4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
105 * Helpers for converting nanosecond timing to jiffy resolution
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
113 * These are the 'tuning knobs' of the scheduler:
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
118 #define DEF_TIMESLICE (100 * HZ / 1000)
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int rt_policy(int policy)
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
132 static inline int task_has_rt_policy(struct task_struct *p)
134 return rt_policy(p->policy);
138 * This is the priority-queue data structure of the RT scheduling class:
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
150 struct hrtimer rt_period_timer;
153 static struct rt_bandwidth def_rt_bandwidth;
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
172 idle = do_sched_rt_period_timer(rt_b, overrun);
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
191 static inline int rt_bandwidth_enabled(void)
193 return sysctl_sched_rt_runtime >= 0;
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
203 if (hrtimer_active(&rt_b->rt_period_timer))
206 raw_spin_lock(&rt_b->rt_runtime_lock);
211 if (hrtimer_active(&rt_b->rt_period_timer))
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 hrtimer_cancel(&rt_b->rt_period_timer);
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
237 static DEFINE_MUTEX(sched_domains_mutex);
239 #ifdef CONFIG_CGROUP_SCHED
241 #include <linux/cgroup.h>
245 static LIST_HEAD(task_groups);
247 /* task group related information */
249 struct cgroup_subsys_state css;
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
258 atomic_t load_weight;
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
265 struct rt_bandwidth rt_bandwidth;
269 struct list_head list;
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
283 #ifdef CONFIG_FAIR_GROUP_SCHED
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
296 #define MAX_SHARES (1UL << 18)
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
304 struct task_group root_task_group;
306 #endif /* CONFIG_CGROUP_SCHED */
308 /* CFS-related fields in a runqueue */
310 struct load_weight load;
311 unsigned long nr_running;
316 u64 min_vruntime_copy;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last, *skip;
331 unsigned int nr_spread_over;
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load;
363 * Maintaining per-cpu shares distribution for group scheduling
365 * load_stamp is the last time we updated the load average
366 * load_last is the last time we updated the load average and saw load
367 * load_unacc_exec_time is currently unaccounted execution time
371 u64 load_stamp, load_last, load_unacc_exec_time;
373 unsigned long load_contribution;
378 /* Real-Time classes' related field in a runqueue: */
380 struct rt_prio_array active;
381 unsigned long rt_nr_running;
382 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
384 int curr; /* highest queued rt task prio */
386 int next; /* next highest */
391 unsigned long rt_nr_migratory;
392 unsigned long rt_nr_total;
394 struct plist_head pushable_tasks;
399 /* Nests inside the rq lock: */
400 raw_spinlock_t rt_runtime_lock;
402 #ifdef CONFIG_RT_GROUP_SCHED
403 unsigned long rt_nr_boosted;
406 struct list_head leaf_rt_rq_list;
407 struct task_group *tg;
414 * We add the notion of a root-domain which will be used to define per-domain
415 * variables. Each exclusive cpuset essentially defines an island domain by
416 * fully partitioning the member cpus from any other cpuset. Whenever a new
417 * exclusive cpuset is created, we also create and attach a new root-domain
424 cpumask_var_t online;
427 * The "RT overload" flag: it gets set if a CPU has more than
428 * one runnable RT task.
430 cpumask_var_t rto_mask;
432 struct cpupri cpupri;
436 * By default the system creates a single root-domain with all cpus as
437 * members (mimicking the global state we have today).
439 static struct root_domain def_root_domain;
441 #endif /* CONFIG_SMP */
444 * This is the main, per-CPU runqueue data structure.
446 * Locking rule: those places that want to lock multiple runqueues
447 * (such as the load balancing or the thread migration code), lock
448 * acquire operations must be ordered by ascending &runqueue.
455 * nr_running and cpu_load should be in the same cacheline because
456 * remote CPUs use both these fields when doing load calculation.
458 unsigned long nr_running;
459 #define CPU_LOAD_IDX_MAX 5
460 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
461 unsigned long last_load_update_tick;
464 unsigned char nohz_balance_kick;
466 unsigned int skip_clock_update;
468 /* capture load from *all* tasks on this cpu: */
469 struct load_weight load;
470 unsigned long nr_load_updates;
476 #ifdef CONFIG_FAIR_GROUP_SCHED
477 /* list of leaf cfs_rq on this cpu: */
478 struct list_head leaf_cfs_rq_list;
480 #ifdef CONFIG_RT_GROUP_SCHED
481 struct list_head leaf_rt_rq_list;
485 * This is part of a global counter where only the total sum
486 * over all CPUs matters. A task can increase this counter on
487 * one CPU and if it got migrated afterwards it may decrease
488 * it on another CPU. Always updated under the runqueue lock:
490 unsigned long nr_uninterruptible;
492 struct task_struct *curr, *idle, *stop;
493 unsigned long next_balance;
494 struct mm_struct *prev_mm;
502 struct root_domain *rd;
503 struct sched_domain *sd;
505 unsigned long cpu_power;
507 unsigned char idle_at_tick;
508 /* For active balancing */
512 struct cpu_stop_work active_balance_work;
513 /* cpu of this runqueue: */
517 unsigned long avg_load_per_task;
525 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 /* calc_load related fields */
530 unsigned long calc_load_update;
531 long calc_load_active;
533 #ifdef CONFIG_SCHED_HRTICK
535 int hrtick_csd_pending;
536 struct call_single_data hrtick_csd;
538 struct hrtimer hrtick_timer;
541 #ifdef CONFIG_SCHEDSTATS
543 struct sched_info rq_sched_info;
544 unsigned long long rq_cpu_time;
545 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
547 /* sys_sched_yield() stats */
548 unsigned int yld_count;
550 /* schedule() stats */
551 unsigned int sched_switch;
552 unsigned int sched_count;
553 unsigned int sched_goidle;
555 /* try_to_wake_up() stats */
556 unsigned int ttwu_count;
557 unsigned int ttwu_local;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct task_group *tg;
609 struct cgroup_subsys_state *css;
611 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
612 lockdep_is_held(&p->pi_lock));
613 tg = container_of(css, struct task_group, css);
615 return autogroup_task_group(p, tg);
618 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 #ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
626 #ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
632 #else /* CONFIG_CGROUP_SCHED */
634 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635 static inline struct task_group *task_group(struct task_struct *p)
640 #endif /* CONFIG_CGROUP_SCHED */
642 static void update_rq_clock_task(struct rq *rq, s64 delta);
644 static void update_rq_clock(struct rq *rq)
648 if (rq->skip_clock_update)
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 update_rq_clock_task(rq, delta);
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 #ifdef CONFIG_SCHED_DEBUG
660 # define const_debug __read_mostly
662 # define const_debug static const
666 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
667 * @cpu: the processor in question.
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
672 int runqueue_is_locked(int cpu)
674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
678 * Debugging: various feature bits
681 #define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
685 #include "sched_features.h"
690 #define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
693 const_debug unsigned int sysctl_sched_features =
694 #include "sched_features.h"
699 #ifdef CONFIG_SCHED_DEBUG
700 #define SCHED_FEAT(name, enabled) \
703 static __read_mostly char *sched_feat_names[] = {
704 #include "sched_features.h"
710 static int sched_feat_show(struct seq_file *m, void *v)
714 for (i = 0; sched_feat_names[i]; i++) {
715 if (!(sysctl_sched_features & (1UL << i)))
717 seq_printf(m, "%s ", sched_feat_names[i]);
725 sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
736 if (copy_from_user(&buf, ubuf, cnt))
742 if (strncmp(cmp, "NO_", 3) == 0) {
747 for (i = 0; sched_feat_names[i]; i++) {
748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
750 sysctl_sched_features &= ~(1UL << i);
752 sysctl_sched_features |= (1UL << i);
757 if (!sched_feat_names[i])
765 static int sched_feat_open(struct inode *inode, struct file *filp)
767 return single_open(filp, sched_feat_show, NULL);
770 static const struct file_operations sched_feat_fops = {
771 .open = sched_feat_open,
772 .write = sched_feat_write,
775 .release = single_release,
778 static __init int sched_init_debug(void)
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
785 late_initcall(sched_init_debug);
789 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
795 const_debug unsigned int sysctl_sched_nr_migrate = 32;
798 * period over which we average the RT time consumption, measured
803 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806 * period over which we measure -rt task cpu usage in us.
809 unsigned int sysctl_sched_rt_period = 1000000;
811 static __read_mostly int scheduler_running;
814 * part of the period that we allow rt tasks to run in us.
817 int sysctl_sched_rt_runtime = 950000;
819 static inline u64 global_rt_period(void)
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 static inline u64 global_rt_runtime(void)
826 if (sysctl_sched_rt_runtime < 0)
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 #ifndef prepare_arch_switch
833 # define prepare_arch_switch(next) do { } while (0)
835 #ifndef finish_arch_switch
836 # define finish_arch_switch(prev) do { } while (0)
839 static inline int task_current(struct rq *rq, struct task_struct *p)
841 return rq->curr == p;
844 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
858 * We can optimise this out completely for !SMP, because the
859 * SMP rebalancing from interrupt is the only thing that cares
866 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
870 * After ->on_cpu is cleared, the task can be moved to a different CPU.
871 * We must ensure this doesn't happen until the switch is completely
877 #ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888 raw_spin_unlock_irq(&rq->lock);
891 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
892 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq->lock);
905 raw_spin_unlock(&rq->lock);
909 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 * After ->on_cpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * __task_rq_lock - lock the rq @p resides on.
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 lockdep_assert_held(&p->pi_lock);
938 raw_spin_lock(&rq->lock);
939 if (likely(rq == task_rq(p)))
941 raw_spin_unlock(&rq->lock);
946 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
948 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949 __acquires(p->pi_lock)
955 raw_spin_lock_irqsave(&p->pi_lock, *flags);
957 raw_spin_lock(&rq->lock);
958 if (likely(rq == task_rq(p)))
960 raw_spin_unlock(&rq->lock);
961 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
965 static void __task_rq_unlock(struct rq *rq)
968 raw_spin_unlock(&rq->lock);
972 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
974 __releases(p->pi_lock)
976 raw_spin_unlock(&rq->lock);
977 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
981 * this_rq_lock - lock this runqueue and disable interrupts.
983 static struct rq *this_rq_lock(void)
990 raw_spin_lock(&rq->lock);
995 #ifdef CONFIG_SCHED_HRTICK
997 * Use HR-timers to deliver accurate preemption points.
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1009 * - enabled by features
1010 * - hrtimer is actually high res
1012 static inline int hrtick_enabled(struct rq *rq)
1014 if (!sched_feat(HRTICK))
1016 if (!cpu_active(cpu_of(rq)))
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021 static void hrtick_clear(struct rq *rq)
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1031 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1037 raw_spin_lock(&rq->lock);
1038 update_rq_clock(rq);
1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040 raw_spin_unlock(&rq->lock);
1042 return HRTIMER_NORESTART;
1047 * called from hardirq (IPI) context
1049 static void __hrtick_start(void *arg)
1051 struct rq *rq = arg;
1053 raw_spin_lock(&rq->lock);
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
1056 raw_spin_unlock(&rq->lock);
1060 * Called to set the hrtick timer state.
1062 * called with rq->lock held and irqs disabled
1064 static void hrtick_start(struct rq *rq, u64 delay)
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1069 hrtimer_set_expires(timer, time);
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 rq->hrtick_csd_pending = 1;
1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1082 int cpu = (int)(long)hcpu;
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1090 case CPU_DEAD_FROZEN:
1091 hrtick_clear(cpu_rq(cpu));
1098 static __init void init_hrtick(void)
1100 hotcpu_notifier(hotplug_hrtick, 0);
1104 * Called to set the hrtick timer state.
1106 * called with rq->lock held and irqs disabled
1108 static void hrtick_start(struct rq *rq, u64 delay)
1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111 HRTIMER_MODE_REL_PINNED, 0);
1114 static inline void init_hrtick(void)
1117 #endif /* CONFIG_SMP */
1119 static void init_rq_hrtick(struct rq *rq)
1122 rq->hrtick_csd_pending = 0;
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq *rq)
1137 static inline void init_rq_hrtick(struct rq *rq)
1141 static inline void init_hrtick(void)
1144 #endif /* CONFIG_SCHED_HRTICK */
1147 * resched_task - mark a task 'to be rescheduled now'.
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 static void resched_task(struct task_struct *p)
1163 assert_raw_spin_locked(&task_rq(p)->lock);
1165 if (test_tsk_need_resched(p))
1168 set_tsk_need_resched(p);
1171 if (cpu == smp_processor_id())
1174 /* NEED_RESCHED must be visible before we test polling */
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1180 static void resched_cpu(int cpu)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1187 resched_task(cpu_curr(cpu));
1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1193 * In the semi idle case, use the nearest busy cpu for migrating timers
1194 * from an idle cpu. This is good for power-savings.
1196 * We don't do similar optimization for completely idle system, as
1197 * selecting an idle cpu will add more delays to the timers than intended
1198 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1200 int get_nohz_timer_target(void)
1202 int cpu = smp_processor_id();
1204 struct sched_domain *sd;
1206 for_each_domain(cpu, sd) {
1207 for_each_cpu(i, sched_domain_span(sd))
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_need_resched(rq->idle);
1247 /* NEED_RESCHED must be visible before we test polling */
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1253 #endif /* CONFIG_NO_HZ */
1255 static u64 sched_avg_period(void)
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 static void sched_avg_update(struct rq *rq)
1262 s64 period = sched_avg_period();
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1266 * Inline assembly required to prevent the compiler
1267 * optimising this loop into a divmod call.
1268 * See __iter_div_u64_rem() for another example of this.
1270 asm("" : "+rm" (rq->age_stamp));
1271 rq->age_stamp += period;
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278 rq->rt_avg += rt_delta;
1279 sched_avg_update(rq);
1282 #else /* !CONFIG_SMP */
1283 static void resched_task(struct task_struct *p)
1285 assert_raw_spin_locked(&task_rq(p)->lock);
1286 set_tsk_need_resched(p);
1289 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1293 static void sched_avg_update(struct rq *rq)
1296 #endif /* CONFIG_SMP */
1298 #if BITS_PER_LONG == 32
1299 # define WMULT_CONST (~0UL)
1301 # define WMULT_CONST (1UL << 32)
1304 #define WMULT_SHIFT 32
1307 * Shift right and round:
1309 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1312 * delta *= weight / lw
1314 static unsigned long
1315 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1316 struct load_weight *lw)
1320 if (!lw->inv_weight) {
1321 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1328 tmp = (u64)delta_exec * weight;
1330 * Check whether we'd overflow the 64-bit multiplication:
1332 if (unlikely(tmp > WMULT_CONST))
1333 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1336 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1338 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1341 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1347 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1353 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1364 * scaled version of the new time slice allocation that they receive on time
1368 #define WEIGHT_IDLEPRIO 3
1369 #define WMULT_IDLEPRIO 1431655765
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
1383 static const int prio_to_weight[40] = {
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1401 static const u32 prio_to_wmult[40] = {
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1412 /* Time spent by the tasks of the cpu accounting group executing in ... */
1413 enum cpuacct_stat_index {
1414 CPUACCT_STAT_USER, /* ... user mode */
1415 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1417 CPUACCT_STAT_NSTATS,
1420 #ifdef CONFIG_CGROUP_CPUACCT
1421 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1422 static void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val);
1425 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1426 static inline void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val) {}
1430 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1432 update_load_add(&rq->load, load);
1435 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1437 update_load_sub(&rq->load, load);
1440 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1441 typedef int (*tg_visitor)(struct task_group *, void *);
1444 * Iterate the full tree, calling @down when first entering a node and @up when
1445 * leaving it for the final time.
1447 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1449 struct task_group *parent, *child;
1453 parent = &root_task_group;
1455 ret = (*down)(parent, data);
1458 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 ret = (*up)(parent, data);
1470 parent = parent->parent;
1479 static int tg_nop(struct task_group *tg, void *data)
1486 /* Used instead of source_load when we know the type == 0 */
1487 static unsigned long weighted_cpuload(const int cpu)
1489 return cpu_rq(cpu)->load.weight;
1493 * Return a low guess at the load of a migration-source cpu weighted
1494 * according to the scheduling class and "nice" value.
1496 * We want to under-estimate the load of migration sources, to
1497 * balance conservatively.
1499 static unsigned long source_load(int cpu, int type)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1504 if (type == 0 || !sched_feat(LB_BIAS))
1507 return min(rq->cpu_load[type-1], total);
1511 * Return a high guess at the load of a migration-target cpu weighted
1512 * according to the scheduling class and "nice" value.
1514 static unsigned long target_load(int cpu, int type)
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long total = weighted_cpuload(cpu);
1519 if (type == 0 || !sched_feat(LB_BIAS))
1522 return max(rq->cpu_load[type-1], total);
1525 static unsigned long power_of(int cpu)
1527 return cpu_rq(cpu)->cpu_power;
1530 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1532 static unsigned long cpu_avg_load_per_task(int cpu)
1534 struct rq *rq = cpu_rq(cpu);
1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
1540 rq->avg_load_per_task = 0;
1542 return rq->avg_load_per_task;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1548 * Compute the cpu's hierarchical load factor for each task group.
1549 * This needs to be done in a top-down fashion because the load of a child
1550 * group is a fraction of its parents load.
1552 static int tg_load_down(struct task_group *tg, void *data)
1555 long cpu = (long)data;
1558 load = cpu_rq(cpu)->load.weight;
1560 load = tg->parent->cfs_rq[cpu]->h_load;
1561 load *= tg->se[cpu]->load.weight;
1562 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 tg->cfs_rq[cpu]->h_load = load;
1570 static void update_h_load(long cpu)
1572 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1577 #ifdef CONFIG_PREEMPT
1579 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1583 * way at the expense of forcing extra atomic operations in all
1584 * invocations. This assures that the double_lock is acquired using the
1585 * same underlying policy as the spinlock_t on this architecture, which
1586 * reduces latency compared to the unfair variant below. However, it
1587 * also adds more overhead and therefore may reduce throughput.
1589 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1590 __releases(this_rq->lock)
1591 __acquires(busiest->lock)
1592 __acquires(this_rq->lock)
1594 raw_spin_unlock(&this_rq->lock);
1595 double_rq_lock(this_rq, busiest);
1602 * Unfair double_lock_balance: Optimizes throughput at the expense of
1603 * latency by eliminating extra atomic operations when the locks are
1604 * already in proper order on entry. This favors lower cpu-ids and will
1605 * grant the double lock to lower cpus over higher ids under contention,
1606 * regardless of entry order into the function.
1608 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1609 __releases(this_rq->lock)
1610 __acquires(busiest->lock)
1611 __acquires(this_rq->lock)
1615 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1616 if (busiest < this_rq) {
1617 raw_spin_unlock(&this_rq->lock);
1618 raw_spin_lock(&busiest->lock);
1619 raw_spin_lock_nested(&this_rq->lock,
1620 SINGLE_DEPTH_NESTING);
1623 raw_spin_lock_nested(&busiest->lock,
1624 SINGLE_DEPTH_NESTING);
1629 #endif /* CONFIG_PREEMPT */
1632 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1634 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1636 if (unlikely(!irqs_disabled())) {
1637 /* printk() doesn't work good under rq->lock */
1638 raw_spin_unlock(&this_rq->lock);
1642 return _double_lock_balance(this_rq, busiest);
1645 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1646 __releases(busiest->lock)
1648 raw_spin_unlock(&busiest->lock);
1649 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1653 * double_rq_lock - safely lock two runqueues
1655 * Note this does not disable interrupts like task_rq_lock,
1656 * you need to do so manually before calling.
1658 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1659 __acquires(rq1->lock)
1660 __acquires(rq2->lock)
1662 BUG_ON(!irqs_disabled());
1664 raw_spin_lock(&rq1->lock);
1665 __acquire(rq2->lock); /* Fake it out ;) */
1668 raw_spin_lock(&rq1->lock);
1669 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1671 raw_spin_lock(&rq2->lock);
1672 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1678 * double_rq_unlock - safely unlock two runqueues
1680 * Note this does not restore interrupts like task_rq_unlock,
1681 * you need to do so manually after calling.
1683 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1684 __releases(rq1->lock)
1685 __releases(rq2->lock)
1687 raw_spin_unlock(&rq1->lock);
1689 raw_spin_unlock(&rq2->lock);
1691 __release(rq2->lock);
1694 #else /* CONFIG_SMP */
1697 * double_rq_lock - safely lock two runqueues
1699 * Note this does not disable interrupts like task_rq_lock,
1700 * you need to do so manually before calling.
1702 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1703 __acquires(rq1->lock)
1704 __acquires(rq2->lock)
1706 BUG_ON(!irqs_disabled());
1708 raw_spin_lock(&rq1->lock);
1709 __acquire(rq2->lock); /* Fake it out ;) */
1713 * double_rq_unlock - safely unlock two runqueues
1715 * Note this does not restore interrupts like task_rq_unlock,
1716 * you need to do so manually after calling.
1718 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1719 __releases(rq1->lock)
1720 __releases(rq2->lock)
1723 raw_spin_unlock(&rq1->lock);
1724 __release(rq2->lock);
1729 static void calc_load_account_idle(struct rq *this_rq);
1730 static void update_sysctl(void);
1731 static int get_update_sysctl_factor(void);
1732 static void update_cpu_load(struct rq *this_rq);
1734 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1736 set_task_rq(p, cpu);
1739 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1740 * successfuly executed on another CPU. We must ensure that updates of
1741 * per-task data have been completed by this moment.
1744 task_thread_info(p)->cpu = cpu;
1748 static const struct sched_class rt_sched_class;
1750 #define sched_class_highest (&stop_sched_class)
1751 #define for_each_class(class) \
1752 for (class = sched_class_highest; class; class = class->next)
1754 #include "sched_stats.h"
1756 static void inc_nr_running(struct rq *rq)
1761 static void dec_nr_running(struct rq *rq)
1766 static void set_load_weight(struct task_struct *p)
1769 * SCHED_IDLE tasks get minimal weight:
1771 if (p->policy == SCHED_IDLE) {
1772 p->se.load.weight = WEIGHT_IDLEPRIO;
1773 p->se.load.inv_weight = WMULT_IDLEPRIO;
1777 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1778 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1781 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1783 update_rq_clock(rq);
1784 sched_info_queued(p);
1785 p->sched_class->enqueue_task(rq, p, flags);
1788 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1790 update_rq_clock(rq);
1791 sched_info_dequeued(p);
1792 p->sched_class->dequeue_task(rq, p, flags);
1796 * activate_task - move a task to the runqueue.
1798 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1800 if (task_contributes_to_load(p))
1801 rq->nr_uninterruptible--;
1803 enqueue_task(rq, p, flags);
1808 * deactivate_task - remove a task from the runqueue.
1810 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1812 if (task_contributes_to_load(p))
1813 rq->nr_uninterruptible++;
1815 dequeue_task(rq, p, flags);
1819 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822 * There are no locks covering percpu hardirq/softirq time.
1823 * They are only modified in account_system_vtime, on corresponding CPU
1824 * with interrupts disabled. So, writes are safe.
1825 * They are read and saved off onto struct rq in update_rq_clock().
1826 * This may result in other CPU reading this CPU's irq time and can
1827 * race with irq/account_system_vtime on this CPU. We would either get old
1828 * or new value with a side effect of accounting a slice of irq time to wrong
1829 * task when irq is in progress while we read rq->clock. That is a worthy
1830 * compromise in place of having locks on each irq in account_system_time.
1832 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1833 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1835 static DEFINE_PER_CPU(u64, irq_start_time);
1836 static int sched_clock_irqtime;
1838 void enable_sched_clock_irqtime(void)
1840 sched_clock_irqtime = 1;
1843 void disable_sched_clock_irqtime(void)
1845 sched_clock_irqtime = 0;
1848 #ifndef CONFIG_64BIT
1849 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1851 static inline void irq_time_write_begin(void)
1853 __this_cpu_inc(irq_time_seq.sequence);
1857 static inline void irq_time_write_end(void)
1860 __this_cpu_inc(irq_time_seq.sequence);
1863 static inline u64 irq_time_read(int cpu)
1869 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1870 irq_time = per_cpu(cpu_softirq_time, cpu) +
1871 per_cpu(cpu_hardirq_time, cpu);
1872 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1876 #else /* CONFIG_64BIT */
1877 static inline void irq_time_write_begin(void)
1881 static inline void irq_time_write_end(void)
1885 static inline u64 irq_time_read(int cpu)
1887 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1889 #endif /* CONFIG_64BIT */
1892 * Called before incrementing preempt_count on {soft,}irq_enter
1893 * and before decrementing preempt_count on {soft,}irq_exit.
1895 void account_system_vtime(struct task_struct *curr)
1897 unsigned long flags;
1901 if (!sched_clock_irqtime)
1904 local_irq_save(flags);
1906 cpu = smp_processor_id();
1907 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1908 __this_cpu_add(irq_start_time, delta);
1910 irq_time_write_begin();
1912 * We do not account for softirq time from ksoftirqd here.
1913 * We want to continue accounting softirq time to ksoftirqd thread
1914 * in that case, so as not to confuse scheduler with a special task
1915 * that do not consume any time, but still wants to run.
1917 if (hardirq_count())
1918 __this_cpu_add(cpu_hardirq_time, delta);
1919 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1920 __this_cpu_add(cpu_softirq_time, delta);
1922 irq_time_write_end();
1923 local_irq_restore(flags);
1925 EXPORT_SYMBOL_GPL(account_system_vtime);
1927 static void update_rq_clock_task(struct rq *rq, s64 delta)
1931 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1934 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1935 * this case when a previous update_rq_clock() happened inside a
1936 * {soft,}irq region.
1938 * When this happens, we stop ->clock_task and only update the
1939 * prev_irq_time stamp to account for the part that fit, so that a next
1940 * update will consume the rest. This ensures ->clock_task is
1943 * It does however cause some slight miss-attribution of {soft,}irq
1944 * time, a more accurate solution would be to update the irq_time using
1945 * the current rq->clock timestamp, except that would require using
1948 if (irq_delta > delta)
1951 rq->prev_irq_time += irq_delta;
1953 rq->clock_task += delta;
1955 if (irq_delta && sched_feat(NONIRQ_POWER))
1956 sched_rt_avg_update(rq, irq_delta);
1959 static int irqtime_account_hi_update(void)
1961 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1962 unsigned long flags;
1966 local_irq_save(flags);
1967 latest_ns = this_cpu_read(cpu_hardirq_time);
1968 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1970 local_irq_restore(flags);
1974 static int irqtime_account_si_update(void)
1976 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1977 unsigned long flags;
1981 local_irq_save(flags);
1982 latest_ns = this_cpu_read(cpu_softirq_time);
1983 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1985 local_irq_restore(flags);
1989 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1991 #define sched_clock_irqtime (0)
1993 static void update_rq_clock_task(struct rq *rq, s64 delta)
1995 rq->clock_task += delta;
1998 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2000 #include "sched_idletask.c"
2001 #include "sched_fair.c"
2002 #include "sched_rt.c"
2003 #include "sched_autogroup.c"
2004 #include "sched_stoptask.c"
2005 #ifdef CONFIG_SCHED_DEBUG
2006 # include "sched_debug.c"
2009 void sched_set_stop_task(int cpu, struct task_struct *stop)
2011 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2012 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2016 * Make it appear like a SCHED_FIFO task, its something
2017 * userspace knows about and won't get confused about.
2019 * Also, it will make PI more or less work without too
2020 * much confusion -- but then, stop work should not
2021 * rely on PI working anyway.
2023 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2025 stop->sched_class = &stop_sched_class;
2028 cpu_rq(cpu)->stop = stop;
2032 * Reset it back to a normal scheduling class so that
2033 * it can die in pieces.
2035 old_stop->sched_class = &rt_sched_class;
2040 * __normal_prio - return the priority that is based on the static prio
2042 static inline int __normal_prio(struct task_struct *p)
2044 return p->static_prio;
2048 * Calculate the expected normal priority: i.e. priority
2049 * without taking RT-inheritance into account. Might be
2050 * boosted by interactivity modifiers. Changes upon fork,
2051 * setprio syscalls, and whenever the interactivity
2052 * estimator recalculates.
2054 static inline int normal_prio(struct task_struct *p)
2058 if (task_has_rt_policy(p))
2059 prio = MAX_RT_PRIO-1 - p->rt_priority;
2061 prio = __normal_prio(p);
2066 * Calculate the current priority, i.e. the priority
2067 * taken into account by the scheduler. This value might
2068 * be boosted by RT tasks, or might be boosted by
2069 * interactivity modifiers. Will be RT if the task got
2070 * RT-boosted. If not then it returns p->normal_prio.
2072 static int effective_prio(struct task_struct *p)
2074 p->normal_prio = normal_prio(p);
2076 * If we are RT tasks or we were boosted to RT priority,
2077 * keep the priority unchanged. Otherwise, update priority
2078 * to the normal priority:
2080 if (!rt_prio(p->prio))
2081 return p->normal_prio;
2086 * task_curr - is this task currently executing on a CPU?
2087 * @p: the task in question.
2089 inline int task_curr(const struct task_struct *p)
2091 return cpu_curr(task_cpu(p)) == p;
2094 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2095 const struct sched_class *prev_class,
2098 if (prev_class != p->sched_class) {
2099 if (prev_class->switched_from)
2100 prev_class->switched_from(rq, p);
2101 p->sched_class->switched_to(rq, p);
2102 } else if (oldprio != p->prio)
2103 p->sched_class->prio_changed(rq, p, oldprio);
2106 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2108 const struct sched_class *class;
2110 if (p->sched_class == rq->curr->sched_class) {
2111 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2113 for_each_class(class) {
2114 if (class == rq->curr->sched_class)
2116 if (class == p->sched_class) {
2117 resched_task(rq->curr);
2124 * A queue event has occurred, and we're going to schedule. In
2125 * this case, we can save a useless back to back clock update.
2127 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2128 rq->skip_clock_update = 1;
2133 * Is this task likely cache-hot:
2136 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2140 if (p->sched_class != &fair_sched_class)
2143 if (unlikely(p->policy == SCHED_IDLE))
2147 * Buddy candidates are cache hot:
2149 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2150 (&p->se == cfs_rq_of(&p->se)->next ||
2151 &p->se == cfs_rq_of(&p->se)->last))
2154 if (sysctl_sched_migration_cost == -1)
2156 if (sysctl_sched_migration_cost == 0)
2159 delta = now - p->se.exec_start;
2161 return delta < (s64)sysctl_sched_migration_cost;
2164 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2166 #ifdef CONFIG_SCHED_DEBUG
2168 * We should never call set_task_cpu() on a blocked task,
2169 * ttwu() will sort out the placement.
2171 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2172 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2174 #ifdef CONFIG_LOCKDEP
2175 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2176 lockdep_is_held(&task_rq(p)->lock)));
2180 trace_sched_migrate_task(p, new_cpu);
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2187 __set_task_cpu(p, new_cpu);
2190 struct migration_arg {
2191 struct task_struct *task;
2195 static int migration_cpu_stop(void *data);
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2201 static bool need_migrate_task(struct task_struct *p)
2204 * If the task is not on a runqueue (and not running), then
2205 * the next wake-up will properly place the task.
2207 bool running = p->on_rq || p->on_cpu;
2208 smp_rmb(); /* finish_lock_switch() */
2213 * wait_task_inactive - wait for a thread to unschedule.
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2228 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2230 unsigned long flags;
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2266 rq = task_rq_lock(p, &flags);
2267 trace_sched_wait_task(p);
2268 running = task_running(rq, p);
2271 if (!match_state || p->state == match_state)
2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273 task_rq_unlock(rq, p, &flags);
2276 * If it changed from the expected state, bail out now.
2278 if (unlikely(!ncsw))
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2285 * Oops. Go back and try again..
2287 if (unlikely(running)) {
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2301 if (unlikely(on_rq)) {
2302 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2327 * NOTE: this function doesn't have to take the runqueue lock,
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2333 void kick_process(struct task_struct *p)
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2343 EXPORT_SYMBOL_GPL(kick_process);
2344 #endif /* CONFIG_SMP */
2348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2350 static int select_fallback_rq(int cpu, struct task_struct *p)
2353 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2355 /* Look for allowed, online CPU in same node. */
2356 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2357 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2360 /* Any allowed, online CPU? */
2361 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2362 if (dest_cpu < nr_cpu_ids)
2365 /* No more Mr. Nice Guy. */
2366 dest_cpu = cpuset_cpus_allowed_fallback(p);
2368 * Don't tell them about moving exiting tasks or
2369 * kernel threads (both mm NULL), since they never
2372 if (p->mm && printk_ratelimit()) {
2373 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2374 task_pid_nr(p), p->comm, cpu);
2381 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2384 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2386 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2389 * In order not to call set_task_cpu() on a blocking task we need
2390 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2393 * Since this is common to all placement strategies, this lives here.
2395 * [ this allows ->select_task() to simply return task_cpu(p) and
2396 * not worry about this generic constraint ]
2398 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2400 cpu = select_fallback_rq(task_cpu(p), p);
2405 static void update_avg(u64 *avg, u64 sample)
2407 s64 diff = sample - *avg;
2413 ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
2415 #ifdef CONFIG_SCHEDSTATS
2417 int this_cpu = smp_processor_id();
2419 if (cpu == this_cpu) {
2420 schedstat_inc(rq, ttwu_local);
2421 schedstat_inc(p, se.statistics.nr_wakeups_local);
2423 struct sched_domain *sd;
2425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2433 #endif /* CONFIG_SMP */
2435 schedstat_inc(rq, ttwu_count);
2436 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2441 if (cpu != task_cpu(p))
2442 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2444 #endif /* CONFIG_SCHEDSTATS */
2447 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2449 activate_task(rq, p, en_flags);
2452 /* if a worker is waking up, notify workqueue */
2453 if (p->flags & PF_WQ_WORKER)
2454 wq_worker_waking_up(p, cpu_of(rq));
2458 ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
2460 trace_sched_wakeup(p, true);
2461 check_preempt_curr(rq, p, wake_flags);
2463 p->state = TASK_RUNNING;
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2468 if (unlikely(rq->idle_stamp)) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2475 update_avg(&rq->avg_idle, delta);
2482 * try_to_wake_up - wake up a thread
2483 * @p: the thread to be awakened
2484 * @state: the mask of task states that can be woken
2485 * @wake_flags: wake modifier flags (WF_*)
2487 * Put it on the run-queue if it's not already there. The "current"
2488 * thread is always on the run-queue (except when the actual
2489 * re-schedule is in progress), and as such you're allowed to do
2490 * the simpler "current->state = TASK_RUNNING" to mark yourself
2491 * runnable without the overhead of this.
2493 * Returns %true if @p was woken up, %false if it was already running
2494 * or @state didn't match @p's state.
2497 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2499 int cpu, this_cpu, success = 0;
2500 unsigned long flags;
2503 this_cpu = get_cpu();
2506 raw_spin_lock_irqsave(&p->pi_lock, flags);
2507 if (!(p->state & state))
2513 rq = __task_rq_lock(p);
2516 __task_rq_unlock(rq);
2521 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2523 * If called from interrupt context we could have landed in the
2524 * middle of schedule(), in this case we should take care not
2525 * to spin on ->on_cpu if p is current, since that would
2534 * Pairs with the smp_wmb() in finish_lock_switch().
2538 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2539 p->state = TASK_WAKING;
2541 if (p->sched_class->task_waking)
2542 p->sched_class->task_waking(p);
2544 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2545 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2548 #endif /* CONFIG_SMP */
2551 raw_spin_lock(&rq->lock);
2554 if (cpu != task_cpu(p))
2555 set_task_cpu(p, cpu);
2557 if (p->sched_contributes_to_load)
2558 rq->nr_uninterruptible--;
2561 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2563 ttwu_post_activation(p, rq, wake_flags);
2564 ttwu_stat(rq, p, cpu, wake_flags);
2566 __task_rq_unlock(rq);
2568 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2575 * try_to_wake_up_local - try to wake up a local task with rq lock held
2576 * @p: the thread to be awakened
2578 * Put @p on the run-queue if it's not already there. The caller must
2579 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2582 static void try_to_wake_up_local(struct task_struct *p)
2584 struct rq *rq = task_rq(p);
2586 BUG_ON(rq != this_rq());
2587 BUG_ON(p == current);
2588 lockdep_assert_held(&rq->lock);
2590 if (!raw_spin_trylock(&p->pi_lock)) {
2591 raw_spin_unlock(&rq->lock);
2592 raw_spin_lock(&p->pi_lock);
2593 raw_spin_lock(&rq->lock);
2596 if (!(p->state & TASK_NORMAL))
2600 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2602 ttwu_post_activation(p, rq, 0);
2603 ttwu_stat(rq, p, smp_processor_id(), 0);
2605 raw_spin_unlock(&p->pi_lock);
2609 * wake_up_process - Wake up a specific process
2610 * @p: The process to be woken up.
2612 * Attempt to wake up the nominated process and move it to the set of runnable
2613 * processes. Returns 1 if the process was woken up, 0 if it was already
2616 * It may be assumed that this function implies a write memory barrier before
2617 * changing the task state if and only if any tasks are woken up.
2619 int wake_up_process(struct task_struct *p)
2621 return try_to_wake_up(p, TASK_ALL, 0);
2623 EXPORT_SYMBOL(wake_up_process);
2625 int wake_up_state(struct task_struct *p, unsigned int state)
2627 return try_to_wake_up(p, state, 0);
2631 * Perform scheduler related setup for a newly forked process p.
2632 * p is forked by current.
2634 * __sched_fork() is basic setup used by init_idle() too:
2636 static void __sched_fork(struct task_struct *p)
2641 p->se.exec_start = 0;
2642 p->se.sum_exec_runtime = 0;
2643 p->se.prev_sum_exec_runtime = 0;
2644 p->se.nr_migrations = 0;
2646 INIT_LIST_HEAD(&p->se.group_node);
2648 #ifdef CONFIG_SCHEDSTATS
2649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2652 INIT_LIST_HEAD(&p->rt.run_list);
2654 #ifdef CONFIG_PREEMPT_NOTIFIERS
2655 INIT_HLIST_HEAD(&p->preempt_notifiers);
2660 * fork()/clone()-time setup:
2662 void sched_fork(struct task_struct *p, int clone_flags)
2664 unsigned long flags;
2665 int cpu = get_cpu();
2669 * We mark the process as running here. This guarantees that
2670 * nobody will actually run it, and a signal or other external
2671 * event cannot wake it up and insert it on the runqueue either.
2673 p->state = TASK_RUNNING;
2676 * Revert to default priority/policy on fork if requested.
2678 if (unlikely(p->sched_reset_on_fork)) {
2679 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2680 p->policy = SCHED_NORMAL;
2681 p->normal_prio = p->static_prio;
2684 if (PRIO_TO_NICE(p->static_prio) < 0) {
2685 p->static_prio = NICE_TO_PRIO(0);
2686 p->normal_prio = p->static_prio;
2691 * We don't need the reset flag anymore after the fork. It has
2692 * fulfilled its duty:
2694 p->sched_reset_on_fork = 0;
2698 * Make sure we do not leak PI boosting priority to the child.
2700 p->prio = current->normal_prio;
2702 if (!rt_prio(p->prio))
2703 p->sched_class = &fair_sched_class;
2705 if (p->sched_class->task_fork)
2706 p->sched_class->task_fork(p);
2709 * The child is not yet in the pid-hash so no cgroup attach races,
2710 * and the cgroup is pinned to this child due to cgroup_fork()
2711 * is ran before sched_fork().
2713 * Silence PROVE_RCU.
2715 raw_spin_lock_irqsave(&p->pi_lock, flags);
2716 set_task_cpu(p, cpu);
2717 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2720 if (likely(sched_info_on()))
2721 memset(&p->sched_info, 0, sizeof(p->sched_info));
2723 #if defined(CONFIG_SMP)
2726 #ifdef CONFIG_PREEMPT
2727 /* Want to start with kernel preemption disabled. */
2728 task_thread_info(p)->preempt_count = 1;
2731 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2738 * wake_up_new_task - wake up a newly created task for the first time.
2740 * This function will do some initial scheduler statistics housekeeping
2741 * that must be done for every newly created context, then puts the task
2742 * on the runqueue and wakes it.
2744 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2746 unsigned long flags;
2749 raw_spin_lock_irqsave(&p->pi_lock, flags);
2752 * Fork balancing, do it here and not earlier because:
2753 * - cpus_allowed can change in the fork path
2754 * - any previously selected cpu might disappear through hotplug
2756 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2759 rq = __task_rq_lock(p);
2760 activate_task(rq, p, 0);
2762 trace_sched_wakeup_new(p, true);
2763 check_preempt_curr(rq, p, WF_FORK);
2765 if (p->sched_class->task_woken)
2766 p->sched_class->task_woken(rq, p);
2768 task_rq_unlock(rq, p, &flags);
2771 #ifdef CONFIG_PREEMPT_NOTIFIERS
2774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2775 * @notifier: notifier struct to register
2777 void preempt_notifier_register(struct preempt_notifier *notifier)
2779 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2781 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2784 * preempt_notifier_unregister - no longer interested in preemption notifications
2785 * @notifier: notifier struct to unregister
2787 * This is safe to call from within a preemption notifier.
2789 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2791 hlist_del(¬ifier->link);
2793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2795 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2797 struct preempt_notifier *notifier;
2798 struct hlist_node *node;
2800 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2801 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2805 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2806 struct task_struct *next)
2808 struct preempt_notifier *notifier;
2809 struct hlist_node *node;
2811 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2812 notifier->ops->sched_out(notifier, next);
2815 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2817 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2822 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2823 struct task_struct *next)
2827 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2830 * prepare_task_switch - prepare to switch tasks
2831 * @rq: the runqueue preparing to switch
2832 * @prev: the current task that is being switched out
2833 * @next: the task we are going to switch to.
2835 * This is called with the rq lock held and interrupts off. It must
2836 * be paired with a subsequent finish_task_switch after the context
2839 * prepare_task_switch sets up locking and calls architecture specific
2843 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2844 struct task_struct *next)
2846 sched_info_switch(prev, next);
2847 perf_event_task_sched_out(prev, next);
2848 fire_sched_out_preempt_notifiers(prev, next);
2849 prepare_lock_switch(rq, next);
2850 prepare_arch_switch(next);
2851 trace_sched_switch(prev, next);
2855 * finish_task_switch - clean up after a task-switch
2856 * @rq: runqueue associated with task-switch
2857 * @prev: the thread we just switched away from.
2859 * finish_task_switch must be called after the context switch, paired
2860 * with a prepare_task_switch call before the context switch.
2861 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2862 * and do any other architecture-specific cleanup actions.
2864 * Note that we may have delayed dropping an mm in context_switch(). If
2865 * so, we finish that here outside of the runqueue lock. (Doing it
2866 * with the lock held can cause deadlocks; see schedule() for
2869 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2870 __releases(rq->lock)
2872 struct mm_struct *mm = rq->prev_mm;
2878 * A task struct has one reference for the use as "current".
2879 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2880 * schedule one last time. The schedule call will never return, and
2881 * the scheduled task must drop that reference.
2882 * The test for TASK_DEAD must occur while the runqueue locks are
2883 * still held, otherwise prev could be scheduled on another cpu, die
2884 * there before we look at prev->state, and then the reference would
2888 prev_state = prev->state;
2889 finish_arch_switch(prev);
2890 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2891 local_irq_disable();
2892 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2893 perf_event_task_sched_in(current);
2894 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2896 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2897 finish_lock_switch(rq, prev);
2899 fire_sched_in_preempt_notifiers(current);
2902 if (unlikely(prev_state == TASK_DEAD)) {
2904 * Remove function-return probe instances associated with this
2905 * task and put them back on the free list.
2907 kprobe_flush_task(prev);
2908 put_task_struct(prev);
2914 /* assumes rq->lock is held */
2915 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2917 if (prev->sched_class->pre_schedule)
2918 prev->sched_class->pre_schedule(rq, prev);
2921 /* rq->lock is NOT held, but preemption is disabled */
2922 static inline void post_schedule(struct rq *rq)
2924 if (rq->post_schedule) {
2925 unsigned long flags;
2927 raw_spin_lock_irqsave(&rq->lock, flags);
2928 if (rq->curr->sched_class->post_schedule)
2929 rq->curr->sched_class->post_schedule(rq);
2930 raw_spin_unlock_irqrestore(&rq->lock, flags);
2932 rq->post_schedule = 0;
2938 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2942 static inline void post_schedule(struct rq *rq)
2949 * schedule_tail - first thing a freshly forked thread must call.
2950 * @prev: the thread we just switched away from.
2952 asmlinkage void schedule_tail(struct task_struct *prev)
2953 __releases(rq->lock)
2955 struct rq *rq = this_rq();
2957 finish_task_switch(rq, prev);
2960 * FIXME: do we need to worry about rq being invalidated by the
2965 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2966 /* In this case, finish_task_switch does not reenable preemption */
2969 if (current->set_child_tid)
2970 put_user(task_pid_vnr(current), current->set_child_tid);
2974 * context_switch - switch to the new MM and the new
2975 * thread's register state.
2978 context_switch(struct rq *rq, struct task_struct *prev,
2979 struct task_struct *next)
2981 struct mm_struct *mm, *oldmm;
2983 prepare_task_switch(rq, prev, next);
2986 oldmm = prev->active_mm;
2988 * For paravirt, this is coupled with an exit in switch_to to
2989 * combine the page table reload and the switch backend into
2992 arch_start_context_switch(prev);
2995 next->active_mm = oldmm;
2996 atomic_inc(&oldmm->mm_count);
2997 enter_lazy_tlb(oldmm, next);
2999 switch_mm(oldmm, mm, next);
3002 prev->active_mm = NULL;
3003 rq->prev_mm = oldmm;
3006 * Since the runqueue lock will be released by the next
3007 * task (which is an invalid locking op but in the case
3008 * of the scheduler it's an obvious special-case), so we
3009 * do an early lockdep release here:
3011 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3012 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3015 /* Here we just switch the register state and the stack. */
3016 switch_to(prev, next, prev);
3020 * this_rq must be evaluated again because prev may have moved
3021 * CPUs since it called schedule(), thus the 'rq' on its stack
3022 * frame will be invalid.
3024 finish_task_switch(this_rq(), prev);
3028 * nr_running, nr_uninterruptible and nr_context_switches:
3030 * externally visible scheduler statistics: current number of runnable
3031 * threads, current number of uninterruptible-sleeping threads, total
3032 * number of context switches performed since bootup.
3034 unsigned long nr_running(void)
3036 unsigned long i, sum = 0;
3038 for_each_online_cpu(i)
3039 sum += cpu_rq(i)->nr_running;
3044 unsigned long nr_uninterruptible(void)
3046 unsigned long i, sum = 0;
3048 for_each_possible_cpu(i)
3049 sum += cpu_rq(i)->nr_uninterruptible;
3052 * Since we read the counters lockless, it might be slightly
3053 * inaccurate. Do not allow it to go below zero though:
3055 if (unlikely((long)sum < 0))
3061 unsigned long long nr_context_switches(void)
3064 unsigned long long sum = 0;
3066 for_each_possible_cpu(i)
3067 sum += cpu_rq(i)->nr_switches;
3072 unsigned long nr_iowait(void)
3074 unsigned long i, sum = 0;
3076 for_each_possible_cpu(i)
3077 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3082 unsigned long nr_iowait_cpu(int cpu)
3084 struct rq *this = cpu_rq(cpu);
3085 return atomic_read(&this->nr_iowait);
3088 unsigned long this_cpu_load(void)
3090 struct rq *this = this_rq();
3091 return this->cpu_load[0];
3095 /* Variables and functions for calc_load */
3096 static atomic_long_t calc_load_tasks;
3097 static unsigned long calc_load_update;
3098 unsigned long avenrun[3];
3099 EXPORT_SYMBOL(avenrun);
3101 static long calc_load_fold_active(struct rq *this_rq)
3103 long nr_active, delta = 0;
3105 nr_active = this_rq->nr_running;
3106 nr_active += (long) this_rq->nr_uninterruptible;
3108 if (nr_active != this_rq->calc_load_active) {
3109 delta = nr_active - this_rq->calc_load_active;
3110 this_rq->calc_load_active = nr_active;
3116 static unsigned long
3117 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3120 load += active * (FIXED_1 - exp);
3121 load += 1UL << (FSHIFT - 1);
3122 return load >> FSHIFT;
3127 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3129 * When making the ILB scale, we should try to pull this in as well.
3131 static atomic_long_t calc_load_tasks_idle;
3133 static void calc_load_account_idle(struct rq *this_rq)
3137 delta = calc_load_fold_active(this_rq);
3139 atomic_long_add(delta, &calc_load_tasks_idle);
3142 static long calc_load_fold_idle(void)
3147 * Its got a race, we don't care...
3149 if (atomic_long_read(&calc_load_tasks_idle))
3150 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3156 * fixed_power_int - compute: x^n, in O(log n) time
3158 * @x: base of the power
3159 * @frac_bits: fractional bits of @x
3160 * @n: power to raise @x to.
3162 * By exploiting the relation between the definition of the natural power
3163 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3164 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3165 * (where: n_i \elem {0, 1}, the binary vector representing n),
3166 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3167 * of course trivially computable in O(log_2 n), the length of our binary
3170 static unsigned long
3171 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3173 unsigned long result = 1UL << frac_bits;
3178 result += 1UL << (frac_bits - 1);
3179 result >>= frac_bits;
3185 x += 1UL << (frac_bits - 1);
3193 * a1 = a0 * e + a * (1 - e)
3195 * a2 = a1 * e + a * (1 - e)
3196 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3197 * = a0 * e^2 + a * (1 - e) * (1 + e)
3199 * a3 = a2 * e + a * (1 - e)
3200 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3201 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3205 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3206 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3207 * = a0 * e^n + a * (1 - e^n)
3209 * [1] application of the geometric series:
3212 * S_n := \Sum x^i = -------------
3215 static unsigned long
3216 calc_load_n(unsigned long load, unsigned long exp,
3217 unsigned long active, unsigned int n)
3220 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3224 * NO_HZ can leave us missing all per-cpu ticks calling
3225 * calc_load_account_active(), but since an idle CPU folds its delta into
3226 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3227 * in the pending idle delta if our idle period crossed a load cycle boundary.
3229 * Once we've updated the global active value, we need to apply the exponential
3230 * weights adjusted to the number of cycles missed.
3232 static void calc_global_nohz(unsigned long ticks)
3234 long delta, active, n;
3236 if (time_before(jiffies, calc_load_update))
3240 * If we crossed a calc_load_update boundary, make sure to fold
3241 * any pending idle changes, the respective CPUs might have
3242 * missed the tick driven calc_load_account_active() update
3245 delta = calc_load_fold_idle();
3247 atomic_long_add(delta, &calc_load_tasks);
3250 * If we were idle for multiple load cycles, apply them.
3252 if (ticks >= LOAD_FREQ) {
3253 n = ticks / LOAD_FREQ;
3255 active = atomic_long_read(&calc_load_tasks);
3256 active = active > 0 ? active * FIXED_1 : 0;
3258 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3259 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3260 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3262 calc_load_update += n * LOAD_FREQ;
3266 * Its possible the remainder of the above division also crosses
3267 * a LOAD_FREQ period, the regular check in calc_global_load()
3268 * which comes after this will take care of that.
3270 * Consider us being 11 ticks before a cycle completion, and us
3271 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3272 * age us 4 cycles, and the test in calc_global_load() will
3273 * pick up the final one.
3277 static void calc_load_account_idle(struct rq *this_rq)
3281 static inline long calc_load_fold_idle(void)
3286 static void calc_global_nohz(unsigned long ticks)
3292 * get_avenrun - get the load average array
3293 * @loads: pointer to dest load array
3294 * @offset: offset to add
3295 * @shift: shift count to shift the result left
3297 * These values are estimates at best, so no need for locking.
3299 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3301 loads[0] = (avenrun[0] + offset) << shift;
3302 loads[1] = (avenrun[1] + offset) << shift;
3303 loads[2] = (avenrun[2] + offset) << shift;
3307 * calc_load - update the avenrun load estimates 10 ticks after the
3308 * CPUs have updated calc_load_tasks.
3310 void calc_global_load(unsigned long ticks)
3314 calc_global_nohz(ticks);
3316 if (time_before(jiffies, calc_load_update + 10))
3319 active = atomic_long_read(&calc_load_tasks);
3320 active = active > 0 ? active * FIXED_1 : 0;
3322 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3323 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3324 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3326 calc_load_update += LOAD_FREQ;
3330 * Called from update_cpu_load() to periodically update this CPU's
3333 static void calc_load_account_active(struct rq *this_rq)
3337 if (time_before(jiffies, this_rq->calc_load_update))
3340 delta = calc_load_fold_active(this_rq);
3341 delta += calc_load_fold_idle();
3343 atomic_long_add(delta, &calc_load_tasks);
3345 this_rq->calc_load_update += LOAD_FREQ;
3349 * The exact cpuload at various idx values, calculated at every tick would be
3350 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3352 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3353 * on nth tick when cpu may be busy, then we have:
3354 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3355 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3357 * decay_load_missed() below does efficient calculation of
3358 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3359 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3361 * The calculation is approximated on a 128 point scale.
3362 * degrade_zero_ticks is the number of ticks after which load at any
3363 * particular idx is approximated to be zero.
3364 * degrade_factor is a precomputed table, a row for each load idx.
3365 * Each column corresponds to degradation factor for a power of two ticks,
3366 * based on 128 point scale.
3368 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3369 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3371 * With this power of 2 load factors, we can degrade the load n times
3372 * by looking at 1 bits in n and doing as many mult/shift instead of
3373 * n mult/shifts needed by the exact degradation.
3375 #define DEGRADE_SHIFT 7
3376 static const unsigned char
3377 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3378 static const unsigned char
3379 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3380 {0, 0, 0, 0, 0, 0, 0, 0},
3381 {64, 32, 8, 0, 0, 0, 0, 0},
3382 {96, 72, 40, 12, 1, 0, 0},
3383 {112, 98, 75, 43, 15, 1, 0},
3384 {120, 112, 98, 76, 45, 16, 2} };
3387 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3388 * would be when CPU is idle and so we just decay the old load without
3389 * adding any new load.
3391 static unsigned long
3392 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3396 if (!missed_updates)
3399 if (missed_updates >= degrade_zero_ticks[idx])
3403 return load >> missed_updates;
3405 while (missed_updates) {
3406 if (missed_updates % 2)
3407 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3409 missed_updates >>= 1;
3416 * Update rq->cpu_load[] statistics. This function is usually called every
3417 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3418 * every tick. We fix it up based on jiffies.
3420 static void update_cpu_load(struct rq *this_rq)
3422 unsigned long this_load = this_rq->load.weight;
3423 unsigned long curr_jiffies = jiffies;
3424 unsigned long pending_updates;
3427 this_rq->nr_load_updates++;
3429 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3430 if (curr_jiffies == this_rq->last_load_update_tick)
3433 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3434 this_rq->last_load_update_tick = curr_jiffies;
3436 /* Update our load: */
3437 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3438 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3439 unsigned long old_load, new_load;
3441 /* scale is effectively 1 << i now, and >> i divides by scale */
3443 old_load = this_rq->cpu_load[i];
3444 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3445 new_load = this_load;
3447 * Round up the averaging division if load is increasing. This
3448 * prevents us from getting stuck on 9 if the load is 10, for
3451 if (new_load > old_load)
3452 new_load += scale - 1;
3454 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3457 sched_avg_update(this_rq);
3460 static void update_cpu_load_active(struct rq *this_rq)
3462 update_cpu_load(this_rq);
3464 calc_load_account_active(this_rq);
3470 * sched_exec - execve() is a valuable balancing opportunity, because at
3471 * this point the task has the smallest effective memory and cache footprint.
3473 void sched_exec(void)
3475 struct task_struct *p = current;
3476 unsigned long flags;
3479 raw_spin_lock_irqsave(&p->pi_lock, flags);
3480 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3481 if (dest_cpu == smp_processor_id())
3484 if (likely(cpu_active(dest_cpu))) {
3485 struct migration_arg arg = { p, dest_cpu };
3487 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3488 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3492 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3497 DEFINE_PER_CPU(struct kernel_stat, kstat);
3499 EXPORT_PER_CPU_SYMBOL(kstat);
3502 * Return any ns on the sched_clock that have not yet been accounted in
3503 * @p in case that task is currently running.
3505 * Called with task_rq_lock() held on @rq.
3507 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3511 if (task_current(rq, p)) {
3512 update_rq_clock(rq);
3513 ns = rq->clock_task - p->se.exec_start;
3521 unsigned long long task_delta_exec(struct task_struct *p)
3523 unsigned long flags;
3527 rq = task_rq_lock(p, &flags);
3528 ns = do_task_delta_exec(p, rq);
3529 task_rq_unlock(rq, p, &flags);
3535 * Return accounted runtime for the task.
3536 * In case the task is currently running, return the runtime plus current's
3537 * pending runtime that have not been accounted yet.
3539 unsigned long long task_sched_runtime(struct task_struct *p)
3541 unsigned long flags;
3545 rq = task_rq_lock(p, &flags);
3546 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3547 task_rq_unlock(rq, p, &flags);
3553 * Return sum_exec_runtime for the thread group.
3554 * In case the task is currently running, return the sum plus current's
3555 * pending runtime that have not been accounted yet.
3557 * Note that the thread group might have other running tasks as well,
3558 * so the return value not includes other pending runtime that other
3559 * running tasks might have.
3561 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3563 struct task_cputime totals;
3564 unsigned long flags;
3568 rq = task_rq_lock(p, &flags);
3569 thread_group_cputime(p, &totals);
3570 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3571 task_rq_unlock(rq, p, &flags);
3577 * Account user cpu time to a process.
3578 * @p: the process that the cpu time gets accounted to
3579 * @cputime: the cpu time spent in user space since the last update
3580 * @cputime_scaled: cputime scaled by cpu frequency
3582 void account_user_time(struct task_struct *p, cputime_t cputime,
3583 cputime_t cputime_scaled)
3585 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3588 /* Add user time to process. */
3589 p->utime = cputime_add(p->utime, cputime);
3590 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3591 account_group_user_time(p, cputime);
3593 /* Add user time to cpustat. */
3594 tmp = cputime_to_cputime64(cputime);
3595 if (TASK_NICE(p) > 0)
3596 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3598 cpustat->user = cputime64_add(cpustat->user, tmp);
3600 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3601 /* Account for user time used */
3602 acct_update_integrals(p);
3606 * Account guest cpu time to a process.
3607 * @p: the process that the cpu time gets accounted to
3608 * @cputime: the cpu time spent in virtual machine since the last update
3609 * @cputime_scaled: cputime scaled by cpu frequency
3611 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3612 cputime_t cputime_scaled)
3615 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3617 tmp = cputime_to_cputime64(cputime);
3619 /* Add guest time to process. */
3620 p->utime = cputime_add(p->utime, cputime);
3621 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3622 account_group_user_time(p, cputime);
3623 p->gtime = cputime_add(p->gtime, cputime);
3625 /* Add guest time to cpustat. */
3626 if (TASK_NICE(p) > 0) {
3627 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3628 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3630 cpustat->user = cputime64_add(cpustat->user, tmp);
3631 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3636 * Account system cpu time to a process and desired cpustat field
3637 * @p: the process that the cpu time gets accounted to
3638 * @cputime: the cpu time spent in kernel space since the last update
3639 * @cputime_scaled: cputime scaled by cpu frequency
3640 * @target_cputime64: pointer to cpustat field that has to be updated
3643 void __account_system_time(struct task_struct *p, cputime_t cputime,
3644 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3646 cputime64_t tmp = cputime_to_cputime64(cputime);
3648 /* Add system time to process. */
3649 p->stime = cputime_add(p->stime, cputime);
3650 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3651 account_group_system_time(p, cputime);
3653 /* Add system time to cpustat. */
3654 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3655 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3657 /* Account for system time used */
3658 acct_update_integrals(p);
3662 * Account system cpu time to a process.
3663 * @p: the process that the cpu time gets accounted to
3664 * @hardirq_offset: the offset to subtract from hardirq_count()
3665 * @cputime: the cpu time spent in kernel space since the last update
3666 * @cputime_scaled: cputime scaled by cpu frequency
3668 void account_system_time(struct task_struct *p, int hardirq_offset,
3669 cputime_t cputime, cputime_t cputime_scaled)
3671 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3672 cputime64_t *target_cputime64;
3674 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3675 account_guest_time(p, cputime, cputime_scaled);
3679 if (hardirq_count() - hardirq_offset)
3680 target_cputime64 = &cpustat->irq;
3681 else if (in_serving_softirq())
3682 target_cputime64 = &cpustat->softirq;
3684 target_cputime64 = &cpustat->system;
3686 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3690 * Account for involuntary wait time.
3691 * @cputime: the cpu time spent in involuntary wait
3693 void account_steal_time(cputime_t cputime)
3695 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3696 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3698 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3702 * Account for idle time.
3703 * @cputime: the cpu time spent in idle wait
3705 void account_idle_time(cputime_t cputime)
3707 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3708 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3709 struct rq *rq = this_rq();
3711 if (atomic_read(&rq->nr_iowait) > 0)
3712 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3714 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3717 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3719 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3721 * Account a tick to a process and cpustat
3722 * @p: the process that the cpu time gets accounted to
3723 * @user_tick: is the tick from userspace
3724 * @rq: the pointer to rq
3726 * Tick demultiplexing follows the order
3727 * - pending hardirq update
3728 * - pending softirq update
3732 * - check for guest_time
3733 * - else account as system_time
3735 * Check for hardirq is done both for system and user time as there is
3736 * no timer going off while we are on hardirq and hence we may never get an
3737 * opportunity to update it solely in system time.
3738 * p->stime and friends are only updated on system time and not on irq
3739 * softirq as those do not count in task exec_runtime any more.
3741 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3744 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3745 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3746 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3748 if (irqtime_account_hi_update()) {
3749 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3750 } else if (irqtime_account_si_update()) {
3751 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3752 } else if (this_cpu_ksoftirqd() == p) {
3754 * ksoftirqd time do not get accounted in cpu_softirq_time.
3755 * So, we have to handle it separately here.
3756 * Also, p->stime needs to be updated for ksoftirqd.
3758 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3760 } else if (user_tick) {
3761 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3762 } else if (p == rq->idle) {
3763 account_idle_time(cputime_one_jiffy);
3764 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3765 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3767 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3772 static void irqtime_account_idle_ticks(int ticks)
3775 struct rq *rq = this_rq();
3777 for (i = 0; i < ticks; i++)
3778 irqtime_account_process_tick(current, 0, rq);
3780 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3781 static void irqtime_account_idle_ticks(int ticks) {}
3782 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3784 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3787 * Account a single tick of cpu time.
3788 * @p: the process that the cpu time gets accounted to
3789 * @user_tick: indicates if the tick is a user or a system tick
3791 void account_process_tick(struct task_struct *p, int user_tick)
3793 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3794 struct rq *rq = this_rq();
3796 if (sched_clock_irqtime) {
3797 irqtime_account_process_tick(p, user_tick, rq);
3802 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3803 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3804 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3807 account_idle_time(cputime_one_jiffy);
3811 * Account multiple ticks of steal time.
3812 * @p: the process from which the cpu time has been stolen
3813 * @ticks: number of stolen ticks
3815 void account_steal_ticks(unsigned long ticks)
3817 account_steal_time(jiffies_to_cputime(ticks));
3821 * Account multiple ticks of idle time.
3822 * @ticks: number of stolen ticks
3824 void account_idle_ticks(unsigned long ticks)
3827 if (sched_clock_irqtime) {
3828 irqtime_account_idle_ticks(ticks);
3832 account_idle_time(jiffies_to_cputime(ticks));
3838 * Use precise platform statistics if available:
3840 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3841 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3847 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3849 struct task_cputime cputime;
3851 thread_group_cputime(p, &cputime);
3853 *ut = cputime.utime;
3854 *st = cputime.stime;
3858 #ifndef nsecs_to_cputime
3859 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3862 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3864 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3867 * Use CFS's precise accounting:
3869 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3875 do_div(temp, total);
3876 utime = (cputime_t)temp;
3881 * Compare with previous values, to keep monotonicity:
3883 p->prev_utime = max(p->prev_utime, utime);
3884 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3886 *ut = p->prev_utime;
3887 *st = p->prev_stime;
3891 * Must be called with siglock held.
3893 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3895 struct signal_struct *sig = p->signal;
3896 struct task_cputime cputime;
3897 cputime_t rtime, utime, total;
3899 thread_group_cputime(p, &cputime);
3901 total = cputime_add(cputime.utime, cputime.stime);
3902 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3907 temp *= cputime.utime;
3908 do_div(temp, total);
3909 utime = (cputime_t)temp;
3913 sig->prev_utime = max(sig->prev_utime, utime);
3914 sig->prev_stime = max(sig->prev_stime,
3915 cputime_sub(rtime, sig->prev_utime));
3917 *ut = sig->prev_utime;
3918 *st = sig->prev_stime;
3923 * This function gets called by the timer code, with HZ frequency.
3924 * We call it with interrupts disabled.
3926 * It also gets called by the fork code, when changing the parent's
3929 void scheduler_tick(void)
3931 int cpu = smp_processor_id();
3932 struct rq *rq = cpu_rq(cpu);
3933 struct task_struct *curr = rq->curr;
3937 raw_spin_lock(&rq->lock);
3938 update_rq_clock(rq);
3939 update_cpu_load_active(rq);
3940 curr->sched_class->task_tick(rq, curr, 0);
3941 raw_spin_unlock(&rq->lock);
3943 perf_event_task_tick();
3946 rq->idle_at_tick = idle_cpu(cpu);
3947 trigger_load_balance(rq, cpu);
3951 notrace unsigned long get_parent_ip(unsigned long addr)
3953 if (in_lock_functions(addr)) {
3954 addr = CALLER_ADDR2;
3955 if (in_lock_functions(addr))
3956 addr = CALLER_ADDR3;
3961 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3962 defined(CONFIG_PREEMPT_TRACER))
3964 void __kprobes add_preempt_count(int val)
3966 #ifdef CONFIG_DEBUG_PREEMPT
3970 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3973 preempt_count() += val;
3974 #ifdef CONFIG_DEBUG_PREEMPT
3976 * Spinlock count overflowing soon?
3978 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3981 if (preempt_count() == val)
3982 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3984 EXPORT_SYMBOL(add_preempt_count);
3986 void __kprobes sub_preempt_count(int val)
3988 #ifdef CONFIG_DEBUG_PREEMPT
3992 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3995 * Is the spinlock portion underflowing?
3997 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3998 !(preempt_count() & PREEMPT_MASK)))
4002 if (preempt_count() == val)
4003 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4004 preempt_count() -= val;
4006 EXPORT_SYMBOL(sub_preempt_count);
4011 * Print scheduling while atomic bug:
4013 static noinline void __schedule_bug(struct task_struct *prev)
4015 struct pt_regs *regs = get_irq_regs();
4017 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4018 prev->comm, prev->pid, preempt_count());
4020 debug_show_held_locks(prev);
4022 if (irqs_disabled())
4023 print_irqtrace_events(prev);
4032 * Various schedule()-time debugging checks and statistics:
4034 static inline void schedule_debug(struct task_struct *prev)
4037 * Test if we are atomic. Since do_exit() needs to call into
4038 * schedule() atomically, we ignore that path for now.
4039 * Otherwise, whine if we are scheduling when we should not be.
4041 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4042 __schedule_bug(prev);
4044 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4046 schedstat_inc(this_rq(), sched_count);
4047 #ifdef CONFIG_SCHEDSTATS
4048 if (unlikely(prev->lock_depth >= 0)) {
4049 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4050 schedstat_inc(prev, sched_info.bkl_count);
4055 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4058 update_rq_clock(rq);
4059 prev->sched_class->put_prev_task(rq, prev);
4063 * Pick up the highest-prio task:
4065 static inline struct task_struct *
4066 pick_next_task(struct rq *rq)
4068 const struct sched_class *class;
4069 struct task_struct *p;
4072 * Optimization: we know that if all tasks are in
4073 * the fair class we can call that function directly:
4075 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4076 p = fair_sched_class.pick_next_task(rq);
4081 for_each_class(class) {
4082 p = class->pick_next_task(rq);
4087 BUG(); /* the idle class will always have a runnable task */
4091 * schedule() is the main scheduler function.
4093 asmlinkage void __sched schedule(void)
4095 struct task_struct *prev, *next;
4096 unsigned long *switch_count;
4102 cpu = smp_processor_id();
4104 rcu_note_context_switch(cpu);
4107 schedule_debug(prev);
4109 if (sched_feat(HRTICK))
4112 raw_spin_lock_irq(&rq->lock);
4114 switch_count = &prev->nivcsw;
4115 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4116 if (unlikely(signal_pending_state(prev->state, prev))) {
4117 prev->state = TASK_RUNNING;
4119 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4123 * If a worker went to sleep, notify and ask workqueue
4124 * whether it wants to wake up a task to maintain
4127 if (prev->flags & PF_WQ_WORKER) {
4128 struct task_struct *to_wakeup;
4130 to_wakeup = wq_worker_sleeping(prev, cpu);
4132 try_to_wake_up_local(to_wakeup);
4136 * If we are going to sleep and we have plugged IO
4137 * queued, make sure to submit it to avoid deadlocks.
4139 if (blk_needs_flush_plug(prev)) {
4140 raw_spin_unlock(&rq->lock);
4141 blk_flush_plug(prev);
4142 raw_spin_lock(&rq->lock);
4145 switch_count = &prev->nvcsw;
4148 pre_schedule(rq, prev);
4150 if (unlikely(!rq->nr_running))
4151 idle_balance(cpu, rq);
4153 put_prev_task(rq, prev);
4154 next = pick_next_task(rq);
4155 clear_tsk_need_resched(prev);
4156 rq->skip_clock_update = 0;
4158 if (likely(prev != next)) {
4163 context_switch(rq, prev, next); /* unlocks the rq */
4165 * The context switch have flipped the stack from under us
4166 * and restored the local variables which were saved when
4167 * this task called schedule() in the past. prev == current
4168 * is still correct, but it can be moved to another cpu/rq.
4170 cpu = smp_processor_id();
4173 raw_spin_unlock_irq(&rq->lock);
4177 preempt_enable_no_resched();
4181 EXPORT_SYMBOL(schedule);
4183 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4185 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4190 if (lock->owner != owner)
4194 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4195 * lock->owner still matches owner, if that fails, owner might
4196 * point to free()d memory, if it still matches, the rcu_read_lock()
4197 * ensures the memory stays valid.
4201 ret = owner->on_cpu;
4209 * Look out! "owner" is an entirely speculative pointer
4210 * access and not reliable.
4212 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4214 if (!sched_feat(OWNER_SPIN))
4217 while (owner_running(lock, owner)) {
4221 arch_mutex_cpu_relax();
4225 * If the owner changed to another task there is likely
4226 * heavy contention, stop spinning.
4235 #ifdef CONFIG_PREEMPT
4237 * this is the entry point to schedule() from in-kernel preemption
4238 * off of preempt_enable. Kernel preemptions off return from interrupt
4239 * occur there and call schedule directly.
4241 asmlinkage void __sched notrace preempt_schedule(void)
4243 struct thread_info *ti = current_thread_info();
4246 * If there is a non-zero preempt_count or interrupts are disabled,
4247 * we do not want to preempt the current task. Just return..
4249 if (likely(ti->preempt_count || irqs_disabled()))
4253 add_preempt_count_notrace(PREEMPT_ACTIVE);
4255 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4258 * Check again in case we missed a preemption opportunity
4259 * between schedule and now.
4262 } while (need_resched());
4264 EXPORT_SYMBOL(preempt_schedule);
4267 * this is the entry point to schedule() from kernel preemption
4268 * off of irq context.
4269 * Note, that this is called and return with irqs disabled. This will
4270 * protect us against recursive calling from irq.
4272 asmlinkage void __sched preempt_schedule_irq(void)
4274 struct thread_info *ti = current_thread_info();
4276 /* Catch callers which need to be fixed */
4277 BUG_ON(ti->preempt_count || !irqs_disabled());
4280 add_preempt_count(PREEMPT_ACTIVE);
4283 local_irq_disable();
4284 sub_preempt_count(PREEMPT_ACTIVE);
4287 * Check again in case we missed a preemption opportunity
4288 * between schedule and now.
4291 } while (need_resched());
4294 #endif /* CONFIG_PREEMPT */
4296 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4299 return try_to_wake_up(curr->private, mode, wake_flags);
4301 EXPORT_SYMBOL(default_wake_function);
4304 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4305 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4306 * number) then we wake all the non-exclusive tasks and one exclusive task.
4308 * There are circumstances in which we can try to wake a task which has already
4309 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4310 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4312 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4313 int nr_exclusive, int wake_flags, void *key)
4315 wait_queue_t *curr, *next;
4317 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4318 unsigned flags = curr->flags;
4320 if (curr->func(curr, mode, wake_flags, key) &&
4321 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4327 * __wake_up - wake up threads blocked on a waitqueue.
4329 * @mode: which threads
4330 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4331 * @key: is directly passed to the wakeup function
4333 * It may be assumed that this function implies a write memory barrier before
4334 * changing the task state if and only if any tasks are woken up.
4336 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4337 int nr_exclusive, void *key)
4339 unsigned long flags;
4341 spin_lock_irqsave(&q->lock, flags);
4342 __wake_up_common(q, mode, nr_exclusive, 0, key);
4343 spin_unlock_irqrestore(&q->lock, flags);
4345 EXPORT_SYMBOL(__wake_up);
4348 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4350 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4352 __wake_up_common(q, mode, 1, 0, NULL);
4354 EXPORT_SYMBOL_GPL(__wake_up_locked);
4356 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4358 __wake_up_common(q, mode, 1, 0, key);
4360 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4363 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4365 * @mode: which threads
4366 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4367 * @key: opaque value to be passed to wakeup targets
4369 * The sync wakeup differs that the waker knows that it will schedule
4370 * away soon, so while the target thread will be woken up, it will not
4371 * be migrated to another CPU - ie. the two threads are 'synchronized'
4372 * with each other. This can prevent needless bouncing between CPUs.
4374 * On UP it can prevent extra preemption.
4376 * It may be assumed that this function implies a write memory barrier before
4377 * changing the task state if and only if any tasks are woken up.
4379 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4380 int nr_exclusive, void *key)
4382 unsigned long flags;
4383 int wake_flags = WF_SYNC;
4388 if (unlikely(!nr_exclusive))
4391 spin_lock_irqsave(&q->lock, flags);
4392 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4393 spin_unlock_irqrestore(&q->lock, flags);
4395 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4398 * __wake_up_sync - see __wake_up_sync_key()
4400 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4402 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4404 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4407 * complete: - signals a single thread waiting on this completion
4408 * @x: holds the state of this particular completion
4410 * This will wake up a single thread waiting on this completion. Threads will be
4411 * awakened in the same order in which they were queued.
4413 * See also complete_all(), wait_for_completion() and related routines.
4415 * It may be assumed that this function implies a write memory barrier before
4416 * changing the task state if and only if any tasks are woken up.
4418 void complete(struct completion *x)
4420 unsigned long flags;
4422 spin_lock_irqsave(&x->wait.lock, flags);
4424 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4425 spin_unlock_irqrestore(&x->wait.lock, flags);
4427 EXPORT_SYMBOL(complete);
4430 * complete_all: - signals all threads waiting on this completion
4431 * @x: holds the state of this particular completion
4433 * This will wake up all threads waiting on this particular completion event.
4435 * It may be assumed that this function implies a write memory barrier before
4436 * changing the task state if and only if any tasks are woken up.
4438 void complete_all(struct completion *x)
4440 unsigned long flags;
4442 spin_lock_irqsave(&x->wait.lock, flags);
4443 x->done += UINT_MAX/2;
4444 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4445 spin_unlock_irqrestore(&x->wait.lock, flags);
4447 EXPORT_SYMBOL(complete_all);
4449 static inline long __sched
4450 do_wait_for_common(struct completion *x, long timeout, int state)
4453 DECLARE_WAITQUEUE(wait, current);
4455 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4457 if (signal_pending_state(state, current)) {
4458 timeout = -ERESTARTSYS;
4461 __set_current_state(state);
4462 spin_unlock_irq(&x->wait.lock);
4463 timeout = schedule_timeout(timeout);
4464 spin_lock_irq(&x->wait.lock);
4465 } while (!x->done && timeout);
4466 __remove_wait_queue(&x->wait, &wait);
4471 return timeout ?: 1;
4475 wait_for_common(struct completion *x, long timeout, int state)
4479 spin_lock_irq(&x->wait.lock);
4480 timeout = do_wait_for_common(x, timeout, state);
4481 spin_unlock_irq(&x->wait.lock);
4486 * wait_for_completion: - waits for completion of a task
4487 * @x: holds the state of this particular completion
4489 * This waits to be signaled for completion of a specific task. It is NOT
4490 * interruptible and there is no timeout.
4492 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4493 * and interrupt capability. Also see complete().
4495 void __sched wait_for_completion(struct completion *x)
4497 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4499 EXPORT_SYMBOL(wait_for_completion);
4502 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4503 * @x: holds the state of this particular completion
4504 * @timeout: timeout value in jiffies
4506 * This waits for either a completion of a specific task to be signaled or for a
4507 * specified timeout to expire. The timeout is in jiffies. It is not
4510 unsigned long __sched
4511 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4513 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4515 EXPORT_SYMBOL(wait_for_completion_timeout);
4518 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4519 * @x: holds the state of this particular completion
4521 * This waits for completion of a specific task to be signaled. It is
4524 int __sched wait_for_completion_interruptible(struct completion *x)
4526 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4527 if (t == -ERESTARTSYS)
4531 EXPORT_SYMBOL(wait_for_completion_interruptible);
4534 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4535 * @x: holds the state of this particular completion
4536 * @timeout: timeout value in jiffies
4538 * This waits for either a completion of a specific task to be signaled or for a
4539 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4542 wait_for_completion_interruptible_timeout(struct completion *x,
4543 unsigned long timeout)
4545 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4547 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4550 * wait_for_completion_killable: - waits for completion of a task (killable)
4551 * @x: holds the state of this particular completion
4553 * This waits to be signaled for completion of a specific task. It can be
4554 * interrupted by a kill signal.
4556 int __sched wait_for_completion_killable(struct completion *x)
4558 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4559 if (t == -ERESTARTSYS)
4563 EXPORT_SYMBOL(wait_for_completion_killable);
4566 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4567 * @x: holds the state of this particular completion
4568 * @timeout: timeout value in jiffies
4570 * This waits for either a completion of a specific task to be
4571 * signaled or for a specified timeout to expire. It can be
4572 * interrupted by a kill signal. The timeout is in jiffies.
4575 wait_for_completion_killable_timeout(struct completion *x,
4576 unsigned long timeout)
4578 return wait_for_common(x, timeout, TASK_KILLABLE);
4580 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4583 * try_wait_for_completion - try to decrement a completion without blocking
4584 * @x: completion structure
4586 * Returns: 0 if a decrement cannot be done without blocking
4587 * 1 if a decrement succeeded.
4589 * If a completion is being used as a counting completion,
4590 * attempt to decrement the counter without blocking. This
4591 * enables us to avoid waiting if the resource the completion
4592 * is protecting is not available.
4594 bool try_wait_for_completion(struct completion *x)
4596 unsigned long flags;
4599 spin_lock_irqsave(&x->wait.lock, flags);
4604 spin_unlock_irqrestore(&x->wait.lock, flags);
4607 EXPORT_SYMBOL(try_wait_for_completion);
4610 * completion_done - Test to see if a completion has any waiters
4611 * @x: completion structure
4613 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4614 * 1 if there are no waiters.
4617 bool completion_done(struct completion *x)
4619 unsigned long flags;
4622 spin_lock_irqsave(&x->wait.lock, flags);
4625 spin_unlock_irqrestore(&x->wait.lock, flags);
4628 EXPORT_SYMBOL(completion_done);
4631 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4633 unsigned long flags;
4636 init_waitqueue_entry(&wait, current);
4638 __set_current_state(state);
4640 spin_lock_irqsave(&q->lock, flags);
4641 __add_wait_queue(q, &wait);
4642 spin_unlock(&q->lock);
4643 timeout = schedule_timeout(timeout);
4644 spin_lock_irq(&q->lock);
4645 __remove_wait_queue(q, &wait);
4646 spin_unlock_irqrestore(&q->lock, flags);
4651 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4653 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4655 EXPORT_SYMBOL(interruptible_sleep_on);
4658 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4660 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4662 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4664 void __sched sleep_on(wait_queue_head_t *q)
4666 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4668 EXPORT_SYMBOL(sleep_on);
4670 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4672 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4674 EXPORT_SYMBOL(sleep_on_timeout);
4676 #ifdef CONFIG_RT_MUTEXES
4679 * rt_mutex_setprio - set the current priority of a task
4681 * @prio: prio value (kernel-internal form)
4683 * This function changes the 'effective' priority of a task. It does
4684 * not touch ->normal_prio like __setscheduler().
4686 * Used by the rt_mutex code to implement priority inheritance logic.
4688 void rt_mutex_setprio(struct task_struct *p, int prio)
4690 int oldprio, on_rq, running;
4692 const struct sched_class *prev_class;
4694 BUG_ON(prio < 0 || prio > MAX_PRIO);
4696 rq = __task_rq_lock(p);
4698 trace_sched_pi_setprio(p, prio);
4700 prev_class = p->sched_class;
4702 running = task_current(rq, p);
4704 dequeue_task(rq, p, 0);
4706 p->sched_class->put_prev_task(rq, p);
4709 p->sched_class = &rt_sched_class;
4711 p->sched_class = &fair_sched_class;
4716 p->sched_class->set_curr_task(rq);
4718 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4720 check_class_changed(rq, p, prev_class, oldprio);
4721 __task_rq_unlock(rq);
4726 void set_user_nice(struct task_struct *p, long nice)
4728 int old_prio, delta, on_rq;
4729 unsigned long flags;
4732 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4735 * We have to be careful, if called from sys_setpriority(),
4736 * the task might be in the middle of scheduling on another CPU.
4738 rq = task_rq_lock(p, &flags);
4740 * The RT priorities are set via sched_setscheduler(), but we still
4741 * allow the 'normal' nice value to be set - but as expected
4742 * it wont have any effect on scheduling until the task is
4743 * SCHED_FIFO/SCHED_RR:
4745 if (task_has_rt_policy(p)) {
4746 p->static_prio = NICE_TO_PRIO(nice);
4751 dequeue_task(rq, p, 0);
4753 p->static_prio = NICE_TO_PRIO(nice);
4756 p->prio = effective_prio(p);
4757 delta = p->prio - old_prio;
4760 enqueue_task(rq, p, 0);
4762 * If the task increased its priority or is running and
4763 * lowered its priority, then reschedule its CPU:
4765 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4766 resched_task(rq->curr);
4769 task_rq_unlock(rq, p, &flags);
4771 EXPORT_SYMBOL(set_user_nice);
4774 * can_nice - check if a task can reduce its nice value
4778 int can_nice(const struct task_struct *p, const int nice)
4780 /* convert nice value [19,-20] to rlimit style value [1,40] */
4781 int nice_rlim = 20 - nice;
4783 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4784 capable(CAP_SYS_NICE));
4787 #ifdef __ARCH_WANT_SYS_NICE
4790 * sys_nice - change the priority of the current process.
4791 * @increment: priority increment
4793 * sys_setpriority is a more generic, but much slower function that
4794 * does similar things.
4796 SYSCALL_DEFINE1(nice, int, increment)
4801 * Setpriority might change our priority at the same moment.
4802 * We don't have to worry. Conceptually one call occurs first
4803 * and we have a single winner.
4805 if (increment < -40)
4810 nice = TASK_NICE(current) + increment;
4816 if (increment < 0 && !can_nice(current, nice))
4819 retval = security_task_setnice(current, nice);
4823 set_user_nice(current, nice);
4830 * task_prio - return the priority value of a given task.
4831 * @p: the task in question.
4833 * This is the priority value as seen by users in /proc.
4834 * RT tasks are offset by -200. Normal tasks are centered
4835 * around 0, value goes from -16 to +15.
4837 int task_prio(const struct task_struct *p)
4839 return p->prio - MAX_RT_PRIO;
4843 * task_nice - return the nice value of a given task.
4844 * @p: the task in question.
4846 int task_nice(const struct task_struct *p)
4848 return TASK_NICE(p);
4850 EXPORT_SYMBOL(task_nice);
4853 * idle_cpu - is a given cpu idle currently?
4854 * @cpu: the processor in question.
4856 int idle_cpu(int cpu)
4858 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4862 * idle_task - return the idle task for a given cpu.
4863 * @cpu: the processor in question.
4865 struct task_struct *idle_task(int cpu)
4867 return cpu_rq(cpu)->idle;
4871 * find_process_by_pid - find a process with a matching PID value.
4872 * @pid: the pid in question.
4874 static struct task_struct *find_process_by_pid(pid_t pid)
4876 return pid ? find_task_by_vpid(pid) : current;
4879 /* Actually do priority change: must hold rq lock. */
4881 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4884 p->rt_priority = prio;
4885 p->normal_prio = normal_prio(p);
4886 /* we are holding p->pi_lock already */
4887 p->prio = rt_mutex_getprio(p);
4888 if (rt_prio(p->prio))
4889 p->sched_class = &rt_sched_class;
4891 p->sched_class = &fair_sched_class;
4896 * check the target process has a UID that matches the current process's
4898 static bool check_same_owner(struct task_struct *p)
4900 const struct cred *cred = current_cred(), *pcred;
4904 pcred = __task_cred(p);
4905 if (cred->user->user_ns == pcred->user->user_ns)
4906 match = (cred->euid == pcred->euid ||
4907 cred->euid == pcred->uid);
4914 static int __sched_setscheduler(struct task_struct *p, int policy,
4915 const struct sched_param *param, bool user)
4917 int retval, oldprio, oldpolicy = -1, on_rq, running;
4918 unsigned long flags;
4919 const struct sched_class *prev_class;
4923 /* may grab non-irq protected spin_locks */
4924 BUG_ON(in_interrupt());
4926 /* double check policy once rq lock held */
4928 reset_on_fork = p->sched_reset_on_fork;
4929 policy = oldpolicy = p->policy;
4931 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4932 policy &= ~SCHED_RESET_ON_FORK;
4934 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4935 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4936 policy != SCHED_IDLE)
4941 * Valid priorities for SCHED_FIFO and SCHED_RR are
4942 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4943 * SCHED_BATCH and SCHED_IDLE is 0.
4945 if (param->sched_priority < 0 ||
4946 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4947 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4949 if (rt_policy(policy) != (param->sched_priority != 0))
4953 * Allow unprivileged RT tasks to decrease priority:
4955 if (user && !capable(CAP_SYS_NICE)) {
4956 if (rt_policy(policy)) {
4957 unsigned long rlim_rtprio =
4958 task_rlimit(p, RLIMIT_RTPRIO);
4960 /* can't set/change the rt policy */
4961 if (policy != p->policy && !rlim_rtprio)
4964 /* can't increase priority */
4965 if (param->sched_priority > p->rt_priority &&
4966 param->sched_priority > rlim_rtprio)
4971 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4972 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4974 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4975 if (!can_nice(p, TASK_NICE(p)))
4979 /* can't change other user's priorities */
4980 if (!check_same_owner(p))
4983 /* Normal users shall not reset the sched_reset_on_fork flag */
4984 if (p->sched_reset_on_fork && !reset_on_fork)
4989 retval = security_task_setscheduler(p);
4995 * make sure no PI-waiters arrive (or leave) while we are
4996 * changing the priority of the task:
4998 * To be able to change p->policy safely, the appropriate
4999 * runqueue lock must be held.
5001 rq = task_rq_lock(p, &flags);
5004 * Changing the policy of the stop threads its a very bad idea
5006 if (p == rq->stop) {
5007 task_rq_unlock(rq, p, &flags);
5012 * If not changing anything there's no need to proceed further:
5014 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5015 param->sched_priority == p->rt_priority))) {
5017 __task_rq_unlock(rq);
5018 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 #ifdef CONFIG_RT_GROUP_SCHED
5025 * Do not allow realtime tasks into groups that have no runtime
5028 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5029 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5030 !task_group_is_autogroup(task_group(p))) {
5031 task_rq_unlock(rq, p, &flags);
5037 /* recheck policy now with rq lock held */
5038 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5039 policy = oldpolicy = -1;
5040 task_rq_unlock(rq, p, &flags);
5044 running = task_current(rq, p);
5046 deactivate_task(rq, p, 0);
5048 p->sched_class->put_prev_task(rq, p);
5050 p->sched_reset_on_fork = reset_on_fork;
5053 prev_class = p->sched_class;
5054 __setscheduler(rq, p, policy, param->sched_priority);
5057 p->sched_class->set_curr_task(rq);
5059 activate_task(rq, p, 0);
5061 check_class_changed(rq, p, prev_class, oldprio);
5062 task_rq_unlock(rq, p, &flags);
5064 rt_mutex_adjust_pi(p);
5070 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5071 * @p: the task in question.
5072 * @policy: new policy.
5073 * @param: structure containing the new RT priority.
5075 * NOTE that the task may be already dead.
5077 int sched_setscheduler(struct task_struct *p, int policy,
5078 const struct sched_param *param)
5080 return __sched_setscheduler(p, policy, param, true);
5082 EXPORT_SYMBOL_GPL(sched_setscheduler);
5085 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5086 * @p: the task in question.
5087 * @policy: new policy.
5088 * @param: structure containing the new RT priority.
5090 * Just like sched_setscheduler, only don't bother checking if the
5091 * current context has permission. For example, this is needed in
5092 * stop_machine(): we create temporary high priority worker threads,
5093 * but our caller might not have that capability.
5095 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5096 const struct sched_param *param)
5098 return __sched_setscheduler(p, policy, param, false);
5102 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5104 struct sched_param lparam;
5105 struct task_struct *p;
5108 if (!param || pid < 0)
5110 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5115 p = find_process_by_pid(pid);
5117 retval = sched_setscheduler(p, policy, &lparam);
5124 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5125 * @pid: the pid in question.
5126 * @policy: new policy.
5127 * @param: structure containing the new RT priority.
5129 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5130 struct sched_param __user *, param)
5132 /* negative values for policy are not valid */
5136 return do_sched_setscheduler(pid, policy, param);
5140 * sys_sched_setparam - set/change the RT priority of a thread
5141 * @pid: the pid in question.
5142 * @param: structure containing the new RT priority.
5144 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5146 return do_sched_setscheduler(pid, -1, param);
5150 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5151 * @pid: the pid in question.
5153 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5155 struct task_struct *p;
5163 p = find_process_by_pid(pid);
5165 retval = security_task_getscheduler(p);
5168 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5175 * sys_sched_getparam - get the RT priority of a thread
5176 * @pid: the pid in question.
5177 * @param: structure containing the RT priority.
5179 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5181 struct sched_param lp;
5182 struct task_struct *p;
5185 if (!param || pid < 0)
5189 p = find_process_by_pid(pid);
5194 retval = security_task_getscheduler(p);
5198 lp.sched_priority = p->rt_priority;
5202 * This one might sleep, we cannot do it with a spinlock held ...
5204 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5213 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5215 cpumask_var_t cpus_allowed, new_mask;
5216 struct task_struct *p;
5222 p = find_process_by_pid(pid);
5229 /* Prevent p going away */
5233 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5237 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5239 goto out_free_cpus_allowed;
5242 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5245 retval = security_task_setscheduler(p);
5249 cpuset_cpus_allowed(p, cpus_allowed);
5250 cpumask_and(new_mask, in_mask, cpus_allowed);
5252 retval = set_cpus_allowed_ptr(p, new_mask);
5255 cpuset_cpus_allowed(p, cpus_allowed);
5256 if (!cpumask_subset(new_mask, cpus_allowed)) {
5258 * We must have raced with a concurrent cpuset
5259 * update. Just reset the cpus_allowed to the
5260 * cpuset's cpus_allowed
5262 cpumask_copy(new_mask, cpus_allowed);
5267 free_cpumask_var(new_mask);
5268 out_free_cpus_allowed:
5269 free_cpumask_var(cpus_allowed);
5276 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5277 struct cpumask *new_mask)
5279 if (len < cpumask_size())
5280 cpumask_clear(new_mask);
5281 else if (len > cpumask_size())
5282 len = cpumask_size();
5284 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5288 * sys_sched_setaffinity - set the cpu affinity of a process
5289 * @pid: pid of the process
5290 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5291 * @user_mask_ptr: user-space pointer to the new cpu mask
5293 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5294 unsigned long __user *, user_mask_ptr)
5296 cpumask_var_t new_mask;
5299 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5302 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5304 retval = sched_setaffinity(pid, new_mask);
5305 free_cpumask_var(new_mask);
5309 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5311 struct task_struct *p;
5312 unsigned long flags;
5319 p = find_process_by_pid(pid);
5323 retval = security_task_getscheduler(p);
5327 raw_spin_lock_irqsave(&p->pi_lock, flags);
5328 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5329 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5339 * sys_sched_getaffinity - get the cpu affinity of a process
5340 * @pid: pid of the process
5341 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5342 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5344 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5345 unsigned long __user *, user_mask_ptr)
5350 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5352 if (len & (sizeof(unsigned long)-1))
5355 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5358 ret = sched_getaffinity(pid, mask);
5360 size_t retlen = min_t(size_t, len, cpumask_size());
5362 if (copy_to_user(user_mask_ptr, mask, retlen))
5367 free_cpumask_var(mask);
5373 * sys_sched_yield - yield the current processor to other threads.
5375 * This function yields the current CPU to other tasks. If there are no
5376 * other threads running on this CPU then this function will return.
5378 SYSCALL_DEFINE0(sched_yield)
5380 struct rq *rq = this_rq_lock();
5382 schedstat_inc(rq, yld_count);
5383 current->sched_class->yield_task(rq);
5386 * Since we are going to call schedule() anyway, there's
5387 * no need to preempt or enable interrupts:
5389 __release(rq->lock);
5390 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5391 do_raw_spin_unlock(&rq->lock);
5392 preempt_enable_no_resched();
5399 static inline int should_resched(void)
5401 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5404 static void __cond_resched(void)
5406 add_preempt_count(PREEMPT_ACTIVE);
5408 sub_preempt_count(PREEMPT_ACTIVE);
5411 int __sched _cond_resched(void)
5413 if (should_resched()) {
5419 EXPORT_SYMBOL(_cond_resched);
5422 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5423 * call schedule, and on return reacquire the lock.
5425 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5426 * operations here to prevent schedule() from being called twice (once via
5427 * spin_unlock(), once by hand).
5429 int __cond_resched_lock(spinlock_t *lock)
5431 int resched = should_resched();
5434 lockdep_assert_held(lock);
5436 if (spin_needbreak(lock) || resched) {
5447 EXPORT_SYMBOL(__cond_resched_lock);
5449 int __sched __cond_resched_softirq(void)
5451 BUG_ON(!in_softirq());
5453 if (should_resched()) {
5461 EXPORT_SYMBOL(__cond_resched_softirq);
5464 * yield - yield the current processor to other threads.
5466 * This is a shortcut for kernel-space yielding - it marks the
5467 * thread runnable and calls sys_sched_yield().
5469 void __sched yield(void)
5471 set_current_state(TASK_RUNNING);
5474 EXPORT_SYMBOL(yield);
5477 * yield_to - yield the current processor to another thread in
5478 * your thread group, or accelerate that thread toward the
5479 * processor it's on.
5481 * @preempt: whether task preemption is allowed or not
5483 * It's the caller's job to ensure that the target task struct
5484 * can't go away on us before we can do any checks.
5486 * Returns true if we indeed boosted the target task.
5488 bool __sched yield_to(struct task_struct *p, bool preempt)
5490 struct task_struct *curr = current;
5491 struct rq *rq, *p_rq;
5492 unsigned long flags;
5495 local_irq_save(flags);
5500 double_rq_lock(rq, p_rq);
5501 while (task_rq(p) != p_rq) {
5502 double_rq_unlock(rq, p_rq);
5506 if (!curr->sched_class->yield_to_task)
5509 if (curr->sched_class != p->sched_class)
5512 if (task_running(p_rq, p) || p->state)
5515 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5517 schedstat_inc(rq, yld_count);
5519 * Make p's CPU reschedule; pick_next_entity takes care of
5522 if (preempt && rq != p_rq)
5523 resched_task(p_rq->curr);
5527 double_rq_unlock(rq, p_rq);
5528 local_irq_restore(flags);
5535 EXPORT_SYMBOL_GPL(yield_to);
5538 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5539 * that process accounting knows that this is a task in IO wait state.
5541 void __sched io_schedule(void)
5543 struct rq *rq = raw_rq();
5545 delayacct_blkio_start();
5546 atomic_inc(&rq->nr_iowait);
5547 blk_flush_plug(current);
5548 current->in_iowait = 1;
5550 current->in_iowait = 0;
5551 atomic_dec(&rq->nr_iowait);
5552 delayacct_blkio_end();
5554 EXPORT_SYMBOL(io_schedule);
5556 long __sched io_schedule_timeout(long timeout)
5558 struct rq *rq = raw_rq();
5561 delayacct_blkio_start();
5562 atomic_inc(&rq->nr_iowait);
5563 blk_flush_plug(current);
5564 current->in_iowait = 1;
5565 ret = schedule_timeout(timeout);
5566 current->in_iowait = 0;
5567 atomic_dec(&rq->nr_iowait);
5568 delayacct_blkio_end();
5573 * sys_sched_get_priority_max - return maximum RT priority.
5574 * @policy: scheduling class.
5576 * this syscall returns the maximum rt_priority that can be used
5577 * by a given scheduling class.
5579 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5586 ret = MAX_USER_RT_PRIO-1;
5598 * sys_sched_get_priority_min - return minimum RT priority.
5599 * @policy: scheduling class.
5601 * this syscall returns the minimum rt_priority that can be used
5602 * by a given scheduling class.
5604 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5622 * sys_sched_rr_get_interval - return the default timeslice of a process.
5623 * @pid: pid of the process.
5624 * @interval: userspace pointer to the timeslice value.
5626 * this syscall writes the default timeslice value of a given process
5627 * into the user-space timespec buffer. A value of '0' means infinity.
5629 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5630 struct timespec __user *, interval)
5632 struct task_struct *p;
5633 unsigned int time_slice;
5634 unsigned long flags;
5644 p = find_process_by_pid(pid);
5648 retval = security_task_getscheduler(p);
5652 rq = task_rq_lock(p, &flags);
5653 time_slice = p->sched_class->get_rr_interval(rq, p);
5654 task_rq_unlock(rq, p, &flags);
5657 jiffies_to_timespec(time_slice, &t);
5658 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5666 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5668 void sched_show_task(struct task_struct *p)
5670 unsigned long free = 0;
5673 state = p->state ? __ffs(p->state) + 1 : 0;
5674 printk(KERN_INFO "%-15.15s %c", p->comm,
5675 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5676 #if BITS_PER_LONG == 32
5677 if (state == TASK_RUNNING)
5678 printk(KERN_CONT " running ");
5680 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5682 if (state == TASK_RUNNING)
5683 printk(KERN_CONT " running task ");
5685 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5687 #ifdef CONFIG_DEBUG_STACK_USAGE
5688 free = stack_not_used(p);
5690 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5691 task_pid_nr(p), task_pid_nr(p->real_parent),
5692 (unsigned long)task_thread_info(p)->flags);
5694 show_stack(p, NULL);
5697 void show_state_filter(unsigned long state_filter)
5699 struct task_struct *g, *p;
5701 #if BITS_PER_LONG == 32
5703 " task PC stack pid father\n");
5706 " task PC stack pid father\n");
5708 read_lock(&tasklist_lock);
5709 do_each_thread(g, p) {
5711 * reset the NMI-timeout, listing all files on a slow
5712 * console might take a lot of time:
5714 touch_nmi_watchdog();
5715 if (!state_filter || (p->state & state_filter))
5717 } while_each_thread(g, p);
5719 touch_all_softlockup_watchdogs();
5721 #ifdef CONFIG_SCHED_DEBUG
5722 sysrq_sched_debug_show();
5724 read_unlock(&tasklist_lock);
5726 * Only show locks if all tasks are dumped:
5729 debug_show_all_locks();
5732 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5734 idle->sched_class = &idle_sched_class;
5738 * init_idle - set up an idle thread for a given CPU
5739 * @idle: task in question
5740 * @cpu: cpu the idle task belongs to
5742 * NOTE: this function does not set the idle thread's NEED_RESCHED
5743 * flag, to make booting more robust.
5745 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5747 struct rq *rq = cpu_rq(cpu);
5748 unsigned long flags;
5750 raw_spin_lock_irqsave(&rq->lock, flags);
5753 idle->state = TASK_RUNNING;
5754 idle->se.exec_start = sched_clock();
5756 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5758 * We're having a chicken and egg problem, even though we are
5759 * holding rq->lock, the cpu isn't yet set to this cpu so the
5760 * lockdep check in task_group() will fail.
5762 * Similar case to sched_fork(). / Alternatively we could
5763 * use task_rq_lock() here and obtain the other rq->lock.
5768 __set_task_cpu(idle, cpu);
5771 rq->curr = rq->idle = idle;
5772 #if defined(CONFIG_SMP)
5775 raw_spin_unlock_irqrestore(&rq->lock, flags);
5777 /* Set the preempt count _outside_ the spinlocks! */
5778 #if defined(CONFIG_PREEMPT)
5779 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5781 task_thread_info(idle)->preempt_count = 0;
5784 * The idle tasks have their own, simple scheduling class:
5786 idle->sched_class = &idle_sched_class;
5787 ftrace_graph_init_idle_task(idle, cpu);
5791 * In a system that switches off the HZ timer nohz_cpu_mask
5792 * indicates which cpus entered this state. This is used
5793 * in the rcu update to wait only for active cpus. For system
5794 * which do not switch off the HZ timer nohz_cpu_mask should
5795 * always be CPU_BITS_NONE.
5797 cpumask_var_t nohz_cpu_mask;
5800 * Increase the granularity value when there are more CPUs,
5801 * because with more CPUs the 'effective latency' as visible
5802 * to users decreases. But the relationship is not linear,
5803 * so pick a second-best guess by going with the log2 of the
5806 * This idea comes from the SD scheduler of Con Kolivas:
5808 static int get_update_sysctl_factor(void)
5810 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5811 unsigned int factor;
5813 switch (sysctl_sched_tunable_scaling) {
5814 case SCHED_TUNABLESCALING_NONE:
5817 case SCHED_TUNABLESCALING_LINEAR:
5820 case SCHED_TUNABLESCALING_LOG:
5822 factor = 1 + ilog2(cpus);
5829 static void update_sysctl(void)
5831 unsigned int factor = get_update_sysctl_factor();
5833 #define SET_SYSCTL(name) \
5834 (sysctl_##name = (factor) * normalized_sysctl_##name)
5835 SET_SYSCTL(sched_min_granularity);
5836 SET_SYSCTL(sched_latency);
5837 SET_SYSCTL(sched_wakeup_granularity);
5841 static inline void sched_init_granularity(void)
5848 * This is how migration works:
5850 * 1) we invoke migration_cpu_stop() on the target CPU using
5852 * 2) stopper starts to run (implicitly forcing the migrated thread
5854 * 3) it checks whether the migrated task is still in the wrong runqueue.
5855 * 4) if it's in the wrong runqueue then the migration thread removes
5856 * it and puts it into the right queue.
5857 * 5) stopper completes and stop_one_cpu() returns and the migration
5862 * Change a given task's CPU affinity. Migrate the thread to a
5863 * proper CPU and schedule it away if the CPU it's executing on
5864 * is removed from the allowed bitmask.
5866 * NOTE: the caller must have a valid reference to the task, the
5867 * task must not exit() & deallocate itself prematurely. The
5868 * call is not atomic; no spinlocks may be held.
5870 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5872 unsigned long flags;
5874 unsigned int dest_cpu;
5877 rq = task_rq_lock(p, &flags);
5879 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5884 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5885 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5890 if (p->sched_class->set_cpus_allowed)
5891 p->sched_class->set_cpus_allowed(p, new_mask);
5893 cpumask_copy(&p->cpus_allowed, new_mask);
5894 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5897 /* Can the task run on the task's current CPU? If so, we're done */
5898 if (cpumask_test_cpu(task_cpu(p), new_mask))
5901 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5902 if (need_migrate_task(p)) {
5903 struct migration_arg arg = { p, dest_cpu };
5904 /* Need help from migration thread: drop lock and wait. */
5905 task_rq_unlock(rq, p, &flags);
5906 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5907 tlb_migrate_finish(p->mm);
5911 task_rq_unlock(rq, p, &flags);
5915 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5918 * Move (not current) task off this cpu, onto dest cpu. We're doing
5919 * this because either it can't run here any more (set_cpus_allowed()
5920 * away from this CPU, or CPU going down), or because we're
5921 * attempting to rebalance this task on exec (sched_exec).
5923 * So we race with normal scheduler movements, but that's OK, as long
5924 * as the task is no longer on this CPU.
5926 * Returns non-zero if task was successfully migrated.
5928 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5930 struct rq *rq_dest, *rq_src;
5933 if (unlikely(!cpu_active(dest_cpu)))
5936 rq_src = cpu_rq(src_cpu);
5937 rq_dest = cpu_rq(dest_cpu);
5939 raw_spin_lock(&p->pi_lock);
5940 double_rq_lock(rq_src, rq_dest);
5941 /* Already moved. */
5942 if (task_cpu(p) != src_cpu)
5944 /* Affinity changed (again). */
5945 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5949 * If we're not on a rq, the next wake-up will ensure we're
5953 deactivate_task(rq_src, p, 0);
5954 set_task_cpu(p, dest_cpu);
5955 activate_task(rq_dest, p, 0);
5956 check_preempt_curr(rq_dest, p, 0);
5961 double_rq_unlock(rq_src, rq_dest);
5962 raw_spin_unlock(&p->pi_lock);
5967 * migration_cpu_stop - this will be executed by a highprio stopper thread
5968 * and performs thread migration by bumping thread off CPU then
5969 * 'pushing' onto another runqueue.
5971 static int migration_cpu_stop(void *data)
5973 struct migration_arg *arg = data;
5976 * The original target cpu might have gone down and we might
5977 * be on another cpu but it doesn't matter.
5979 local_irq_disable();
5980 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5985 #ifdef CONFIG_HOTPLUG_CPU
5988 * Ensures that the idle task is using init_mm right before its cpu goes
5991 void idle_task_exit(void)
5993 struct mm_struct *mm = current->active_mm;
5995 BUG_ON(cpu_online(smp_processor_id()));
5998 switch_mm(mm, &init_mm, current);
6003 * While a dead CPU has no uninterruptible tasks queued at this point,
6004 * it might still have a nonzero ->nr_uninterruptible counter, because
6005 * for performance reasons the counter is not stricly tracking tasks to
6006 * their home CPUs. So we just add the counter to another CPU's counter,
6007 * to keep the global sum constant after CPU-down:
6009 static void migrate_nr_uninterruptible(struct rq *rq_src)
6011 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6013 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6014 rq_src->nr_uninterruptible = 0;
6018 * remove the tasks which were accounted by rq from calc_load_tasks.
6020 static void calc_global_load_remove(struct rq *rq)
6022 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6023 rq->calc_load_active = 0;
6027 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6028 * try_to_wake_up()->select_task_rq().
6030 * Called with rq->lock held even though we'er in stop_machine() and
6031 * there's no concurrency possible, we hold the required locks anyway
6032 * because of lock validation efforts.
6034 static void migrate_tasks(unsigned int dead_cpu)
6036 struct rq *rq = cpu_rq(dead_cpu);
6037 struct task_struct *next, *stop = rq->stop;
6041 * Fudge the rq selection such that the below task selection loop
6042 * doesn't get stuck on the currently eligible stop task.
6044 * We're currently inside stop_machine() and the rq is either stuck
6045 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6046 * either way we should never end up calling schedule() until we're
6053 * There's this thread running, bail when that's the only
6056 if (rq->nr_running == 1)
6059 next = pick_next_task(rq);
6061 next->sched_class->put_prev_task(rq, next);
6063 /* Find suitable destination for @next, with force if needed. */
6064 dest_cpu = select_fallback_rq(dead_cpu, next);
6065 raw_spin_unlock(&rq->lock);
6067 __migrate_task(next, dead_cpu, dest_cpu);
6069 raw_spin_lock(&rq->lock);
6075 #endif /* CONFIG_HOTPLUG_CPU */
6077 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6079 static struct ctl_table sd_ctl_dir[] = {
6081 .procname = "sched_domain",
6087 static struct ctl_table sd_ctl_root[] = {
6089 .procname = "kernel",
6091 .child = sd_ctl_dir,
6096 static struct ctl_table *sd_alloc_ctl_entry(int n)
6098 struct ctl_table *entry =
6099 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6104 static void sd_free_ctl_entry(struct ctl_table **tablep)
6106 struct ctl_table *entry;
6109 * In the intermediate directories, both the child directory and
6110 * procname are dynamically allocated and could fail but the mode
6111 * will always be set. In the lowest directory the names are
6112 * static strings and all have proc handlers.
6114 for (entry = *tablep; entry->mode; entry++) {
6116 sd_free_ctl_entry(&entry->child);
6117 if (entry->proc_handler == NULL)
6118 kfree(entry->procname);
6126 set_table_entry(struct ctl_table *entry,
6127 const char *procname, void *data, int maxlen,
6128 mode_t mode, proc_handler *proc_handler)
6130 entry->procname = procname;
6132 entry->maxlen = maxlen;
6134 entry->proc_handler = proc_handler;
6137 static struct ctl_table *
6138 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6140 struct ctl_table *table = sd_alloc_ctl_entry(13);
6145 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6146 sizeof(long), 0644, proc_doulongvec_minmax);
6147 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6148 sizeof(long), 0644, proc_doulongvec_minmax);
6149 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6150 sizeof(int), 0644, proc_dointvec_minmax);
6151 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6152 sizeof(int), 0644, proc_dointvec_minmax);
6153 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6154 sizeof(int), 0644, proc_dointvec_minmax);
6155 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6156 sizeof(int), 0644, proc_dointvec_minmax);
6157 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6158 sizeof(int), 0644, proc_dointvec_minmax);
6159 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6160 sizeof(int), 0644, proc_dointvec_minmax);
6161 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6162 sizeof(int), 0644, proc_dointvec_minmax);
6163 set_table_entry(&table[9], "cache_nice_tries",
6164 &sd->cache_nice_tries,
6165 sizeof(int), 0644, proc_dointvec_minmax);
6166 set_table_entry(&table[10], "flags", &sd->flags,
6167 sizeof(int), 0644, proc_dointvec_minmax);
6168 set_table_entry(&table[11], "name", sd->name,
6169 CORENAME_MAX_SIZE, 0444, proc_dostring);
6170 /* &table[12] is terminator */
6175 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6177 struct ctl_table *entry, *table;
6178 struct sched_domain *sd;
6179 int domain_num = 0, i;
6182 for_each_domain(cpu, sd)
6184 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6189 for_each_domain(cpu, sd) {
6190 snprintf(buf, 32, "domain%d", i);
6191 entry->procname = kstrdup(buf, GFP_KERNEL);
6193 entry->child = sd_alloc_ctl_domain_table(sd);
6200 static struct ctl_table_header *sd_sysctl_header;
6201 static void register_sched_domain_sysctl(void)
6203 int i, cpu_num = num_possible_cpus();
6204 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6207 WARN_ON(sd_ctl_dir[0].child);
6208 sd_ctl_dir[0].child = entry;
6213 for_each_possible_cpu(i) {
6214 snprintf(buf, 32, "cpu%d", i);
6215 entry->procname = kstrdup(buf, GFP_KERNEL);
6217 entry->child = sd_alloc_ctl_cpu_table(i);
6221 WARN_ON(sd_sysctl_header);
6222 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6225 /* may be called multiple times per register */
6226 static void unregister_sched_domain_sysctl(void)
6228 if (sd_sysctl_header)
6229 unregister_sysctl_table(sd_sysctl_header);
6230 sd_sysctl_header = NULL;
6231 if (sd_ctl_dir[0].child)
6232 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6235 static void register_sched_domain_sysctl(void)
6238 static void unregister_sched_domain_sysctl(void)
6243 static void set_rq_online(struct rq *rq)
6246 const struct sched_class *class;
6248 cpumask_set_cpu(rq->cpu, rq->rd->online);
6251 for_each_class(class) {
6252 if (class->rq_online)
6253 class->rq_online(rq);
6258 static void set_rq_offline(struct rq *rq)
6261 const struct sched_class *class;
6263 for_each_class(class) {
6264 if (class->rq_offline)
6265 class->rq_offline(rq);
6268 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6274 * migration_call - callback that gets triggered when a CPU is added.
6275 * Here we can start up the necessary migration thread for the new CPU.
6277 static int __cpuinit
6278 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6280 int cpu = (long)hcpu;
6281 unsigned long flags;
6282 struct rq *rq = cpu_rq(cpu);
6284 switch (action & ~CPU_TASKS_FROZEN) {
6286 case CPU_UP_PREPARE:
6287 rq->calc_load_update = calc_load_update;
6291 /* Update our root-domain */
6292 raw_spin_lock_irqsave(&rq->lock, flags);
6294 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6298 raw_spin_unlock_irqrestore(&rq->lock, flags);
6301 #ifdef CONFIG_HOTPLUG_CPU
6303 /* Update our root-domain */
6304 raw_spin_lock_irqsave(&rq->lock, flags);
6306 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6310 BUG_ON(rq->nr_running != 1); /* the migration thread */
6311 raw_spin_unlock_irqrestore(&rq->lock, flags);
6313 migrate_nr_uninterruptible(rq);
6314 calc_global_load_remove(rq);
6319 update_max_interval();
6325 * Register at high priority so that task migration (migrate_all_tasks)
6326 * happens before everything else. This has to be lower priority than
6327 * the notifier in the perf_event subsystem, though.
6329 static struct notifier_block __cpuinitdata migration_notifier = {
6330 .notifier_call = migration_call,
6331 .priority = CPU_PRI_MIGRATION,
6334 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6335 unsigned long action, void *hcpu)
6337 switch (action & ~CPU_TASKS_FROZEN) {
6339 case CPU_DOWN_FAILED:
6340 set_cpu_active((long)hcpu, true);
6347 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6348 unsigned long action, void *hcpu)
6350 switch (action & ~CPU_TASKS_FROZEN) {
6351 case CPU_DOWN_PREPARE:
6352 set_cpu_active((long)hcpu, false);
6359 static int __init migration_init(void)
6361 void *cpu = (void *)(long)smp_processor_id();
6364 /* Initialize migration for the boot CPU */
6365 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6366 BUG_ON(err == NOTIFY_BAD);
6367 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6368 register_cpu_notifier(&migration_notifier);
6370 /* Register cpu active notifiers */
6371 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6372 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6376 early_initcall(migration_init);
6381 #ifdef CONFIG_SCHED_DEBUG
6383 static __read_mostly int sched_domain_debug_enabled;
6385 static int __init sched_domain_debug_setup(char *str)
6387 sched_domain_debug_enabled = 1;
6391 early_param("sched_debug", sched_domain_debug_setup);
6393 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6394 struct cpumask *groupmask)
6396 struct sched_group *group = sd->groups;
6399 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6400 cpumask_clear(groupmask);
6402 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6404 if (!(sd->flags & SD_LOAD_BALANCE)) {
6405 printk("does not load-balance\n");
6407 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6412 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6414 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6415 printk(KERN_ERR "ERROR: domain->span does not contain "
6418 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6419 printk(KERN_ERR "ERROR: domain->groups does not contain"
6423 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6427 printk(KERN_ERR "ERROR: group is NULL\n");
6431 if (!group->cpu_power) {
6432 printk(KERN_CONT "\n");
6433 printk(KERN_ERR "ERROR: domain->cpu_power not "
6438 if (!cpumask_weight(sched_group_cpus(group))) {
6439 printk(KERN_CONT "\n");
6440 printk(KERN_ERR "ERROR: empty group\n");
6444 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6445 printk(KERN_CONT "\n");
6446 printk(KERN_ERR "ERROR: repeated CPUs\n");
6450 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6452 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6454 printk(KERN_CONT " %s", str);
6455 if (group->cpu_power != SCHED_LOAD_SCALE) {
6456 printk(KERN_CONT " (cpu_power = %d)",
6460 group = group->next;
6461 } while (group != sd->groups);
6462 printk(KERN_CONT "\n");
6464 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6465 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6468 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6469 printk(KERN_ERR "ERROR: parent span is not a superset "
6470 "of domain->span\n");
6474 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6476 cpumask_var_t groupmask;
6479 if (!sched_domain_debug_enabled)
6483 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6487 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6489 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6490 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6495 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6502 free_cpumask_var(groupmask);
6504 #else /* !CONFIG_SCHED_DEBUG */
6505 # define sched_domain_debug(sd, cpu) do { } while (0)
6506 #endif /* CONFIG_SCHED_DEBUG */
6508 static int sd_degenerate(struct sched_domain *sd)
6510 if (cpumask_weight(sched_domain_span(sd)) == 1)
6513 /* Following flags need at least 2 groups */
6514 if (sd->flags & (SD_LOAD_BALANCE |
6515 SD_BALANCE_NEWIDLE |
6519 SD_SHARE_PKG_RESOURCES)) {
6520 if (sd->groups != sd->groups->next)
6524 /* Following flags don't use groups */
6525 if (sd->flags & (SD_WAKE_AFFINE))
6532 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6534 unsigned long cflags = sd->flags, pflags = parent->flags;
6536 if (sd_degenerate(parent))
6539 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6542 /* Flags needing groups don't count if only 1 group in parent */
6543 if (parent->groups == parent->groups->next) {
6544 pflags &= ~(SD_LOAD_BALANCE |
6545 SD_BALANCE_NEWIDLE |
6549 SD_SHARE_PKG_RESOURCES);
6550 if (nr_node_ids == 1)
6551 pflags &= ~SD_SERIALIZE;
6553 if (~cflags & pflags)
6559 static void free_rootdomain(struct root_domain *rd)
6561 synchronize_sched();
6563 cpupri_cleanup(&rd->cpupri);
6565 free_cpumask_var(rd->rto_mask);
6566 free_cpumask_var(rd->online);
6567 free_cpumask_var(rd->span);
6571 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6573 struct root_domain *old_rd = NULL;
6574 unsigned long flags;
6576 raw_spin_lock_irqsave(&rq->lock, flags);
6581 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6584 cpumask_clear_cpu(rq->cpu, old_rd->span);
6587 * If we dont want to free the old_rt yet then
6588 * set old_rd to NULL to skip the freeing later
6591 if (!atomic_dec_and_test(&old_rd->refcount))
6595 atomic_inc(&rd->refcount);
6598 cpumask_set_cpu(rq->cpu, rd->span);
6599 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6602 raw_spin_unlock_irqrestore(&rq->lock, flags);
6605 free_rootdomain(old_rd);
6608 static int init_rootdomain(struct root_domain *rd)
6610 memset(rd, 0, sizeof(*rd));
6612 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6614 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6616 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6619 if (cpupri_init(&rd->cpupri) != 0)
6624 free_cpumask_var(rd->rto_mask);
6626 free_cpumask_var(rd->online);
6628 free_cpumask_var(rd->span);
6633 static void init_defrootdomain(void)
6635 init_rootdomain(&def_root_domain);
6637 atomic_set(&def_root_domain.refcount, 1);
6640 static struct root_domain *alloc_rootdomain(void)
6642 struct root_domain *rd;
6644 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6648 if (init_rootdomain(rd) != 0) {
6657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6658 * hold the hotplug lock.
6661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6663 struct rq *rq = cpu_rq(cpu);
6664 struct sched_domain *tmp;
6666 for (tmp = sd; tmp; tmp = tmp->parent)
6667 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6669 /* Remove the sched domains which do not contribute to scheduling. */
6670 for (tmp = sd; tmp; ) {
6671 struct sched_domain *parent = tmp->parent;
6675 if (sd_parent_degenerate(tmp, parent)) {
6676 tmp->parent = parent->parent;
6678 parent->parent->child = tmp;
6683 if (sd && sd_degenerate(sd)) {
6689 sched_domain_debug(sd, cpu);
6691 rq_attach_root(rq, rd);
6692 rcu_assign_pointer(rq->sd, sd);
6695 /* cpus with isolated domains */
6696 static cpumask_var_t cpu_isolated_map;
6698 /* Setup the mask of cpus configured for isolated domains */
6699 static int __init isolated_cpu_setup(char *str)
6701 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6702 cpulist_parse(str, cpu_isolated_map);
6706 __setup("isolcpus=", isolated_cpu_setup);
6709 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6710 * to a function which identifies what group(along with sched group) a CPU
6711 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6712 * (due to the fact that we keep track of groups covered with a struct cpumask).
6714 * init_sched_build_groups will build a circular linked list of the groups
6715 * covered by the given span, and will set each group's ->cpumask correctly,
6716 * and ->cpu_power to 0.
6719 init_sched_build_groups(const struct cpumask *span,
6720 const struct cpumask *cpu_map,
6721 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6722 struct sched_group **sg,
6723 struct cpumask *tmpmask),
6724 struct cpumask *covered, struct cpumask *tmpmask)
6726 struct sched_group *first = NULL, *last = NULL;
6729 cpumask_clear(covered);
6731 for_each_cpu(i, span) {
6732 struct sched_group *sg;
6733 int group = group_fn(i, cpu_map, &sg, tmpmask);
6736 if (cpumask_test_cpu(i, covered))
6739 cpumask_clear(sched_group_cpus(sg));
6742 for_each_cpu(j, span) {
6743 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6746 cpumask_set_cpu(j, covered);
6747 cpumask_set_cpu(j, sched_group_cpus(sg));
6758 #define SD_NODES_PER_DOMAIN 16
6763 * find_next_best_node - find the next node to include in a sched_domain
6764 * @node: node whose sched_domain we're building
6765 * @used_nodes: nodes already in the sched_domain
6767 * Find the next node to include in a given scheduling domain. Simply
6768 * finds the closest node not already in the @used_nodes map.
6770 * Should use nodemask_t.
6772 static int find_next_best_node(int node, nodemask_t *used_nodes)
6774 int i, n, val, min_val, best_node = 0;
6778 for (i = 0; i < nr_node_ids; i++) {
6779 /* Start at @node */
6780 n = (node + i) % nr_node_ids;
6782 if (!nr_cpus_node(n))
6785 /* Skip already used nodes */
6786 if (node_isset(n, *used_nodes))
6789 /* Simple min distance search */
6790 val = node_distance(node, n);
6792 if (val < min_val) {
6798 node_set(best_node, *used_nodes);
6803 * sched_domain_node_span - get a cpumask for a node's sched_domain
6804 * @node: node whose cpumask we're constructing
6805 * @span: resulting cpumask
6807 * Given a node, construct a good cpumask for its sched_domain to span. It
6808 * should be one that prevents unnecessary balancing, but also spreads tasks
6811 static void sched_domain_node_span(int node, struct cpumask *span)
6813 nodemask_t used_nodes;
6816 cpumask_clear(span);
6817 nodes_clear(used_nodes);
6819 cpumask_or(span, span, cpumask_of_node(node));
6820 node_set(node, used_nodes);
6822 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6823 int next_node = find_next_best_node(node, &used_nodes);
6825 cpumask_or(span, span, cpumask_of_node(next_node));
6828 #endif /* CONFIG_NUMA */
6830 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6833 * The cpus mask in sched_group and sched_domain hangs off the end.
6835 * ( See the the comments in include/linux/sched.h:struct sched_group
6836 * and struct sched_domain. )
6838 struct static_sched_group {
6839 struct sched_group sg;
6840 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6843 struct static_sched_domain {
6844 struct sched_domain sd;
6845 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6851 cpumask_var_t domainspan;
6852 cpumask_var_t covered;
6853 cpumask_var_t notcovered;
6855 cpumask_var_t nodemask;
6856 cpumask_var_t this_sibling_map;
6857 cpumask_var_t this_core_map;
6858 cpumask_var_t this_book_map;
6859 cpumask_var_t send_covered;
6860 cpumask_var_t tmpmask;
6861 struct sched_group **sched_group_nodes;
6862 struct root_domain *rd;
6866 sa_sched_groups = 0,
6872 sa_this_sibling_map,
6874 sa_sched_group_nodes,
6884 * SMT sched-domains:
6886 #ifdef CONFIG_SCHED_SMT
6887 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6888 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6891 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6892 struct sched_group **sg, struct cpumask *unused)
6895 *sg = &per_cpu(sched_groups, cpu).sg;
6898 #endif /* CONFIG_SCHED_SMT */
6901 * multi-core sched-domains:
6903 #ifdef CONFIG_SCHED_MC
6904 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6905 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6908 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6909 struct sched_group **sg, struct cpumask *mask)
6912 #ifdef CONFIG_SCHED_SMT
6913 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6914 group = cpumask_first(mask);
6919 *sg = &per_cpu(sched_group_core, group).sg;
6922 #endif /* CONFIG_SCHED_MC */
6925 * book sched-domains:
6927 #ifdef CONFIG_SCHED_BOOK
6928 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6929 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6932 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6933 struct sched_group **sg, struct cpumask *mask)
6936 #ifdef CONFIG_SCHED_MC
6937 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6938 group = cpumask_first(mask);
6939 #elif defined(CONFIG_SCHED_SMT)
6940 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6941 group = cpumask_first(mask);
6944 *sg = &per_cpu(sched_group_book, group).sg;
6947 #endif /* CONFIG_SCHED_BOOK */
6949 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6950 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6953 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6954 struct sched_group **sg, struct cpumask *mask)
6957 #ifdef CONFIG_SCHED_BOOK
6958 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6959 group = cpumask_first(mask);
6960 #elif defined(CONFIG_SCHED_MC)
6961 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6962 group = cpumask_first(mask);
6963 #elif defined(CONFIG_SCHED_SMT)
6964 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6965 group = cpumask_first(mask);
6970 *sg = &per_cpu(sched_group_phys, group).sg;
6976 * The init_sched_build_groups can't handle what we want to do with node
6977 * groups, so roll our own. Now each node has its own list of groups which
6978 * gets dynamically allocated.
6980 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6981 static struct sched_group ***sched_group_nodes_bycpu;
6983 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6984 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6986 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6987 struct sched_group **sg,
6988 struct cpumask *nodemask)
6992 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6993 group = cpumask_first(nodemask);
6996 *sg = &per_cpu(sched_group_allnodes, group).sg;
7000 static void init_numa_sched_groups_power(struct sched_group *group_head)
7002 struct sched_group *sg = group_head;
7008 for_each_cpu(j, sched_group_cpus(sg)) {
7009 struct sched_domain *sd;
7011 sd = &per_cpu(phys_domains, j).sd;
7012 if (j != group_first_cpu(sd->groups)) {
7014 * Only add "power" once for each
7020 sg->cpu_power += sd->groups->cpu_power;
7023 } while (sg != group_head);
7026 static int build_numa_sched_groups(struct s_data *d,
7027 const struct cpumask *cpu_map, int num)
7029 struct sched_domain *sd;
7030 struct sched_group *sg, *prev;
7033 cpumask_clear(d->covered);
7034 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7035 if (cpumask_empty(d->nodemask)) {
7036 d->sched_group_nodes[num] = NULL;
7040 sched_domain_node_span(num, d->domainspan);
7041 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7043 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7046 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7050 d->sched_group_nodes[num] = sg;
7052 for_each_cpu(j, d->nodemask) {
7053 sd = &per_cpu(node_domains, j).sd;
7058 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7060 cpumask_or(d->covered, d->covered, d->nodemask);
7063 for (j = 0; j < nr_node_ids; j++) {
7064 n = (num + j) % nr_node_ids;
7065 cpumask_complement(d->notcovered, d->covered);
7066 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7067 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7068 if (cpumask_empty(d->tmpmask))
7070 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7071 if (cpumask_empty(d->tmpmask))
7073 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7077 "Can not alloc domain group for node %d\n", j);
7081 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7082 sg->next = prev->next;
7083 cpumask_or(d->covered, d->covered, d->tmpmask);
7090 #endif /* CONFIG_NUMA */
7093 /* Free memory allocated for various sched_group structures */
7094 static void free_sched_groups(const struct cpumask *cpu_map,
7095 struct cpumask *nodemask)
7099 for_each_cpu(cpu, cpu_map) {
7100 struct sched_group **sched_group_nodes
7101 = sched_group_nodes_bycpu[cpu];
7103 if (!sched_group_nodes)
7106 for (i = 0; i < nr_node_ids; i++) {
7107 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7109 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7110 if (cpumask_empty(nodemask))
7120 if (oldsg != sched_group_nodes[i])
7123 kfree(sched_group_nodes);
7124 sched_group_nodes_bycpu[cpu] = NULL;
7127 #else /* !CONFIG_NUMA */
7128 static void free_sched_groups(const struct cpumask *cpu_map,
7129 struct cpumask *nodemask)
7132 #endif /* CONFIG_NUMA */
7135 * Initialize sched groups cpu_power.
7137 * cpu_power indicates the capacity of sched group, which is used while
7138 * distributing the load between different sched groups in a sched domain.
7139 * Typically cpu_power for all the groups in a sched domain will be same unless
7140 * there are asymmetries in the topology. If there are asymmetries, group
7141 * having more cpu_power will pickup more load compared to the group having
7144 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7146 struct sched_domain *child;
7147 struct sched_group *group;
7151 WARN_ON(!sd || !sd->groups);
7153 if (cpu != group_first_cpu(sd->groups))
7156 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7160 sd->groups->cpu_power = 0;
7163 power = SCHED_LOAD_SCALE;
7164 weight = cpumask_weight(sched_domain_span(sd));
7166 * SMT siblings share the power of a single core.
7167 * Usually multiple threads get a better yield out of
7168 * that one core than a single thread would have,
7169 * reflect that in sd->smt_gain.
7171 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7172 power *= sd->smt_gain;
7174 power >>= SCHED_LOAD_SHIFT;
7176 sd->groups->cpu_power += power;
7181 * Add cpu_power of each child group to this groups cpu_power.
7183 group = child->groups;
7185 sd->groups->cpu_power += group->cpu_power;
7186 group = group->next;
7187 } while (group != child->groups);
7191 * Initializers for schedule domains
7192 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7195 #ifdef CONFIG_SCHED_DEBUG
7196 # define SD_INIT_NAME(sd, type) sd->name = #type
7198 # define SD_INIT_NAME(sd, type) do { } while (0)
7201 #define SD_INIT(sd, type) sd_init_##type(sd)
7203 #define SD_INIT_FUNC(type) \
7204 static noinline void sd_init_##type(struct sched_domain *sd) \
7206 memset(sd, 0, sizeof(*sd)); \
7207 *sd = SD_##type##_INIT; \
7208 sd->level = SD_LV_##type; \
7209 SD_INIT_NAME(sd, type); \
7214 SD_INIT_FUNC(ALLNODES)
7217 #ifdef CONFIG_SCHED_SMT
7218 SD_INIT_FUNC(SIBLING)
7220 #ifdef CONFIG_SCHED_MC
7223 #ifdef CONFIG_SCHED_BOOK
7227 static int default_relax_domain_level = -1;
7229 static int __init setup_relax_domain_level(char *str)
7233 val = simple_strtoul(str, NULL, 0);
7234 if (val < SD_LV_MAX)
7235 default_relax_domain_level = val;
7239 __setup("relax_domain_level=", setup_relax_domain_level);
7241 static void set_domain_attribute(struct sched_domain *sd,
7242 struct sched_domain_attr *attr)
7246 if (!attr || attr->relax_domain_level < 0) {
7247 if (default_relax_domain_level < 0)
7250 request = default_relax_domain_level;
7252 request = attr->relax_domain_level;
7253 if (request < sd->level) {
7254 /* turn off idle balance on this domain */
7255 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7257 /* turn on idle balance on this domain */
7258 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7262 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7263 const struct cpumask *cpu_map)
7266 case sa_sched_groups:
7267 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7268 d->sched_group_nodes = NULL;
7270 free_rootdomain(d->rd); /* fall through */
7272 free_cpumask_var(d->tmpmask); /* fall through */
7273 case sa_send_covered:
7274 free_cpumask_var(d->send_covered); /* fall through */
7275 case sa_this_book_map:
7276 free_cpumask_var(d->this_book_map); /* fall through */
7277 case sa_this_core_map:
7278 free_cpumask_var(d->this_core_map); /* fall through */
7279 case sa_this_sibling_map:
7280 free_cpumask_var(d->this_sibling_map); /* fall through */
7282 free_cpumask_var(d->nodemask); /* fall through */
7283 case sa_sched_group_nodes:
7285 kfree(d->sched_group_nodes); /* fall through */
7287 free_cpumask_var(d->notcovered); /* fall through */
7289 free_cpumask_var(d->covered); /* fall through */
7291 free_cpumask_var(d->domainspan); /* fall through */
7298 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7299 const struct cpumask *cpu_map)
7302 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7304 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7305 return sa_domainspan;
7306 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7308 /* Allocate the per-node list of sched groups */
7309 d->sched_group_nodes = kcalloc(nr_node_ids,
7310 sizeof(struct sched_group *), GFP_KERNEL);
7311 if (!d->sched_group_nodes) {
7312 printk(KERN_WARNING "Can not alloc sched group node list\n");
7313 return sa_notcovered;
7315 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7317 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7318 return sa_sched_group_nodes;
7319 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7321 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7322 return sa_this_sibling_map;
7323 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7324 return sa_this_core_map;
7325 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7326 return sa_this_book_map;
7327 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7328 return sa_send_covered;
7329 d->rd = alloc_rootdomain();
7331 printk(KERN_WARNING "Cannot alloc root domain\n");
7334 return sa_rootdomain;
7337 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7338 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7340 struct sched_domain *sd = NULL;
7342 struct sched_domain *parent;
7345 if (cpumask_weight(cpu_map) >
7346 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7347 sd = &per_cpu(allnodes_domains, i).sd;
7348 SD_INIT(sd, ALLNODES);
7349 set_domain_attribute(sd, attr);
7350 cpumask_copy(sched_domain_span(sd), cpu_map);
7351 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7356 sd = &per_cpu(node_domains, i).sd;
7358 set_domain_attribute(sd, attr);
7359 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7360 sd->parent = parent;
7363 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7368 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7369 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7370 struct sched_domain *parent, int i)
7372 struct sched_domain *sd;
7373 sd = &per_cpu(phys_domains, i).sd;
7375 set_domain_attribute(sd, attr);
7376 cpumask_copy(sched_domain_span(sd), d->nodemask);
7377 sd->parent = parent;
7380 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7384 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7385 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7386 struct sched_domain *parent, int i)
7388 struct sched_domain *sd = parent;
7389 #ifdef CONFIG_SCHED_BOOK
7390 sd = &per_cpu(book_domains, i).sd;
7392 set_domain_attribute(sd, attr);
7393 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7394 sd->parent = parent;
7396 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7401 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7402 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7403 struct sched_domain *parent, int i)
7405 struct sched_domain *sd = parent;
7406 #ifdef CONFIG_SCHED_MC
7407 sd = &per_cpu(core_domains, i).sd;
7409 set_domain_attribute(sd, attr);
7410 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7411 sd->parent = parent;
7413 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7418 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7419 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7420 struct sched_domain *parent, int i)
7422 struct sched_domain *sd = parent;
7423 #ifdef CONFIG_SCHED_SMT
7424 sd = &per_cpu(cpu_domains, i).sd;
7425 SD_INIT(sd, SIBLING);
7426 set_domain_attribute(sd, attr);
7427 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7428 sd->parent = parent;
7430 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7435 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7436 const struct cpumask *cpu_map, int cpu)
7439 #ifdef CONFIG_SCHED_SMT
7440 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7441 cpumask_and(d->this_sibling_map, cpu_map,
7442 topology_thread_cpumask(cpu));
7443 if (cpu == cpumask_first(d->this_sibling_map))
7444 init_sched_build_groups(d->this_sibling_map, cpu_map,
7446 d->send_covered, d->tmpmask);
7449 #ifdef CONFIG_SCHED_MC
7450 case SD_LV_MC: /* set up multi-core groups */
7451 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7452 if (cpu == cpumask_first(d->this_core_map))
7453 init_sched_build_groups(d->this_core_map, cpu_map,
7455 d->send_covered, d->tmpmask);
7458 #ifdef CONFIG_SCHED_BOOK
7459 case SD_LV_BOOK: /* set up book groups */
7460 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7461 if (cpu == cpumask_first(d->this_book_map))
7462 init_sched_build_groups(d->this_book_map, cpu_map,
7464 d->send_covered, d->tmpmask);
7467 case SD_LV_CPU: /* set up physical groups */
7468 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7469 if (!cpumask_empty(d->nodemask))
7470 init_sched_build_groups(d->nodemask, cpu_map,
7472 d->send_covered, d->tmpmask);
7475 case SD_LV_ALLNODES:
7476 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7477 d->send_covered, d->tmpmask);
7486 * Build sched domains for a given set of cpus and attach the sched domains
7487 * to the individual cpus
7489 static int __build_sched_domains(const struct cpumask *cpu_map,
7490 struct sched_domain_attr *attr)
7492 enum s_alloc alloc_state = sa_none;
7494 struct sched_domain *sd;
7500 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7501 if (alloc_state != sa_rootdomain)
7503 alloc_state = sa_sched_groups;
7506 * Set up domains for cpus specified by the cpu_map.
7508 for_each_cpu(i, cpu_map) {
7509 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7512 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7513 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7514 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7515 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7516 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7519 for_each_cpu(i, cpu_map) {
7520 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7521 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7522 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7525 /* Set up physical groups */
7526 for (i = 0; i < nr_node_ids; i++)
7527 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7530 /* Set up node groups */
7532 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7534 for (i = 0; i < nr_node_ids; i++)
7535 if (build_numa_sched_groups(&d, cpu_map, i))
7539 /* Calculate CPU power for physical packages and nodes */
7540 #ifdef CONFIG_SCHED_SMT
7541 for_each_cpu(i, cpu_map) {
7542 sd = &per_cpu(cpu_domains, i).sd;
7543 init_sched_groups_power(i, sd);
7546 #ifdef CONFIG_SCHED_MC
7547 for_each_cpu(i, cpu_map) {
7548 sd = &per_cpu(core_domains, i).sd;
7549 init_sched_groups_power(i, sd);
7552 #ifdef CONFIG_SCHED_BOOK
7553 for_each_cpu(i, cpu_map) {
7554 sd = &per_cpu(book_domains, i).sd;
7555 init_sched_groups_power(i, sd);
7559 for_each_cpu(i, cpu_map) {
7560 sd = &per_cpu(phys_domains, i).sd;
7561 init_sched_groups_power(i, sd);
7565 for (i = 0; i < nr_node_ids; i++)
7566 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7568 if (d.sd_allnodes) {
7569 struct sched_group *sg;
7571 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7573 init_numa_sched_groups_power(sg);
7577 /* Attach the domains */
7578 for_each_cpu(i, cpu_map) {
7579 #ifdef CONFIG_SCHED_SMT
7580 sd = &per_cpu(cpu_domains, i).sd;
7581 #elif defined(CONFIG_SCHED_MC)
7582 sd = &per_cpu(core_domains, i).sd;
7583 #elif defined(CONFIG_SCHED_BOOK)
7584 sd = &per_cpu(book_domains, i).sd;
7586 sd = &per_cpu(phys_domains, i).sd;
7588 cpu_attach_domain(sd, d.rd, i);
7591 d.sched_group_nodes = NULL; /* don't free this we still need it */
7592 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7596 __free_domain_allocs(&d, alloc_state, cpu_map);
7600 static int build_sched_domains(const struct cpumask *cpu_map)
7602 return __build_sched_domains(cpu_map, NULL);
7605 static cpumask_var_t *doms_cur; /* current sched domains */
7606 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7607 static struct sched_domain_attr *dattr_cur;
7608 /* attribues of custom domains in 'doms_cur' */
7611 * Special case: If a kmalloc of a doms_cur partition (array of
7612 * cpumask) fails, then fallback to a single sched domain,
7613 * as determined by the single cpumask fallback_doms.
7615 static cpumask_var_t fallback_doms;
7618 * arch_update_cpu_topology lets virtualized architectures update the
7619 * cpu core maps. It is supposed to return 1 if the topology changed
7620 * or 0 if it stayed the same.
7622 int __attribute__((weak)) arch_update_cpu_topology(void)
7627 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7630 cpumask_var_t *doms;
7632 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7635 for (i = 0; i < ndoms; i++) {
7636 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7637 free_sched_domains(doms, i);
7644 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7647 for (i = 0; i < ndoms; i++)
7648 free_cpumask_var(doms[i]);
7653 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7654 * For now this just excludes isolated cpus, but could be used to
7655 * exclude other special cases in the future.
7657 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7661 arch_update_cpu_topology();
7663 doms_cur = alloc_sched_domains(ndoms_cur);
7665 doms_cur = &fallback_doms;
7666 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7668 err = build_sched_domains(doms_cur[0]);
7669 register_sched_domain_sysctl();
7674 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7675 struct cpumask *tmpmask)
7677 free_sched_groups(cpu_map, tmpmask);
7681 * Detach sched domains from a group of cpus specified in cpu_map
7682 * These cpus will now be attached to the NULL domain
7684 static void detach_destroy_domains(const struct cpumask *cpu_map)
7686 /* Save because hotplug lock held. */
7687 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7690 for_each_cpu(i, cpu_map)
7691 cpu_attach_domain(NULL, &def_root_domain, i);
7692 synchronize_sched();
7693 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7696 /* handle null as "default" */
7697 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7698 struct sched_domain_attr *new, int idx_new)
7700 struct sched_domain_attr tmp;
7707 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7708 new ? (new + idx_new) : &tmp,
7709 sizeof(struct sched_domain_attr));
7713 * Partition sched domains as specified by the 'ndoms_new'
7714 * cpumasks in the array doms_new[] of cpumasks. This compares
7715 * doms_new[] to the current sched domain partitioning, doms_cur[].
7716 * It destroys each deleted domain and builds each new domain.
7718 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7719 * The masks don't intersect (don't overlap.) We should setup one
7720 * sched domain for each mask. CPUs not in any of the cpumasks will
7721 * not be load balanced. If the same cpumask appears both in the
7722 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7725 * The passed in 'doms_new' should be allocated using
7726 * alloc_sched_domains. This routine takes ownership of it and will
7727 * free_sched_domains it when done with it. If the caller failed the
7728 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7729 * and partition_sched_domains() will fallback to the single partition
7730 * 'fallback_doms', it also forces the domains to be rebuilt.
7732 * If doms_new == NULL it will be replaced with cpu_online_mask.
7733 * ndoms_new == 0 is a special case for destroying existing domains,
7734 * and it will not create the default domain.
7736 * Call with hotplug lock held
7738 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7739 struct sched_domain_attr *dattr_new)
7744 mutex_lock(&sched_domains_mutex);
7746 /* always unregister in case we don't destroy any domains */
7747 unregister_sched_domain_sysctl();
7749 /* Let architecture update cpu core mappings. */
7750 new_topology = arch_update_cpu_topology();
7752 n = doms_new ? ndoms_new : 0;
7754 /* Destroy deleted domains */
7755 for (i = 0; i < ndoms_cur; i++) {
7756 for (j = 0; j < n && !new_topology; j++) {
7757 if (cpumask_equal(doms_cur[i], doms_new[j])
7758 && dattrs_equal(dattr_cur, i, dattr_new, j))
7761 /* no match - a current sched domain not in new doms_new[] */
7762 detach_destroy_domains(doms_cur[i]);
7767 if (doms_new == NULL) {
7769 doms_new = &fallback_doms;
7770 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7771 WARN_ON_ONCE(dattr_new);
7774 /* Build new domains */
7775 for (i = 0; i < ndoms_new; i++) {
7776 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7777 if (cpumask_equal(doms_new[i], doms_cur[j])
7778 && dattrs_equal(dattr_new, i, dattr_cur, j))
7781 /* no match - add a new doms_new */
7782 __build_sched_domains(doms_new[i],
7783 dattr_new ? dattr_new + i : NULL);
7788 /* Remember the new sched domains */
7789 if (doms_cur != &fallback_doms)
7790 free_sched_domains(doms_cur, ndoms_cur);
7791 kfree(dattr_cur); /* kfree(NULL) is safe */
7792 doms_cur = doms_new;
7793 dattr_cur = dattr_new;
7794 ndoms_cur = ndoms_new;
7796 register_sched_domain_sysctl();
7798 mutex_unlock(&sched_domains_mutex);
7801 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7802 static void arch_reinit_sched_domains(void)
7806 /* Destroy domains first to force the rebuild */
7807 partition_sched_domains(0, NULL, NULL);
7809 rebuild_sched_domains();
7813 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7815 unsigned int level = 0;
7817 if (sscanf(buf, "%u", &level) != 1)
7821 * level is always be positive so don't check for
7822 * level < POWERSAVINGS_BALANCE_NONE which is 0
7823 * What happens on 0 or 1 byte write,
7824 * need to check for count as well?
7827 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7831 sched_smt_power_savings = level;
7833 sched_mc_power_savings = level;
7835 arch_reinit_sched_domains();
7840 #ifdef CONFIG_SCHED_MC
7841 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7842 struct sysdev_class_attribute *attr,
7845 return sprintf(page, "%u\n", sched_mc_power_savings);
7847 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7848 struct sysdev_class_attribute *attr,
7849 const char *buf, size_t count)
7851 return sched_power_savings_store(buf, count, 0);
7853 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7854 sched_mc_power_savings_show,
7855 sched_mc_power_savings_store);
7858 #ifdef CONFIG_SCHED_SMT
7859 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7860 struct sysdev_class_attribute *attr,
7863 return sprintf(page, "%u\n", sched_smt_power_savings);
7865 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7866 struct sysdev_class_attribute *attr,
7867 const char *buf, size_t count)
7869 return sched_power_savings_store(buf, count, 1);
7871 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7872 sched_smt_power_savings_show,
7873 sched_smt_power_savings_store);
7876 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7880 #ifdef CONFIG_SCHED_SMT
7882 err = sysfs_create_file(&cls->kset.kobj,
7883 &attr_sched_smt_power_savings.attr);
7885 #ifdef CONFIG_SCHED_MC
7886 if (!err && mc_capable())
7887 err = sysfs_create_file(&cls->kset.kobj,
7888 &attr_sched_mc_power_savings.attr);
7892 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7895 * Update cpusets according to cpu_active mask. If cpusets are
7896 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7897 * around partition_sched_domains().
7899 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7902 switch (action & ~CPU_TASKS_FROZEN) {
7904 case CPU_DOWN_FAILED:
7905 cpuset_update_active_cpus();
7912 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7915 switch (action & ~CPU_TASKS_FROZEN) {
7916 case CPU_DOWN_PREPARE:
7917 cpuset_update_active_cpus();
7924 static int update_runtime(struct notifier_block *nfb,
7925 unsigned long action, void *hcpu)
7927 int cpu = (int)(long)hcpu;
7930 case CPU_DOWN_PREPARE:
7931 case CPU_DOWN_PREPARE_FROZEN:
7932 disable_runtime(cpu_rq(cpu));
7935 case CPU_DOWN_FAILED:
7936 case CPU_DOWN_FAILED_FROZEN:
7938 case CPU_ONLINE_FROZEN:
7939 enable_runtime(cpu_rq(cpu));
7947 void __init sched_init_smp(void)
7949 cpumask_var_t non_isolated_cpus;
7951 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7952 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7954 #if defined(CONFIG_NUMA)
7955 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7957 BUG_ON(sched_group_nodes_bycpu == NULL);
7960 mutex_lock(&sched_domains_mutex);
7961 arch_init_sched_domains(cpu_active_mask);
7962 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7963 if (cpumask_empty(non_isolated_cpus))
7964 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7965 mutex_unlock(&sched_domains_mutex);
7968 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7969 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7971 /* RT runtime code needs to handle some hotplug events */
7972 hotcpu_notifier(update_runtime, 0);
7976 /* Move init over to a non-isolated CPU */
7977 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7979 sched_init_granularity();
7980 free_cpumask_var(non_isolated_cpus);
7982 init_sched_rt_class();
7985 void __init sched_init_smp(void)
7987 sched_init_granularity();
7989 #endif /* CONFIG_SMP */
7991 const_debug unsigned int sysctl_timer_migration = 1;
7993 int in_sched_functions(unsigned long addr)
7995 return in_lock_functions(addr) ||
7996 (addr >= (unsigned long)__sched_text_start
7997 && addr < (unsigned long)__sched_text_end);
8000 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8002 cfs_rq->tasks_timeline = RB_ROOT;
8003 INIT_LIST_HEAD(&cfs_rq->tasks);
8004 #ifdef CONFIG_FAIR_GROUP_SCHED
8006 /* allow initial update_cfs_load() to truncate */
8008 cfs_rq->load_stamp = 1;
8011 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8014 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8016 struct rt_prio_array *array;
8019 array = &rt_rq->active;
8020 for (i = 0; i < MAX_RT_PRIO; i++) {
8021 INIT_LIST_HEAD(array->queue + i);
8022 __clear_bit(i, array->bitmap);
8024 /* delimiter for bitsearch: */
8025 __set_bit(MAX_RT_PRIO, array->bitmap);
8027 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8028 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8030 rt_rq->highest_prio.next = MAX_RT_PRIO;
8034 rt_rq->rt_nr_migratory = 0;
8035 rt_rq->overloaded = 0;
8036 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8040 rt_rq->rt_throttled = 0;
8041 rt_rq->rt_runtime = 0;
8042 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8044 #ifdef CONFIG_RT_GROUP_SCHED
8045 rt_rq->rt_nr_boosted = 0;
8050 #ifdef CONFIG_FAIR_GROUP_SCHED
8051 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8052 struct sched_entity *se, int cpu,
8053 struct sched_entity *parent)
8055 struct rq *rq = cpu_rq(cpu);
8056 tg->cfs_rq[cpu] = cfs_rq;
8057 init_cfs_rq(cfs_rq, rq);
8061 /* se could be NULL for root_task_group */
8066 se->cfs_rq = &rq->cfs;
8068 se->cfs_rq = parent->my_q;
8071 update_load_set(&se->load, 0);
8072 se->parent = parent;
8076 #ifdef CONFIG_RT_GROUP_SCHED
8077 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8078 struct sched_rt_entity *rt_se, int cpu,
8079 struct sched_rt_entity *parent)
8081 struct rq *rq = cpu_rq(cpu);
8083 tg->rt_rq[cpu] = rt_rq;
8084 init_rt_rq(rt_rq, rq);
8086 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8088 tg->rt_se[cpu] = rt_se;
8093 rt_se->rt_rq = &rq->rt;
8095 rt_se->rt_rq = parent->my_q;
8097 rt_se->my_q = rt_rq;
8098 rt_se->parent = parent;
8099 INIT_LIST_HEAD(&rt_se->run_list);
8103 void __init sched_init(void)
8106 unsigned long alloc_size = 0, ptr;
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8111 #ifdef CONFIG_RT_GROUP_SCHED
8112 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8114 #ifdef CONFIG_CPUMASK_OFFSTACK
8115 alloc_size += num_possible_cpus() * cpumask_size();
8118 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8120 #ifdef CONFIG_FAIR_GROUP_SCHED
8121 root_task_group.se = (struct sched_entity **)ptr;
8122 ptr += nr_cpu_ids * sizeof(void **);
8124 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8125 ptr += nr_cpu_ids * sizeof(void **);
8127 #endif /* CONFIG_FAIR_GROUP_SCHED */
8128 #ifdef CONFIG_RT_GROUP_SCHED
8129 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8130 ptr += nr_cpu_ids * sizeof(void **);
8132 root_task_group.rt_rq = (struct rt_rq **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8135 #endif /* CONFIG_RT_GROUP_SCHED */
8136 #ifdef CONFIG_CPUMASK_OFFSTACK
8137 for_each_possible_cpu(i) {
8138 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8139 ptr += cpumask_size();
8141 #endif /* CONFIG_CPUMASK_OFFSTACK */
8145 init_defrootdomain();
8148 init_rt_bandwidth(&def_rt_bandwidth,
8149 global_rt_period(), global_rt_runtime());
8151 #ifdef CONFIG_RT_GROUP_SCHED
8152 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8153 global_rt_period(), global_rt_runtime());
8154 #endif /* CONFIG_RT_GROUP_SCHED */
8156 #ifdef CONFIG_CGROUP_SCHED
8157 list_add(&root_task_group.list, &task_groups);
8158 INIT_LIST_HEAD(&root_task_group.children);
8159 autogroup_init(&init_task);
8160 #endif /* CONFIG_CGROUP_SCHED */
8162 for_each_possible_cpu(i) {
8166 raw_spin_lock_init(&rq->lock);
8168 rq->calc_load_active = 0;
8169 rq->calc_load_update = jiffies + LOAD_FREQ;
8170 init_cfs_rq(&rq->cfs, rq);
8171 init_rt_rq(&rq->rt, rq);
8172 #ifdef CONFIG_FAIR_GROUP_SCHED
8173 root_task_group.shares = root_task_group_load;
8174 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8176 * How much cpu bandwidth does root_task_group get?
8178 * In case of task-groups formed thr' the cgroup filesystem, it
8179 * gets 100% of the cpu resources in the system. This overall
8180 * system cpu resource is divided among the tasks of
8181 * root_task_group and its child task-groups in a fair manner,
8182 * based on each entity's (task or task-group's) weight
8183 * (se->load.weight).
8185 * In other words, if root_task_group has 10 tasks of weight
8186 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8187 * then A0's share of the cpu resource is:
8189 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8191 * We achieve this by letting root_task_group's tasks sit
8192 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8194 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8195 #endif /* CONFIG_FAIR_GROUP_SCHED */
8197 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8198 #ifdef CONFIG_RT_GROUP_SCHED
8199 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8200 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8203 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8204 rq->cpu_load[j] = 0;
8206 rq->last_load_update_tick = jiffies;
8211 rq->cpu_power = SCHED_LOAD_SCALE;
8212 rq->post_schedule = 0;
8213 rq->active_balance = 0;
8214 rq->next_balance = jiffies;
8219 rq->avg_idle = 2*sysctl_sched_migration_cost;
8220 rq_attach_root(rq, &def_root_domain);
8222 rq->nohz_balance_kick = 0;
8223 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8227 atomic_set(&rq->nr_iowait, 0);
8230 set_load_weight(&init_task);
8232 #ifdef CONFIG_PREEMPT_NOTIFIERS
8233 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8237 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8240 #ifdef CONFIG_RT_MUTEXES
8241 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8245 * The boot idle thread does lazy MMU switching as well:
8247 atomic_inc(&init_mm.mm_count);
8248 enter_lazy_tlb(&init_mm, current);
8251 * Make us the idle thread. Technically, schedule() should not be
8252 * called from this thread, however somewhere below it might be,
8253 * but because we are the idle thread, we just pick up running again
8254 * when this runqueue becomes "idle".
8256 init_idle(current, smp_processor_id());
8258 calc_load_update = jiffies + LOAD_FREQ;
8261 * During early bootup we pretend to be a normal task:
8263 current->sched_class = &fair_sched_class;
8265 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8266 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8269 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8270 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8271 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8272 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8273 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8275 /* May be allocated at isolcpus cmdline parse time */
8276 if (cpu_isolated_map == NULL)
8277 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8280 scheduler_running = 1;
8283 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8284 static inline int preempt_count_equals(int preempt_offset)
8286 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8288 return (nested == preempt_offset);
8291 void __might_sleep(const char *file, int line, int preempt_offset)
8294 static unsigned long prev_jiffy; /* ratelimiting */
8296 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8297 system_state != SYSTEM_RUNNING || oops_in_progress)
8299 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8301 prev_jiffy = jiffies;
8304 "BUG: sleeping function called from invalid context at %s:%d\n",
8307 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8308 in_atomic(), irqs_disabled(),
8309 current->pid, current->comm);
8311 debug_show_held_locks(current);
8312 if (irqs_disabled())
8313 print_irqtrace_events(current);
8317 EXPORT_SYMBOL(__might_sleep);
8320 #ifdef CONFIG_MAGIC_SYSRQ
8321 static void normalize_task(struct rq *rq, struct task_struct *p)
8323 const struct sched_class *prev_class = p->sched_class;
8324 int old_prio = p->prio;
8329 deactivate_task(rq, p, 0);
8330 __setscheduler(rq, p, SCHED_NORMAL, 0);
8332 activate_task(rq, p, 0);
8333 resched_task(rq->curr);
8336 check_class_changed(rq, p, prev_class, old_prio);
8339 void normalize_rt_tasks(void)
8341 struct task_struct *g, *p;
8342 unsigned long flags;
8345 read_lock_irqsave(&tasklist_lock, flags);
8346 do_each_thread(g, p) {
8348 * Only normalize user tasks:
8353 p->se.exec_start = 0;
8354 #ifdef CONFIG_SCHEDSTATS
8355 p->se.statistics.wait_start = 0;
8356 p->se.statistics.sleep_start = 0;
8357 p->se.statistics.block_start = 0;
8362 * Renice negative nice level userspace
8365 if (TASK_NICE(p) < 0 && p->mm)
8366 set_user_nice(p, 0);
8370 raw_spin_lock(&p->pi_lock);
8371 rq = __task_rq_lock(p);
8373 normalize_task(rq, p);
8375 __task_rq_unlock(rq);
8376 raw_spin_unlock(&p->pi_lock);
8377 } while_each_thread(g, p);
8379 read_unlock_irqrestore(&tasklist_lock, flags);
8382 #endif /* CONFIG_MAGIC_SYSRQ */
8384 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8386 * These functions are only useful for the IA64 MCA handling, or kdb.
8388 * They can only be called when the whole system has been
8389 * stopped - every CPU needs to be quiescent, and no scheduling
8390 * activity can take place. Using them for anything else would
8391 * be a serious bug, and as a result, they aren't even visible
8392 * under any other configuration.
8396 * curr_task - return the current task for a given cpu.
8397 * @cpu: the processor in question.
8399 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8401 struct task_struct *curr_task(int cpu)
8403 return cpu_curr(cpu);
8406 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8410 * set_curr_task - set the current task for a given cpu.
8411 * @cpu: the processor in question.
8412 * @p: the task pointer to set.
8414 * Description: This function must only be used when non-maskable interrupts
8415 * are serviced on a separate stack. It allows the architecture to switch the
8416 * notion of the current task on a cpu in a non-blocking manner. This function
8417 * must be called with all CPU's synchronized, and interrupts disabled, the
8418 * and caller must save the original value of the current task (see
8419 * curr_task() above) and restore that value before reenabling interrupts and
8420 * re-starting the system.
8422 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8424 void set_curr_task(int cpu, struct task_struct *p)
8431 #ifdef CONFIG_FAIR_GROUP_SCHED
8432 static void free_fair_sched_group(struct task_group *tg)
8436 for_each_possible_cpu(i) {
8438 kfree(tg->cfs_rq[i]);
8448 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8450 struct cfs_rq *cfs_rq;
8451 struct sched_entity *se;
8454 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8457 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8461 tg->shares = NICE_0_LOAD;
8463 for_each_possible_cpu(i) {
8464 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8465 GFP_KERNEL, cpu_to_node(i));
8469 se = kzalloc_node(sizeof(struct sched_entity),
8470 GFP_KERNEL, cpu_to_node(i));
8474 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8485 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8487 struct rq *rq = cpu_rq(cpu);
8488 unsigned long flags;
8491 * Only empty task groups can be destroyed; so we can speculatively
8492 * check on_list without danger of it being re-added.
8494 if (!tg->cfs_rq[cpu]->on_list)
8497 raw_spin_lock_irqsave(&rq->lock, flags);
8498 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8499 raw_spin_unlock_irqrestore(&rq->lock, flags);
8501 #else /* !CONFG_FAIR_GROUP_SCHED */
8502 static inline void free_fair_sched_group(struct task_group *tg)
8507 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8512 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8515 #endif /* CONFIG_FAIR_GROUP_SCHED */
8517 #ifdef CONFIG_RT_GROUP_SCHED
8518 static void free_rt_sched_group(struct task_group *tg)
8522 destroy_rt_bandwidth(&tg->rt_bandwidth);
8524 for_each_possible_cpu(i) {
8526 kfree(tg->rt_rq[i]);
8528 kfree(tg->rt_se[i]);
8536 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8538 struct rt_rq *rt_rq;
8539 struct sched_rt_entity *rt_se;
8543 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8546 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8550 init_rt_bandwidth(&tg->rt_bandwidth,
8551 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8553 for_each_possible_cpu(i) {
8556 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8557 GFP_KERNEL, cpu_to_node(i));
8561 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8562 GFP_KERNEL, cpu_to_node(i));
8566 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8576 #else /* !CONFIG_RT_GROUP_SCHED */
8577 static inline void free_rt_sched_group(struct task_group *tg)
8582 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8586 #endif /* CONFIG_RT_GROUP_SCHED */
8588 #ifdef CONFIG_CGROUP_SCHED
8589 static void free_sched_group(struct task_group *tg)
8591 free_fair_sched_group(tg);
8592 free_rt_sched_group(tg);
8597 /* allocate runqueue etc for a new task group */
8598 struct task_group *sched_create_group(struct task_group *parent)
8600 struct task_group *tg;
8601 unsigned long flags;
8603 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8605 return ERR_PTR(-ENOMEM);
8607 if (!alloc_fair_sched_group(tg, parent))
8610 if (!alloc_rt_sched_group(tg, parent))
8613 spin_lock_irqsave(&task_group_lock, flags);
8614 list_add_rcu(&tg->list, &task_groups);
8616 WARN_ON(!parent); /* root should already exist */
8618 tg->parent = parent;
8619 INIT_LIST_HEAD(&tg->children);
8620 list_add_rcu(&tg->siblings, &parent->children);
8621 spin_unlock_irqrestore(&task_group_lock, flags);
8626 free_sched_group(tg);
8627 return ERR_PTR(-ENOMEM);
8630 /* rcu callback to free various structures associated with a task group */
8631 static void free_sched_group_rcu(struct rcu_head *rhp)
8633 /* now it should be safe to free those cfs_rqs */
8634 free_sched_group(container_of(rhp, struct task_group, rcu));
8637 /* Destroy runqueue etc associated with a task group */
8638 void sched_destroy_group(struct task_group *tg)
8640 unsigned long flags;
8643 /* end participation in shares distribution */
8644 for_each_possible_cpu(i)
8645 unregister_fair_sched_group(tg, i);
8647 spin_lock_irqsave(&task_group_lock, flags);
8648 list_del_rcu(&tg->list);
8649 list_del_rcu(&tg->siblings);
8650 spin_unlock_irqrestore(&task_group_lock, flags);
8652 /* wait for possible concurrent references to cfs_rqs complete */
8653 call_rcu(&tg->rcu, free_sched_group_rcu);
8656 /* change task's runqueue when it moves between groups.
8657 * The caller of this function should have put the task in its new group
8658 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8659 * reflect its new group.
8661 void sched_move_task(struct task_struct *tsk)
8664 unsigned long flags;
8667 rq = task_rq_lock(tsk, &flags);
8669 running = task_current(rq, tsk);
8673 dequeue_task(rq, tsk, 0);
8674 if (unlikely(running))
8675 tsk->sched_class->put_prev_task(rq, tsk);
8677 #ifdef CONFIG_FAIR_GROUP_SCHED
8678 if (tsk->sched_class->task_move_group)
8679 tsk->sched_class->task_move_group(tsk, on_rq);
8682 set_task_rq(tsk, task_cpu(tsk));
8684 if (unlikely(running))
8685 tsk->sched_class->set_curr_task(rq);
8687 enqueue_task(rq, tsk, 0);
8689 task_rq_unlock(rq, tsk, &flags);
8691 #endif /* CONFIG_CGROUP_SCHED */
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 static DEFINE_MUTEX(shares_mutex);
8696 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8699 unsigned long flags;
8702 * We can't change the weight of the root cgroup.
8707 if (shares < MIN_SHARES)
8708 shares = MIN_SHARES;
8709 else if (shares > MAX_SHARES)
8710 shares = MAX_SHARES;
8712 mutex_lock(&shares_mutex);
8713 if (tg->shares == shares)
8716 tg->shares = shares;
8717 for_each_possible_cpu(i) {
8718 struct rq *rq = cpu_rq(i);
8719 struct sched_entity *se;
8722 /* Propagate contribution to hierarchy */
8723 raw_spin_lock_irqsave(&rq->lock, flags);
8724 for_each_sched_entity(se)
8725 update_cfs_shares(group_cfs_rq(se));
8726 raw_spin_unlock_irqrestore(&rq->lock, flags);
8730 mutex_unlock(&shares_mutex);
8734 unsigned long sched_group_shares(struct task_group *tg)
8740 #ifdef CONFIG_RT_GROUP_SCHED
8742 * Ensure that the real time constraints are schedulable.
8744 static DEFINE_MUTEX(rt_constraints_mutex);
8746 static unsigned long to_ratio(u64 period, u64 runtime)
8748 if (runtime == RUNTIME_INF)
8751 return div64_u64(runtime << 20, period);
8754 /* Must be called with tasklist_lock held */
8755 static inline int tg_has_rt_tasks(struct task_group *tg)
8757 struct task_struct *g, *p;
8759 do_each_thread(g, p) {
8760 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8762 } while_each_thread(g, p);
8767 struct rt_schedulable_data {
8768 struct task_group *tg;
8773 static int tg_schedulable(struct task_group *tg, void *data)
8775 struct rt_schedulable_data *d = data;
8776 struct task_group *child;
8777 unsigned long total, sum = 0;
8778 u64 period, runtime;
8780 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8781 runtime = tg->rt_bandwidth.rt_runtime;
8784 period = d->rt_period;
8785 runtime = d->rt_runtime;
8789 * Cannot have more runtime than the period.
8791 if (runtime > period && runtime != RUNTIME_INF)
8795 * Ensure we don't starve existing RT tasks.
8797 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8800 total = to_ratio(period, runtime);
8803 * Nobody can have more than the global setting allows.
8805 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8809 * The sum of our children's runtime should not exceed our own.
8811 list_for_each_entry_rcu(child, &tg->children, siblings) {
8812 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8813 runtime = child->rt_bandwidth.rt_runtime;
8815 if (child == d->tg) {
8816 period = d->rt_period;
8817 runtime = d->rt_runtime;
8820 sum += to_ratio(period, runtime);
8829 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8831 struct rt_schedulable_data data = {
8833 .rt_period = period,
8834 .rt_runtime = runtime,
8837 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8840 static int tg_set_bandwidth(struct task_group *tg,
8841 u64 rt_period, u64 rt_runtime)
8845 mutex_lock(&rt_constraints_mutex);
8846 read_lock(&tasklist_lock);
8847 err = __rt_schedulable(tg, rt_period, rt_runtime);
8851 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8852 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8853 tg->rt_bandwidth.rt_runtime = rt_runtime;
8855 for_each_possible_cpu(i) {
8856 struct rt_rq *rt_rq = tg->rt_rq[i];
8858 raw_spin_lock(&rt_rq->rt_runtime_lock);
8859 rt_rq->rt_runtime = rt_runtime;
8860 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8862 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8864 read_unlock(&tasklist_lock);
8865 mutex_unlock(&rt_constraints_mutex);
8870 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8872 u64 rt_runtime, rt_period;
8874 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8875 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8876 if (rt_runtime_us < 0)
8877 rt_runtime = RUNTIME_INF;
8879 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8882 long sched_group_rt_runtime(struct task_group *tg)
8886 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8889 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8890 do_div(rt_runtime_us, NSEC_PER_USEC);
8891 return rt_runtime_us;
8894 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8896 u64 rt_runtime, rt_period;
8898 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8899 rt_runtime = tg->rt_bandwidth.rt_runtime;
8904 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8907 long sched_group_rt_period(struct task_group *tg)
8911 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8912 do_div(rt_period_us, NSEC_PER_USEC);
8913 return rt_period_us;
8916 static int sched_rt_global_constraints(void)
8918 u64 runtime, period;
8921 if (sysctl_sched_rt_period <= 0)
8924 runtime = global_rt_runtime();
8925 period = global_rt_period();
8928 * Sanity check on the sysctl variables.
8930 if (runtime > period && runtime != RUNTIME_INF)
8933 mutex_lock(&rt_constraints_mutex);
8934 read_lock(&tasklist_lock);
8935 ret = __rt_schedulable(NULL, 0, 0);
8936 read_unlock(&tasklist_lock);
8937 mutex_unlock(&rt_constraints_mutex);
8942 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8944 /* Don't accept realtime tasks when there is no way for them to run */
8945 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8951 #else /* !CONFIG_RT_GROUP_SCHED */
8952 static int sched_rt_global_constraints(void)
8954 unsigned long flags;
8957 if (sysctl_sched_rt_period <= 0)
8961 * There's always some RT tasks in the root group
8962 * -- migration, kstopmachine etc..
8964 if (sysctl_sched_rt_runtime == 0)
8967 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8968 for_each_possible_cpu(i) {
8969 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8971 raw_spin_lock(&rt_rq->rt_runtime_lock);
8972 rt_rq->rt_runtime = global_rt_runtime();
8973 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8975 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8979 #endif /* CONFIG_RT_GROUP_SCHED */
8981 int sched_rt_handler(struct ctl_table *table, int write,
8982 void __user *buffer, size_t *lenp,
8986 int old_period, old_runtime;
8987 static DEFINE_MUTEX(mutex);
8990 old_period = sysctl_sched_rt_period;
8991 old_runtime = sysctl_sched_rt_runtime;
8993 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8995 if (!ret && write) {
8996 ret = sched_rt_global_constraints();
8998 sysctl_sched_rt_period = old_period;
8999 sysctl_sched_rt_runtime = old_runtime;
9001 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9002 def_rt_bandwidth.rt_period =
9003 ns_to_ktime(global_rt_period());
9006 mutex_unlock(&mutex);
9011 #ifdef CONFIG_CGROUP_SCHED
9013 /* return corresponding task_group object of a cgroup */
9014 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9016 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9017 struct task_group, css);
9020 static struct cgroup_subsys_state *
9021 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9023 struct task_group *tg, *parent;
9025 if (!cgrp->parent) {
9026 /* This is early initialization for the top cgroup */
9027 return &root_task_group.css;
9030 parent = cgroup_tg(cgrp->parent);
9031 tg = sched_create_group(parent);
9033 return ERR_PTR(-ENOMEM);
9039 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9041 struct task_group *tg = cgroup_tg(cgrp);
9043 sched_destroy_group(tg);
9047 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9049 #ifdef CONFIG_RT_GROUP_SCHED
9050 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9053 /* We don't support RT-tasks being in separate groups */
9054 if (tsk->sched_class != &fair_sched_class)
9061 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9062 struct task_struct *tsk, bool threadgroup)
9064 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9068 struct task_struct *c;
9070 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9071 retval = cpu_cgroup_can_attach_task(cgrp, c);
9083 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9084 struct cgroup *old_cont, struct task_struct *tsk,
9087 sched_move_task(tsk);
9089 struct task_struct *c;
9091 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9099 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9100 struct cgroup *old_cgrp, struct task_struct *task)
9103 * cgroup_exit() is called in the copy_process() failure path.
9104 * Ignore this case since the task hasn't ran yet, this avoids
9105 * trying to poke a half freed task state from generic code.
9107 if (!(task->flags & PF_EXITING))
9110 sched_move_task(task);
9113 #ifdef CONFIG_FAIR_GROUP_SCHED
9114 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9117 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9120 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9122 struct task_group *tg = cgroup_tg(cgrp);
9124 return (u64) tg->shares;
9126 #endif /* CONFIG_FAIR_GROUP_SCHED */
9128 #ifdef CONFIG_RT_GROUP_SCHED
9129 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9132 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9135 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9137 return sched_group_rt_runtime(cgroup_tg(cgrp));
9140 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9143 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9146 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9148 return sched_group_rt_period(cgroup_tg(cgrp));
9150 #endif /* CONFIG_RT_GROUP_SCHED */
9152 static struct cftype cpu_files[] = {
9153 #ifdef CONFIG_FAIR_GROUP_SCHED
9156 .read_u64 = cpu_shares_read_u64,
9157 .write_u64 = cpu_shares_write_u64,
9160 #ifdef CONFIG_RT_GROUP_SCHED
9162 .name = "rt_runtime_us",
9163 .read_s64 = cpu_rt_runtime_read,
9164 .write_s64 = cpu_rt_runtime_write,
9167 .name = "rt_period_us",
9168 .read_u64 = cpu_rt_period_read_uint,
9169 .write_u64 = cpu_rt_period_write_uint,
9174 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9176 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9179 struct cgroup_subsys cpu_cgroup_subsys = {
9181 .create = cpu_cgroup_create,
9182 .destroy = cpu_cgroup_destroy,
9183 .can_attach = cpu_cgroup_can_attach,
9184 .attach = cpu_cgroup_attach,
9185 .exit = cpu_cgroup_exit,
9186 .populate = cpu_cgroup_populate,
9187 .subsys_id = cpu_cgroup_subsys_id,
9191 #endif /* CONFIG_CGROUP_SCHED */
9193 #ifdef CONFIG_CGROUP_CPUACCT
9196 * CPU accounting code for task groups.
9202 /* track cpu usage of a group of tasks and its child groups */
9204 struct cgroup_subsys_state css;
9205 /* cpuusage holds pointer to a u64-type object on every cpu */
9206 u64 __percpu *cpuusage;
9207 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9208 struct cpuacct *parent;
9211 struct cgroup_subsys cpuacct_subsys;
9213 /* return cpu accounting group corresponding to this container */
9214 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9216 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9217 struct cpuacct, css);
9220 /* return cpu accounting group to which this task belongs */
9221 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9223 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9224 struct cpuacct, css);
9227 /* create a new cpu accounting group */
9228 static struct cgroup_subsys_state *cpuacct_create(
9229 struct cgroup_subsys *ss, struct cgroup *cgrp)
9231 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9237 ca->cpuusage = alloc_percpu(u64);
9241 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9242 if (percpu_counter_init(&ca->cpustat[i], 0))
9243 goto out_free_counters;
9246 ca->parent = cgroup_ca(cgrp->parent);
9252 percpu_counter_destroy(&ca->cpustat[i]);
9253 free_percpu(ca->cpuusage);
9257 return ERR_PTR(-ENOMEM);
9260 /* destroy an existing cpu accounting group */
9262 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9264 struct cpuacct *ca = cgroup_ca(cgrp);
9267 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9268 percpu_counter_destroy(&ca->cpustat[i]);
9269 free_percpu(ca->cpuusage);
9273 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9275 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9278 #ifndef CONFIG_64BIT
9280 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9282 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9284 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9292 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9294 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9296 #ifndef CONFIG_64BIT
9298 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9300 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9302 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9308 /* return total cpu usage (in nanoseconds) of a group */
9309 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9311 struct cpuacct *ca = cgroup_ca(cgrp);
9312 u64 totalcpuusage = 0;
9315 for_each_present_cpu(i)
9316 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9318 return totalcpuusage;
9321 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9324 struct cpuacct *ca = cgroup_ca(cgrp);
9333 for_each_present_cpu(i)
9334 cpuacct_cpuusage_write(ca, i, 0);
9340 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9343 struct cpuacct *ca = cgroup_ca(cgroup);
9347 for_each_present_cpu(i) {
9348 percpu = cpuacct_cpuusage_read(ca, i);
9349 seq_printf(m, "%llu ", (unsigned long long) percpu);
9351 seq_printf(m, "\n");
9355 static const char *cpuacct_stat_desc[] = {
9356 [CPUACCT_STAT_USER] = "user",
9357 [CPUACCT_STAT_SYSTEM] = "system",
9360 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9361 struct cgroup_map_cb *cb)
9363 struct cpuacct *ca = cgroup_ca(cgrp);
9366 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9367 s64 val = percpu_counter_read(&ca->cpustat[i]);
9368 val = cputime64_to_clock_t(val);
9369 cb->fill(cb, cpuacct_stat_desc[i], val);
9374 static struct cftype files[] = {
9377 .read_u64 = cpuusage_read,
9378 .write_u64 = cpuusage_write,
9381 .name = "usage_percpu",
9382 .read_seq_string = cpuacct_percpu_seq_read,
9386 .read_map = cpuacct_stats_show,
9390 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9392 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9396 * charge this task's execution time to its accounting group.
9398 * called with rq->lock held.
9400 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9405 if (unlikely(!cpuacct_subsys.active))
9408 cpu = task_cpu(tsk);
9414 for (; ca; ca = ca->parent) {
9415 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9416 *cpuusage += cputime;
9423 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9424 * in cputime_t units. As a result, cpuacct_update_stats calls
9425 * percpu_counter_add with values large enough to always overflow the
9426 * per cpu batch limit causing bad SMP scalability.
9428 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9429 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9430 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9433 #define CPUACCT_BATCH \
9434 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9436 #define CPUACCT_BATCH 0
9440 * Charge the system/user time to the task's accounting group.
9442 static void cpuacct_update_stats(struct task_struct *tsk,
9443 enum cpuacct_stat_index idx, cputime_t val)
9446 int batch = CPUACCT_BATCH;
9448 if (unlikely(!cpuacct_subsys.active))
9455 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9461 struct cgroup_subsys cpuacct_subsys = {
9463 .create = cpuacct_create,
9464 .destroy = cpuacct_destroy,
9465 .populate = cpuacct_populate,
9466 .subsys_id = cpuacct_subsys_id,
9468 #endif /* CONFIG_CGROUP_CPUACCT */