1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
19 #define HTAB_CREATE_FLAG_MASK \
20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
23 #define BATCH_OPS(_name) \
25 _name##_map_lookup_batch, \
26 .map_lookup_and_delete_batch = \
27 _name##_map_lookup_and_delete_batch, \
29 generic_map_update_batch, \
31 generic_map_delete_batch
34 * The bucket lock has two protection scopes:
36 * 1) Serializing concurrent operations from BPF programs on different
39 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
41 * BPF programs can execute in any context including perf, kprobes and
42 * tracing. As there are almost no limits where perf, kprobes and tracing
43 * can be invoked from the lock operations need to be protected against
44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45 * the lock held section when functions which acquire this lock are invoked
46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47 * variable bpf_prog_active, which prevents BPF programs attached to perf
48 * events, kprobes and tracing to be invoked before the prior invocation
49 * from one of these contexts completed. sys_bpf() uses the same mechanism
50 * by pinning the task to the current CPU and incrementing the recursion
51 * protection across the map operation.
53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54 * operations like memory allocations (even with GFP_ATOMIC) from atomic
55 * contexts. This is required because even with GFP_ATOMIC the memory
56 * allocator calls into code paths which acquire locks with long held lock
57 * sections. To ensure the deterministic behaviour these locks are regular
58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59 * true atomic contexts on an RT kernel are the low level hardware
60 * handling, scheduling, low level interrupt handling, NMIs etc. None of
61 * these contexts should ever do memory allocations.
63 * As regular device interrupt handlers and soft interrupts are forced into
64 * thread context, the existing code which does
65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
68 * In theory the BPF locks could be converted to regular spinlocks as well,
69 * but the bucket locks and percpu_freelist locks can be taken from
70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73 * because there is no memory allocation within the lock held sections. However
74 * after hash map was fully converted to use bpf_mem_alloc, there will be
75 * non-synchronous memory allocation for non-preallocated hash map, so it is
76 * safe to always use raw spinlock for bucket lock.
79 struct hlist_nulls_head head;
80 raw_spinlock_t raw_lock;
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
88 struct bpf_mem_alloc ma;
89 struct bpf_mem_alloc pcpu_ma;
90 struct bucket *buckets;
93 struct pcpu_freelist freelist;
96 struct htab_elem *__percpu *extra_elems;
97 /* number of elements in non-preallocated hashtable are kept
98 * in either pcount or count
100 struct percpu_counter pcount;
102 bool use_percpu_counter;
103 u32 n_buckets; /* number of hash buckets */
104 u32 elem_size; /* size of each element in bytes */
106 struct lock_class_key lockdep_key;
107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
110 /* each htab element is struct htab_elem + key + value */
113 struct hlist_nulls_node hash_node;
117 struct pcpu_freelist_node fnode;
118 struct htab_elem *batch_flink;
123 /* pointer to per-cpu pointer */
125 struct bpf_lru_node lru_node;
128 char key[] __aligned(8);
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
136 static void htab_init_buckets(struct bpf_htab *htab)
140 for (i = 0; i < htab->n_buckets; i++) {
141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 lockdep_set_class(&htab->buckets[i].raw_lock,
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 struct bucket *b, u32 hash,
151 unsigned long *pflags)
155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
159 __this_cpu_dec(*(htab->map_locked[hash]));
164 raw_spin_lock_irqsave(&b->raw_lock, flags);
170 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
171 struct bucket *b, u32 hash,
174 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
175 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
176 __this_cpu_dec(*(htab->map_locked[hash]));
180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
182 static bool htab_is_lru(const struct bpf_htab *htab)
184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
188 static bool htab_is_percpu(const struct bpf_htab *htab)
190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
197 *(void __percpu **)(l->key + key_size) = pptr;
200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
202 return *(void __percpu **)(l->key + key_size);
205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
207 return *(void **)(l->key + roundup(map->key_size, 8));
210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
215 static bool htab_has_extra_elems(struct bpf_htab *htab)
217 return !htab_is_percpu(htab) && !htab_is_lru(htab);
220 static void htab_free_prealloced_timers(struct bpf_htab *htab)
222 u32 num_entries = htab->map.max_entries;
225 if (!btf_record_has_field(htab->map.record, BPF_TIMER))
227 if (htab_has_extra_elems(htab))
228 num_entries += num_possible_cpus();
230 for (i = 0; i < num_entries; i++) {
231 struct htab_elem *elem;
233 elem = get_htab_elem(htab, i);
234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
239 static void htab_free_prealloced_fields(struct bpf_htab *htab)
241 u32 num_entries = htab->map.max_entries;
244 if (IS_ERR_OR_NULL(htab->map.record))
246 if (htab_has_extra_elems(htab))
247 num_entries += num_possible_cpus();
248 for (i = 0; i < num_entries; i++) {
249 struct htab_elem *elem;
251 elem = get_htab_elem(htab, i);
252 if (htab_is_percpu(htab)) {
253 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
256 for_each_possible_cpu(cpu) {
257 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
261 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
268 static void htab_free_elems(struct bpf_htab *htab)
272 if (!htab_is_percpu(htab))
275 for (i = 0; i < htab->map.max_entries; i++) {
278 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
284 bpf_map_area_free(htab->elems);
287 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
288 * (bucket_lock). If both locks need to be acquired together, the lock
289 * order is always lru_lock -> bucket_lock and this only happens in
290 * bpf_lru_list.c logic. For example, certain code path of
291 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
292 * will acquire lru_lock first followed by acquiring bucket_lock.
294 * In hashtab.c, to avoid deadlock, lock acquisition of
295 * bucket_lock followed by lru_lock is not allowed. In such cases,
296 * bucket_lock needs to be released first before acquiring lru_lock.
298 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
301 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
305 l = container_of(node, struct htab_elem, lru_node);
306 memcpy(l->key, key, htab->map.key_size);
313 static int prealloc_init(struct bpf_htab *htab)
315 u32 num_entries = htab->map.max_entries;
316 int err = -ENOMEM, i;
318 if (htab_has_extra_elems(htab))
319 num_entries += num_possible_cpus();
321 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
322 htab->map.numa_node);
326 if (!htab_is_percpu(htab))
327 goto skip_percpu_elems;
329 for (i = 0; i < num_entries; i++) {
330 u32 size = round_up(htab->map.value_size, 8);
333 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
334 GFP_USER | __GFP_NOWARN);
337 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
343 if (htab_is_lru(htab))
344 err = bpf_lru_init(&htab->lru,
345 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
346 offsetof(struct htab_elem, hash) -
347 offsetof(struct htab_elem, lru_node),
348 htab_lru_map_delete_node,
351 err = pcpu_freelist_init(&htab->freelist);
356 if (htab_is_lru(htab))
357 bpf_lru_populate(&htab->lru, htab->elems,
358 offsetof(struct htab_elem, lru_node),
359 htab->elem_size, num_entries);
361 pcpu_freelist_populate(&htab->freelist,
362 htab->elems + offsetof(struct htab_elem, fnode),
363 htab->elem_size, num_entries);
368 htab_free_elems(htab);
372 static void prealloc_destroy(struct bpf_htab *htab)
374 htab_free_elems(htab);
376 if (htab_is_lru(htab))
377 bpf_lru_destroy(&htab->lru);
379 pcpu_freelist_destroy(&htab->freelist);
382 static int alloc_extra_elems(struct bpf_htab *htab)
384 struct htab_elem *__percpu *pptr, *l_new;
385 struct pcpu_freelist_node *l;
388 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
389 GFP_USER | __GFP_NOWARN);
393 for_each_possible_cpu(cpu) {
394 l = pcpu_freelist_pop(&htab->freelist);
395 /* pop will succeed, since prealloc_init()
396 * preallocated extra num_possible_cpus elements
398 l_new = container_of(l, struct htab_elem, fnode);
399 *per_cpu_ptr(pptr, cpu) = l_new;
401 htab->extra_elems = pptr;
405 /* Called from syscall */
406 static int htab_map_alloc_check(union bpf_attr *attr)
408 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
409 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
410 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
411 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
412 /* percpu_lru means each cpu has its own LRU list.
413 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
414 * the map's value itself is percpu. percpu_lru has
415 * nothing to do with the map's value.
417 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
418 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
419 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
420 int numa_node = bpf_map_attr_numa_node(attr);
422 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
423 offsetof(struct htab_elem, hash_node.pprev));
425 if (zero_seed && !capable(CAP_SYS_ADMIN))
426 /* Guard against local DoS, and discourage production use. */
429 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
430 !bpf_map_flags_access_ok(attr->map_flags))
433 if (!lru && percpu_lru)
436 if (lru && !prealloc)
439 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
442 /* check sanity of attributes.
443 * value_size == 0 may be allowed in the future to use map as a set
445 if (attr->max_entries == 0 || attr->key_size == 0 ||
446 attr->value_size == 0)
449 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
450 sizeof(struct htab_elem))
451 /* if key_size + value_size is bigger, the user space won't be
452 * able to access the elements via bpf syscall. This check
453 * also makes sure that the elem_size doesn't overflow and it's
454 * kmalloc-able later in htab_map_update_elem()
461 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
463 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
464 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
465 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
466 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
467 /* percpu_lru means each cpu has its own LRU list.
468 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
469 * the map's value itself is percpu. percpu_lru has
470 * nothing to do with the map's value.
472 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
473 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
474 struct bpf_htab *htab;
477 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
479 return ERR_PTR(-ENOMEM);
481 lockdep_register_key(&htab->lockdep_key);
483 bpf_map_init_from_attr(&htab->map, attr);
486 /* ensure each CPU's lru list has >=1 elements.
487 * since we are at it, make each lru list has the same
488 * number of elements.
490 htab->map.max_entries = roundup(attr->max_entries,
491 num_possible_cpus());
492 if (htab->map.max_entries < attr->max_entries)
493 htab->map.max_entries = rounddown(attr->max_entries,
494 num_possible_cpus());
497 /* hash table size must be power of 2 */
498 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
500 htab->elem_size = sizeof(struct htab_elem) +
501 round_up(htab->map.key_size, 8);
503 htab->elem_size += sizeof(void *);
505 htab->elem_size += round_up(htab->map.value_size, 8);
508 /* prevent zero size kmalloc and check for u32 overflow */
509 if (htab->n_buckets == 0 ||
510 htab->n_buckets > U32_MAX / sizeof(struct bucket))
514 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
515 sizeof(struct bucket),
516 htab->map.numa_node);
520 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
521 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
525 if (!htab->map_locked[i])
526 goto free_map_locked;
529 if (htab->map.map_flags & BPF_F_ZERO_SEED)
532 htab->hashrnd = get_random_u32();
534 htab_init_buckets(htab);
536 /* compute_batch_value() computes batch value as num_online_cpus() * 2
537 * and __percpu_counter_compare() needs
538 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
539 * for percpu_counter to be faster than atomic_t. In practice the average bpf
540 * hash map size is 10k, which means that a system with 64 cpus will fill
541 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
542 * define our own batch count as 32 then 10k hash map can be filled up to 80%:
543 * 10k - 8k > 32 _batch_ * 64 _cpus_
544 * and __percpu_counter_compare() will still be fast. At that point hash map
545 * collisions will dominate its performance anyway. Assume that hash map filled
546 * to 50+% isn't going to be O(1) and use the following formula to choose
547 * between percpu_counter and atomic_t.
549 #define PERCPU_COUNTER_BATCH 32
550 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
551 htab->use_percpu_counter = true;
553 if (htab->use_percpu_counter) {
554 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
556 goto free_map_locked;
560 err = prealloc_init(htab);
562 goto free_map_locked;
564 if (!percpu && !lru) {
565 /* lru itself can remove the least used element, so
566 * there is no need for an extra elem during map_update.
568 err = alloc_extra_elems(htab);
573 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
575 goto free_map_locked;
577 err = bpf_mem_alloc_init(&htab->pcpu_ma,
578 round_up(htab->map.value_size, 8), true);
580 goto free_map_locked;
587 prealloc_destroy(htab);
589 if (htab->use_percpu_counter)
590 percpu_counter_destroy(&htab->pcount);
591 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
592 free_percpu(htab->map_locked[i]);
593 bpf_map_area_free(htab->buckets);
594 bpf_mem_alloc_destroy(&htab->pcpu_ma);
595 bpf_mem_alloc_destroy(&htab->ma);
597 lockdep_unregister_key(&htab->lockdep_key);
598 bpf_map_area_free(htab);
602 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
604 if (likely(key_len % 4 == 0))
605 return jhash2(key, key_len / 4, hashrnd);
606 return jhash(key, key_len, hashrnd);
609 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
611 return &htab->buckets[hash & (htab->n_buckets - 1)];
614 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
616 return &__select_bucket(htab, hash)->head;
619 /* this lookup function can only be called with bucket lock taken */
620 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
621 void *key, u32 key_size)
623 struct hlist_nulls_node *n;
626 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
627 if (l->hash == hash && !memcmp(&l->key, key, key_size))
633 /* can be called without bucket lock. it will repeat the loop in
634 * the unlikely event when elements moved from one bucket into another
635 * while link list is being walked
637 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
639 u32 key_size, u32 n_buckets)
641 struct hlist_nulls_node *n;
645 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
646 if (l->hash == hash && !memcmp(&l->key, key, key_size))
649 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
655 /* Called from syscall or from eBPF program directly, so
656 * arguments have to match bpf_map_lookup_elem() exactly.
657 * The return value is adjusted by BPF instructions
658 * in htab_map_gen_lookup().
660 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
662 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
663 struct hlist_nulls_head *head;
667 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
668 !rcu_read_lock_bh_held());
670 key_size = map->key_size;
672 hash = htab_map_hash(key, key_size, htab->hashrnd);
674 head = select_bucket(htab, hash);
676 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
681 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
683 struct htab_elem *l = __htab_map_lookup_elem(map, key);
686 return l->key + round_up(map->key_size, 8);
691 /* inline bpf_map_lookup_elem() call.
694 * bpf_map_lookup_elem
695 * map->ops->map_lookup_elem
696 * htab_map_lookup_elem
697 * __htab_map_lookup_elem
700 * __htab_map_lookup_elem
702 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
704 struct bpf_insn *insn = insn_buf;
705 const int ret = BPF_REG_0;
707 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
708 (void *(*)(struct bpf_map *map, void *key))NULL));
709 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
710 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
711 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
712 offsetof(struct htab_elem, key) +
713 round_up(map->key_size, 8));
714 return insn - insn_buf;
717 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
718 void *key, const bool mark)
720 struct htab_elem *l = __htab_map_lookup_elem(map, key);
724 bpf_lru_node_set_ref(&l->lru_node);
725 return l->key + round_up(map->key_size, 8);
731 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
733 return __htab_lru_map_lookup_elem(map, key, true);
736 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
738 return __htab_lru_map_lookup_elem(map, key, false);
741 static int htab_lru_map_gen_lookup(struct bpf_map *map,
742 struct bpf_insn *insn_buf)
744 struct bpf_insn *insn = insn_buf;
745 const int ret = BPF_REG_0;
746 const int ref_reg = BPF_REG_1;
748 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
749 (void *(*)(struct bpf_map *map, void *key))NULL));
750 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
751 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
752 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
753 offsetof(struct htab_elem, lru_node) +
754 offsetof(struct bpf_lru_node, ref));
755 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
756 *insn++ = BPF_ST_MEM(BPF_B, ret,
757 offsetof(struct htab_elem, lru_node) +
758 offsetof(struct bpf_lru_node, ref),
760 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
761 offsetof(struct htab_elem, key) +
762 round_up(map->key_size, 8));
763 return insn - insn_buf;
766 static void check_and_free_fields(struct bpf_htab *htab,
767 struct htab_elem *elem)
769 if (htab_is_percpu(htab)) {
770 void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size);
773 for_each_possible_cpu(cpu)
774 bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu));
776 void *map_value = elem->key + round_up(htab->map.key_size, 8);
778 bpf_obj_free_fields(htab->map.record, map_value);
782 /* It is called from the bpf_lru_list when the LRU needs to delete
783 * older elements from the htab.
785 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
787 struct bpf_htab *htab = arg;
788 struct htab_elem *l = NULL, *tgt_l;
789 struct hlist_nulls_head *head;
790 struct hlist_nulls_node *n;
795 tgt_l = container_of(node, struct htab_elem, lru_node);
796 b = __select_bucket(htab, tgt_l->hash);
799 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
803 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
805 hlist_nulls_del_rcu(&l->hash_node);
806 check_and_free_fields(htab, l);
810 htab_unlock_bucket(htab, b, tgt_l->hash, flags);
815 /* Called from syscall */
816 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
818 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
819 struct hlist_nulls_head *head;
820 struct htab_elem *l, *next_l;
824 WARN_ON_ONCE(!rcu_read_lock_held());
826 key_size = map->key_size;
829 goto find_first_elem;
831 hash = htab_map_hash(key, key_size, htab->hashrnd);
833 head = select_bucket(htab, hash);
836 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
839 goto find_first_elem;
841 /* key was found, get next key in the same bucket */
842 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
843 struct htab_elem, hash_node);
846 /* if next elem in this hash list is non-zero, just return it */
847 memcpy(next_key, next_l->key, key_size);
851 /* no more elements in this hash list, go to the next bucket */
852 i = hash & (htab->n_buckets - 1);
856 /* iterate over buckets */
857 for (; i < htab->n_buckets; i++) {
858 head = select_bucket(htab, i);
860 /* pick first element in the bucket */
861 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
862 struct htab_elem, hash_node);
864 /* if it's not empty, just return it */
865 memcpy(next_key, next_l->key, key_size);
870 /* iterated over all buckets and all elements */
874 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
876 check_and_free_fields(htab, l);
877 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
878 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
879 bpf_mem_cache_free(&htab->ma, l);
882 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
884 struct bpf_map *map = &htab->map;
887 if (map->ops->map_fd_put_ptr) {
888 ptr = fd_htab_map_get_ptr(map, l);
889 map->ops->map_fd_put_ptr(ptr);
893 static bool is_map_full(struct bpf_htab *htab)
895 if (htab->use_percpu_counter)
896 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
897 PERCPU_COUNTER_BATCH) >= 0;
898 return atomic_read(&htab->count) >= htab->map.max_entries;
901 static void inc_elem_count(struct bpf_htab *htab)
903 if (htab->use_percpu_counter)
904 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
906 atomic_inc(&htab->count);
909 static void dec_elem_count(struct bpf_htab *htab)
911 if (htab->use_percpu_counter)
912 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
914 atomic_dec(&htab->count);
918 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
920 htab_put_fd_value(htab, l);
922 if (htab_is_prealloc(htab)) {
923 check_and_free_fields(htab, l);
924 __pcpu_freelist_push(&htab->freelist, &l->fnode);
926 dec_elem_count(htab);
927 htab_elem_free(htab, l);
931 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
932 void *value, bool onallcpus)
935 /* copy true value_size bytes */
936 copy_map_value(&htab->map, this_cpu_ptr(pptr), value);
938 u32 size = round_up(htab->map.value_size, 8);
941 for_each_possible_cpu(cpu) {
942 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value + off);
948 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
949 void *value, bool onallcpus)
951 /* When not setting the initial value on all cpus, zero-fill element
952 * values for other cpus. Otherwise, bpf program has no way to ensure
953 * known initial values for cpus other than current one
954 * (onallcpus=false always when coming from bpf prog).
957 int current_cpu = raw_smp_processor_id();
960 for_each_possible_cpu(cpu) {
961 if (cpu == current_cpu)
962 copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value);
963 else /* Since elem is preallocated, we cannot touch special fields */
964 zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu));
967 pcpu_copy_value(htab, pptr, value, onallcpus);
971 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
973 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
977 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
978 void *value, u32 key_size, u32 hash,
979 bool percpu, bool onallcpus,
980 struct htab_elem *old_elem)
982 u32 size = htab->map.value_size;
983 bool prealloc = htab_is_prealloc(htab);
984 struct htab_elem *l_new, **pl_new;
989 /* if we're updating the existing element,
990 * use per-cpu extra elems to avoid freelist_pop/push
992 pl_new = this_cpu_ptr(htab->extra_elems);
994 htab_put_fd_value(htab, old_elem);
997 struct pcpu_freelist_node *l;
999 l = __pcpu_freelist_pop(&htab->freelist);
1001 return ERR_PTR(-E2BIG);
1002 l_new = container_of(l, struct htab_elem, fnode);
1005 if (is_map_full(htab))
1007 /* when map is full and update() is replacing
1008 * old element, it's ok to allocate, since
1009 * old element will be freed immediately.
1010 * Otherwise return an error
1012 return ERR_PTR(-E2BIG);
1013 inc_elem_count(htab);
1014 l_new = bpf_mem_cache_alloc(&htab->ma);
1016 l_new = ERR_PTR(-ENOMEM);
1021 memcpy(l_new->key, key, key_size);
1024 pptr = htab_elem_get_ptr(l_new, key_size);
1026 /* alloc_percpu zero-fills */
1027 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1029 bpf_mem_cache_free(&htab->ma, l_new);
1030 l_new = ERR_PTR(-ENOMEM);
1033 l_new->ptr_to_pptr = pptr;
1034 pptr = *(void **)pptr;
1037 pcpu_init_value(htab, pptr, value, onallcpus);
1040 htab_elem_set_ptr(l_new, key_size, pptr);
1041 } else if (fd_htab_map_needs_adjust(htab)) {
1042 size = round_up(size, 8);
1043 memcpy(l_new->key + round_up(key_size, 8), value, size);
1045 copy_map_value(&htab->map,
1046 l_new->key + round_up(key_size, 8),
1053 dec_elem_count(htab);
1057 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1060 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1061 /* elem already exists */
1064 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1065 /* elem doesn't exist, cannot update it */
1071 /* Called from syscall or from eBPF program */
1072 static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1075 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1076 struct htab_elem *l_new = NULL, *l_old;
1077 struct hlist_nulls_head *head;
1078 unsigned long flags;
1083 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1087 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1088 !rcu_read_lock_bh_held());
1090 key_size = map->key_size;
1092 hash = htab_map_hash(key, key_size, htab->hashrnd);
1094 b = __select_bucket(htab, hash);
1097 if (unlikely(map_flags & BPF_F_LOCK)) {
1098 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1100 /* find an element without taking the bucket lock */
1101 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1103 ret = check_flags(htab, l_old, map_flags);
1107 /* grab the element lock and update value in place */
1108 copy_map_value_locked(map,
1109 l_old->key + round_up(key_size, 8),
1113 /* fall through, grab the bucket lock and lookup again.
1114 * 99.9% chance that the element won't be found,
1115 * but second lookup under lock has to be done.
1119 ret = htab_lock_bucket(htab, b, hash, &flags);
1123 l_old = lookup_elem_raw(head, hash, key, key_size);
1125 ret = check_flags(htab, l_old, map_flags);
1129 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1130 /* first lookup without the bucket lock didn't find the element,
1131 * but second lookup with the bucket lock found it.
1132 * This case is highly unlikely, but has to be dealt with:
1133 * grab the element lock in addition to the bucket lock
1134 * and update element in place
1136 copy_map_value_locked(map,
1137 l_old->key + round_up(key_size, 8),
1143 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1145 if (IS_ERR(l_new)) {
1146 /* all pre-allocated elements are in use or memory exhausted */
1147 ret = PTR_ERR(l_new);
1151 /* add new element to the head of the list, so that
1152 * concurrent search will find it before old elem
1154 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1156 hlist_nulls_del_rcu(&l_old->hash_node);
1157 if (!htab_is_prealloc(htab))
1158 free_htab_elem(htab, l_old);
1160 check_and_free_fields(htab, l_old);
1164 htab_unlock_bucket(htab, b, hash, flags);
1168 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1170 check_and_free_fields(htab, elem);
1171 bpf_lru_push_free(&htab->lru, &elem->lru_node);
1174 static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1177 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1178 struct htab_elem *l_new, *l_old = NULL;
1179 struct hlist_nulls_head *head;
1180 unsigned long flags;
1185 if (unlikely(map_flags > BPF_EXIST))
1189 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1190 !rcu_read_lock_bh_held());
1192 key_size = map->key_size;
1194 hash = htab_map_hash(key, key_size, htab->hashrnd);
1196 b = __select_bucket(htab, hash);
1199 /* For LRU, we need to alloc before taking bucket's
1200 * spinlock because getting free nodes from LRU may need
1201 * to remove older elements from htab and this removal
1202 * operation will need a bucket lock.
1204 l_new = prealloc_lru_pop(htab, key, hash);
1207 copy_map_value(&htab->map,
1208 l_new->key + round_up(map->key_size, 8), value);
1210 ret = htab_lock_bucket(htab, b, hash, &flags);
1212 goto err_lock_bucket;
1214 l_old = lookup_elem_raw(head, hash, key, key_size);
1216 ret = check_flags(htab, l_old, map_flags);
1220 /* add new element to the head of the list, so that
1221 * concurrent search will find it before old elem
1223 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1225 bpf_lru_node_set_ref(&l_new->lru_node);
1226 hlist_nulls_del_rcu(&l_old->hash_node);
1231 htab_unlock_bucket(htab, b, hash, flags);
1235 htab_lru_push_free(htab, l_new);
1237 htab_lru_push_free(htab, l_old);
1242 static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1243 void *value, u64 map_flags,
1246 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1247 struct htab_elem *l_new = NULL, *l_old;
1248 struct hlist_nulls_head *head;
1249 unsigned long flags;
1254 if (unlikely(map_flags > BPF_EXIST))
1258 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1259 !rcu_read_lock_bh_held());
1261 key_size = map->key_size;
1263 hash = htab_map_hash(key, key_size, htab->hashrnd);
1265 b = __select_bucket(htab, hash);
1268 ret = htab_lock_bucket(htab, b, hash, &flags);
1272 l_old = lookup_elem_raw(head, hash, key, key_size);
1274 ret = check_flags(htab, l_old, map_flags);
1279 /* per-cpu hash map can update value in-place */
1280 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1283 l_new = alloc_htab_elem(htab, key, value, key_size,
1284 hash, true, onallcpus, NULL);
1285 if (IS_ERR(l_new)) {
1286 ret = PTR_ERR(l_new);
1289 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1293 htab_unlock_bucket(htab, b, hash, flags);
1297 static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1298 void *value, u64 map_flags,
1301 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1302 struct htab_elem *l_new = NULL, *l_old;
1303 struct hlist_nulls_head *head;
1304 unsigned long flags;
1309 if (unlikely(map_flags > BPF_EXIST))
1313 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1314 !rcu_read_lock_bh_held());
1316 key_size = map->key_size;
1318 hash = htab_map_hash(key, key_size, htab->hashrnd);
1320 b = __select_bucket(htab, hash);
1323 /* For LRU, we need to alloc before taking bucket's
1324 * spinlock because LRU's elem alloc may need
1325 * to remove older elem from htab and this removal
1326 * operation will need a bucket lock.
1328 if (map_flags != BPF_EXIST) {
1329 l_new = prealloc_lru_pop(htab, key, hash);
1334 ret = htab_lock_bucket(htab, b, hash, &flags);
1336 goto err_lock_bucket;
1338 l_old = lookup_elem_raw(head, hash, key, key_size);
1340 ret = check_flags(htab, l_old, map_flags);
1345 bpf_lru_node_set_ref(&l_old->lru_node);
1347 /* per-cpu hash map can update value in-place */
1348 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1351 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1353 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1358 htab_unlock_bucket(htab, b, hash, flags);
1361 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1365 static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1366 void *value, u64 map_flags)
1368 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1371 static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1372 void *value, u64 map_flags)
1374 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1378 /* Called from syscall or from eBPF program */
1379 static long htab_map_delete_elem(struct bpf_map *map, void *key)
1381 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1382 struct hlist_nulls_head *head;
1384 struct htab_elem *l;
1385 unsigned long flags;
1389 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1390 !rcu_read_lock_bh_held());
1392 key_size = map->key_size;
1394 hash = htab_map_hash(key, key_size, htab->hashrnd);
1395 b = __select_bucket(htab, hash);
1398 ret = htab_lock_bucket(htab, b, hash, &flags);
1402 l = lookup_elem_raw(head, hash, key, key_size);
1405 hlist_nulls_del_rcu(&l->hash_node);
1406 free_htab_elem(htab, l);
1411 htab_unlock_bucket(htab, b, hash, flags);
1415 static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1417 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1418 struct hlist_nulls_head *head;
1420 struct htab_elem *l;
1421 unsigned long flags;
1425 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1426 !rcu_read_lock_bh_held());
1428 key_size = map->key_size;
1430 hash = htab_map_hash(key, key_size, htab->hashrnd);
1431 b = __select_bucket(htab, hash);
1434 ret = htab_lock_bucket(htab, b, hash, &flags);
1438 l = lookup_elem_raw(head, hash, key, key_size);
1441 hlist_nulls_del_rcu(&l->hash_node);
1445 htab_unlock_bucket(htab, b, hash, flags);
1447 htab_lru_push_free(htab, l);
1451 static void delete_all_elements(struct bpf_htab *htab)
1455 /* It's called from a worker thread, so disable migration here,
1456 * since bpf_mem_cache_free() relies on that.
1459 for (i = 0; i < htab->n_buckets; i++) {
1460 struct hlist_nulls_head *head = select_bucket(htab, i);
1461 struct hlist_nulls_node *n;
1462 struct htab_elem *l;
1464 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1465 hlist_nulls_del_rcu(&l->hash_node);
1466 htab_elem_free(htab, l);
1472 static void htab_free_malloced_timers(struct bpf_htab *htab)
1477 for (i = 0; i < htab->n_buckets; i++) {
1478 struct hlist_nulls_head *head = select_bucket(htab, i);
1479 struct hlist_nulls_node *n;
1480 struct htab_elem *l;
1482 hlist_nulls_for_each_entry(l, n, head, hash_node) {
1483 /* We only free timer on uref dropping to zero */
1484 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1491 static void htab_map_free_timers(struct bpf_map *map)
1493 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1495 /* We only free timer on uref dropping to zero */
1496 if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1498 if (!htab_is_prealloc(htab))
1499 htab_free_malloced_timers(htab);
1501 htab_free_prealloced_timers(htab);
1504 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1505 static void htab_map_free(struct bpf_map *map)
1507 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1510 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1511 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1512 * There is no need to synchronize_rcu() here to protect map elements.
1515 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1516 * underneath and is reponsible for waiting for callbacks to finish
1517 * during bpf_mem_alloc_destroy().
1519 if (!htab_is_prealloc(htab)) {
1520 delete_all_elements(htab);
1522 htab_free_prealloced_fields(htab);
1523 prealloc_destroy(htab);
1526 free_percpu(htab->extra_elems);
1527 bpf_map_area_free(htab->buckets);
1528 bpf_mem_alloc_destroy(&htab->pcpu_ma);
1529 bpf_mem_alloc_destroy(&htab->ma);
1530 if (htab->use_percpu_counter)
1531 percpu_counter_destroy(&htab->pcount);
1532 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1533 free_percpu(htab->map_locked[i]);
1534 lockdep_unregister_key(&htab->lockdep_key);
1535 bpf_map_area_free(htab);
1538 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1545 value = htab_map_lookup_elem(map, key);
1551 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1553 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1559 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1560 void *value, bool is_lru_map,
1561 bool is_percpu, u64 flags)
1563 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1564 struct hlist_nulls_head *head;
1565 unsigned long bflags;
1566 struct htab_elem *l;
1571 key_size = map->key_size;
1573 hash = htab_map_hash(key, key_size, htab->hashrnd);
1574 b = __select_bucket(htab, hash);
1577 ret = htab_lock_bucket(htab, b, hash, &bflags);
1581 l = lookup_elem_raw(head, hash, key, key_size);
1586 u32 roundup_value_size = round_up(map->value_size, 8);
1587 void __percpu *pptr;
1590 pptr = htab_elem_get_ptr(l, key_size);
1591 for_each_possible_cpu(cpu) {
1592 copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu));
1593 check_and_init_map_value(&htab->map, value + off);
1594 off += roundup_value_size;
1597 u32 roundup_key_size = round_up(map->key_size, 8);
1599 if (flags & BPF_F_LOCK)
1600 copy_map_value_locked(map, value, l->key +
1604 copy_map_value(map, value, l->key +
1606 /* Zeroing special fields in the temp buffer */
1607 check_and_init_map_value(map, value);
1610 hlist_nulls_del_rcu(&l->hash_node);
1612 free_htab_elem(htab, l);
1615 htab_unlock_bucket(htab, b, hash, bflags);
1617 if (is_lru_map && l)
1618 htab_lru_push_free(htab, l);
1623 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1624 void *value, u64 flags)
1626 return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1630 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1631 void *key, void *value,
1634 return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1638 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1639 void *value, u64 flags)
1641 return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1645 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1646 void *key, void *value,
1649 return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1654 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1655 const union bpf_attr *attr,
1656 union bpf_attr __user *uattr,
1657 bool do_delete, bool is_lru_map,
1660 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1661 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1662 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1663 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1664 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1665 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1666 u32 batch, max_count, size, bucket_size, map_id;
1667 struct htab_elem *node_to_free = NULL;
1668 u64 elem_map_flags, map_flags;
1669 struct hlist_nulls_head *head;
1670 struct hlist_nulls_node *n;
1671 unsigned long flags = 0;
1672 bool locked = false;
1673 struct htab_elem *l;
1677 elem_map_flags = attr->batch.elem_flags;
1678 if ((elem_map_flags & ~BPF_F_LOCK) ||
1679 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1682 map_flags = attr->batch.flags;
1686 max_count = attr->batch.count;
1690 if (put_user(0, &uattr->batch.count))
1694 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1697 if (batch >= htab->n_buckets)
1700 key_size = htab->map.key_size;
1701 roundup_key_size = round_up(htab->map.key_size, 8);
1702 value_size = htab->map.value_size;
1703 size = round_up(value_size, 8);
1705 value_size = size * num_possible_cpus();
1707 /* while experimenting with hash tables with sizes ranging from 10 to
1708 * 1000, it was observed that a bucket can have up to 5 entries.
1713 /* We cannot do copy_from_user or copy_to_user inside
1714 * the rcu_read_lock. Allocate enough space here.
1716 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1717 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1718 if (!keys || !values) {
1724 bpf_disable_instrumentation();
1729 b = &htab->buckets[batch];
1731 /* do not grab the lock unless need it (bucket_cnt > 0). */
1733 ret = htab_lock_bucket(htab, b, batch, &flags);
1736 bpf_enable_instrumentation();
1742 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1745 if (bucket_cnt && !locked) {
1750 if (bucket_cnt > (max_count - total)) {
1753 /* Note that since bucket_cnt > 0 here, it is implicit
1754 * that the locked was grabbed, so release it.
1756 htab_unlock_bucket(htab, b, batch, flags);
1758 bpf_enable_instrumentation();
1762 if (bucket_cnt > bucket_size) {
1763 bucket_size = bucket_cnt;
1764 /* Note that since bucket_cnt > 0 here, it is implicit
1765 * that the locked was grabbed, so release it.
1767 htab_unlock_bucket(htab, b, batch, flags);
1769 bpf_enable_instrumentation();
1775 /* Next block is only safe to run if you have grabbed the lock */
1779 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1780 memcpy(dst_key, l->key, key_size);
1784 void __percpu *pptr;
1786 pptr = htab_elem_get_ptr(l, map->key_size);
1787 for_each_possible_cpu(cpu) {
1788 copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu));
1789 check_and_init_map_value(&htab->map, dst_val + off);
1793 value = l->key + roundup_key_size;
1794 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1795 struct bpf_map **inner_map = value;
1797 /* Actual value is the id of the inner map */
1798 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1802 if (elem_map_flags & BPF_F_LOCK)
1803 copy_map_value_locked(map, dst_val, value,
1806 copy_map_value(map, dst_val, value);
1807 /* Zeroing special fields in the temp buffer */
1808 check_and_init_map_value(map, dst_val);
1811 hlist_nulls_del_rcu(&l->hash_node);
1813 /* bpf_lru_push_free() will acquire lru_lock, which
1814 * may cause deadlock. See comments in function
1815 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1816 * after releasing the bucket lock.
1819 l->batch_flink = node_to_free;
1822 free_htab_elem(htab, l);
1825 dst_key += key_size;
1826 dst_val += value_size;
1829 htab_unlock_bucket(htab, b, batch, flags);
1832 while (node_to_free) {
1834 node_to_free = node_to_free->batch_flink;
1835 htab_lru_push_free(htab, l);
1839 /* If we are not copying data, we can go to next bucket and avoid
1840 * unlocking the rcu.
1842 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1848 bpf_enable_instrumentation();
1849 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1850 key_size * bucket_cnt) ||
1851 copy_to_user(uvalues + total * value_size, values,
1852 value_size * bucket_cnt))) {
1857 total += bucket_cnt;
1859 if (batch >= htab->n_buckets) {
1869 /* copy # of entries and next batch */
1870 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1871 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1872 put_user(total, &uattr->batch.count))
1882 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1883 union bpf_attr __user *uattr)
1885 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1890 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1891 const union bpf_attr *attr,
1892 union bpf_attr __user *uattr)
1894 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1899 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1900 union bpf_attr __user *uattr)
1902 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1907 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1908 const union bpf_attr *attr,
1909 union bpf_attr __user *uattr)
1911 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1916 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1917 const union bpf_attr *attr,
1918 union bpf_attr __user *uattr)
1920 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1925 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1926 const union bpf_attr *attr,
1927 union bpf_attr __user *uattr)
1929 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1934 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1935 union bpf_attr __user *uattr)
1937 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1942 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1943 const union bpf_attr *attr,
1944 union bpf_attr __user *uattr)
1946 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1950 struct bpf_iter_seq_hash_map_info {
1951 struct bpf_map *map;
1952 struct bpf_htab *htab;
1953 void *percpu_value_buf; // non-zero means percpu hash
1958 static struct htab_elem *
1959 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1960 struct htab_elem *prev_elem)
1962 const struct bpf_htab *htab = info->htab;
1963 u32 skip_elems = info->skip_elems;
1964 u32 bucket_id = info->bucket_id;
1965 struct hlist_nulls_head *head;
1966 struct hlist_nulls_node *n;
1967 struct htab_elem *elem;
1971 if (bucket_id >= htab->n_buckets)
1974 /* try to find next elem in the same bucket */
1976 /* no update/deletion on this bucket, prev_elem should be still valid
1977 * and we won't skip elements.
1979 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1980 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1984 /* not found, unlock and go to the next bucket */
1985 b = &htab->buckets[bucket_id++];
1990 for (i = bucket_id; i < htab->n_buckets; i++) {
1991 b = &htab->buckets[i];
1996 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1997 if (count >= skip_elems) {
1998 info->bucket_id = i;
1999 info->skip_elems = count;
2009 info->bucket_id = i;
2010 info->skip_elems = 0;
2014 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2016 struct bpf_iter_seq_hash_map_info *info = seq->private;
2017 struct htab_elem *elem;
2019 elem = bpf_hash_map_seq_find_next(info, NULL);
2028 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2030 struct bpf_iter_seq_hash_map_info *info = seq->private;
2034 return bpf_hash_map_seq_find_next(info, v);
2037 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2039 struct bpf_iter_seq_hash_map_info *info = seq->private;
2040 u32 roundup_key_size, roundup_value_size;
2041 struct bpf_iter__bpf_map_elem ctx = {};
2042 struct bpf_map *map = info->map;
2043 struct bpf_iter_meta meta;
2044 int ret = 0, off = 0, cpu;
2045 struct bpf_prog *prog;
2046 void __percpu *pptr;
2049 prog = bpf_iter_get_info(&meta, elem == NULL);
2052 ctx.map = info->map;
2054 roundup_key_size = round_up(map->key_size, 8);
2055 ctx.key = elem->key;
2056 if (!info->percpu_value_buf) {
2057 ctx.value = elem->key + roundup_key_size;
2059 roundup_value_size = round_up(map->value_size, 8);
2060 pptr = htab_elem_get_ptr(elem, map->key_size);
2061 for_each_possible_cpu(cpu) {
2062 copy_map_value_long(map, info->percpu_value_buf + off,
2063 per_cpu_ptr(pptr, cpu));
2064 check_and_init_map_value(map, info->percpu_value_buf + off);
2065 off += roundup_value_size;
2067 ctx.value = info->percpu_value_buf;
2070 ret = bpf_iter_run_prog(prog, &ctx);
2076 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2078 return __bpf_hash_map_seq_show(seq, v);
2081 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2084 (void)__bpf_hash_map_seq_show(seq, NULL);
2089 static int bpf_iter_init_hash_map(void *priv_data,
2090 struct bpf_iter_aux_info *aux)
2092 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2093 struct bpf_map *map = aux->map;
2097 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2098 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2099 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2100 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2104 seq_info->percpu_value_buf = value_buf;
2107 bpf_map_inc_with_uref(map);
2108 seq_info->map = map;
2109 seq_info->htab = container_of(map, struct bpf_htab, map);
2113 static void bpf_iter_fini_hash_map(void *priv_data)
2115 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2117 bpf_map_put_with_uref(seq_info->map);
2118 kfree(seq_info->percpu_value_buf);
2121 static const struct seq_operations bpf_hash_map_seq_ops = {
2122 .start = bpf_hash_map_seq_start,
2123 .next = bpf_hash_map_seq_next,
2124 .stop = bpf_hash_map_seq_stop,
2125 .show = bpf_hash_map_seq_show,
2128 static const struct bpf_iter_seq_info iter_seq_info = {
2129 .seq_ops = &bpf_hash_map_seq_ops,
2130 .init_seq_private = bpf_iter_init_hash_map,
2131 .fini_seq_private = bpf_iter_fini_hash_map,
2132 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
2135 static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2136 void *callback_ctx, u64 flags)
2138 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2139 struct hlist_nulls_head *head;
2140 struct hlist_nulls_node *n;
2141 struct htab_elem *elem;
2142 u32 roundup_key_size;
2143 int i, num_elems = 0;
2144 void __percpu *pptr;
2153 is_percpu = htab_is_percpu(htab);
2155 roundup_key_size = round_up(map->key_size, 8);
2156 /* disable migration so percpu value prepared here will be the
2157 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2161 for (i = 0; i < htab->n_buckets; i++) {
2162 b = &htab->buckets[i];
2165 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2168 /* current cpu value for percpu map */
2169 pptr = htab_elem_get_ptr(elem, map->key_size);
2170 val = this_cpu_ptr(pptr);
2172 val = elem->key + roundup_key_size;
2175 ret = callback_fn((u64)(long)map, (u64)(long)key,
2176 (u64)(long)val, (u64)(long)callback_ctx, 0);
2177 /* return value: 0 - continue, 1 - stop and return */
2191 static u64 htab_map_mem_usage(const struct bpf_map *map)
2193 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2194 u32 value_size = round_up(htab->map.value_size, 8);
2195 bool prealloc = htab_is_prealloc(htab);
2196 bool percpu = htab_is_percpu(htab);
2197 bool lru = htab_is_lru(htab);
2199 u64 usage = sizeof(struct bpf_htab);
2201 usage += sizeof(struct bucket) * htab->n_buckets;
2202 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2204 num_entries = map->max_entries;
2205 if (htab_has_extra_elems(htab))
2206 num_entries += num_possible_cpus();
2208 usage += htab->elem_size * num_entries;
2211 usage += value_size * num_possible_cpus() * num_entries;
2213 usage += sizeof(struct htab_elem *) * num_possible_cpus();
2215 #define LLIST_NODE_SZ sizeof(struct llist_node)
2217 num_entries = htab->use_percpu_counter ?
2218 percpu_counter_sum(&htab->pcount) :
2219 atomic_read(&htab->count);
2220 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2222 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2223 usage += value_size * num_possible_cpus() * num_entries;
2229 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2230 const struct bpf_map_ops htab_map_ops = {
2231 .map_meta_equal = bpf_map_meta_equal,
2232 .map_alloc_check = htab_map_alloc_check,
2233 .map_alloc = htab_map_alloc,
2234 .map_free = htab_map_free,
2235 .map_get_next_key = htab_map_get_next_key,
2236 .map_release_uref = htab_map_free_timers,
2237 .map_lookup_elem = htab_map_lookup_elem,
2238 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2239 .map_update_elem = htab_map_update_elem,
2240 .map_delete_elem = htab_map_delete_elem,
2241 .map_gen_lookup = htab_map_gen_lookup,
2242 .map_seq_show_elem = htab_map_seq_show_elem,
2243 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2244 .map_for_each_callback = bpf_for_each_hash_elem,
2245 .map_mem_usage = htab_map_mem_usage,
2247 .map_btf_id = &htab_map_btf_ids[0],
2248 .iter_seq_info = &iter_seq_info,
2251 const struct bpf_map_ops htab_lru_map_ops = {
2252 .map_meta_equal = bpf_map_meta_equal,
2253 .map_alloc_check = htab_map_alloc_check,
2254 .map_alloc = htab_map_alloc,
2255 .map_free = htab_map_free,
2256 .map_get_next_key = htab_map_get_next_key,
2257 .map_release_uref = htab_map_free_timers,
2258 .map_lookup_elem = htab_lru_map_lookup_elem,
2259 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2260 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2261 .map_update_elem = htab_lru_map_update_elem,
2262 .map_delete_elem = htab_lru_map_delete_elem,
2263 .map_gen_lookup = htab_lru_map_gen_lookup,
2264 .map_seq_show_elem = htab_map_seq_show_elem,
2265 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2266 .map_for_each_callback = bpf_for_each_hash_elem,
2267 .map_mem_usage = htab_map_mem_usage,
2268 BATCH_OPS(htab_lru),
2269 .map_btf_id = &htab_map_btf_ids[0],
2270 .iter_seq_info = &iter_seq_info,
2273 /* Called from eBPF program */
2274 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2276 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2279 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2284 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2286 struct htab_elem *l;
2288 if (cpu >= nr_cpu_ids)
2291 l = __htab_map_lookup_elem(map, key);
2293 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2298 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2300 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2303 bpf_lru_node_set_ref(&l->lru_node);
2304 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2310 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2312 struct htab_elem *l;
2314 if (cpu >= nr_cpu_ids)
2317 l = __htab_map_lookup_elem(map, key);
2319 bpf_lru_node_set_ref(&l->lru_node);
2320 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2326 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2328 struct htab_elem *l;
2329 void __percpu *pptr;
2334 /* per_cpu areas are zero-filled and bpf programs can only
2335 * access 'value_size' of them, so copying rounded areas
2336 * will not leak any kernel data
2338 size = round_up(map->value_size, 8);
2340 l = __htab_map_lookup_elem(map, key);
2343 /* We do not mark LRU map element here in order to not mess up
2344 * eviction heuristics when user space does a map walk.
2346 pptr = htab_elem_get_ptr(l, map->key_size);
2347 for_each_possible_cpu(cpu) {
2348 copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu));
2349 check_and_init_map_value(map, value + off);
2358 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2361 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2365 if (htab_is_lru(htab))
2366 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2369 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2376 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2379 struct htab_elem *l;
2380 void __percpu *pptr;
2385 l = __htab_map_lookup_elem(map, key);
2391 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2392 seq_puts(m, ": {\n");
2393 pptr = htab_elem_get_ptr(l, map->key_size);
2394 for_each_possible_cpu(cpu) {
2395 seq_printf(m, "\tcpu%d: ", cpu);
2396 btf_type_seq_show(map->btf, map->btf_value_type_id,
2397 per_cpu_ptr(pptr, cpu), m);
2405 const struct bpf_map_ops htab_percpu_map_ops = {
2406 .map_meta_equal = bpf_map_meta_equal,
2407 .map_alloc_check = htab_map_alloc_check,
2408 .map_alloc = htab_map_alloc,
2409 .map_free = htab_map_free,
2410 .map_get_next_key = htab_map_get_next_key,
2411 .map_lookup_elem = htab_percpu_map_lookup_elem,
2412 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2413 .map_update_elem = htab_percpu_map_update_elem,
2414 .map_delete_elem = htab_map_delete_elem,
2415 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2416 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2417 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2418 .map_for_each_callback = bpf_for_each_hash_elem,
2419 .map_mem_usage = htab_map_mem_usage,
2420 BATCH_OPS(htab_percpu),
2421 .map_btf_id = &htab_map_btf_ids[0],
2422 .iter_seq_info = &iter_seq_info,
2425 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2426 .map_meta_equal = bpf_map_meta_equal,
2427 .map_alloc_check = htab_map_alloc_check,
2428 .map_alloc = htab_map_alloc,
2429 .map_free = htab_map_free,
2430 .map_get_next_key = htab_map_get_next_key,
2431 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2432 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2433 .map_update_elem = htab_lru_percpu_map_update_elem,
2434 .map_delete_elem = htab_lru_map_delete_elem,
2435 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2436 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2437 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2438 .map_for_each_callback = bpf_for_each_hash_elem,
2439 .map_mem_usage = htab_map_mem_usage,
2440 BATCH_OPS(htab_lru_percpu),
2441 .map_btf_id = &htab_map_btf_ids[0],
2442 .iter_seq_info = &iter_seq_info,
2445 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2447 if (attr->value_size != sizeof(u32))
2449 return htab_map_alloc_check(attr);
2452 static void fd_htab_map_free(struct bpf_map *map)
2454 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2455 struct hlist_nulls_node *n;
2456 struct hlist_nulls_head *head;
2457 struct htab_elem *l;
2460 for (i = 0; i < htab->n_buckets; i++) {
2461 head = select_bucket(htab, i);
2463 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2464 void *ptr = fd_htab_map_get_ptr(map, l);
2466 map->ops->map_fd_put_ptr(ptr);
2473 /* only called from syscall */
2474 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2479 if (!map->ops->map_fd_sys_lookup_elem)
2483 ptr = htab_map_lookup_elem(map, key);
2485 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2493 /* only called from syscall */
2494 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2495 void *key, void *value, u64 map_flags)
2499 u32 ufd = *(u32 *)value;
2501 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2503 return PTR_ERR(ptr);
2505 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2507 map->ops->map_fd_put_ptr(ptr);
2512 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2514 struct bpf_map *map, *inner_map_meta;
2516 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2517 if (IS_ERR(inner_map_meta))
2518 return inner_map_meta;
2520 map = htab_map_alloc(attr);
2522 bpf_map_meta_free(inner_map_meta);
2526 map->inner_map_meta = inner_map_meta;
2531 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2533 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2538 return READ_ONCE(*inner_map);
2541 static int htab_of_map_gen_lookup(struct bpf_map *map,
2542 struct bpf_insn *insn_buf)
2544 struct bpf_insn *insn = insn_buf;
2545 const int ret = BPF_REG_0;
2547 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2548 (void *(*)(struct bpf_map *map, void *key))NULL));
2549 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2550 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2551 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2552 offsetof(struct htab_elem, key) +
2553 round_up(map->key_size, 8));
2554 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2556 return insn - insn_buf;
2559 static void htab_of_map_free(struct bpf_map *map)
2561 bpf_map_meta_free(map->inner_map_meta);
2562 fd_htab_map_free(map);
2565 const struct bpf_map_ops htab_of_maps_map_ops = {
2566 .map_alloc_check = fd_htab_map_alloc_check,
2567 .map_alloc = htab_of_map_alloc,
2568 .map_free = htab_of_map_free,
2569 .map_get_next_key = htab_map_get_next_key,
2570 .map_lookup_elem = htab_of_map_lookup_elem,
2571 .map_delete_elem = htab_map_delete_elem,
2572 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2573 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2574 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2575 .map_gen_lookup = htab_of_map_gen_lookup,
2576 .map_check_btf = map_check_no_btf,
2577 .map_mem_usage = htab_map_mem_usage,
2579 .map_btf_id = &htab_map_btf_ids[0],