
3103 * use compatible ioctls
3105 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3109 if (get_user(tmp, argp))
3111 if (tmp == BRCTL_GET_VERSION)
3112 return BRCTL_VERSION + 1;
3116 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3117 unsigned int cmd, unsigned long arg)
3119 void __user *argp = compat_ptr(arg);
3120 struct sock *sk = sock->sk;
3121 struct net *net = sock_net(sk);
3123 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3124 return compat_ifr_data_ioctl(net, cmd, argp);
3129 return old_bridge_ioctl(argp);
3131 return compat_dev_ifconf(net, argp);
3133 return ethtool_ioctl(net, argp);
3135 return compat_siocwandev(net, argp);
3138 return compat_sioc_ifmap(net, cmd, argp);
3141 return routing_ioctl(net, sock, cmd, argp);
3143 return do_siocgstamp(net, sock, cmd, argp);
3145 return do_siocgstampns(net, sock, cmd, argp);
3146 case SIOCBONDSLAVEINFOQUERY:
3147 case SIOCBONDINFOQUERY:
3150 return compat_ifr_data_ioctl(net, cmd, argp);
3163 return sock_ioctl(file, cmd, arg);
3180 case SIOCSIFHWBROADCAST:
3182 case SIOCGIFBRDADDR:
3183 case SIOCSIFBRDADDR:
3184 case SIOCGIFDSTADDR:
3185 case SIOCSIFDSTADDR:
3186 case SIOCGIFNETMASK:
3187 case SIOCSIFNETMASK:
3202 case SIOCBONDENSLAVE:
3203 case SIOCBONDRELEASE:
3204 case SIOCBONDSETHWADDR:
3205 case SIOCBONDCHANGEACTIVE:
3207 return sock_do_ioctl(net, sock, cmd, arg);
3210 return -ENOIOCTLCMD;
3213 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3216 struct socket *sock = file->private_data;
3217 int ret = -ENOIOCTLCMD;
3224 if (sock->ops->compat_ioctl)
3225 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3227 if (ret == -ENOIOCTLCMD &&
3228 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3229 ret = compat_wext_handle_ioctl(net, cmd, arg);
3231 if (ret == -ENOIOCTLCMD)
3232 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3238 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3240 return sock->ops->bind(sock, addr, addrlen);
3242 EXPORT_SYMBOL(kernel_bind);
3244 int kernel_listen(struct socket *sock, int backlog)
3246 return sock->ops->listen(sock, backlog);
3248 EXPORT_SYMBOL(kernel_listen);
3250 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3252 struct sock *sk = sock->sk;
3255 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3260 err = sock->ops->accept(sock, *newsock, flags, true);
3262 sock_release(*newsock);
3267 (*newsock)->ops = sock->ops;
3268 __module_get((*newsock)->ops->owner);
3273 EXPORT_SYMBOL(kernel_accept);
3275 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3278 return sock->ops->connect(sock, addr, addrlen, flags);
3280 EXPORT_SYMBOL(kernel_connect);
3282 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3284 return sock->ops->getname(sock, addr, 0);
3286 EXPORT_SYMBOL(kernel_getsockname);
3288 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3290 return sock->ops->getname(sock, addr, 1);
3292 EXPORT_SYMBOL(kernel_getpeername);
3294 int kernel_getsockopt(struct socket *sock, int level, int optname,
3295 char *optval, int *optlen)
3297 mm_segment_t oldfs = get_fs();
3298 char __user *uoptval;
3299 int __user *uoptlen;
3302 uoptval = (char __user __force *) optval;
3303 uoptlen = (int __user __force *) optlen;
3306 if (level == SOL_SOCKET)
3307 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3309 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3314 EXPORT_SYMBOL(kernel_getsockopt);
3316 int kernel_setsockopt(struct socket *sock, int level, int optname,
3317 char *optval, unsigned int optlen)
3319 mm_segment_t oldfs = get_fs();
3320 char __user *uoptval;
3323 uoptval = (char __user __force *) optval;
3326 if (level == SOL_SOCKET)
3327 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3329 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3334 EXPORT_SYMBOL(kernel_setsockopt);
3336 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3337 size_t size, int flags)
3339 if (sock->ops->sendpage)
3340 return sock->ops->sendpage(sock, page, offset, size, flags);
3342 return sock_no_sendpage(sock, page, offset, size, flags);
3344 EXPORT_SYMBOL(kernel_sendpage);
3346 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3347 size_t size, int flags)
3349 struct socket *sock = sk->sk_socket;
3351 if (sock->ops->sendpage_locked)
3352 return sock->ops->sendpage_locked(sk, page, offset, size,
3355 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3357 EXPORT_SYMBOL(kernel_sendpage_locked);
3359 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3361 return sock->ops->shutdown(sock, how);
3363 EXPORT_SYMBOL(kernel_sock_shutdown);
3365 /* This routine returns the IP overhead imposed by a socket i.e.
3366 * the length of the underlying IP header, depending on whether
3367 * this is an IPv4 or IPv6 socket and the length from IP options turned
3368 * on at the socket. Assumes that the caller has a lock on the socket.
3370 u32 kernel_sock_ip_overhead(struct sock *sk)
3372 struct inet_sock *inet;
3373 struct ip_options_rcu *opt;
3375 #if IS_ENABLED(CONFIG_IPV6)
3376 struct ipv6_pinfo *np;
3377 struct ipv6_txoptions *optv6 = NULL;
3378 #endif /* IS_ENABLED(CONFIG_IPV6) */
3383 switch (sk->sk_family) {
3386 overhead += sizeof(struct iphdr);
3387 opt = rcu_dereference_protected(inet->inet_opt,
3388 sock_owned_by_user(sk));
3390 overhead += opt->opt.optlen;
3392 #if IS_ENABLED(CONFIG_IPV6)
3395 overhead += sizeof(struct ipv6hdr);
3397 optv6 = rcu_dereference_protected(np->opt,
3398 sock_owned_by_user(sk));
3400 overhead += (optv6->opt_flen + optv6->opt_nflen);
3402 #endif /* IS_ENABLED(CONFIG_IPV6) */
3403 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3407 EXPORT_SYMBOL(kernel_sock_ip_overhead);