2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
148 static void sock_inuse_add(struct net *net, int val);
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
166 EXPORT_SYMBOL(sk_ns_capable);
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
177 bool sk_capable(const struct sock *sk, int cap)
179 return sk_ns_capable(sk, &init_user_ns, cap);
181 EXPORT_SYMBOL(sk_capable);
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
192 bool sk_net_capable(const struct sock *sk, int cap)
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
196 EXPORT_SYMBOL(sk_net_capable);
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
312 /* Run time adjustable parameters. */
313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314 EXPORT_SYMBOL(sysctl_wmem_max);
315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316 EXPORT_SYMBOL(sysctl_rmem_max);
317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
320 /* Maximal space eaten by iovec or ancillary data plus some space */
321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322 EXPORT_SYMBOL(sysctl_optmem_max);
324 int sysctl_tstamp_allow_data __read_mostly = 1;
326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327 EXPORT_SYMBOL_GPL(memalloc_socks);
330 * sk_set_memalloc - sets %SOCK_MEMALLOC
331 * @sk: socket to set it on
333 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334 * It's the responsibility of the admin to adjust min_free_kbytes
335 * to meet the requirements
337 void sk_set_memalloc(struct sock *sk)
339 sock_set_flag(sk, SOCK_MEMALLOC);
340 sk->sk_allocation |= __GFP_MEMALLOC;
341 static_key_slow_inc(&memalloc_socks);
343 EXPORT_SYMBOL_GPL(sk_set_memalloc);
345 void sk_clear_memalloc(struct sock *sk)
347 sock_reset_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation &= ~__GFP_MEMALLOC;
349 static_key_slow_dec(&memalloc_socks);
352 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353 * progress of swapping. SOCK_MEMALLOC may be cleared while
354 * it has rmem allocations due to the last swapfile being deactivated
355 * but there is a risk that the socket is unusable due to exceeding
356 * the rmem limits. Reclaim the reserves and obey rmem limits again.
360 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
365 unsigned int noreclaim_flag;
367 /* these should have been dropped before queueing */
368 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
370 noreclaim_flag = memalloc_noreclaim_save();
371 ret = sk->sk_backlog_rcv(sk, skb);
372 memalloc_noreclaim_restore(noreclaim_flag);
376 EXPORT_SYMBOL(__sk_backlog_rcv);
378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
382 if (optlen < sizeof(tv))
384 if (copy_from_user(&tv, optval, sizeof(tv)))
386 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
390 static int warned __read_mostly;
393 if (warned < 10 && net_ratelimit()) {
395 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396 __func__, current->comm, task_pid_nr(current));
400 *timeo_p = MAX_SCHEDULE_TIMEOUT;
401 if (tv.tv_sec == 0 && tv.tv_usec == 0)
403 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
408 static void sock_warn_obsolete_bsdism(const char *name)
411 static char warncomm[TASK_COMM_LEN];
412 if (strcmp(warncomm, current->comm) && warned < 5) {
413 strcpy(warncomm, current->comm);
414 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 static bool sock_needs_netstamp(const struct sock *sk)
422 switch (sk->sk_family) {
431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
433 if (sk->sk_flags & flags) {
434 sk->sk_flags &= ~flags;
435 if (sock_needs_netstamp(sk) &&
436 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437 net_disable_timestamp();
442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
445 struct sk_buff_head *list = &sk->sk_receive_queue;
447 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448 atomic_inc(&sk->sk_drops);
449 trace_sock_rcvqueue_full(sk, skb);
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
459 skb_set_owner_r(skb, sk);
461 /* we escape from rcu protected region, make sure we dont leak
466 spin_lock_irqsave(&list->lock, flags);
467 sock_skb_set_dropcount(sk, skb);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
475 EXPORT_SYMBOL(__sock_queue_rcv_skb);
477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
481 err = sk_filter(sk, skb);
485 return __sock_queue_rcv_skb(sk, skb);
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490 const int nested, unsigned int trim_cap, bool refcounted)
492 int rc = NET_RX_SUCCESS;
494 if (sk_filter_trim_cap(sk, skb, trim_cap))
495 goto discard_and_relse;
499 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500 atomic_inc(&sk->sk_drops);
501 goto discard_and_relse;
504 bh_lock_sock_nested(sk);
507 if (!sock_owned_by_user(sk)) {
509 * trylock + unlock semantics:
511 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
513 rc = sk_backlog_rcv(sk, skb);
515 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
518 atomic_inc(&sk->sk_drops);
519 goto discard_and_relse;
531 EXPORT_SYMBOL(__sk_receive_skb);
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
535 struct dst_entry *dst = __sk_dst_get(sk);
537 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538 sk_tx_queue_clear(sk);
539 sk->sk_dst_pending_confirm = 0;
540 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
547 EXPORT_SYMBOL(__sk_dst_check);
549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
551 struct dst_entry *dst = sk_dst_get(sk);
553 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
561 EXPORT_SYMBOL(sk_dst_check);
563 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
566 int ret = -ENOPROTOOPT;
567 #ifdef CONFIG_NETDEVICES
568 struct net *net = sock_net(sk);
569 char devname[IFNAMSIZ];
574 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 /* Bind this socket to a particular device like "eth0",
582 * as specified in the passed interface name. If the
583 * name is "" or the option length is zero the socket
586 if (optlen > IFNAMSIZ - 1)
587 optlen = IFNAMSIZ - 1;
588 memset(devname, 0, sizeof(devname));
591 if (copy_from_user(devname, optval, optlen))
595 if (devname[0] != '\0') {
596 struct net_device *dev;
599 dev = dev_get_by_name_rcu(net, devname);
601 index = dev->ifindex;
609 sk->sk_bound_dev_if = index;
621 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622 int __user *optlen, int len)
624 int ret = -ENOPROTOOPT;
625 #ifdef CONFIG_NETDEVICES
626 struct net *net = sock_net(sk);
627 char devname[IFNAMSIZ];
629 if (sk->sk_bound_dev_if == 0) {
638 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
642 len = strlen(devname) + 1;
645 if (copy_to_user(optval, devname, len))
650 if (put_user(len, optlen))
661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
664 sock_set_flag(sk, bit);
666 sock_reset_flag(sk, bit);
669 bool sk_mc_loop(struct sock *sk)
671 if (dev_recursion_level())
675 switch (sk->sk_family) {
677 return inet_sk(sk)->mc_loop;
678 #if IS_ENABLED(CONFIG_IPV6)
680 return inet6_sk(sk)->mc_loop;
686 EXPORT_SYMBOL(sk_mc_loop);
689 * This is meant for all protocols to use and covers goings on
690 * at the socket level. Everything here is generic.
693 int sock_setsockopt(struct socket *sock, int level, int optname,
694 char __user *optval, unsigned int optlen)
696 struct sock *sk = sock->sk;
703 * Options without arguments
706 if (optname == SO_BINDTODEVICE)
707 return sock_setbindtodevice(sk, optval, optlen);
709 if (optlen < sizeof(int))
712 if (get_user(val, (int __user *)optval))
715 valbool = val ? 1 : 0;
721 if (val && !capable(CAP_NET_ADMIN))
724 sock_valbool_flag(sk, SOCK_DBG, valbool);
727 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
730 sk->sk_reuseport = valbool;
739 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
742 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
745 /* Don't error on this BSD doesn't and if you think
746 * about it this is right. Otherwise apps have to
747 * play 'guess the biggest size' games. RCVBUF/SNDBUF
748 * are treated in BSD as hints
750 val = min_t(u32, val, sysctl_wmem_max);
752 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754 /* Wake up sending tasks if we upped the value. */
755 sk->sk_write_space(sk);
759 if (!capable(CAP_NET_ADMIN)) {
766 /* Don't error on this BSD doesn't and if you think
767 * about it this is right. Otherwise apps have to
768 * play 'guess the biggest size' games. RCVBUF/SNDBUF
769 * are treated in BSD as hints
771 val = min_t(u32, val, sysctl_rmem_max);
773 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
775 * We double it on the way in to account for
776 * "struct sk_buff" etc. overhead. Applications
777 * assume that the SO_RCVBUF setting they make will
778 * allow that much actual data to be received on that
781 * Applications are unaware that "struct sk_buff" and
782 * other overheads allocate from the receive buffer
783 * during socket buffer allocation.
785 * And after considering the possible alternatives,
786 * returning the value we actually used in getsockopt
787 * is the most desirable behavior.
789 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
793 if (!capable(CAP_NET_ADMIN)) {
800 if (sk->sk_prot->keepalive)
801 sk->sk_prot->keepalive(sk, valbool);
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
810 sk->sk_no_check_tx = valbool;
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
831 sock_reset_flag(sk, SOCK_LINGER);
833 #if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
844 sock_warn_obsolete_bsdism("setsockopt");
849 set_bit(SOCK_PASSCRED, &sock->flags);
851 clear_bit(SOCK_PASSCRED, &sock->flags);
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN)) {
884 sk->sk_tskey = tcp_sk(sk)->snd_una;
890 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
896 sk->sk_tsflags = val;
897 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898 sock_enable_timestamp(sk,
899 SOCK_TIMESTAMPING_RX_SOFTWARE);
901 sock_disable_timestamp(sk,
902 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
908 sk->sk_rcvlowat = val ? : 1;
912 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
916 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
919 case SO_ATTACH_FILTER:
921 if (optlen == sizeof(struct sock_fprog)) {
922 struct sock_fprog fprog;
925 if (copy_from_user(&fprog, optval, sizeof(fprog)))
928 ret = sk_attach_filter(&fprog, sk);
934 if (optlen == sizeof(u32)) {
938 if (copy_from_user(&ufd, optval, sizeof(ufd)))
941 ret = sk_attach_bpf(ufd, sk);
945 case SO_ATTACH_REUSEPORT_CBPF:
947 if (optlen == sizeof(struct sock_fprog)) {
948 struct sock_fprog fprog;
951 if (copy_from_user(&fprog, optval, sizeof(fprog)))
954 ret = sk_reuseport_attach_filter(&fprog, sk);
958 case SO_ATTACH_REUSEPORT_EBPF:
960 if (optlen == sizeof(u32)) {
964 if (copy_from_user(&ufd, optval, sizeof(ufd)))
967 ret = sk_reuseport_attach_bpf(ufd, sk);
971 case SO_DETACH_FILTER:
972 ret = sk_detach_filter(sk);
976 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
979 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
984 set_bit(SOCK_PASSSEC, &sock->flags);
986 clear_bit(SOCK_PASSSEC, &sock->flags);
989 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
996 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1000 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1004 if (sock->ops->set_peek_off)
1005 ret = sock->ops->set_peek_off(sk, val);
1011 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1014 case SO_SELECT_ERR_QUEUE:
1015 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1018 #ifdef CONFIG_NET_RX_BUSY_POLL
1020 /* allow unprivileged users to decrease the value */
1021 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1027 sk->sk_ll_usec = val;
1032 case SO_MAX_PACING_RATE:
1034 cmpxchg(&sk->sk_pacing_status,
1037 sk->sk_max_pacing_rate = val;
1038 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039 sk->sk_max_pacing_rate);
1042 case SO_INCOMING_CPU:
1043 sk->sk_incoming_cpu = val;
1048 dst_negative_advice(sk);
1052 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1054 else if (sk->sk_protocol != IPPROTO_TCP)
1056 else if (sk->sk_state != TCP_CLOSE)
1058 else if (val < 0 || val > 1)
1061 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1071 EXPORT_SYMBOL(sock_setsockopt);
1074 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1075 struct ucred *ucred)
1077 ucred->pid = pid_vnr(pid);
1078 ucred->uid = ucred->gid = -1;
1080 struct user_namespace *current_ns = current_user_ns();
1082 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1083 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1087 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1089 struct user_namespace *user_ns = current_user_ns();
1092 for (i = 0; i < src->ngroups; i++)
1093 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1099 int sock_getsockopt(struct socket *sock, int level, int optname,
1100 char __user *optval, int __user *optlen)
1102 struct sock *sk = sock->sk;
1111 int lv = sizeof(int);
1114 if (get_user(len, optlen))
1119 memset(&v, 0, sizeof(v));
1123 v.val = sock_flag(sk, SOCK_DBG);
1127 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1131 v.val = sock_flag(sk, SOCK_BROADCAST);
1135 v.val = sk->sk_sndbuf;
1139 v.val = sk->sk_rcvbuf;
1143 v.val = sk->sk_reuse;
1147 v.val = sk->sk_reuseport;
1151 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1155 v.val = sk->sk_type;
1159 v.val = sk->sk_protocol;
1163 v.val = sk->sk_family;
1167 v.val = -sock_error(sk);
1169 v.val = xchg(&sk->sk_err_soft, 0);
1173 v.val = sock_flag(sk, SOCK_URGINLINE);
1177 v.val = sk->sk_no_check_tx;
1181 v.val = sk->sk_priority;
1185 lv = sizeof(v.ling);
1186 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1187 v.ling.l_linger = sk->sk_lingertime / HZ;
1191 sock_warn_obsolete_bsdism("getsockopt");
1195 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1196 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1199 case SO_TIMESTAMPNS:
1200 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1203 case SO_TIMESTAMPING:
1204 v.val = sk->sk_tsflags;
1208 lv = sizeof(struct timeval);
1209 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1213 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1214 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1219 lv = sizeof(struct timeval);
1220 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1224 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1225 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1230 v.val = sk->sk_rcvlowat;
1238 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1243 struct ucred peercred;
1244 if (len > sizeof(peercred))
1245 len = sizeof(peercred);
1246 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1247 if (copy_to_user(optval, &peercred, len))
1256 if (!sk->sk_peer_cred)
1259 n = sk->sk_peer_cred->group_info->ngroups;
1260 if (len < n * sizeof(gid_t)) {
1261 len = n * sizeof(gid_t);
1262 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1264 len = n * sizeof(gid_t);
1266 ret = groups_to_user((gid_t __user *)optval,
1267 sk->sk_peer_cred->group_info);
1277 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1281 if (copy_to_user(optval, address, len))
1286 /* Dubious BSD thing... Probably nobody even uses it, but
1287 * the UNIX standard wants it for whatever reason... -DaveM
1290 v.val = sk->sk_state == TCP_LISTEN;
1294 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1298 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1301 v.val = sk->sk_mark;
1305 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1308 case SO_WIFI_STATUS:
1309 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1313 if (!sock->ops->set_peek_off)
1316 v.val = sk->sk_peek_off;
1319 v.val = sock_flag(sk, SOCK_NOFCS);
1322 case SO_BINDTODEVICE:
1323 return sock_getbindtodevice(sk, optval, optlen, len);
1326 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1332 case SO_LOCK_FILTER:
1333 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1336 case SO_BPF_EXTENSIONS:
1337 v.val = bpf_tell_extensions();
1340 case SO_SELECT_ERR_QUEUE:
1341 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1344 #ifdef CONFIG_NET_RX_BUSY_POLL
1346 v.val = sk->sk_ll_usec;
1350 case SO_MAX_PACING_RATE:
1351 v.val = sk->sk_max_pacing_rate;
1354 case SO_INCOMING_CPU:
1355 v.val = sk->sk_incoming_cpu;
1360 u32 meminfo[SK_MEMINFO_VARS];
1362 if (get_user(len, optlen))
1365 sk_get_meminfo(sk, meminfo);
1367 len = min_t(unsigned int, len, sizeof(meminfo));
1368 if (copy_to_user(optval, &meminfo, len))
1374 #ifdef CONFIG_NET_RX_BUSY_POLL
1375 case SO_INCOMING_NAPI_ID:
1376 v.val = READ_ONCE(sk->sk_napi_id);
1378 /* aggregate non-NAPI IDs down to 0 */
1379 if (v.val < MIN_NAPI_ID)
1389 v.val64 = sock_gen_cookie(sk);
1393 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1397 /* We implement the SO_SNDLOWAT etc to not be settable
1400 return -ENOPROTOOPT;
1405 if (copy_to_user(optval, &v, len))
1408 if (put_user(len, optlen))
1414 * Initialize an sk_lock.
1416 * (We also register the sk_lock with the lock validator.)
1418 static inline void sock_lock_init(struct sock *sk)
1420 if (sk->sk_kern_sock)
1421 sock_lock_init_class_and_name(
1423 af_family_kern_slock_key_strings[sk->sk_family],
1424 af_family_kern_slock_keys + sk->sk_family,
1425 af_family_kern_key_strings[sk->sk_family],
1426 af_family_kern_keys + sk->sk_family);
1428 sock_lock_init_class_and_name(
1430 af_family_slock_key_strings[sk->sk_family],
1431 af_family_slock_keys + sk->sk_family,
1432 af_family_key_strings[sk->sk_family],
1433 af_family_keys + sk->sk_family);
1437 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1438 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1439 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1441 static void sock_copy(struct sock *nsk, const struct sock *osk)
1443 #ifdef CONFIG_SECURITY_NETWORK
1444 void *sptr = nsk->sk_security;
1446 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1448 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1449 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1451 #ifdef CONFIG_SECURITY_NETWORK
1452 nsk->sk_security = sptr;
1453 security_sk_clone(osk, nsk);
1457 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1461 struct kmem_cache *slab;
1465 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1468 if (priority & __GFP_ZERO)
1469 sk_prot_clear_nulls(sk, prot->obj_size);
1471 sk = kmalloc(prot->obj_size, priority);
1474 if (security_sk_alloc(sk, family, priority))
1477 if (!try_module_get(prot->owner))
1479 sk_tx_queue_clear(sk);
1485 security_sk_free(sk);
1488 kmem_cache_free(slab, sk);
1494 static void sk_prot_free(struct proto *prot, struct sock *sk)
1496 struct kmem_cache *slab;
1497 struct module *owner;
1499 owner = prot->owner;
1502 cgroup_sk_free(&sk->sk_cgrp_data);
1503 mem_cgroup_sk_free(sk);
1504 security_sk_free(sk);
1506 kmem_cache_free(slab, sk);
1513 * sk_alloc - All socket objects are allocated here
1514 * @net: the applicable net namespace
1515 * @family: protocol family
1516 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517 * @prot: struct proto associated with this new sock instance
1518 * @kern: is this to be a kernel socket?
1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521 struct proto *prot, int kern)
1525 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1527 sk->sk_family = family;
1529 * See comment in struct sock definition to understand
1530 * why we need sk_prot_creator -acme
1532 sk->sk_prot = sk->sk_prot_creator = prot;
1533 sk->sk_kern_sock = kern;
1535 sk->sk_net_refcnt = kern ? 0 : 1;
1536 if (likely(sk->sk_net_refcnt)) {
1538 sock_inuse_add(net, 1);
1541 sock_net_set(sk, net);
1542 refcount_set(&sk->sk_wmem_alloc, 1);
1544 mem_cgroup_sk_alloc(sk);
1545 cgroup_sk_alloc(&sk->sk_cgrp_data);
1546 sock_update_classid(&sk->sk_cgrp_data);
1547 sock_update_netprioidx(&sk->sk_cgrp_data);
1552 EXPORT_SYMBOL(sk_alloc);
1554 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1555 * grace period. This is the case for UDP sockets and TCP listeners.
1557 static void __sk_destruct(struct rcu_head *head)
1559 struct sock *sk = container_of(head, struct sock, sk_rcu);
1560 struct sk_filter *filter;
1562 if (sk->sk_destruct)
1563 sk->sk_destruct(sk);
1565 filter = rcu_dereference_check(sk->sk_filter,
1566 refcount_read(&sk->sk_wmem_alloc) == 0);
1568 sk_filter_uncharge(sk, filter);
1569 RCU_INIT_POINTER(sk->sk_filter, NULL);
1571 if (rcu_access_pointer(sk->sk_reuseport_cb))
1572 reuseport_detach_sock(sk);
1574 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1576 if (atomic_read(&sk->sk_omem_alloc))
1577 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1578 __func__, atomic_read(&sk->sk_omem_alloc));
1580 if (sk->sk_frag.page) {
1581 put_page(sk->sk_frag.page);
1582 sk->sk_frag.page = NULL;
1585 if (sk->sk_peer_cred)
1586 put_cred(sk->sk_peer_cred);
1587 put_pid(sk->sk_peer_pid);
1588 if (likely(sk->sk_net_refcnt))
1589 put_net(sock_net(sk));
1590 sk_prot_free(sk->sk_prot_creator, sk);
1593 void sk_destruct(struct sock *sk)
1595 if (sock_flag(sk, SOCK_RCU_FREE))
1596 call_rcu(&sk->sk_rcu, __sk_destruct);
1598 __sk_destruct(&sk->sk_rcu);
1601 static void __sk_free(struct sock *sk)
1603 if (likely(sk->sk_net_refcnt))
1604 sock_inuse_add(sock_net(sk), -1);
1606 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1607 sock_diag_broadcast_destroy(sk);
1612 void sk_free(struct sock *sk)
1615 * We subtract one from sk_wmem_alloc and can know if
1616 * some packets are still in some tx queue.
1617 * If not null, sock_wfree() will call __sk_free(sk) later
1619 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1622 EXPORT_SYMBOL(sk_free);
1624 static void sk_init_common(struct sock *sk)
1626 skb_queue_head_init(&sk->sk_receive_queue);
1627 skb_queue_head_init(&sk->sk_write_queue);
1628 skb_queue_head_init(&sk->sk_error_queue);
1630 rwlock_init(&sk->sk_callback_lock);
1631 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1632 af_rlock_keys + sk->sk_family,
1633 af_family_rlock_key_strings[sk->sk_family]);
1634 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1635 af_wlock_keys + sk->sk_family,
1636 af_family_wlock_key_strings[sk->sk_family]);
1637 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1638 af_elock_keys + sk->sk_family,
1639 af_family_elock_key_strings[sk->sk_family]);
1640 lockdep_set_class_and_name(&sk->sk_callback_lock,
1641 af_callback_keys + sk->sk_family,
1642 af_family_clock_key_strings[sk->sk_family]);
1646 * sk_clone_lock - clone a socket, and lock its clone
1647 * @sk: the socket to clone
1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1650 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1652 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1655 bool is_charged = true;
1657 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1658 if (newsk != NULL) {
1659 struct sk_filter *filter;
1661 sock_copy(newsk, sk);
1663 newsk->sk_prot_creator = sk->sk_prot;
1666 if (likely(newsk->sk_net_refcnt))
1667 get_net(sock_net(newsk));
1668 sk_node_init(&newsk->sk_node);
1669 sock_lock_init(newsk);
1670 bh_lock_sock(newsk);
1671 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1672 newsk->sk_backlog.len = 0;
1674 atomic_set(&newsk->sk_rmem_alloc, 0);
1676 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1678 refcount_set(&newsk->sk_wmem_alloc, 1);
1679 atomic_set(&newsk->sk_omem_alloc, 0);
1680 sk_init_common(newsk);
1682 newsk->sk_dst_cache = NULL;
1683 newsk->sk_dst_pending_confirm = 0;
1684 newsk->sk_wmem_queued = 0;
1685 newsk->sk_forward_alloc = 0;
1686 atomic_set(&newsk->sk_drops, 0);
1687 newsk->sk_send_head = NULL;
1688 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1689 atomic_set(&newsk->sk_zckey, 0);
1691 sock_reset_flag(newsk, SOCK_DONE);
1692 mem_cgroup_sk_alloc(newsk);
1693 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1696 filter = rcu_dereference(sk->sk_filter);
1698 /* though it's an empty new sock, the charging may fail
1699 * if sysctl_optmem_max was changed between creation of
1700 * original socket and cloning
1702 is_charged = sk_filter_charge(newsk, filter);
1703 RCU_INIT_POINTER(newsk->sk_filter, filter);
1706 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1707 /* We need to make sure that we don't uncharge the new
1708 * socket if we couldn't charge it in the first place
1709 * as otherwise we uncharge the parent's filter.
1712 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1713 sk_free_unlock_clone(newsk);
1717 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1720 newsk->sk_err_soft = 0;
1721 newsk->sk_priority = 0;
1722 newsk->sk_incoming_cpu = raw_smp_processor_id();
1723 atomic64_set(&newsk->sk_cookie, 0);
1724 if (likely(newsk->sk_net_refcnt))
1725 sock_inuse_add(sock_net(newsk), 1);
1728 * Before updating sk_refcnt, we must commit prior changes to memory
1729 * (Documentation/RCU/rculist_nulls.txt for details)
1732 refcount_set(&newsk->sk_refcnt, 2);
1735 * Increment the counter in the same struct proto as the master
1736 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1737 * is the same as sk->sk_prot->socks, as this field was copied
1740 * This _changes_ the previous behaviour, where
1741 * tcp_create_openreq_child always was incrementing the
1742 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1743 * to be taken into account in all callers. -acme
1745 sk_refcnt_debug_inc(newsk);
1746 sk_set_socket(newsk, NULL);
1747 newsk->sk_wq = NULL;
1749 if (newsk->sk_prot->sockets_allocated)
1750 sk_sockets_allocated_inc(newsk);
1752 if (sock_needs_netstamp(sk) &&
1753 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1754 net_enable_timestamp();
1759 EXPORT_SYMBOL_GPL(sk_clone_lock);
1761 void sk_free_unlock_clone(struct sock *sk)
1763 /* It is still raw copy of parent, so invalidate
1764 * destructor and make plain sk_free() */
1765 sk->sk_destruct = NULL;
1769 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1771 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1775 sk_dst_set(sk, dst);
1776 sk->sk_route_caps = dst->dev->features;
1777 if (sk->sk_route_caps & NETIF_F_GSO)
1778 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1779 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1780 if (sk_can_gso(sk)) {
1781 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1782 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1784 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1785 sk->sk_gso_max_size = dst->dev->gso_max_size;
1786 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1789 sk->sk_gso_max_segs = max_segs;
1791 EXPORT_SYMBOL_GPL(sk_setup_caps);
1794 * Simple resource managers for sockets.
1799 * Write buffer destructor automatically called from kfree_skb.
1801 void sock_wfree(struct sk_buff *skb)
1803 struct sock *sk = skb->sk;
1804 unsigned int len = skb->truesize;
1806 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1808 * Keep a reference on sk_wmem_alloc, this will be released
1809 * after sk_write_space() call
1811 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1812 sk->sk_write_space(sk);
1816 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1817 * could not do because of in-flight packets
1819 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1822 EXPORT_SYMBOL(sock_wfree);
1824 /* This variant of sock_wfree() is used by TCP,
1825 * since it sets SOCK_USE_WRITE_QUEUE.
1827 void __sock_wfree(struct sk_buff *skb)
1829 struct sock *sk = skb->sk;
1831 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1835 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1840 if (unlikely(!sk_fullsock(sk))) {
1841 skb->destructor = sock_edemux;
1846 skb->destructor = sock_wfree;
1847 skb_set_hash_from_sk(skb, sk);
1849 * We used to take a refcount on sk, but following operation
1850 * is enough to guarantee sk_free() wont free this sock until
1851 * all in-flight packets are completed
1853 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1855 EXPORT_SYMBOL(skb_set_owner_w);
1857 /* This helper is used by netem, as it can hold packets in its
1858 * delay queue. We want to allow the owner socket to send more
1859 * packets, as if they were already TX completed by a typical driver.
1860 * But we also want to keep skb->sk set because some packet schedulers
1861 * rely on it (sch_fq for example).
1863 void skb_orphan_partial(struct sk_buff *skb)
1865 if (skb_is_tcp_pure_ack(skb))
1868 if (skb->destructor == sock_wfree
1870 || skb->destructor == tcp_wfree
1873 struct sock *sk = skb->sk;
1875 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1876 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1877 skb->destructor = sock_efree;
1883 EXPORT_SYMBOL(skb_orphan_partial);
1886 * Read buffer destructor automatically called from kfree_skb.
1888 void sock_rfree(struct sk_buff *skb)
1890 struct sock *sk = skb->sk;
1891 unsigned int len = skb->truesize;
1893 atomic_sub(len, &sk->sk_rmem_alloc);
1894 sk_mem_uncharge(sk, len);
1896 EXPORT_SYMBOL(sock_rfree);
1899 * Buffer destructor for skbs that are not used directly in read or write
1900 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1902 void sock_efree(struct sk_buff *skb)
1906 EXPORT_SYMBOL(sock_efree);
1908 kuid_t sock_i_uid(struct sock *sk)
1912 read_lock_bh(&sk->sk_callback_lock);
1913 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1914 read_unlock_bh(&sk->sk_callback_lock);
1917 EXPORT_SYMBOL(sock_i_uid);
1919 unsigned long sock_i_ino(struct sock *sk)
1923 read_lock_bh(&sk->sk_callback_lock);
1924 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1925 read_unlock_bh(&sk->sk_callback_lock);
1928 EXPORT_SYMBOL(sock_i_ino);
1931 * Allocate a skb from the socket's send buffer.
1933 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1936 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1937 struct sk_buff *skb = alloc_skb(size, priority);
1939 skb_set_owner_w(skb, sk);
1945 EXPORT_SYMBOL(sock_wmalloc);
1947 static void sock_ofree(struct sk_buff *skb)
1949 struct sock *sk = skb->sk;
1951 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1954 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1957 struct sk_buff *skb;
1959 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1960 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1964 skb = alloc_skb(size, priority);
1968 atomic_add(skb->truesize, &sk->sk_omem_alloc);
1970 skb->destructor = sock_ofree;
1975 * Allocate a memory block from the socket's option memory buffer.
1977 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1979 if ((unsigned int)size <= sysctl_optmem_max &&
1980 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1982 /* First do the add, to avoid the race if kmalloc
1985 atomic_add(size, &sk->sk_omem_alloc);
1986 mem = kmalloc(size, priority);
1989 atomic_sub(size, &sk->sk_omem_alloc);
1993 EXPORT_SYMBOL(sock_kmalloc);
1995 /* Free an option memory block. Note, we actually want the inline
1996 * here as this allows gcc to detect the nullify and fold away the
1997 * condition entirely.
1999 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2002 if (WARN_ON_ONCE(!mem))
2008 atomic_sub(size, &sk->sk_omem_alloc);
2011 void sock_kfree_s(struct sock *sk, void *mem, int size)
2013 __sock_kfree_s(sk, mem, size, false);
2015 EXPORT_SYMBOL(sock_kfree_s);
2017 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2019 __sock_kfree_s(sk, mem, size, true);
2021 EXPORT_SYMBOL(sock_kzfree_s);
2023 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2024 I think, these locks should be removed for datagram sockets.
2026 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2030 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2034 if (signal_pending(current))
2036 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2037 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2038 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2040 if (sk->sk_shutdown & SEND_SHUTDOWN)
2044 timeo = schedule_timeout(timeo);
2046 finish_wait(sk_sleep(sk), &wait);
2052 * Generic send/receive buffer handlers
2055 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2056 unsigned long data_len, int noblock,
2057 int *errcode, int max_page_order)
2059 struct sk_buff *skb;
2063 timeo = sock_sndtimeo(sk, noblock);
2065 err = sock_error(sk);
2070 if (sk->sk_shutdown & SEND_SHUTDOWN)
2073 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2076 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2077 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2081 if (signal_pending(current))
2083 timeo = sock_wait_for_wmem(sk, timeo);
2085 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2086 errcode, sk->sk_allocation);
2088 skb_set_owner_w(skb, sk);
2092 err = sock_intr_errno(timeo);
2097 EXPORT_SYMBOL(sock_alloc_send_pskb);
2099 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2100 int noblock, int *errcode)
2102 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2104 EXPORT_SYMBOL(sock_alloc_send_skb);
2106 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2107 struct sockcm_cookie *sockc)
2111 switch (cmsg->cmsg_type) {
2113 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2115 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2117 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2119 case SO_TIMESTAMPING:
2120 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2123 tsflags = *(u32 *)CMSG_DATA(cmsg);
2124 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2127 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2128 sockc->tsflags |= tsflags;
2130 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2132 case SCM_CREDENTIALS:
2139 EXPORT_SYMBOL(__sock_cmsg_send);
2141 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2142 struct sockcm_cookie *sockc)
2144 struct cmsghdr *cmsg;
2147 for_each_cmsghdr(cmsg, msg) {
2148 if (!CMSG_OK(msg, cmsg))
2150 if (cmsg->cmsg_level != SOL_SOCKET)
2152 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2158 EXPORT_SYMBOL(sock_cmsg_send);
2160 static void sk_enter_memory_pressure(struct sock *sk)
2162 if (!sk->sk_prot->enter_memory_pressure)
2165 sk->sk_prot->enter_memory_pressure(sk);
2168 static void sk_leave_memory_pressure(struct sock *sk)
2170 if (sk->sk_prot->leave_memory_pressure) {
2171 sk->sk_prot->leave_memory_pressure(sk);
2173 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2175 if (memory_pressure && *memory_pressure)
2176 *memory_pressure = 0;
2180 /* On 32bit arches, an skb frag is limited to 2^15 */
2181 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2184 * skb_page_frag_refill - check that a page_frag contains enough room
2185 * @sz: minimum size of the fragment we want to get
2186 * @pfrag: pointer to page_frag
2187 * @gfp: priority for memory allocation
2189 * Note: While this allocator tries to use high order pages, there is
2190 * no guarantee that allocations succeed. Therefore, @sz MUST be
2191 * less or equal than PAGE_SIZE.
2193 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2196 if (page_ref_count(pfrag->page) == 1) {
2200 if (pfrag->offset + sz <= pfrag->size)
2202 put_page(pfrag->page);
2206 if (SKB_FRAG_PAGE_ORDER) {
2207 /* Avoid direct reclaim but allow kswapd to wake */
2208 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2209 __GFP_COMP | __GFP_NOWARN |
2211 SKB_FRAG_PAGE_ORDER);
2212 if (likely(pfrag->page)) {
2213 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2217 pfrag->page = alloc_page(gfp);
2218 if (likely(pfrag->page)) {
2219 pfrag->size = PAGE_SIZE;
2224 EXPORT_SYMBOL(skb_page_frag_refill);
2226 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2228 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2231 sk_enter_memory_pressure(sk);
2232 sk_stream_moderate_sndbuf(sk);
2235 EXPORT_SYMBOL(sk_page_frag_refill);
2237 static void __lock_sock(struct sock *sk)
2238 __releases(&sk->sk_lock.slock)
2239 __acquires(&sk->sk_lock.slock)
2244 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2245 TASK_UNINTERRUPTIBLE);
2246 spin_unlock_bh(&sk->sk_lock.slock);
2248 spin_lock_bh(&sk->sk_lock.slock);
2249 if (!sock_owned_by_user(sk))
2252 finish_wait(&sk->sk_lock.wq, &wait);
2255 static void __release_sock(struct sock *sk)
2256 __releases(&sk->sk_lock.slock)
2257 __acquires(&sk->sk_lock.slock)
2259 struct sk_buff *skb, *next;
2261 while ((skb = sk->sk_backlog.head) != NULL) {
2262 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2264 spin_unlock_bh(&sk->sk_lock.slock);
2269 WARN_ON_ONCE(skb_dst_is_noref(skb));
2271 sk_backlog_rcv(sk, skb);
2276 } while (skb != NULL);
2278 spin_lock_bh(&sk->sk_lock.slock);
2282 * Doing the zeroing here guarantee we can not loop forever
2283 * while a wild producer attempts to flood us.
2285 sk->sk_backlog.len = 0;
2288 void __sk_flush_backlog(struct sock *sk)
2290 spin_lock_bh(&sk->sk_lock.slock);
2292 spin_unlock_bh(&sk->sk_lock.slock);
2296 * sk_wait_data - wait for data to arrive at sk_receive_queue
2297 * @sk: sock to wait on
2298 * @timeo: for how long
2299 * @skb: last skb seen on sk_receive_queue
2301 * Now socket state including sk->sk_err is changed only under lock,
2302 * hence we may omit checks after joining wait queue.
2303 * We check receive queue before schedule() only as optimization;
2304 * it is very likely that release_sock() added new data.
2306 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2308 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2311 add_wait_queue(sk_sleep(sk), &wait);
2312 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2313 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2314 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2315 remove_wait_queue(sk_sleep(sk), &wait);
2318 EXPORT_SYMBOL(sk_wait_data);
2321 * __sk_mem_raise_allocated - increase memory_allocated
2323 * @size: memory size to allocate
2324 * @amt: pages to allocate
2325 * @kind: allocation type
2327 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2329 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2331 struct proto *prot = sk->sk_prot;
2332 long allocated = sk_memory_allocated_add(sk, amt);
2334 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2335 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2336 goto suppress_allocation;
2339 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2340 sk_leave_memory_pressure(sk);
2344 /* Under pressure. */
2345 if (allocated > sk_prot_mem_limits(sk, 1))
2346 sk_enter_memory_pressure(sk);
2348 /* Over hard limit. */
2349 if (allocated > sk_prot_mem_limits(sk, 2))
2350 goto suppress_allocation;
2352 /* guarantee minimum buffer size under pressure */
2353 if (kind == SK_MEM_RECV) {
2354 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2357 } else { /* SK_MEM_SEND */
2358 int wmem0 = sk_get_wmem0(sk, prot);
2360 if (sk->sk_type == SOCK_STREAM) {
2361 if (sk->sk_wmem_queued < wmem0)
2363 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2368 if (sk_has_memory_pressure(sk)) {
2371 if (!sk_under_memory_pressure(sk))
2373 alloc = sk_sockets_allocated_read_positive(sk);
2374 if (sk_prot_mem_limits(sk, 2) > alloc *
2375 sk_mem_pages(sk->sk_wmem_queued +
2376 atomic_read(&sk->sk_rmem_alloc) +
2377 sk->sk_forward_alloc))
2381 suppress_allocation:
2383 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2384 sk_stream_moderate_sndbuf(sk);
2386 /* Fail only if socket is _under_ its sndbuf.
2387 * In this case we cannot block, so that we have to fail.
2389 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2393 trace_sock_exceed_buf_limit(sk, prot, allocated);
2395 sk_memory_allocated_sub(sk, amt);
2397 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2398 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2402 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2405 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2407 * @size: memory size to allocate
2408 * @kind: allocation type
2410 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2411 * rmem allocation. This function assumes that protocols which have
2412 * memory_pressure use sk_wmem_queued as write buffer accounting.
2414 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2416 int ret, amt = sk_mem_pages(size);
2418 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2419 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2421 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2424 EXPORT_SYMBOL(__sk_mem_schedule);
2427 * __sk_mem_reduce_allocated - reclaim memory_allocated
2429 * @amount: number of quanta
2431 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2433 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2435 sk_memory_allocated_sub(sk, amount);
2437 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2438 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2440 if (sk_under_memory_pressure(sk) &&
2441 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2442 sk_leave_memory_pressure(sk);
2444 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2447 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2449 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2451 void __sk_mem_reclaim(struct sock *sk, int amount)
2453 amount >>= SK_MEM_QUANTUM_SHIFT;
2454 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2455 __sk_mem_reduce_allocated(sk, amount);
2457 EXPORT_SYMBOL(__sk_mem_reclaim);
2459 int sk_set_peek_off(struct sock *sk, int val)
2461 sk->sk_peek_off = val;
2464 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2467 * Set of default routines for initialising struct proto_ops when
2468 * the protocol does not support a particular function. In certain
2469 * cases where it makes no sense for a protocol to have a "do nothing"
2470 * function, some default processing is provided.
2473 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2477 EXPORT_SYMBOL(sock_no_bind);
2479 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2484 EXPORT_SYMBOL(sock_no_connect);
2486 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2490 EXPORT_SYMBOL(sock_no_socketpair);
2492 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2497 EXPORT_SYMBOL(sock_no_accept);
2499 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2504 EXPORT_SYMBOL(sock_no_getname);
2506 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2510 EXPORT_SYMBOL(sock_no_poll);
2512 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2516 EXPORT_SYMBOL(sock_no_ioctl);
2518 int sock_no_listen(struct socket *sock, int backlog)
2522 EXPORT_SYMBOL(sock_no_listen);
2524 int sock_no_shutdown(struct socket *sock, int how)
2528 EXPORT_SYMBOL(sock_no_shutdown);
2530 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2531 char __user *optval, unsigned int optlen)
2535 EXPORT_SYMBOL(sock_no_setsockopt);
2537 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2538 char __user *optval, int __user *optlen)
2542 EXPORT_SYMBOL(sock_no_getsockopt);
2544 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2548 EXPORT_SYMBOL(sock_no_sendmsg);
2550 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2554 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2556 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2561 EXPORT_SYMBOL(sock_no_recvmsg);
2563 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2565 /* Mirror missing mmap method error code */
2568 EXPORT_SYMBOL(sock_no_mmap);
2570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2573 struct msghdr msg = {.msg_flags = flags};
2575 char *kaddr = kmap(page);
2576 iov.iov_base = kaddr + offset;
2578 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2582 EXPORT_SYMBOL(sock_no_sendpage);
2584 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2585 int offset, size_t size, int flags)
2588 struct msghdr msg = {.msg_flags = flags};
2590 char *kaddr = kmap(page);
2592 iov.iov_base = kaddr + offset;
2594 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2598 EXPORT_SYMBOL(sock_no_sendpage_locked);
2601 * Default Socket Callbacks
2604 static void sock_def_wakeup(struct sock *sk)
2606 struct socket_wq *wq;
2609 wq = rcu_dereference(sk->sk_wq);
2610 if (skwq_has_sleeper(wq))
2611 wake_up_interruptible_all(&wq->wait);
2615 static void sock_def_error_report(struct sock *sk)
2617 struct socket_wq *wq;
2620 wq = rcu_dereference(sk->sk_wq);
2621 if (skwq_has_sleeper(wq))
2622 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2623 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2627 static void sock_def_readable(struct sock *sk)
2629 struct socket_wq *wq;
2632 wq = rcu_dereference(sk->sk_wq);
2633 if (skwq_has_sleeper(wq))
2634 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2635 EPOLLRDNORM | EPOLLRDBAND);
2636 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2640 static void sock_def_write_space(struct sock *sk)
2642 struct socket_wq *wq;
2646 /* Do not wake up a writer until he can make "significant"
2649 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2650 wq = rcu_dereference(sk->sk_wq);
2651 if (skwq_has_sleeper(wq))
2652 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2653 EPOLLWRNORM | EPOLLWRBAND);
2655 /* Should agree with poll, otherwise some programs break */
2656 if (sock_writeable(sk))
2657 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2663 static void sock_def_destruct(struct sock *sk)
2667 void sk_send_sigurg(struct sock *sk)
2669 if (sk->sk_socket && sk->sk_socket->file)
2670 if (send_sigurg(&sk->sk_socket->file->f_owner))
2671 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2673 EXPORT_SYMBOL(sk_send_sigurg);
2675 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2676 unsigned long expires)
2678 if (!mod_timer(timer, expires))
2681 EXPORT_SYMBOL(sk_reset_timer);
2683 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2685 if (del_timer(timer))
2688 EXPORT_SYMBOL(sk_stop_timer);
2690 void sock_init_data(struct socket *sock, struct sock *sk)
2693 sk->sk_send_head = NULL;
2695 timer_setup(&sk->sk_timer, NULL, 0);
2697 sk->sk_allocation = GFP_KERNEL;
2698 sk->sk_rcvbuf = sysctl_rmem_default;
2699 sk->sk_sndbuf = sysctl_wmem_default;
2700 sk->sk_state = TCP_CLOSE;
2701 sk_set_socket(sk, sock);
2703 sock_set_flag(sk, SOCK_ZAPPED);
2706 sk->sk_type = sock->type;
2707 sk->sk_wq = sock->wq;
2709 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2712 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2715 rwlock_init(&sk->sk_callback_lock);
2716 if (sk->sk_kern_sock)
2717 lockdep_set_class_and_name(
2718 &sk->sk_callback_lock,
2719 af_kern_callback_keys + sk->sk_family,
2720 af_family_kern_clock_key_strings[sk->sk_family]);
2722 lockdep_set_class_and_name(
2723 &sk->sk_callback_lock,
2724 af_callback_keys + sk->sk_family,
2725 af_family_clock_key_strings[sk->sk_family]);
2727 sk->sk_state_change = sock_def_wakeup;
2728 sk->sk_data_ready = sock_def_readable;
2729 sk->sk_write_space = sock_def_write_space;
2730 sk->sk_error_report = sock_def_error_report;
2731 sk->sk_destruct = sock_def_destruct;
2733 sk->sk_frag.page = NULL;
2734 sk->sk_frag.offset = 0;
2735 sk->sk_peek_off = -1;
2737 sk->sk_peer_pid = NULL;
2738 sk->sk_peer_cred = NULL;
2739 sk->sk_write_pending = 0;
2740 sk->sk_rcvlowat = 1;
2741 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2742 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2744 sk->sk_stamp = SK_DEFAULT_STAMP;
2745 atomic_set(&sk->sk_zckey, 0);
2747 #ifdef CONFIG_NET_RX_BUSY_POLL
2749 sk->sk_ll_usec = sysctl_net_busy_read;
2752 sk->sk_max_pacing_rate = ~0U;
2753 sk->sk_pacing_rate = ~0U;
2754 sk->sk_pacing_shift = 10;
2755 sk->sk_incoming_cpu = -1;
2757 * Before updating sk_refcnt, we must commit prior changes to memory
2758 * (Documentation/RCU/rculist_nulls.txt for details)
2761 refcount_set(&sk->sk_refcnt, 1);
2762 atomic_set(&sk->sk_drops, 0);
2764 EXPORT_SYMBOL(sock_init_data);
2766 void lock_sock_nested(struct sock *sk, int subclass)
2769 spin_lock_bh(&sk->sk_lock.slock);
2770 if (sk->sk_lock.owned)
2772 sk->sk_lock.owned = 1;
2773 spin_unlock(&sk->sk_lock.slock);
2775 * The sk_lock has mutex_lock() semantics here:
2777 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2780 EXPORT_SYMBOL(lock_sock_nested);
2782 void release_sock(struct sock *sk)
2784 spin_lock_bh(&sk->sk_lock.slock);
2785 if (sk->sk_backlog.tail)
2788 /* Warning : release_cb() might need to release sk ownership,
2789 * ie call sock_release_ownership(sk) before us.
2791 if (sk->sk_prot->release_cb)
2792 sk->sk_prot->release_cb(sk);
2794 sock_release_ownership(sk);
2795 if (waitqueue_active(&sk->sk_lock.wq))
2796 wake_up(&sk->sk_lock.wq);
2797 spin_unlock_bh(&sk->sk_lock.slock);
2799 EXPORT_SYMBOL(release_sock);
2802 * lock_sock_fast - fast version of lock_sock
2805 * This version should be used for very small section, where process wont block
2806 * return false if fast path is taken:
2808 * sk_lock.slock locked, owned = 0, BH disabled
2810 * return true if slow path is taken:
2812 * sk_lock.slock unlocked, owned = 1, BH enabled
2814 bool lock_sock_fast(struct sock *sk)
2817 spin_lock_bh(&sk->sk_lock.slock);
2819 if (!sk->sk_lock.owned)
2821 * Note : We must disable BH
2826 sk->sk_lock.owned = 1;
2827 spin_unlock(&sk->sk_lock.slock);
2829 * The sk_lock has mutex_lock() semantics here:
2831 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2835 EXPORT_SYMBOL(lock_sock_fast);
2837 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2840 if (!sock_flag(sk, SOCK_TIMESTAMP))
2841 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2842 tv = ktime_to_timeval(sk->sk_stamp);
2843 if (tv.tv_sec == -1)
2845 if (tv.tv_sec == 0) {
2846 sk->sk_stamp = ktime_get_real();
2847 tv = ktime_to_timeval(sk->sk_stamp);
2849 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2851 EXPORT_SYMBOL(sock_get_timestamp);
2853 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2856 if (!sock_flag(sk, SOCK_TIMESTAMP))
2857 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2858 ts = ktime_to_timespec(sk->sk_stamp);
2859 if (ts.tv_sec == -1)
2861 if (ts.tv_sec == 0) {
2862 sk->sk_stamp = ktime_get_real();
2863 ts = ktime_to_timespec(sk->sk_stamp);
2865 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2867 EXPORT_SYMBOL(sock_get_timestampns);
2869 void sock_enable_timestamp(struct sock *sk, int flag)
2871 if (!sock_flag(sk, flag)) {
2872 unsigned long previous_flags = sk->sk_flags;
2874 sock_set_flag(sk, flag);
2876 * we just set one of the two flags which require net
2877 * time stamping, but time stamping might have been on
2878 * already because of the other one
2880 if (sock_needs_netstamp(sk) &&
2881 !(previous_flags & SK_FLAGS_TIMESTAMP))
2882 net_enable_timestamp();
2886 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2887 int level, int type)
2889 struct sock_exterr_skb *serr;
2890 struct sk_buff *skb;
2894 skb = sock_dequeue_err_skb(sk);
2900 msg->msg_flags |= MSG_TRUNC;
2903 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2907 sock_recv_timestamp(msg, sk, skb);
2909 serr = SKB_EXT_ERR(skb);
2910 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2912 msg->msg_flags |= MSG_ERRQUEUE;
2920 EXPORT_SYMBOL(sock_recv_errqueue);
2923 * Get a socket option on an socket.
2925 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2926 * asynchronous errors should be reported by getsockopt. We assume
2927 * this means if you specify SO_ERROR (otherwise whats the point of it).
2929 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2930 char __user *optval, int __user *optlen)
2932 struct sock *sk = sock->sk;
2934 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2936 EXPORT_SYMBOL(sock_common_getsockopt);
2938 #ifdef CONFIG_COMPAT
2939 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2940 char __user *optval, int __user *optlen)
2942 struct sock *sk = sock->sk;
2944 if (sk->sk_prot->compat_getsockopt != NULL)
2945 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2947 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2949 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2952 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2955 struct sock *sk = sock->sk;
2959 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2960 flags & ~MSG_DONTWAIT, &addr_len);
2962 msg->msg_namelen = addr_len;
2965 EXPORT_SYMBOL(sock_common_recvmsg);
2968 * Set socket options on an inet socket.
2970 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2971 char __user *optval, unsigned int optlen)
2973 struct sock *sk = sock->sk;
2975 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2977 EXPORT_SYMBOL(sock_common_setsockopt);
2979 #ifdef CONFIG_COMPAT
2980 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2981 char __user *optval, unsigned int optlen)
2983 struct sock *sk = sock->sk;
2985 if (sk->sk_prot->compat_setsockopt != NULL)
2986 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2988 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2990 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2993 void sk_common_release(struct sock *sk)
2995 if (sk->sk_prot->destroy)
2996 sk->sk_prot->destroy(sk);
2999 * Observation: when sock_common_release is called, processes have
3000 * no access to socket. But net still has.
3001 * Step one, detach it from networking:
3003 * A. Remove from hash tables.
3006 sk->sk_prot->unhash(sk);
3009 * In this point socket cannot receive new packets, but it is possible
3010 * that some packets are in flight because some CPU runs receiver and
3011 * did hash table lookup before we unhashed socket. They will achieve
3012 * receive queue and will be purged by socket destructor.
3014 * Also we still have packets pending on receive queue and probably,
3015 * our own packets waiting in device queues. sock_destroy will drain
3016 * receive queue, but transmitted packets will delay socket destruction
3017 * until the last reference will be released.
3022 xfrm_sk_free_policy(sk);
3024 sk_refcnt_debug_release(sk);
3028 EXPORT_SYMBOL(sk_common_release);
3030 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3032 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3034 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3035 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3036 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3037 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3038 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3039 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3040 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3041 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3042 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3045 #ifdef CONFIG_PROC_FS
3046 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3048 int val[PROTO_INUSE_NR];
3051 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3053 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3055 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3057 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3059 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3061 int cpu, idx = prot->inuse_idx;
3064 for_each_possible_cpu(cpu)
3065 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3067 return res >= 0 ? res : 0;
3069 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3071 static void sock_inuse_add(struct net *net, int val)
3073 this_cpu_add(*net->core.sock_inuse, val);
3076 int sock_inuse_get(struct net *net)
3080 for_each_possible_cpu(cpu)
3081 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3086 EXPORT_SYMBOL_GPL(sock_inuse_get);
3088 static int __net_init sock_inuse_init_net(struct net *net)
3090 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3091 if (net->core.prot_inuse == NULL)
3094 net->core.sock_inuse = alloc_percpu(int);
3095 if (net->core.sock_inuse == NULL)
3101 free_percpu(net->core.prot_inuse);
3105 static void __net_exit sock_inuse_exit_net(struct net *net)
3107 free_percpu(net->core.prot_inuse);
3108 free_percpu(net->core.sock_inuse);
3111 static struct pernet_operations net_inuse_ops = {
3112 .init = sock_inuse_init_net,
3113 .exit = sock_inuse_exit_net,
3116 static __init int net_inuse_init(void)
3118 if (register_pernet_subsys(&net_inuse_ops))
3119 panic("Cannot initialize net inuse counters");
3124 core_initcall(net_inuse_init);
3126 static void assign_proto_idx(struct proto *prot)
3128 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3130 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3131 pr_err("PROTO_INUSE_NR exhausted\n");
3135 set_bit(prot->inuse_idx, proto_inuse_idx);
3138 static void release_proto_idx(struct proto *prot)
3140 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3141 clear_bit(prot->inuse_idx, proto_inuse_idx);
3144 static inline void assign_proto_idx(struct proto *prot)
3148 static inline void release_proto_idx(struct proto *prot)
3152 static void sock_inuse_add(struct net *net, int val)
3157 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3161 kfree(rsk_prot->slab_name);
3162 rsk_prot->slab_name = NULL;
3163 kmem_cache_destroy(rsk_prot->slab);
3164 rsk_prot->slab = NULL;
3167 static int req_prot_init(const struct proto *prot)
3169 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3174 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3176 if (!rsk_prot->slab_name)
3179 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3180 rsk_prot->obj_size, 0,
3181 prot->slab_flags, NULL);
3183 if (!rsk_prot->slab) {
3184 pr_crit("%s: Can't create request sock SLAB cache!\n",
3191 int proto_register(struct proto *prot, int alloc_slab)
3194 prot->slab = kmem_cache_create_usercopy(prot->name,
3196 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3197 prot->useroffset, prot->usersize,
3200 if (prot->slab == NULL) {
3201 pr_crit("%s: Can't create sock SLAB cache!\n",
3206 if (req_prot_init(prot))
3207 goto out_free_request_sock_slab;
3209 if (prot->twsk_prot != NULL) {
3210 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3212 if (prot->twsk_prot->twsk_slab_name == NULL)
3213 goto out_free_request_sock_slab;
3215 prot->twsk_prot->twsk_slab =
3216 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3217 prot->twsk_prot->twsk_obj_size,
3221 if (prot->twsk_prot->twsk_slab == NULL)
3222 goto out_free_timewait_sock_slab_name;
3226 mutex_lock(&proto_list_mutex);
3227 list_add(&prot->node, &proto_list);
3228 assign_proto_idx(prot);
3229 mutex_unlock(&proto_list_mutex);
3232 out_free_timewait_sock_slab_name:
3233 kfree(prot->twsk_prot->twsk_slab_name);
3234 out_free_request_sock_slab:
3235 req_prot_cleanup(prot->rsk_prot);
3237 kmem_cache_destroy(prot->slab);
3242 EXPORT_SYMBOL(proto_register);
3244 void proto_unregister(struct proto *prot)
3246 mutex_lock(&proto_list_mutex);
3247 release_proto_idx(prot);
3248 list_del(&prot->node);
3249 mutex_unlock(&proto_list_mutex);
3251 kmem_cache_destroy(prot->slab);
3254 req_prot_cleanup(prot->rsk_prot);
3256 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3257 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3258 kfree(prot->twsk_prot->twsk_slab_name);
3259 prot->twsk_prot->twsk_slab = NULL;
3262 EXPORT_SYMBOL(proto_unregister);
3264 #ifdef CONFIG_PROC_FS
3265 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3266 __acquires(proto_list_mutex)
3268 mutex_lock(&proto_list_mutex);
3269 return seq_list_start_head(&proto_list, *pos);
3272 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3274 return seq_list_next(v, &proto_list, pos);
3277 static void proto_seq_stop(struct seq_file *seq, void *v)
3278 __releases(proto_list_mutex)
3280 mutex_unlock(&proto_list_mutex);
3283 static char proto_method_implemented(const void *method)
3285 return method == NULL ? 'n' : 'y';
3287 static long sock_prot_memory_allocated(struct proto *proto)
3289 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3292 static char *sock_prot_memory_pressure(struct proto *proto)
3294 return proto->memory_pressure != NULL ?
3295 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3298 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3301 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3302 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3305 sock_prot_inuse_get(seq_file_net(seq), proto),
3306 sock_prot_memory_allocated(proto),
3307 sock_prot_memory_pressure(proto),
3309 proto->slab == NULL ? "no" : "yes",
3310 module_name(proto->owner),
3311 proto_method_implemented(proto->close),
3312 proto_method_implemented(proto->connect),
3313 proto_method_implemented(proto->disconnect),
3314 proto_method_implemented(proto->accept),
3315 proto_method_implemented(proto->ioctl),
3316 proto_method_implemented(proto->init),
3317 proto_method_implemented(proto->destroy),
3318 proto_method_implemented(proto->shutdown),
3319 proto_method_implemented(proto->setsockopt),
3320 proto_method_implemented(proto->getsockopt),
3321 proto_method_implemented(proto->sendmsg),
3322 proto_method_implemented(proto->recvmsg),
3323 proto_method_implemented(proto->sendpage),
3324 proto_method_implemented(proto->bind),
3325 proto_method_implemented(proto->backlog_rcv),
3326 proto_method_implemented(proto->hash),
3327 proto_method_implemented(proto->unhash),
3328 proto_method_implemented(proto->get_port),
3329 proto_method_implemented(proto->enter_memory_pressure));
3332 static int proto_seq_show(struct seq_file *seq, void *v)
3334 if (v == &proto_list)
3335 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3344 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3346 proto_seq_printf(seq, list_entry(v, struct proto, node));
3350 static const struct seq_operations proto_seq_ops = {
3351 .start = proto_seq_start,
3352 .next = proto_seq_next,
3353 .stop = proto_seq_stop,
3354 .show = proto_seq_show,
3357 static int proto_seq_open(struct inode *inode, struct file *file)
3359 return seq_open_net(inode, file, &proto_seq_ops,
3360 sizeof(struct seq_net_private));
3363 static const struct file_operations proto_seq_fops = {
3364 .open = proto_seq_open,
3366 .llseek = seq_lseek,
3367 .release = seq_release_net,
3370 static __net_init int proto_init_net(struct net *net)
3372 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3378 static __net_exit void proto_exit_net(struct net *net)
3380 remove_proc_entry("protocols", net->proc_net);
3384 static __net_initdata struct pernet_operations proto_net_ops = {
3385 .init = proto_init_net,
3386 .exit = proto_exit_net,
3389 static int __init proto_init(void)
3391 return register_pernet_subsys(&proto_net_ops);
3394 subsys_initcall(proto_init);
3396 #endif /* PROC_FS */
3398 #ifdef CONFIG_NET_RX_BUSY_POLL
3399 bool sk_busy_loop_end(void *p, unsigned long start_time)
3401 struct sock *sk = p;
3403 return !skb_queue_empty(&sk->sk_receive_queue) ||
3404 sk_busy_loop_timeout(sk, start_time);
3406 EXPORT_SYMBOL(sk_busy_loop_end);
3407 #endif /* CONFIG_NET_RX_BUSY_POLL */