4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2010
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <linux/mount.h>
34 #include <linux/slab.h>
35 #include <asm/div64.h>
39 #include "cifsproto.h"
40 #include "cifs_unicode.h"
41 #include "cifs_debug.h"
42 #include "cifs_fs_sb.h"
45 static inline int cifs_convert_flags(unsigned int flags)
47 if ((flags & O_ACCMODE) == O_RDONLY)
49 else if ((flags & O_ACCMODE) == O_WRONLY)
51 else if ((flags & O_ACCMODE) == O_RDWR) {
52 /* GENERIC_ALL is too much permission to request
53 can cause unnecessary access denied on create */
54 /* return GENERIC_ALL; */
55 return (GENERIC_READ | GENERIC_WRITE);
58 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
59 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
63 static u32 cifs_posix_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
68 posix_flags = SMB_O_RDONLY;
69 else if ((flags & O_ACCMODE) == O_WRONLY)
70 posix_flags = SMB_O_WRONLY;
71 else if ((flags & O_ACCMODE) == O_RDWR)
72 posix_flags = SMB_O_RDWR;
75 posix_flags |= SMB_O_CREAT;
77 posix_flags |= SMB_O_EXCL;
79 posix_flags |= SMB_O_TRUNC;
80 /* be safe and imply O_SYNC for O_DSYNC */
82 posix_flags |= SMB_O_SYNC;
83 if (flags & O_DIRECTORY)
84 posix_flags |= SMB_O_DIRECTORY;
85 if (flags & O_NOFOLLOW)
86 posix_flags |= SMB_O_NOFOLLOW;
88 posix_flags |= SMB_O_DIRECT;
93 static inline int cifs_get_disposition(unsigned int flags)
95 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
97 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
98 return FILE_OVERWRITE_IF;
99 else if ((flags & O_CREAT) == O_CREAT)
101 else if ((flags & O_TRUNC) == O_TRUNC)
102 return FILE_OVERWRITE;
107 int cifs_posix_open(char *full_path, struct inode **pinode,
108 struct super_block *sb, int mode, unsigned int f_flags,
109 __u32 *poplock, __u16 *pnetfid, int xid)
112 FILE_UNIX_BASIC_INFO *presp_data;
113 __u32 posix_flags = 0;
114 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
115 struct cifs_fattr fattr;
116 struct tcon_link *tlink;
117 struct cifs_tcon *tcon;
119 cFYI(1, "posix open %s", full_path);
121 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
122 if (presp_data == NULL)
125 tlink = cifs_sb_tlink(cifs_sb);
131 tcon = tlink_tcon(tlink);
132 mode &= ~current_umask();
134 posix_flags = cifs_posix_convert_flags(f_flags);
135 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
136 poplock, full_path, cifs_sb->local_nls,
137 cifs_sb->mnt_cifs_flags &
138 CIFS_MOUNT_MAP_SPECIAL_CHR);
139 cifs_put_tlink(tlink);
144 if (presp_data->Type == cpu_to_le32(-1))
145 goto posix_open_ret; /* open ok, caller does qpathinfo */
148 goto posix_open_ret; /* caller does not need info */
150 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
152 /* get new inode and set it up */
153 if (*pinode == NULL) {
154 cifs_fill_uniqueid(sb, &fattr);
155 *pinode = cifs_iget(sb, &fattr);
161 cifs_fattr_to_inode(*pinode, &fattr);
170 cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
171 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
172 __u16 *pnetfid, int xid)
179 desiredAccess = cifs_convert_flags(f_flags);
181 /*********************************************************************
182 * open flag mapping table:
184 * POSIX Flag CIFS Disposition
185 * ---------- ----------------
186 * O_CREAT FILE_OPEN_IF
187 * O_CREAT | O_EXCL FILE_CREATE
188 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
189 * O_TRUNC FILE_OVERWRITE
190 * none of the above FILE_OPEN
192 * Note that there is not a direct match between disposition
193 * FILE_SUPERSEDE (ie create whether or not file exists although
194 * O_CREAT | O_TRUNC is similar but truncates the existing
195 * file rather than creating a new file as FILE_SUPERSEDE does
196 * (which uses the attributes / metadata passed in on open call)
198 *? O_SYNC is a reasonable match to CIFS writethrough flag
199 *? and the read write flags match reasonably. O_LARGEFILE
200 *? is irrelevant because largefile support is always used
201 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
202 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
203 *********************************************************************/
205 disposition = cifs_get_disposition(f_flags);
207 /* BB pass O_SYNC flag through on file attributes .. BB */
209 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
213 if (tcon->ses->capabilities & CAP_NT_SMBS)
214 rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
215 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
216 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
217 & CIFS_MOUNT_MAP_SPECIAL_CHR);
219 rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
220 desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
221 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
222 & CIFS_MOUNT_MAP_SPECIAL_CHR);
228 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
231 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
239 struct cifsFileInfo *
240 cifs_new_fileinfo(__u16 fileHandle, struct file *file,
241 struct tcon_link *tlink, __u32 oplock)
243 struct dentry *dentry = file->f_path.dentry;
244 struct inode *inode = dentry->d_inode;
245 struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
246 struct cifsFileInfo *pCifsFile;
248 pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
249 if (pCifsFile == NULL)
252 pCifsFile->count = 1;
253 pCifsFile->netfid = fileHandle;
254 pCifsFile->pid = current->tgid;
255 pCifsFile->uid = current_fsuid();
256 pCifsFile->dentry = dget(dentry);
257 pCifsFile->f_flags = file->f_flags;
258 pCifsFile->invalidHandle = false;
259 pCifsFile->tlink = cifs_get_tlink(tlink);
260 mutex_init(&pCifsFile->fh_mutex);
261 mutex_init(&pCifsFile->lock_mutex);
262 INIT_LIST_HEAD(&pCifsFile->llist);
263 INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
265 spin_lock(&cifs_file_list_lock);
266 list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
267 /* if readable file instance put first in list*/
268 if (file->f_mode & FMODE_READ)
269 list_add(&pCifsFile->flist, &pCifsInode->openFileList);
271 list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
272 spin_unlock(&cifs_file_list_lock);
274 cifs_set_oplock_level(pCifsInode, oplock);
276 file->private_data = pCifsFile;
281 * Release a reference on the file private data. This may involve closing
282 * the filehandle out on the server. Must be called without holding
283 * cifs_file_list_lock.
285 void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
287 struct inode *inode = cifs_file->dentry->d_inode;
288 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
289 struct cifsInodeInfo *cifsi = CIFS_I(inode);
290 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
291 struct cifsLockInfo *li, *tmp;
293 spin_lock(&cifs_file_list_lock);
294 if (--cifs_file->count > 0) {
295 spin_unlock(&cifs_file_list_lock);
299 /* remove it from the lists */
300 list_del(&cifs_file->flist);
301 list_del(&cifs_file->tlist);
303 if (list_empty(&cifsi->openFileList)) {
304 cFYI(1, "closing last open instance for inode %p",
305 cifs_file->dentry->d_inode);
307 /* in strict cache mode we need invalidate mapping on the last
308 close because it may cause a error when we open this file
309 again and get at least level II oplock */
310 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
311 CIFS_I(inode)->invalid_mapping = true;
313 cifs_set_oplock_level(cifsi, 0);
315 spin_unlock(&cifs_file_list_lock);
317 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
321 rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
325 /* Delete any outstanding lock records. We'll lose them when the file
328 mutex_lock(&cifs_file->lock_mutex);
329 list_for_each_entry_safe(li, tmp, &cifs_file->llist, llist) {
330 list_del(&li->llist);
333 mutex_unlock(&cifs_file->lock_mutex);
335 cifs_put_tlink(cifs_file->tlink);
336 dput(cifs_file->dentry);
340 int cifs_open(struct inode *inode, struct file *file)
345 struct cifs_sb_info *cifs_sb;
346 struct cifs_tcon *tcon;
347 struct tcon_link *tlink;
348 struct cifsFileInfo *pCifsFile = NULL;
349 char *full_path = NULL;
350 bool posix_open_ok = false;
355 cifs_sb = CIFS_SB(inode->i_sb);
356 tlink = cifs_sb_tlink(cifs_sb);
359 return PTR_ERR(tlink);
361 tcon = tlink_tcon(tlink);
363 full_path = build_path_from_dentry(file->f_path.dentry);
364 if (full_path == NULL) {
369 cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
370 inode, file->f_flags, full_path);
377 if (!tcon->broken_posix_open && tcon->unix_ext &&
378 (tcon->ses->capabilities & CAP_UNIX) &&
379 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
380 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
381 /* can not refresh inode info since size could be stale */
382 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
383 cifs_sb->mnt_file_mode /* ignored */,
384 file->f_flags, &oplock, &netfid, xid);
386 cFYI(1, "posix open succeeded");
387 posix_open_ok = true;
388 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
389 if (tcon->ses->serverNOS)
390 cERROR(1, "server %s of type %s returned"
391 " unexpected error on SMB posix open"
392 ", disabling posix open support."
393 " Check if server update available.",
394 tcon->ses->serverName,
395 tcon->ses->serverNOS);
396 tcon->broken_posix_open = true;
397 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
398 (rc != -EOPNOTSUPP)) /* path not found or net err */
400 /* else fallthrough to retry open the old way on network i/o
404 if (!posix_open_ok) {
405 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
406 file->f_flags, &oplock, &netfid, xid);
411 pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
412 if (pCifsFile == NULL) {
413 CIFSSMBClose(xid, tcon, netfid);
418 cifs_fscache_set_inode_cookie(inode, file);
420 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
421 /* time to set mode which we can not set earlier due to
422 problems creating new read-only files */
423 struct cifs_unix_set_info_args args = {
424 .mode = inode->i_mode,
427 .ctime = NO_CHANGE_64,
428 .atime = NO_CHANGE_64,
429 .mtime = NO_CHANGE_64,
432 CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
439 cifs_put_tlink(tlink);
443 /* Try to reacquire byte range locks that were released when session */
444 /* to server was lost */
445 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
449 /* BB list all locks open on this file and relock */
454 static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
459 struct cifs_sb_info *cifs_sb;
460 struct cifs_tcon *tcon;
461 struct cifsInodeInfo *pCifsInode;
463 char *full_path = NULL;
465 int disposition = FILE_OPEN;
469 mutex_lock(&pCifsFile->fh_mutex);
470 if (!pCifsFile->invalidHandle) {
471 mutex_unlock(&pCifsFile->fh_mutex);
477 inode = pCifsFile->dentry->d_inode;
478 cifs_sb = CIFS_SB(inode->i_sb);
479 tcon = tlink_tcon(pCifsFile->tlink);
481 /* can not grab rename sem here because various ops, including
482 those that already have the rename sem can end up causing writepage
483 to get called and if the server was down that means we end up here,
484 and we can never tell if the caller already has the rename_sem */
485 full_path = build_path_from_dentry(pCifsFile->dentry);
486 if (full_path == NULL) {
488 mutex_unlock(&pCifsFile->fh_mutex);
493 cFYI(1, "inode = 0x%p file flags 0x%x for %s",
494 inode, pCifsFile->f_flags, full_path);
501 if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
502 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
503 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
506 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
507 * original open. Must mask them off for a reopen.
509 unsigned int oflags = pCifsFile->f_flags &
510 ~(O_CREAT | O_EXCL | O_TRUNC);
512 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
513 cifs_sb->mnt_file_mode /* ignored */,
514 oflags, &oplock, &netfid, xid);
516 cFYI(1, "posix reopen succeeded");
519 /* fallthrough to retry open the old way on errors, especially
520 in the reconnect path it is important to retry hard */
523 desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
525 /* Can not refresh inode by passing in file_info buf to be returned
526 by SMBOpen and then calling get_inode_info with returned buf
527 since file might have write behind data that needs to be flushed
528 and server version of file size can be stale. If we knew for sure
529 that inode was not dirty locally we could do this */
531 rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
532 CREATE_NOT_DIR, &netfid, &oplock, NULL,
533 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
534 CIFS_MOUNT_MAP_SPECIAL_CHR);
536 mutex_unlock(&pCifsFile->fh_mutex);
537 cFYI(1, "cifs_open returned 0x%x", rc);
538 cFYI(1, "oplock: %d", oplock);
539 goto reopen_error_exit;
543 pCifsFile->netfid = netfid;
544 pCifsFile->invalidHandle = false;
545 mutex_unlock(&pCifsFile->fh_mutex);
546 pCifsInode = CIFS_I(inode);
549 rc = filemap_write_and_wait(inode->i_mapping);
550 mapping_set_error(inode->i_mapping, rc);
553 rc = cifs_get_inode_info_unix(&inode,
554 full_path, inode->i_sb, xid);
556 rc = cifs_get_inode_info(&inode,
557 full_path, NULL, inode->i_sb,
559 } /* else we are writing out data to server already
560 and could deadlock if we tried to flush data, and
561 since we do not know if we have data that would
562 invalidate the current end of file on the server
563 we can not go to the server to get the new inod
566 cifs_set_oplock_level(pCifsInode, oplock);
568 cifs_relock_file(pCifsFile);
576 int cifs_close(struct inode *inode, struct file *file)
578 if (file->private_data != NULL) {
579 cifsFileInfo_put(file->private_data);
580 file->private_data = NULL;
583 /* return code from the ->release op is always ignored */
587 int cifs_closedir(struct inode *inode, struct file *file)
591 struct cifsFileInfo *pCFileStruct = file->private_data;
594 cFYI(1, "Closedir inode = 0x%p", inode);
599 struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
601 cFYI(1, "Freeing private data in close dir");
602 spin_lock(&cifs_file_list_lock);
603 if (!pCFileStruct->srch_inf.endOfSearch &&
604 !pCFileStruct->invalidHandle) {
605 pCFileStruct->invalidHandle = true;
606 spin_unlock(&cifs_file_list_lock);
607 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
608 cFYI(1, "Closing uncompleted readdir with rc %d",
610 /* not much we can do if it fails anyway, ignore rc */
613 spin_unlock(&cifs_file_list_lock);
614 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
616 cFYI(1, "closedir free smb buf in srch struct");
617 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
618 if (pCFileStruct->srch_inf.smallBuf)
619 cifs_small_buf_release(ptmp);
621 cifs_buf_release(ptmp);
623 cifs_put_tlink(pCFileStruct->tlink);
624 kfree(file->private_data);
625 file->private_data = NULL;
627 /* BB can we lock the filestruct while this is going on? */
632 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
633 __u64 offset, __u8 lockType)
635 struct cifsLockInfo *li =
636 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
642 mutex_lock(&fid->lock_mutex);
643 list_add(&li->llist, &fid->llist);
644 mutex_unlock(&fid->lock_mutex);
648 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
654 bool wait_flag = false;
655 struct cifs_sb_info *cifs_sb;
656 struct cifs_tcon *tcon;
658 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
659 bool posix_locking = 0;
661 length = 1 + pfLock->fl_end - pfLock->fl_start;
665 cFYI(1, "Lock parm: 0x%x flockflags: "
666 "0x%x flocktype: 0x%x start: %lld end: %lld",
667 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
670 if (pfLock->fl_flags & FL_POSIX)
672 if (pfLock->fl_flags & FL_FLOCK)
674 if (pfLock->fl_flags & FL_SLEEP) {
675 cFYI(1, "Blocking lock");
678 if (pfLock->fl_flags & FL_ACCESS)
679 cFYI(1, "Process suspended by mandatory locking - "
680 "not implemented yet");
681 if (pfLock->fl_flags & FL_LEASE)
682 cFYI(1, "Lease on file - not implemented yet");
683 if (pfLock->fl_flags &
684 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
685 cFYI(1, "Unknown lock flags 0x%x", pfLock->fl_flags);
687 if (pfLock->fl_type == F_WRLCK) {
690 } else if (pfLock->fl_type == F_UNLCK) {
693 /* Check if unlock includes more than
695 } else if (pfLock->fl_type == F_RDLCK) {
697 lockType |= LOCKING_ANDX_SHARED_LOCK;
699 } else if (pfLock->fl_type == F_EXLCK) {
702 } else if (pfLock->fl_type == F_SHLCK) {
704 lockType |= LOCKING_ANDX_SHARED_LOCK;
707 cFYI(1, "Unknown type of lock");
709 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
710 tcon = tlink_tcon(((struct cifsFileInfo *)file->private_data)->tlink);
711 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
713 if ((tcon->ses->capabilities & CAP_UNIX) &&
714 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
715 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
717 /* BB add code here to normalize offset and length to
718 account for negative length which we can not accept over the
723 if (lockType & LOCKING_ANDX_SHARED_LOCK)
724 posix_lock_type = CIFS_RDLCK;
726 posix_lock_type = CIFS_WRLCK;
727 rc = CIFSSMBPosixLock(xid, tcon, netfid, 1 /* get */,
728 length, pfLock, posix_lock_type,
734 /* BB we could chain these into one lock request BB */
735 rc = CIFSSMBLock(xid, tcon, netfid, length, pfLock->fl_start,
736 0, 1, lockType, 0 /* wait flag */, 0);
738 rc = CIFSSMBLock(xid, tcon, netfid, length,
739 pfLock->fl_start, 1 /* numUnlock */ ,
740 0 /* numLock */ , lockType,
741 0 /* wait flag */, 0);
742 pfLock->fl_type = F_UNLCK;
744 cERROR(1, "Error unlocking previously locked "
745 "range %d during test of lock", rc);
749 /* if rc == ERR_SHARING_VIOLATION ? */
752 if (lockType & LOCKING_ANDX_SHARED_LOCK) {
753 pfLock->fl_type = F_WRLCK;
755 rc = CIFSSMBLock(xid, tcon, netfid, length,
756 pfLock->fl_start, 0, 1,
757 lockType | LOCKING_ANDX_SHARED_LOCK,
758 0 /* wait flag */, 0);
760 rc = CIFSSMBLock(xid, tcon, netfid,
761 length, pfLock->fl_start, 1, 0,
763 LOCKING_ANDX_SHARED_LOCK,
764 0 /* wait flag */, 0);
765 pfLock->fl_type = F_RDLCK;
767 cERROR(1, "Error unlocking "
768 "previously locked range %d "
769 "during test of lock", rc);
772 pfLock->fl_type = F_WRLCK;
782 if (!numLock && !numUnlock) {
783 /* if no lock or unlock then nothing
784 to do since we do not know what it is */
791 if (lockType & LOCKING_ANDX_SHARED_LOCK)
792 posix_lock_type = CIFS_RDLCK;
794 posix_lock_type = CIFS_WRLCK;
797 posix_lock_type = CIFS_UNLCK;
799 rc = CIFSSMBPosixLock(xid, tcon, netfid, 0 /* set */,
800 length, pfLock, posix_lock_type,
803 struct cifsFileInfo *fid = file->private_data;
806 rc = CIFSSMBLock(xid, tcon, netfid, length,
807 pfLock->fl_start, 0, numLock, lockType,
811 /* For Windows locks we must store them. */
812 rc = store_file_lock(fid, length,
813 pfLock->fl_start, lockType);
815 } else if (numUnlock) {
816 /* For each stored lock that this unlock overlaps
817 completely, unlock it. */
819 struct cifsLockInfo *li, *tmp;
822 mutex_lock(&fid->lock_mutex);
823 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
824 if (pfLock->fl_start <= li->offset &&
825 (pfLock->fl_start + length) >=
826 (li->offset + li->length)) {
827 stored_rc = CIFSSMBLock(xid, tcon,
834 list_del(&li->llist);
839 mutex_unlock(&fid->lock_mutex);
843 if (pfLock->fl_flags & FL_POSIX)
844 posix_lock_file_wait(file, pfLock);
849 /* update the file size (if needed) after a write */
851 cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
852 unsigned int bytes_written)
854 loff_t end_of_write = offset + bytes_written;
856 if (end_of_write > cifsi->server_eof)
857 cifsi->server_eof = end_of_write;
860 static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
861 const char *write_data, size_t write_size,
865 unsigned int bytes_written = 0;
866 unsigned int total_written;
867 struct cifs_sb_info *cifs_sb;
868 struct cifs_tcon *pTcon;
870 struct dentry *dentry = open_file->dentry;
871 struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
872 struct cifs_io_parms io_parms;
874 cifs_sb = CIFS_SB(dentry->d_sb);
876 cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
877 *poffset, dentry->d_name.name);
879 pTcon = tlink_tcon(open_file->tlink);
883 for (total_written = 0; write_size > total_written;
884 total_written += bytes_written) {
886 while (rc == -EAGAIN) {
890 if (open_file->invalidHandle) {
891 /* we could deadlock if we called
892 filemap_fdatawait from here so tell
893 reopen_file not to flush data to
895 rc = cifs_reopen_file(open_file, false);
900 len = min((size_t)cifs_sb->wsize,
901 write_size - total_written);
902 /* iov[0] is reserved for smb header */
903 iov[1].iov_base = (char *)write_data + total_written;
904 iov[1].iov_len = len;
905 io_parms.netfid = open_file->netfid;
907 io_parms.tcon = pTcon;
908 io_parms.offset = *poffset;
909 io_parms.length = len;
910 rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
913 if (rc || (bytes_written == 0)) {
921 cifs_update_eof(cifsi, *poffset, bytes_written);
922 *poffset += bytes_written;
926 cifs_stats_bytes_written(pTcon, total_written);
928 if (total_written > 0) {
929 spin_lock(&dentry->d_inode->i_lock);
930 if (*poffset > dentry->d_inode->i_size)
931 i_size_write(dentry->d_inode, *poffset);
932 spin_unlock(&dentry->d_inode->i_lock);
934 mark_inode_dirty_sync(dentry->d_inode);
936 return total_written;
939 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
942 struct cifsFileInfo *open_file = NULL;
943 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
945 /* only filter by fsuid on multiuser mounts */
946 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
949 spin_lock(&cifs_file_list_lock);
950 /* we could simply get the first_list_entry since write-only entries
951 are always at the end of the list but since the first entry might
952 have a close pending, we go through the whole list */
953 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
954 if (fsuid_only && open_file->uid != current_fsuid())
956 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
957 if (!open_file->invalidHandle) {
958 /* found a good file */
959 /* lock it so it will not be closed on us */
960 cifsFileInfo_get(open_file);
961 spin_unlock(&cifs_file_list_lock);
963 } /* else might as well continue, and look for
964 another, or simply have the caller reopen it
965 again rather than trying to fix this handle */
966 } else /* write only file */
967 break; /* write only files are last so must be done */
969 spin_unlock(&cifs_file_list_lock);
973 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
976 struct cifsFileInfo *open_file;
977 struct cifs_sb_info *cifs_sb;
978 bool any_available = false;
981 /* Having a null inode here (because mapping->host was set to zero by
982 the VFS or MM) should not happen but we had reports of on oops (due to
983 it being zero) during stress testcases so we need to check for it */
985 if (cifs_inode == NULL) {
986 cERROR(1, "Null inode passed to cifs_writeable_file");
991 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
993 /* only filter by fsuid on multiuser mounts */
994 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
997 spin_lock(&cifs_file_list_lock);
999 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1000 if (!any_available && open_file->pid != current->tgid)
1002 if (fsuid_only && open_file->uid != current_fsuid())
1004 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1005 cifsFileInfo_get(open_file);
1007 if (!open_file->invalidHandle) {
1008 /* found a good writable file */
1009 spin_unlock(&cifs_file_list_lock);
1013 spin_unlock(&cifs_file_list_lock);
1015 /* Had to unlock since following call can block */
1016 rc = cifs_reopen_file(open_file, false);
1020 /* if it fails, try another handle if possible */
1021 cFYI(1, "wp failed on reopen file");
1022 cifsFileInfo_put(open_file);
1024 spin_lock(&cifs_file_list_lock);
1026 /* else we simply continue to the next entry. Thus
1027 we do not loop on reopen errors. If we
1028 can not reopen the file, for example if we
1029 reconnected to a server with another client
1030 racing to delete or lock the file we would not
1031 make progress if we restarted before the beginning
1032 of the loop here. */
1035 /* couldn't find useable FH with same pid, try any available */
1036 if (!any_available) {
1037 any_available = true;
1038 goto refind_writable;
1040 spin_unlock(&cifs_file_list_lock);
1044 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1046 struct address_space *mapping = page->mapping;
1047 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1050 int bytes_written = 0;
1051 struct inode *inode;
1052 struct cifsFileInfo *open_file;
1054 if (!mapping || !mapping->host)
1057 inode = page->mapping->host;
1059 offset += (loff_t)from;
1060 write_data = kmap(page);
1063 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1068 /* racing with truncate? */
1069 if (offset > mapping->host->i_size) {
1071 return 0; /* don't care */
1074 /* check to make sure that we are not extending the file */
1075 if (mapping->host->i_size - offset < (loff_t)to)
1076 to = (unsigned)(mapping->host->i_size - offset);
1078 open_file = find_writable_file(CIFS_I(mapping->host), false);
1080 bytes_written = cifs_write(open_file, open_file->pid,
1081 write_data, to - from, &offset);
1082 cifsFileInfo_put(open_file);
1083 /* Does mm or vfs already set times? */
1084 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1085 if ((bytes_written > 0) && (offset))
1087 else if (bytes_written < 0)
1090 cFYI(1, "No writeable filehandles for inode");
1098 static int cifs_writepages(struct address_space *mapping,
1099 struct writeback_control *wbc)
1101 struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1102 bool done = false, scanned = false, range_whole = false;
1104 struct cifs_writedata *wdata;
1109 * If wsize is smaller than the page cache size, default to writing
1110 * one page at a time via cifs_writepage
1112 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1113 return generic_writepages(mapping, wbc);
1115 if (wbc->range_cyclic) {
1116 index = mapping->writeback_index; /* Start from prev offset */
1119 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1120 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1121 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1126 while (!done && index <= end) {
1127 unsigned int i, nr_pages, found_pages;
1128 pgoff_t next = 0, tofind;
1129 struct page **pages;
1131 tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1134 wdata = cifs_writedata_alloc((unsigned int)tofind);
1141 * find_get_pages_tag seems to return a max of 256 on each
1142 * iteration, so we must call it several times in order to
1143 * fill the array or the wsize is effectively limited to
1144 * 256 * PAGE_CACHE_SIZE.
1147 pages = wdata->pages;
1149 nr_pages = find_get_pages_tag(mapping, &index,
1150 PAGECACHE_TAG_DIRTY,
1152 found_pages += nr_pages;
1155 } while (nr_pages && tofind && index <= end);
1157 if (found_pages == 0) {
1158 kref_put(&wdata->refcount, cifs_writedata_release);
1163 for (i = 0; i < found_pages; i++) {
1164 page = wdata->pages[i];
1166 * At this point we hold neither mapping->tree_lock nor
1167 * lock on the page itself: the page may be truncated or
1168 * invalidated (changing page->mapping to NULL), or even
1169 * swizzled back from swapper_space to tmpfs file
1175 else if (!trylock_page(page))
1178 if (unlikely(page->mapping != mapping)) {
1183 if (!wbc->range_cyclic && page->index > end) {
1189 if (next && (page->index != next)) {
1190 /* Not next consecutive page */
1195 if (wbc->sync_mode != WB_SYNC_NONE)
1196 wait_on_page_writeback(page);
1198 if (PageWriteback(page) ||
1199 !clear_page_dirty_for_io(page)) {
1205 * This actually clears the dirty bit in the radix tree.
1206 * See cifs_writepage() for more commentary.
1208 set_page_writeback(page);
1210 if (page_offset(page) >= mapping->host->i_size) {
1213 end_page_writeback(page);
1217 wdata->pages[i] = page;
1218 next = page->index + 1;
1222 /* reset index to refind any pages skipped */
1224 index = wdata->pages[0]->index + 1;
1226 /* put any pages we aren't going to use */
1227 for (i = nr_pages; i < found_pages; i++) {
1228 page_cache_release(wdata->pages[i]);
1229 wdata->pages[i] = NULL;
1232 /* nothing to write? */
1233 if (nr_pages == 0) {
1234 kref_put(&wdata->refcount, cifs_writedata_release);
1238 wdata->sync_mode = wbc->sync_mode;
1239 wdata->nr_pages = nr_pages;
1240 wdata->offset = page_offset(wdata->pages[0]);
1243 if (wdata->cfile != NULL)
1244 cifsFileInfo_put(wdata->cfile);
1245 wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1247 if (!wdata->cfile) {
1248 cERROR(1, "No writable handles for inode");
1252 rc = cifs_async_writev(wdata);
1253 } while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1255 for (i = 0; i < nr_pages; ++i)
1256 unlock_page(wdata->pages[i]);
1258 /* send failure -- clean up the mess */
1260 for (i = 0; i < nr_pages; ++i) {
1262 redirty_page_for_writepage(wbc,
1265 SetPageError(wdata->pages[i]);
1266 end_page_writeback(wdata->pages[i]);
1267 page_cache_release(wdata->pages[i]);
1270 mapping_set_error(mapping, rc);
1272 kref_put(&wdata->refcount, cifs_writedata_release);
1274 wbc->nr_to_write -= nr_pages;
1275 if (wbc->nr_to_write <= 0)
1281 if (!scanned && !done) {
1283 * We hit the last page and there is more work to be done: wrap
1284 * back to the start of the file
1291 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1292 mapping->writeback_index = index;
1298 cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1304 /* BB add check for wbc flags */
1305 page_cache_get(page);
1306 if (!PageUptodate(page))
1307 cFYI(1, "ppw - page not up to date");
1310 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1312 * A writepage() implementation always needs to do either this,
1313 * or re-dirty the page with "redirty_page_for_writepage()" in
1314 * the case of a failure.
1316 * Just unlocking the page will cause the radix tree tag-bits
1317 * to fail to update with the state of the page correctly.
1319 set_page_writeback(page);
1321 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1322 if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1324 else if (rc == -EAGAIN)
1325 redirty_page_for_writepage(wbc, page);
1329 SetPageUptodate(page);
1330 end_page_writeback(page);
1331 page_cache_release(page);
1336 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1338 int rc = cifs_writepage_locked(page, wbc);
1343 static int cifs_write_end(struct file *file, struct address_space *mapping,
1344 loff_t pos, unsigned len, unsigned copied,
1345 struct page *page, void *fsdata)
1348 struct inode *inode = mapping->host;
1349 struct cifsFileInfo *cfile = file->private_data;
1350 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1353 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1356 pid = current->tgid;
1358 cFYI(1, "write_end for page %p from pos %lld with %d bytes",
1361 if (PageChecked(page)) {
1363 SetPageUptodate(page);
1364 ClearPageChecked(page);
1365 } else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
1366 SetPageUptodate(page);
1368 if (!PageUptodate(page)) {
1370 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1374 /* this is probably better than directly calling
1375 partialpage_write since in this function the file handle is
1376 known which we might as well leverage */
1377 /* BB check if anything else missing out of ppw
1378 such as updating last write time */
1379 page_data = kmap(page);
1380 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
1381 /* if (rc < 0) should we set writebehind rc? */
1388 set_page_dirty(page);
1392 spin_lock(&inode->i_lock);
1393 if (pos > inode->i_size)
1394 i_size_write(inode, pos);
1395 spin_unlock(&inode->i_lock);
1399 page_cache_release(page);
1404 int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
1409 struct cifs_tcon *tcon;
1410 struct cifsFileInfo *smbfile = file->private_data;
1411 struct inode *inode = file->f_path.dentry->d_inode;
1412 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
1414 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
1417 mutex_lock(&inode->i_mutex);
1421 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1422 file->f_path.dentry->d_name.name, datasync);
1424 if (!CIFS_I(inode)->clientCanCacheRead) {
1425 rc = cifs_invalidate_mapping(inode);
1427 cFYI(1, "rc: %d during invalidate phase", rc);
1428 rc = 0; /* don't care about it in fsync */
1432 tcon = tlink_tcon(smbfile->tlink);
1433 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1434 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1437 mutex_unlock(&inode->i_mutex);
1441 int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1445 struct cifs_tcon *tcon;
1446 struct cifsFileInfo *smbfile = file->private_data;
1447 struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1448 struct inode *inode = file->f_mapping->host;
1450 rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
1453 mutex_lock(&inode->i_mutex);
1457 cFYI(1, "Sync file - name: %s datasync: 0x%x",
1458 file->f_path.dentry->d_name.name, datasync);
1460 tcon = tlink_tcon(smbfile->tlink);
1461 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
1462 rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
1465 mutex_unlock(&inode->i_mutex);
1470 * As file closes, flush all cached write data for this inode checking
1471 * for write behind errors.
1473 int cifs_flush(struct file *file, fl_owner_t id)
1475 struct inode *inode = file->f_path.dentry->d_inode;
1478 if (file->f_mode & FMODE_WRITE)
1479 rc = filemap_write_and_wait(inode->i_mapping);
1481 cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
1487 cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
1492 for (i = 0; i < num_pages; i++) {
1493 pages[i] = alloc_page(__GFP_HIGHMEM);
1496 * save number of pages we have already allocated and
1497 * return with ENOMEM error
1508 for (i = 0; i < num_pages; i++)
1514 size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
1519 clen = min_t(const size_t, len, wsize);
1520 num_pages = clen / PAGE_CACHE_SIZE;
1521 if (clen % PAGE_CACHE_SIZE)
1531 cifs_iovec_write(struct file *file, const struct iovec *iov,
1532 unsigned long nr_segs, loff_t *poffset)
1534 unsigned int written;
1535 unsigned long num_pages, npages, i;
1536 size_t copied, len, cur_len;
1537 ssize_t total_written = 0;
1538 struct kvec *to_send;
1539 struct page **pages;
1541 struct inode *inode;
1542 struct cifsFileInfo *open_file;
1543 struct cifs_tcon *pTcon;
1544 struct cifs_sb_info *cifs_sb;
1545 struct cifs_io_parms io_parms;
1549 len = iov_length(iov, nr_segs);
1553 rc = generic_write_checks(file, poffset, &len, 0);
1557 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1558 num_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
1560 pages = kmalloc(sizeof(struct pages *)*num_pages, GFP_KERNEL);
1564 to_send = kmalloc(sizeof(struct kvec)*(num_pages + 1), GFP_KERNEL);
1570 rc = cifs_write_allocate_pages(pages, num_pages);
1578 open_file = file->private_data;
1580 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1581 pid = open_file->pid;
1583 pid = current->tgid;
1585 pTcon = tlink_tcon(open_file->tlink);
1586 inode = file->f_path.dentry->d_inode;
1588 iov_iter_init(&it, iov, nr_segs, len, 0);
1592 size_t save_len = cur_len;
1593 for (i = 0; i < npages; i++) {
1594 copied = min_t(const size_t, cur_len, PAGE_CACHE_SIZE);
1595 copied = iov_iter_copy_from_user(pages[i], &it, 0,
1598 iov_iter_advance(&it, copied);
1599 to_send[i+1].iov_base = kmap(pages[i]);
1600 to_send[i+1].iov_len = copied;
1603 cur_len = save_len - cur_len;
1606 if (open_file->invalidHandle) {
1607 rc = cifs_reopen_file(open_file, false);
1611 io_parms.netfid = open_file->netfid;
1613 io_parms.tcon = pTcon;
1614 io_parms.offset = *poffset;
1615 io_parms.length = cur_len;
1616 rc = CIFSSMBWrite2(xid, &io_parms, &written, to_send,
1618 } while (rc == -EAGAIN);
1620 for (i = 0; i < npages; i++)
1625 total_written += written;
1626 cifs_update_eof(CIFS_I(inode), *poffset, written);
1627 *poffset += written;
1628 } else if (rc < 0) {
1634 /* get length and number of kvecs of the next write */
1635 npages = get_numpages(cifs_sb->wsize, len, &cur_len);
1638 if (total_written > 0) {
1639 spin_lock(&inode->i_lock);
1640 if (*poffset > inode->i_size)
1641 i_size_write(inode, *poffset);
1642 spin_unlock(&inode->i_lock);
1645 cifs_stats_bytes_written(pTcon, total_written);
1646 mark_inode_dirty_sync(inode);
1648 for (i = 0; i < num_pages; i++)
1653 return total_written;
1656 ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
1657 unsigned long nr_segs, loff_t pos)
1660 struct inode *inode;
1662 inode = iocb->ki_filp->f_path.dentry->d_inode;
1665 * BB - optimize the way when signing is disabled. We can drop this
1666 * extra memory-to-memory copying and use iovec buffers for constructing
1670 written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
1672 CIFS_I(inode)->invalid_mapping = true;
1679 ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
1680 unsigned long nr_segs, loff_t pos)
1682 struct inode *inode;
1684 inode = iocb->ki_filp->f_path.dentry->d_inode;
1686 if (CIFS_I(inode)->clientCanCacheAll)
1687 return generic_file_aio_write(iocb, iov, nr_segs, pos);
1690 * In strict cache mode we need to write the data to the server exactly
1691 * from the pos to pos+len-1 rather than flush all affected pages
1692 * because it may cause a error with mandatory locks on these pages but
1693 * not on the region from pos to ppos+len-1.
1696 return cifs_user_writev(iocb, iov, nr_segs, pos);
1700 cifs_iovec_read(struct file *file, const struct iovec *iov,
1701 unsigned long nr_segs, loff_t *poffset)
1706 unsigned int bytes_read = 0;
1707 size_t len, cur_len;
1709 struct cifs_sb_info *cifs_sb;
1710 struct cifs_tcon *pTcon;
1711 struct cifsFileInfo *open_file;
1712 struct smb_com_read_rsp *pSMBr;
1713 struct cifs_io_parms io_parms;
1720 len = iov_length(iov, nr_segs);
1725 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1727 open_file = file->private_data;
1728 pTcon = tlink_tcon(open_file->tlink);
1730 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1731 pid = open_file->pid;
1733 pid = current->tgid;
1735 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1736 cFYI(1, "attempting read on write only file instance");
1738 for (total_read = 0; total_read < len; total_read += bytes_read) {
1739 cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
1743 while (rc == -EAGAIN) {
1744 int buf_type = CIFS_NO_BUFFER;
1745 if (open_file->invalidHandle) {
1746 rc = cifs_reopen_file(open_file, true);
1750 io_parms.netfid = open_file->netfid;
1752 io_parms.tcon = pTcon;
1753 io_parms.offset = *poffset;
1754 io_parms.length = cur_len;
1755 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
1756 &read_data, &buf_type);
1757 pSMBr = (struct smb_com_read_rsp *)read_data;
1759 char *data_offset = read_data + 4 +
1760 le16_to_cpu(pSMBr->DataOffset);
1761 if (memcpy_toiovecend(iov, data_offset,
1762 iov_offset, bytes_read))
1764 if (buf_type == CIFS_SMALL_BUFFER)
1765 cifs_small_buf_release(read_data);
1766 else if (buf_type == CIFS_LARGE_BUFFER)
1767 cifs_buf_release(read_data);
1769 iov_offset += bytes_read;
1773 if (rc || (bytes_read == 0)) {
1781 cifs_stats_bytes_read(pTcon, bytes_read);
1782 *poffset += bytes_read;
1790 ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
1791 unsigned long nr_segs, loff_t pos)
1795 read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
1802 ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
1803 unsigned long nr_segs, loff_t pos)
1805 struct inode *inode;
1807 inode = iocb->ki_filp->f_path.dentry->d_inode;
1809 if (CIFS_I(inode)->clientCanCacheRead)
1810 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1813 * In strict cache mode we need to read from the server all the time
1814 * if we don't have level II oplock because the server can delay mtime
1815 * change - so we can't make a decision about inode invalidating.
1816 * And we can also fail with pagereading if there are mandatory locks
1817 * on pages affected by this read but not on the region from pos to
1821 return cifs_user_readv(iocb, iov, nr_segs, pos);
1824 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1828 unsigned int bytes_read = 0;
1829 unsigned int total_read;
1830 unsigned int current_read_size;
1831 struct cifs_sb_info *cifs_sb;
1832 struct cifs_tcon *pTcon;
1834 char *current_offset;
1835 struct cifsFileInfo *open_file;
1836 struct cifs_io_parms io_parms;
1837 int buf_type = CIFS_NO_BUFFER;
1841 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1843 if (file->private_data == NULL) {
1848 open_file = file->private_data;
1849 pTcon = tlink_tcon(open_file->tlink);
1851 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
1852 pid = open_file->pid;
1854 pid = current->tgid;
1856 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1857 cFYI(1, "attempting read on write only file instance");
1859 for (total_read = 0, current_offset = read_data;
1860 read_size > total_read;
1861 total_read += bytes_read, current_offset += bytes_read) {
1862 current_read_size = min_t(const int, read_size - total_read,
1864 /* For windows me and 9x we do not want to request more
1865 than it negotiated since it will refuse the read then */
1867 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1868 current_read_size = min_t(const int, current_read_size,
1869 pTcon->ses->server->maxBuf - 128);
1872 while (rc == -EAGAIN) {
1873 if (open_file->invalidHandle) {
1874 rc = cifs_reopen_file(open_file, true);
1878 io_parms.netfid = open_file->netfid;
1880 io_parms.tcon = pTcon;
1881 io_parms.offset = *poffset;
1882 io_parms.length = current_read_size;
1883 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
1884 ¤t_offset, &buf_type);
1886 if (rc || (bytes_read == 0)) {
1894 cifs_stats_bytes_read(pTcon, total_read);
1895 *poffset += bytes_read;
1903 * If the page is mmap'ed into a process' page tables, then we need to make
1904 * sure that it doesn't change while being written back.
1907 cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1909 struct page *page = vmf->page;
1912 return VM_FAULT_LOCKED;
1915 static struct vm_operations_struct cifs_file_vm_ops = {
1916 .fault = filemap_fault,
1917 .page_mkwrite = cifs_page_mkwrite,
1920 int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
1923 struct inode *inode = file->f_path.dentry->d_inode;
1927 if (!CIFS_I(inode)->clientCanCacheRead) {
1928 rc = cifs_invalidate_mapping(inode);
1933 rc = generic_file_mmap(file, vma);
1935 vma->vm_ops = &cifs_file_vm_ops;
1940 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1945 rc = cifs_revalidate_file(file);
1947 cFYI(1, "Validation prior to mmap failed, error=%d", rc);
1951 rc = generic_file_mmap(file, vma);
1953 vma->vm_ops = &cifs_file_vm_ops;
1959 static void cifs_copy_cache_pages(struct address_space *mapping,
1960 struct list_head *pages, int bytes_read, char *data)
1965 while (bytes_read > 0) {
1966 if (list_empty(pages))
1969 page = list_entry(pages->prev, struct page, lru);
1970 list_del(&page->lru);
1972 if (add_to_page_cache_lru(page, mapping, page->index,
1974 page_cache_release(page);
1975 cFYI(1, "Add page cache failed");
1976 data += PAGE_CACHE_SIZE;
1977 bytes_read -= PAGE_CACHE_SIZE;
1980 page_cache_release(page);
1982 target = kmap_atomic(page, KM_USER0);
1984 if (PAGE_CACHE_SIZE > bytes_read) {
1985 memcpy(target, data, bytes_read);
1986 /* zero the tail end of this partial page */
1987 memset(target + bytes_read, 0,
1988 PAGE_CACHE_SIZE - bytes_read);
1991 memcpy(target, data, PAGE_CACHE_SIZE);
1992 bytes_read -= PAGE_CACHE_SIZE;
1994 kunmap_atomic(target, KM_USER0);
1996 flush_dcache_page(page);
1997 SetPageUptodate(page);
1999 data += PAGE_CACHE_SIZE;
2001 /* add page to FS-Cache */
2002 cifs_readpage_to_fscache(mapping->host, page);
2007 static int cifs_readpages(struct file *file, struct address_space *mapping,
2008 struct list_head *page_list, unsigned num_pages)
2014 struct cifs_sb_info *cifs_sb;
2015 struct cifs_tcon *pTcon;
2016 unsigned int bytes_read = 0;
2017 unsigned int read_size, i;
2018 char *smb_read_data = NULL;
2019 struct smb_com_read_rsp *pSMBr;
2020 struct cifsFileInfo *open_file;
2021 struct cifs_io_parms io_parms;
2022 int buf_type = CIFS_NO_BUFFER;
2026 if (file->private_data == NULL) {
2031 open_file = file->private_data;
2032 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2033 pTcon = tlink_tcon(open_file->tlink);
2036 * Reads as many pages as possible from fscache. Returns -ENOBUFS
2037 * immediately if the cookie is negative
2039 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
2044 cFYI(DBG2, "rpages: num pages %d", num_pages);
2045 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2046 pid = open_file->pid;
2048 pid = current->tgid;
2050 for (i = 0; i < num_pages; ) {
2051 unsigned contig_pages;
2052 struct page *tmp_page;
2053 unsigned long expected_index;
2055 if (list_empty(page_list))
2058 page = list_entry(page_list->prev, struct page, lru);
2059 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2061 /* count adjacent pages that we will read into */
2064 list_entry(page_list->prev, struct page, lru)->index;
2065 list_for_each_entry_reverse(tmp_page, page_list, lru) {
2066 if (tmp_page->index == expected_index) {
2072 if (contig_pages + i > num_pages)
2073 contig_pages = num_pages - i;
2075 /* for reads over a certain size could initiate async
2078 read_size = contig_pages * PAGE_CACHE_SIZE;
2079 /* Read size needs to be in multiples of one page */
2080 read_size = min_t(const unsigned int, read_size,
2081 cifs_sb->rsize & PAGE_CACHE_MASK);
2082 cFYI(DBG2, "rpages: read size 0x%x contiguous pages %d",
2083 read_size, contig_pages);
2085 while (rc == -EAGAIN) {
2086 if (open_file->invalidHandle) {
2087 rc = cifs_reopen_file(open_file, true);
2091 io_parms.netfid = open_file->netfid;
2093 io_parms.tcon = pTcon;
2094 io_parms.offset = offset;
2095 io_parms.length = read_size;
2096 rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2097 &smb_read_data, &buf_type);
2098 /* BB more RC checks ? */
2099 if (rc == -EAGAIN) {
2100 if (smb_read_data) {
2101 if (buf_type == CIFS_SMALL_BUFFER)
2102 cifs_small_buf_release(smb_read_data);
2103 else if (buf_type == CIFS_LARGE_BUFFER)
2104 cifs_buf_release(smb_read_data);
2105 smb_read_data = NULL;
2109 if ((rc < 0) || (smb_read_data == NULL)) {
2110 cFYI(1, "Read error in readpages: %d", rc);
2112 } else if (bytes_read > 0) {
2113 task_io_account_read(bytes_read);
2114 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
2115 cifs_copy_cache_pages(mapping, page_list, bytes_read,
2116 smb_read_data + 4 /* RFC1001 hdr */ +
2117 le16_to_cpu(pSMBr->DataOffset));
2119 i += bytes_read >> PAGE_CACHE_SHIFT;
2120 cifs_stats_bytes_read(pTcon, bytes_read);
2121 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
2122 i++; /* account for partial page */
2124 /* server copy of file can have smaller size
2126 /* BB do we need to verify this common case ?
2127 this case is ok - if we are at server EOF
2128 we will hit it on next read */
2133 cFYI(1, "No bytes read (%d) at offset %lld . "
2134 "Cleaning remaining pages from readahead list",
2135 bytes_read, offset);
2136 /* BB turn off caching and do new lookup on
2137 file size at server? */
2140 if (smb_read_data) {
2141 if (buf_type == CIFS_SMALL_BUFFER)
2142 cifs_small_buf_release(smb_read_data);
2143 else if (buf_type == CIFS_LARGE_BUFFER)
2144 cifs_buf_release(smb_read_data);
2145 smb_read_data = NULL;
2150 /* need to free smb_read_data buf before exit */
2151 if (smb_read_data) {
2152 if (buf_type == CIFS_SMALL_BUFFER)
2153 cifs_small_buf_release(smb_read_data);
2154 else if (buf_type == CIFS_LARGE_BUFFER)
2155 cifs_buf_release(smb_read_data);
2156 smb_read_data = NULL;
2164 static int cifs_readpage_worker(struct file *file, struct page *page,
2170 /* Is the page cached? */
2171 rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
2175 page_cache_get(page);
2176 read_data = kmap(page);
2177 /* for reads over a certain size could initiate async read ahead */
2179 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
2184 cFYI(1, "Bytes read %d", rc);
2186 file->f_path.dentry->d_inode->i_atime =
2187 current_fs_time(file->f_path.dentry->d_inode->i_sb);
2189 if (PAGE_CACHE_SIZE > rc)
2190 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
2192 flush_dcache_page(page);
2193 SetPageUptodate(page);
2195 /* send this page to the cache */
2196 cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
2202 page_cache_release(page);
2208 static int cifs_readpage(struct file *file, struct page *page)
2210 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2216 if (file->private_data == NULL) {
2222 cFYI(1, "readpage %p at offset %d 0x%x\n",
2223 page, (int)offset, (int)offset);
2225 rc = cifs_readpage_worker(file, page, &offset);
2233 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
2235 struct cifsFileInfo *open_file;
2237 spin_lock(&cifs_file_list_lock);
2238 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2239 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2240 spin_unlock(&cifs_file_list_lock);
2244 spin_unlock(&cifs_file_list_lock);
2248 /* We do not want to update the file size from server for inodes
2249 open for write - to avoid races with writepage extending
2250 the file - in the future we could consider allowing
2251 refreshing the inode only on increases in the file size
2252 but this is tricky to do without racing with writebehind
2253 page caching in the current Linux kernel design */
2254 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2259 if (is_inode_writable(cifsInode)) {
2260 /* This inode is open for write at least once */
2261 struct cifs_sb_info *cifs_sb;
2263 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2264 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2265 /* since no page cache to corrupt on directio
2266 we can change size safely */
2270 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2278 static int cifs_write_begin(struct file *file, struct address_space *mapping,
2279 loff_t pos, unsigned len, unsigned flags,
2280 struct page **pagep, void **fsdata)
2282 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2283 loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
2284 loff_t page_start = pos & PAGE_MASK;
2289 cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
2291 page = grab_cache_page_write_begin(mapping, index, flags);
2297 if (PageUptodate(page))
2301 * If we write a full page it will be up to date, no need to read from
2302 * the server. If the write is short, we'll end up doing a sync write
2305 if (len == PAGE_CACHE_SIZE)
2309 * optimize away the read when we have an oplock, and we're not
2310 * expecting to use any of the data we'd be reading in. That
2311 * is, when the page lies beyond the EOF, or straddles the EOF
2312 * and the write will cover all of the existing data.
2314 if (CIFS_I(mapping->host)->clientCanCacheRead) {
2315 i_size = i_size_read(mapping->host);
2316 if (page_start >= i_size ||
2317 (offset == 0 && (pos + len) >= i_size)) {
2318 zero_user_segments(page, 0, offset,
2322 * PageChecked means that the parts of the page
2323 * to which we're not writing are considered up
2324 * to date. Once the data is copied to the
2325 * page, it can be set uptodate.
2327 SetPageChecked(page);
2332 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2334 * might as well read a page, it is fast enough. If we get
2335 * an error, we don't need to return it. cifs_write_end will
2336 * do a sync write instead since PG_uptodate isn't set.
2338 cifs_readpage_worker(file, page, &page_start);
2340 /* we could try using another file handle if there is one -
2341 but how would we lock it to prevent close of that handle
2342 racing with this read? In any case
2343 this will be written out by write_end so is fine */
2350 static int cifs_release_page(struct page *page, gfp_t gfp)
2352 if (PagePrivate(page))
2355 return cifs_fscache_release_page(page, gfp);
2358 static void cifs_invalidate_page(struct page *page, unsigned long offset)
2360 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
2363 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
2366 static int cifs_launder_page(struct page *page)
2369 loff_t range_start = page_offset(page);
2370 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
2371 struct writeback_control wbc = {
2372 .sync_mode = WB_SYNC_ALL,
2374 .range_start = range_start,
2375 .range_end = range_end,
2378 cFYI(1, "Launder page: %p", page);
2380 if (clear_page_dirty_for_io(page))
2381 rc = cifs_writepage_locked(page, &wbc);
2383 cifs_fscache_invalidate_page(page, page->mapping->host);
2387 void cifs_oplock_break(struct work_struct *work)
2389 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
2391 struct inode *inode = cfile->dentry->d_inode;
2392 struct cifsInodeInfo *cinode = CIFS_I(inode);
2395 if (inode && S_ISREG(inode->i_mode)) {
2396 if (cinode->clientCanCacheRead)
2397 break_lease(inode, O_RDONLY);
2399 break_lease(inode, O_WRONLY);
2400 rc = filemap_fdatawrite(inode->i_mapping);
2401 if (cinode->clientCanCacheRead == 0) {
2402 rc = filemap_fdatawait(inode->i_mapping);
2403 mapping_set_error(inode->i_mapping, rc);
2404 invalidate_remote_inode(inode);
2406 cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
2410 * releasing stale oplock after recent reconnect of smb session using
2411 * a now incorrect file handle is not a data integrity issue but do
2412 * not bother sending an oplock release if session to server still is
2413 * disconnected since oplock already released by the server
2415 if (!cfile->oplock_break_cancelled) {
2416 rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid, 0,
2417 0, 0, 0, LOCKING_ANDX_OPLOCK_RELEASE, false,
2418 cinode->clientCanCacheRead ? 1 : 0);
2419 cFYI(1, "Oplock release rc = %d", rc);
2423 * We might have kicked in before is_valid_oplock_break()
2424 * finished grabbing reference for us. Make sure it's done by
2425 * waiting for cifs_file_list_lock.
2427 spin_lock(&cifs_file_list_lock);
2428 spin_unlock(&cifs_file_list_lock);
2430 cifs_oplock_break_put(cfile);
2433 /* must be called while holding cifs_file_list_lock */
2434 void cifs_oplock_break_get(struct cifsFileInfo *cfile)
2436 cifs_sb_active(cfile->dentry->d_sb);
2437 cifsFileInfo_get(cfile);
2440 void cifs_oplock_break_put(struct cifsFileInfo *cfile)
2442 struct super_block *sb = cfile->dentry->d_sb;
2444 cifsFileInfo_put(cfile);
2445 cifs_sb_deactive(sb);
2448 const struct address_space_operations cifs_addr_ops = {
2449 .readpage = cifs_readpage,
2450 .readpages = cifs_readpages,
2451 .writepage = cifs_writepage,
2452 .writepages = cifs_writepages,
2453 .write_begin = cifs_write_begin,
2454 .write_end = cifs_write_end,
2455 .set_page_dirty = __set_page_dirty_nobuffers,
2456 .releasepage = cifs_release_page,
2457 .invalidatepage = cifs_invalidate_page,
2458 .launder_page = cifs_launder_page,
2462 * cifs_readpages requires the server to support a buffer large enough to
2463 * contain the header plus one complete page of data. Otherwise, we need
2464 * to leave cifs_readpages out of the address space operations.
2466 const struct address_space_operations cifs_addr_ops_smallbuf = {
2467 .readpage = cifs_readpage,
2468 .writepage = cifs_writepage,
2469 .writepages = cifs_writepages,
2470 .write_begin = cifs_write_begin,
2471 .write_end = cifs_write_end,
2472 .set_page_dirty = __set_page_dirty_nobuffers,
2473 .releasepage = cifs_release_page,
2474 .invalidatepage = cifs_invalidate_page,
2475 .launder_page = cifs_launder_page,