1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
118 #include <linux/uaccess.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
137 #include <trace/events/sock.h>
140 #include <net/busy_poll.h>
142 #include <linux/ethtool.h>
144 static DEFINE_MUTEX(proto_list_mutex);
145 static LIST_HEAD(proto_list);
148 * sk_ns_capable - General socket capability test
149 * @sk: Socket to use a capability on or through
150 * @user_ns: The user namespace of the capability to use
151 * @cap: The capability to use
153 * Test to see if the opener of the socket had when the socket was
154 * created and the current process has the capability @cap in the user
155 * namespace @user_ns.
157 bool sk_ns_capable(const struct sock *sk,
158 struct user_namespace *user_ns, int cap)
160 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
161 ns_capable(user_ns, cap);
163 EXPORT_SYMBOL(sk_ns_capable);
166 * sk_capable - Socket global capability test
167 * @sk: Socket to use a capability on or through
168 * @cap: The global capability to use
170 * Test to see if the opener of the socket had when the socket was
171 * created and the current process has the capability @cap in all user
174 bool sk_capable(const struct sock *sk, int cap)
176 return sk_ns_capable(sk, &init_user_ns, cap);
178 EXPORT_SYMBOL(sk_capable);
181 * sk_net_capable - Network namespace socket capability test
182 * @sk: Socket to use a capability on or through
183 * @cap: The capability to use
185 * Test to see if the opener of the socket had when the socket was created
186 * and the current process has the capability @cap over the network namespace
187 * the socket is a member of.
189 bool sk_net_capable(const struct sock *sk, int cap)
191 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 EXPORT_SYMBOL(sk_net_capable);
196 * Each address family might have different locking rules, so we have
197 * one slock key per address family and separate keys for internal and
200 static struct lock_class_key af_family_keys[AF_MAX];
201 static struct lock_class_key af_family_kern_keys[AF_MAX];
202 static struct lock_class_key af_family_slock_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
211 #define _sock_locks(x) \
212 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
213 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
214 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
215 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
216 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
217 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
218 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
219 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
220 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
221 x "27" , x "28" , x "AF_CAN" , \
222 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
223 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
224 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
225 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
226 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
230 static const char *const af_family_key_strings[AF_MAX+1] = {
231 _sock_locks("sk_lock-")
233 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
234 _sock_locks("slock-")
236 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
237 _sock_locks("clock-")
240 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
241 _sock_locks("k-sk_lock-")
243 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
244 _sock_locks("k-slock-")
246 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
247 _sock_locks("k-clock-")
249 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
250 _sock_locks("rlock-")
252 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
253 _sock_locks("wlock-")
255 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
256 _sock_locks("elock-")
260 * sk_callback_lock and sk queues locking rules are per-address-family,
261 * so split the lock classes by using a per-AF key:
263 static struct lock_class_key af_callback_keys[AF_MAX];
264 static struct lock_class_key af_rlock_keys[AF_MAX];
265 static struct lock_class_key af_wlock_keys[AF_MAX];
266 static struct lock_class_key af_elock_keys[AF_MAX];
267 static struct lock_class_key af_kern_callback_keys[AF_MAX];
269 /* Run time adjustable parameters. */
270 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
271 EXPORT_SYMBOL(sysctl_wmem_max);
272 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
273 EXPORT_SYMBOL(sysctl_rmem_max);
274 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
275 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
277 /* Maximal space eaten by iovec or ancillary data plus some space */
278 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
279 EXPORT_SYMBOL(sysctl_optmem_max);
281 int sysctl_tstamp_allow_data __read_mostly = 1;
283 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
284 EXPORT_SYMBOL_GPL(memalloc_socks_key);
287 * sk_set_memalloc - sets %SOCK_MEMALLOC
288 * @sk: socket to set it on
290 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
291 * It's the responsibility of the admin to adjust min_free_kbytes
292 * to meet the requirements
294 void sk_set_memalloc(struct sock *sk)
296 sock_set_flag(sk, SOCK_MEMALLOC);
297 sk->sk_allocation |= __GFP_MEMALLOC;
298 static_branch_inc(&memalloc_socks_key);
300 EXPORT_SYMBOL_GPL(sk_set_memalloc);
302 void sk_clear_memalloc(struct sock *sk)
304 sock_reset_flag(sk, SOCK_MEMALLOC);
305 sk->sk_allocation &= ~__GFP_MEMALLOC;
306 static_branch_dec(&memalloc_socks_key);
309 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
310 * progress of swapping. SOCK_MEMALLOC may be cleared while
311 * it has rmem allocations due to the last swapfile being deactivated
312 * but there is a risk that the socket is unusable due to exceeding
313 * the rmem limits. Reclaim the reserves and obey rmem limits again.
317 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
319 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
322 unsigned int noreclaim_flag;
324 /* these should have been dropped before queueing */
325 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
327 noreclaim_flag = memalloc_noreclaim_save();
328 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
332 memalloc_noreclaim_restore(noreclaim_flag);
336 EXPORT_SYMBOL(__sk_backlog_rcv);
338 void sk_error_report(struct sock *sk)
340 sk->sk_error_report(sk);
342 switch (sk->sk_family) {
346 trace_inet_sk_error_report(sk);
352 EXPORT_SYMBOL(sk_error_report);
354 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
356 struct __kernel_sock_timeval tv;
358 if (timeo == MAX_SCHEDULE_TIMEOUT) {
362 tv.tv_sec = timeo / HZ;
363 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
366 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
367 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
368 *(struct old_timeval32 *)optval = tv32;
373 struct __kernel_old_timeval old_tv;
374 old_tv.tv_sec = tv.tv_sec;
375 old_tv.tv_usec = tv.tv_usec;
376 *(struct __kernel_old_timeval *)optval = old_tv;
377 return sizeof(old_tv);
380 *(struct __kernel_sock_timeval *)optval = tv;
383 EXPORT_SYMBOL(sock_get_timeout);
385 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
386 sockptr_t optval, int optlen, bool old_timeval)
388 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
389 struct old_timeval32 tv32;
391 if (optlen < sizeof(tv32))
394 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
396 tv->tv_sec = tv32.tv_sec;
397 tv->tv_usec = tv32.tv_usec;
398 } else if (old_timeval) {
399 struct __kernel_old_timeval old_tv;
401 if (optlen < sizeof(old_tv))
403 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
405 tv->tv_sec = old_tv.tv_sec;
406 tv->tv_usec = old_tv.tv_usec;
408 if (optlen < sizeof(*tv))
410 if (copy_from_sockptr(tv, optval, sizeof(*tv)))
416 EXPORT_SYMBOL(sock_copy_user_timeval);
418 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
421 struct __kernel_sock_timeval tv;
422 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
427 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
431 static int warned __read_mostly;
434 if (warned < 10 && net_ratelimit()) {
436 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
437 __func__, current->comm, task_pid_nr(current));
441 *timeo_p = MAX_SCHEDULE_TIMEOUT;
442 if (tv.tv_sec == 0 && tv.tv_usec == 0)
444 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
445 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
449 static bool sock_needs_netstamp(const struct sock *sk)
451 switch (sk->sk_family) {
460 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
462 if (sk->sk_flags & flags) {
463 sk->sk_flags &= ~flags;
464 if (sock_needs_netstamp(sk) &&
465 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
466 net_disable_timestamp();
471 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
474 struct sk_buff_head *list = &sk->sk_receive_queue;
476 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
477 atomic_inc(&sk->sk_drops);
478 trace_sock_rcvqueue_full(sk, skb);
482 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
483 atomic_inc(&sk->sk_drops);
488 skb_set_owner_r(skb, sk);
490 /* we escape from rcu protected region, make sure we dont leak
495 spin_lock_irqsave(&list->lock, flags);
496 sock_skb_set_dropcount(sk, skb);
497 __skb_queue_tail(list, skb);
498 spin_unlock_irqrestore(&list->lock, flags);
500 if (!sock_flag(sk, SOCK_DEAD))
501 sk->sk_data_ready(sk);
504 EXPORT_SYMBOL(__sock_queue_rcv_skb);
506 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
510 err = sk_filter(sk, skb);
514 return __sock_queue_rcv_skb(sk, skb);
516 EXPORT_SYMBOL(sock_queue_rcv_skb);
518 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
519 const int nested, unsigned int trim_cap, bool refcounted)
521 int rc = NET_RX_SUCCESS;
523 if (sk_filter_trim_cap(sk, skb, trim_cap))
524 goto discard_and_relse;
528 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
529 atomic_inc(&sk->sk_drops);
530 goto discard_and_relse;
533 bh_lock_sock_nested(sk);
536 if (!sock_owned_by_user(sk)) {
538 * trylock + unlock semantics:
540 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
542 rc = sk_backlog_rcv(sk, skb);
544 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
545 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
547 atomic_inc(&sk->sk_drops);
548 goto discard_and_relse;
560 EXPORT_SYMBOL(__sk_receive_skb);
562 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
564 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
566 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
568 struct dst_entry *dst = __sk_dst_get(sk);
570 if (dst && dst->obsolete &&
571 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
572 dst, cookie) == NULL) {
573 sk_tx_queue_clear(sk);
574 sk->sk_dst_pending_confirm = 0;
575 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
582 EXPORT_SYMBOL(__sk_dst_check);
584 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
586 struct dst_entry *dst = sk_dst_get(sk);
588 if (dst && dst->obsolete &&
589 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
590 dst, cookie) == NULL) {
598 EXPORT_SYMBOL(sk_dst_check);
600 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
602 int ret = -ENOPROTOOPT;
603 #ifdef CONFIG_NETDEVICES
604 struct net *net = sock_net(sk);
608 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
615 sk->sk_bound_dev_if = ifindex;
616 if (sk->sk_prot->rehash)
617 sk->sk_prot->rehash(sk);
628 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
634 ret = sock_bindtoindex_locked(sk, ifindex);
640 EXPORT_SYMBOL(sock_bindtoindex);
642 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
644 int ret = -ENOPROTOOPT;
645 #ifdef CONFIG_NETDEVICES
646 struct net *net = sock_net(sk);
647 char devname[IFNAMSIZ];
654 /* Bind this socket to a particular device like "eth0",
655 * as specified in the passed interface name. If the
656 * name is "" or the option length is zero the socket
659 if (optlen > IFNAMSIZ - 1)
660 optlen = IFNAMSIZ - 1;
661 memset(devname, 0, sizeof(devname));
664 if (copy_from_sockptr(devname, optval, optlen))
668 if (devname[0] != '\0') {
669 struct net_device *dev;
672 dev = dev_get_by_name_rcu(net, devname);
674 index = dev->ifindex;
681 return sock_bindtoindex(sk, index, true);
688 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
689 int __user *optlen, int len)
691 int ret = -ENOPROTOOPT;
692 #ifdef CONFIG_NETDEVICES
693 struct net *net = sock_net(sk);
694 char devname[IFNAMSIZ];
696 if (sk->sk_bound_dev_if == 0) {
705 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
709 len = strlen(devname) + 1;
712 if (copy_to_user(optval, devname, len))
717 if (put_user(len, optlen))
728 bool sk_mc_loop(struct sock *sk)
730 if (dev_recursion_level())
734 switch (sk->sk_family) {
736 return inet_sk(sk)->mc_loop;
737 #if IS_ENABLED(CONFIG_IPV6)
739 return inet6_sk(sk)->mc_loop;
745 EXPORT_SYMBOL(sk_mc_loop);
747 void sock_set_reuseaddr(struct sock *sk)
750 sk->sk_reuse = SK_CAN_REUSE;
753 EXPORT_SYMBOL(sock_set_reuseaddr);
755 void sock_set_reuseport(struct sock *sk)
758 sk->sk_reuseport = true;
761 EXPORT_SYMBOL(sock_set_reuseport);
763 void sock_no_linger(struct sock *sk)
766 sk->sk_lingertime = 0;
767 sock_set_flag(sk, SOCK_LINGER);
770 EXPORT_SYMBOL(sock_no_linger);
772 void sock_set_priority(struct sock *sk, u32 priority)
775 sk->sk_priority = priority;
778 EXPORT_SYMBOL(sock_set_priority);
780 void sock_set_sndtimeo(struct sock *sk, s64 secs)
783 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
784 sk->sk_sndtimeo = secs * HZ;
786 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
789 EXPORT_SYMBOL(sock_set_sndtimeo);
791 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
794 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
795 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
796 sock_set_flag(sk, SOCK_RCVTSTAMP);
797 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
799 sock_reset_flag(sk, SOCK_RCVTSTAMP);
800 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
804 void sock_enable_timestamps(struct sock *sk)
807 __sock_set_timestamps(sk, true, false, true);
810 EXPORT_SYMBOL(sock_enable_timestamps);
812 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
815 case SO_TIMESTAMP_OLD:
816 __sock_set_timestamps(sk, valbool, false, false);
818 case SO_TIMESTAMP_NEW:
819 __sock_set_timestamps(sk, valbool, true, false);
821 case SO_TIMESTAMPNS_OLD:
822 __sock_set_timestamps(sk, valbool, false, true);
824 case SO_TIMESTAMPNS_NEW:
825 __sock_set_timestamps(sk, valbool, true, true);
830 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
832 struct net *net = sock_net(sk);
833 struct net_device *dev = NULL;
838 if (sk->sk_bound_dev_if)
839 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
842 pr_err("%s: sock not bind to device\n", __func__);
846 num = ethtool_get_phc_vclocks(dev, &vclock_index);
849 for (i = 0; i < num; i++) {
850 if (*(vclock_index + i) == phc_index) {
862 sk->sk_bind_phc = phc_index;
867 int sock_set_timestamping(struct sock *sk, int optname,
868 struct so_timestamping timestamping)
870 int val = timestamping.flags;
873 if (val & ~SOF_TIMESTAMPING_MASK)
876 if (val & SOF_TIMESTAMPING_OPT_ID &&
877 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
879 if ((1 << sk->sk_state) &
880 (TCPF_CLOSE | TCPF_LISTEN))
882 sk->sk_tskey = tcp_sk(sk)->snd_una;
888 if (val & SOF_TIMESTAMPING_OPT_STATS &&
889 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
892 if (val & SOF_TIMESTAMPING_BIND_PHC) {
893 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
898 sk->sk_tsflags = val;
899 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
901 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
902 sock_enable_timestamp(sk,
903 SOCK_TIMESTAMPING_RX_SOFTWARE);
905 sock_disable_timestamp(sk,
906 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
910 void sock_set_keepalive(struct sock *sk)
913 if (sk->sk_prot->keepalive)
914 sk->sk_prot->keepalive(sk, true);
915 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
918 EXPORT_SYMBOL(sock_set_keepalive);
920 static void __sock_set_rcvbuf(struct sock *sk, int val)
922 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
923 * as a negative value.
925 val = min_t(int, val, INT_MAX / 2);
926 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
928 /* We double it on the way in to account for "struct sk_buff" etc.
929 * overhead. Applications assume that the SO_RCVBUF setting they make
930 * will allow that much actual data to be received on that socket.
932 * Applications are unaware that "struct sk_buff" and other overheads
933 * allocate from the receive buffer during socket buffer allocation.
935 * And after considering the possible alternatives, returning the value
936 * we actually used in getsockopt is the most desirable behavior.
938 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
941 void sock_set_rcvbuf(struct sock *sk, int val)
944 __sock_set_rcvbuf(sk, val);
947 EXPORT_SYMBOL(sock_set_rcvbuf);
949 static void __sock_set_mark(struct sock *sk, u32 val)
951 if (val != sk->sk_mark) {
957 void sock_set_mark(struct sock *sk, u32 val)
960 __sock_set_mark(sk, val);
963 EXPORT_SYMBOL(sock_set_mark);
965 static void sock_release_reserved_memory(struct sock *sk, int bytes)
967 /* Round down bytes to multiple of pages */
968 bytes &= ~(SK_MEM_QUANTUM - 1);
970 WARN_ON(bytes > sk->sk_reserved_mem);
971 sk->sk_reserved_mem -= bytes;
975 static int sock_reserve_memory(struct sock *sk, int bytes)
981 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
987 pages = sk_mem_pages(bytes);
989 /* pre-charge to memcg */
990 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
991 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
995 /* pre-charge to forward_alloc */
996 allocated = sk_memory_allocated_add(sk, pages);
997 /* If the system goes into memory pressure with this
998 * precharge, give up and return error.
1000 if (allocated > sk_prot_mem_limits(sk, 1)) {
1001 sk_memory_allocated_sub(sk, pages);
1002 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1005 sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT;
1007 sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT;
1013 * This is meant for all protocols to use and covers goings on
1014 * at the socket level. Everything here is generic.
1017 int sock_setsockopt(struct socket *sock, int level, int optname,
1018 sockptr_t optval, unsigned int optlen)
1020 struct so_timestamping timestamping;
1021 struct sock_txtime sk_txtime;
1022 struct sock *sk = sock->sk;
1029 * Options without arguments
1032 if (optname == SO_BINDTODEVICE)
1033 return sock_setbindtodevice(sk, optval, optlen);
1035 if (optlen < sizeof(int))
1038 if (copy_from_sockptr(&val, optval, sizeof(val)))
1041 valbool = val ? 1 : 0;
1047 if (val && !capable(CAP_NET_ADMIN))
1050 sock_valbool_flag(sk, SOCK_DBG, valbool);
1053 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1056 sk->sk_reuseport = valbool;
1065 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1069 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1072 /* Don't error on this BSD doesn't and if you think
1073 * about it this is right. Otherwise apps have to
1074 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1075 * are treated in BSD as hints
1077 val = min_t(u32, val, sysctl_wmem_max);
1079 /* Ensure val * 2 fits into an int, to prevent max_t()
1080 * from treating it as a negative value.
1082 val = min_t(int, val, INT_MAX / 2);
1083 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1084 WRITE_ONCE(sk->sk_sndbuf,
1085 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1086 /* Wake up sending tasks if we upped the value. */
1087 sk->sk_write_space(sk);
1090 case SO_SNDBUFFORCE:
1091 if (!capable(CAP_NET_ADMIN)) {
1096 /* No negative values (to prevent underflow, as val will be
1104 /* Don't error on this BSD doesn't and if you think
1105 * about it this is right. Otherwise apps have to
1106 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1107 * are treated in BSD as hints
1109 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1112 case SO_RCVBUFFORCE:
1113 if (!capable(CAP_NET_ADMIN)) {
1118 /* No negative values (to prevent underflow, as val will be
1121 __sock_set_rcvbuf(sk, max(val, 0));
1125 if (sk->sk_prot->keepalive)
1126 sk->sk_prot->keepalive(sk, valbool);
1127 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1131 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1135 sk->sk_no_check_tx = valbool;
1139 if ((val >= 0 && val <= 6) ||
1140 ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1141 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1142 sk->sk_priority = val;
1148 if (optlen < sizeof(ling)) {
1149 ret = -EINVAL; /* 1003.1g */
1152 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1157 sock_reset_flag(sk, SOCK_LINGER);
1159 #if (BITS_PER_LONG == 32)
1160 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1161 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1164 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1165 sock_set_flag(sk, SOCK_LINGER);
1174 set_bit(SOCK_PASSCRED, &sock->flags);
1176 clear_bit(SOCK_PASSCRED, &sock->flags);
1179 case SO_TIMESTAMP_OLD:
1180 case SO_TIMESTAMP_NEW:
1181 case SO_TIMESTAMPNS_OLD:
1182 case SO_TIMESTAMPNS_NEW:
1183 sock_set_timestamp(sk, optname, valbool);
1186 case SO_TIMESTAMPING_NEW:
1187 case SO_TIMESTAMPING_OLD:
1188 if (optlen == sizeof(timestamping)) {
1189 if (copy_from_sockptr(×tamping, optval,
1190 sizeof(timestamping))) {
1195 memset(×tamping, 0, sizeof(timestamping));
1196 timestamping.flags = val;
1198 ret = sock_set_timestamping(sk, optname, timestamping);
1204 if (sock->ops->set_rcvlowat)
1205 ret = sock->ops->set_rcvlowat(sk, val);
1207 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1210 case SO_RCVTIMEO_OLD:
1211 case SO_RCVTIMEO_NEW:
1212 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1213 optlen, optname == SO_RCVTIMEO_OLD);
1216 case SO_SNDTIMEO_OLD:
1217 case SO_SNDTIMEO_NEW:
1218 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1219 optlen, optname == SO_SNDTIMEO_OLD);
1222 case SO_ATTACH_FILTER: {
1223 struct sock_fprog fprog;
1225 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1227 ret = sk_attach_filter(&fprog, sk);
1232 if (optlen == sizeof(u32)) {
1236 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1239 ret = sk_attach_bpf(ufd, sk);
1243 case SO_ATTACH_REUSEPORT_CBPF: {
1244 struct sock_fprog fprog;
1246 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1248 ret = sk_reuseport_attach_filter(&fprog, sk);
1251 case SO_ATTACH_REUSEPORT_EBPF:
1253 if (optlen == sizeof(u32)) {
1257 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1260 ret = sk_reuseport_attach_bpf(ufd, sk);
1264 case SO_DETACH_REUSEPORT_BPF:
1265 ret = reuseport_detach_prog(sk);
1268 case SO_DETACH_FILTER:
1269 ret = sk_detach_filter(sk);
1272 case SO_LOCK_FILTER:
1273 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1276 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1281 set_bit(SOCK_PASSSEC, &sock->flags);
1283 clear_bit(SOCK_PASSSEC, &sock->flags);
1286 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1287 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1292 __sock_set_mark(sk, val);
1296 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1299 case SO_WIFI_STATUS:
1300 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1304 if (sock->ops->set_peek_off)
1305 ret = sock->ops->set_peek_off(sk, val);
1311 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1314 case SO_SELECT_ERR_QUEUE:
1315 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1318 #ifdef CONFIG_NET_RX_BUSY_POLL
1320 /* allow unprivileged users to decrease the value */
1321 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1327 WRITE_ONCE(sk->sk_ll_usec, val);
1330 case SO_PREFER_BUSY_POLL:
1331 if (valbool && !capable(CAP_NET_ADMIN))
1334 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1336 case SO_BUSY_POLL_BUDGET:
1337 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1340 if (val < 0 || val > U16_MAX)
1343 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1348 case SO_MAX_PACING_RATE:
1350 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1352 if (sizeof(ulval) != sizeof(val) &&
1353 optlen >= sizeof(ulval) &&
1354 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1359 cmpxchg(&sk->sk_pacing_status,
1362 sk->sk_max_pacing_rate = ulval;
1363 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1366 case SO_INCOMING_CPU:
1367 WRITE_ONCE(sk->sk_incoming_cpu, val);
1372 dst_negative_advice(sk);
1376 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1377 if (!(sk_is_tcp(sk) ||
1378 (sk->sk_type == SOCK_DGRAM &&
1379 sk->sk_protocol == IPPROTO_UDP)))
1381 } else if (sk->sk_family != PF_RDS) {
1385 if (val < 0 || val > 1)
1388 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1393 if (optlen != sizeof(struct sock_txtime)) {
1396 } else if (copy_from_sockptr(&sk_txtime, optval,
1397 sizeof(struct sock_txtime))) {
1400 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1404 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1405 * scheduler has enough safe guards.
1407 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1408 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1412 sock_valbool_flag(sk, SOCK_TXTIME, true);
1413 sk->sk_clockid = sk_txtime.clockid;
1414 sk->sk_txtime_deadline_mode =
1415 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1416 sk->sk_txtime_report_errors =
1417 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1420 case SO_BINDTOIFINDEX:
1421 ret = sock_bindtoindex_locked(sk, val);
1425 if (val & ~SOCK_BUF_LOCK_MASK) {
1429 sk->sk_userlocks = val | (sk->sk_userlocks &
1430 ~SOCK_BUF_LOCK_MASK);
1433 case SO_RESERVE_MEM:
1442 delta = val - sk->sk_reserved_mem;
1444 sock_release_reserved_memory(sk, -delta);
1446 ret = sock_reserve_memory(sk, delta);
1457 EXPORT_SYMBOL(sock_setsockopt);
1459 static const struct cred *sk_get_peer_cred(struct sock *sk)
1461 const struct cred *cred;
1463 spin_lock(&sk->sk_peer_lock);
1464 cred = get_cred(sk->sk_peer_cred);
1465 spin_unlock(&sk->sk_peer_lock);
1470 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1471 struct ucred *ucred)
1473 ucred->pid = pid_vnr(pid);
1474 ucred->uid = ucred->gid = -1;
1476 struct user_namespace *current_ns = current_user_ns();
1478 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1479 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1483 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1485 struct user_namespace *user_ns = current_user_ns();
1488 for (i = 0; i < src->ngroups; i++)
1489 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1495 int sock_getsockopt(struct socket *sock, int level, int optname,
1496 char __user *optval, int __user *optlen)
1498 struct sock *sk = sock->sk;
1503 unsigned long ulval;
1505 struct old_timeval32 tm32;
1506 struct __kernel_old_timeval tm;
1507 struct __kernel_sock_timeval stm;
1508 struct sock_txtime txtime;
1509 struct so_timestamping timestamping;
1512 int lv = sizeof(int);
1515 if (get_user(len, optlen))
1520 memset(&v, 0, sizeof(v));
1524 v.val = sock_flag(sk, SOCK_DBG);
1528 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1532 v.val = sock_flag(sk, SOCK_BROADCAST);
1536 v.val = sk->sk_sndbuf;
1540 v.val = sk->sk_rcvbuf;
1544 v.val = sk->sk_reuse;
1548 v.val = sk->sk_reuseport;
1552 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1556 v.val = sk->sk_type;
1560 v.val = sk->sk_protocol;
1564 v.val = sk->sk_family;
1568 v.val = -sock_error(sk);
1570 v.val = xchg(&sk->sk_err_soft, 0);
1574 v.val = sock_flag(sk, SOCK_URGINLINE);
1578 v.val = sk->sk_no_check_tx;
1582 v.val = sk->sk_priority;
1586 lv = sizeof(v.ling);
1587 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1588 v.ling.l_linger = sk->sk_lingertime / HZ;
1594 case SO_TIMESTAMP_OLD:
1595 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1596 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1597 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1600 case SO_TIMESTAMPNS_OLD:
1601 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1604 case SO_TIMESTAMP_NEW:
1605 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1608 case SO_TIMESTAMPNS_NEW:
1609 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1612 case SO_TIMESTAMPING_OLD:
1613 lv = sizeof(v.timestamping);
1614 v.timestamping.flags = sk->sk_tsflags;
1615 v.timestamping.bind_phc = sk->sk_bind_phc;
1618 case SO_RCVTIMEO_OLD:
1619 case SO_RCVTIMEO_NEW:
1620 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1623 case SO_SNDTIMEO_OLD:
1624 case SO_SNDTIMEO_NEW:
1625 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1629 v.val = sk->sk_rcvlowat;
1637 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1642 struct ucred peercred;
1643 if (len > sizeof(peercred))
1644 len = sizeof(peercred);
1646 spin_lock(&sk->sk_peer_lock);
1647 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1648 spin_unlock(&sk->sk_peer_lock);
1650 if (copy_to_user(optval, &peercred, len))
1657 const struct cred *cred;
1660 cred = sk_get_peer_cred(sk);
1664 n = cred->group_info->ngroups;
1665 if (len < n * sizeof(gid_t)) {
1666 len = n * sizeof(gid_t);
1668 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1670 len = n * sizeof(gid_t);
1672 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1683 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1688 if (copy_to_user(optval, address, len))
1693 /* Dubious BSD thing... Probably nobody even uses it, but
1694 * the UNIX standard wants it for whatever reason... -DaveM
1697 v.val = sk->sk_state == TCP_LISTEN;
1701 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1705 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1708 v.val = sk->sk_mark;
1712 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1715 case SO_WIFI_STATUS:
1716 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1720 if (!sock->ops->set_peek_off)
1723 v.val = sk->sk_peek_off;
1726 v.val = sock_flag(sk, SOCK_NOFCS);
1729 case SO_BINDTODEVICE:
1730 return sock_getbindtodevice(sk, optval, optlen, len);
1733 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1739 case SO_LOCK_FILTER:
1740 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1743 case SO_BPF_EXTENSIONS:
1744 v.val = bpf_tell_extensions();
1747 case SO_SELECT_ERR_QUEUE:
1748 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1751 #ifdef CONFIG_NET_RX_BUSY_POLL
1753 v.val = sk->sk_ll_usec;
1755 case SO_PREFER_BUSY_POLL:
1756 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1760 case SO_MAX_PACING_RATE:
1761 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1762 lv = sizeof(v.ulval);
1763 v.ulval = sk->sk_max_pacing_rate;
1766 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1770 case SO_INCOMING_CPU:
1771 v.val = READ_ONCE(sk->sk_incoming_cpu);
1776 u32 meminfo[SK_MEMINFO_VARS];
1778 sk_get_meminfo(sk, meminfo);
1780 len = min_t(unsigned int, len, sizeof(meminfo));
1781 if (copy_to_user(optval, &meminfo, len))
1787 #ifdef CONFIG_NET_RX_BUSY_POLL
1788 case SO_INCOMING_NAPI_ID:
1789 v.val = READ_ONCE(sk->sk_napi_id);
1791 /* aggregate non-NAPI IDs down to 0 */
1792 if (v.val < MIN_NAPI_ID)
1802 v.val64 = sock_gen_cookie(sk);
1806 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1810 lv = sizeof(v.txtime);
1811 v.txtime.clockid = sk->sk_clockid;
1812 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1813 SOF_TXTIME_DEADLINE_MODE : 0;
1814 v.txtime.flags |= sk->sk_txtime_report_errors ?
1815 SOF_TXTIME_REPORT_ERRORS : 0;
1818 case SO_BINDTOIFINDEX:
1819 v.val = sk->sk_bound_dev_if;
1822 case SO_NETNS_COOKIE:
1826 v.val64 = sock_net(sk)->net_cookie;
1830 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1833 case SO_RESERVE_MEM:
1834 v.val = sk->sk_reserved_mem;
1838 /* We implement the SO_SNDLOWAT etc to not be settable
1841 return -ENOPROTOOPT;
1846 if (copy_to_user(optval, &v, len))
1849 if (put_user(len, optlen))
1855 * Initialize an sk_lock.
1857 * (We also register the sk_lock with the lock validator.)
1859 static inline void sock_lock_init(struct sock *sk)
1861 if (sk->sk_kern_sock)
1862 sock_lock_init_class_and_name(
1864 af_family_kern_slock_key_strings[sk->sk_family],
1865 af_family_kern_slock_keys + sk->sk_family,
1866 af_family_kern_key_strings[sk->sk_family],
1867 af_family_kern_keys + sk->sk_family);
1869 sock_lock_init_class_and_name(
1871 af_family_slock_key_strings[sk->sk_family],
1872 af_family_slock_keys + sk->sk_family,
1873 af_family_key_strings[sk->sk_family],
1874 af_family_keys + sk->sk_family);
1878 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1879 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1880 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1882 static void sock_copy(struct sock *nsk, const struct sock *osk)
1884 const struct proto *prot = READ_ONCE(osk->sk_prot);
1885 #ifdef CONFIG_SECURITY_NETWORK
1886 void *sptr = nsk->sk_security;
1889 /* If we move sk_tx_queue_mapping out of the private section,
1890 * we must check if sk_tx_queue_clear() is called after
1891 * sock_copy() in sk_clone_lock().
1893 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1894 offsetof(struct sock, sk_dontcopy_begin) ||
1895 offsetof(struct sock, sk_tx_queue_mapping) >=
1896 offsetof(struct sock, sk_dontcopy_end));
1898 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1900 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1901 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1903 #ifdef CONFIG_SECURITY_NETWORK
1904 nsk->sk_security = sptr;
1905 security_sk_clone(osk, nsk);
1909 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1913 struct kmem_cache *slab;
1917 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1920 if (want_init_on_alloc(priority))
1921 sk_prot_clear_nulls(sk, prot->obj_size);
1923 sk = kmalloc(prot->obj_size, priority);
1926 if (security_sk_alloc(sk, family, priority))
1929 if (!try_module_get(prot->owner))
1936 security_sk_free(sk);
1939 kmem_cache_free(slab, sk);
1945 static void sk_prot_free(struct proto *prot, struct sock *sk)
1947 struct kmem_cache *slab;
1948 struct module *owner;
1950 owner = prot->owner;
1953 cgroup_sk_free(&sk->sk_cgrp_data);
1954 mem_cgroup_sk_free(sk);
1955 security_sk_free(sk);
1957 kmem_cache_free(slab, sk);
1964 * sk_alloc - All socket objects are allocated here
1965 * @net: the applicable net namespace
1966 * @family: protocol family
1967 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1968 * @prot: struct proto associated with this new sock instance
1969 * @kern: is this to be a kernel socket?
1971 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1972 struct proto *prot, int kern)
1976 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1978 sk->sk_family = family;
1980 * See comment in struct sock definition to understand
1981 * why we need sk_prot_creator -acme
1983 sk->sk_prot = sk->sk_prot_creator = prot;
1984 sk->sk_kern_sock = kern;
1986 sk->sk_net_refcnt = kern ? 0 : 1;
1987 if (likely(sk->sk_net_refcnt)) {
1988 get_net_track(net, &sk->ns_tracker, priority);
1989 sock_inuse_add(net, 1);
1992 sock_net_set(sk, net);
1993 refcount_set(&sk->sk_wmem_alloc, 1);
1995 mem_cgroup_sk_alloc(sk);
1996 cgroup_sk_alloc(&sk->sk_cgrp_data);
1997 sock_update_classid(&sk->sk_cgrp_data);
1998 sock_update_netprioidx(&sk->sk_cgrp_data);
1999 sk_tx_queue_clear(sk);
2004 EXPORT_SYMBOL(sk_alloc);
2006 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2007 * grace period. This is the case for UDP sockets and TCP listeners.
2009 static void __sk_destruct(struct rcu_head *head)
2011 struct sock *sk = container_of(head, struct sock, sk_rcu);
2012 struct sk_filter *filter;
2014 if (sk->sk_destruct)
2015 sk->sk_destruct(sk);
2017 filter = rcu_dereference_check(sk->sk_filter,
2018 refcount_read(&sk->sk_wmem_alloc) == 0);
2020 sk_filter_uncharge(sk, filter);
2021 RCU_INIT_POINTER(sk->sk_filter, NULL);
2024 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2026 #ifdef CONFIG_BPF_SYSCALL
2027 bpf_sk_storage_free(sk);
2030 if (atomic_read(&sk->sk_omem_alloc))
2031 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2032 __func__, atomic_read(&sk->sk_omem_alloc));
2034 if (sk->sk_frag.page) {
2035 put_page(sk->sk_frag.page);
2036 sk->sk_frag.page = NULL;
2039 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2040 put_cred(sk->sk_peer_cred);
2041 put_pid(sk->sk_peer_pid);
2043 if (likely(sk->sk_net_refcnt))
2044 put_net_track(sock_net(sk), &sk->ns_tracker);
2045 sk_prot_free(sk->sk_prot_creator, sk);
2048 void sk_destruct(struct sock *sk)
2050 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2052 WARN_ON_ONCE(!llist_empty(&sk->defer_list));
2053 sk_defer_free_flush(sk);
2055 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2056 reuseport_detach_sock(sk);
2057 use_call_rcu = true;
2061 call_rcu(&sk->sk_rcu, __sk_destruct);
2063 __sk_destruct(&sk->sk_rcu);
2066 static void __sk_free(struct sock *sk)
2068 if (likely(sk->sk_net_refcnt))
2069 sock_inuse_add(sock_net(sk), -1);
2071 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2072 sock_diag_broadcast_destroy(sk);
2077 void sk_free(struct sock *sk)
2080 * We subtract one from sk_wmem_alloc and can know if
2081 * some packets are still in some tx queue.
2082 * If not null, sock_wfree() will call __sk_free(sk) later
2084 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2087 EXPORT_SYMBOL(sk_free);
2089 static void sk_init_common(struct sock *sk)
2091 skb_queue_head_init(&sk->sk_receive_queue);
2092 skb_queue_head_init(&sk->sk_write_queue);
2093 skb_queue_head_init(&sk->sk_error_queue);
2095 rwlock_init(&sk->sk_callback_lock);
2096 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2097 af_rlock_keys + sk->sk_family,
2098 af_family_rlock_key_strings[sk->sk_family]);
2099 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2100 af_wlock_keys + sk->sk_family,
2101 af_family_wlock_key_strings[sk->sk_family]);
2102 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2103 af_elock_keys + sk->sk_family,
2104 af_family_elock_key_strings[sk->sk_family]);
2105 lockdep_set_class_and_name(&sk->sk_callback_lock,
2106 af_callback_keys + sk->sk_family,
2107 af_family_clock_key_strings[sk->sk_family]);
2111 * sk_clone_lock - clone a socket, and lock its clone
2112 * @sk: the socket to clone
2113 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2115 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2117 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2119 struct proto *prot = READ_ONCE(sk->sk_prot);
2120 struct sk_filter *filter;
2121 bool is_charged = true;
2124 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2128 sock_copy(newsk, sk);
2130 newsk->sk_prot_creator = prot;
2133 if (likely(newsk->sk_net_refcnt)) {
2134 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2135 sock_inuse_add(sock_net(newsk), 1);
2137 sk_node_init(&newsk->sk_node);
2138 sock_lock_init(newsk);
2139 bh_lock_sock(newsk);
2140 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2141 newsk->sk_backlog.len = 0;
2143 atomic_set(&newsk->sk_rmem_alloc, 0);
2145 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2146 refcount_set(&newsk->sk_wmem_alloc, 1);
2148 atomic_set(&newsk->sk_omem_alloc, 0);
2149 sk_init_common(newsk);
2151 newsk->sk_dst_cache = NULL;
2152 newsk->sk_dst_pending_confirm = 0;
2153 newsk->sk_wmem_queued = 0;
2154 newsk->sk_forward_alloc = 0;
2155 newsk->sk_reserved_mem = 0;
2156 atomic_set(&newsk->sk_drops, 0);
2157 newsk->sk_send_head = NULL;
2158 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2159 atomic_set(&newsk->sk_zckey, 0);
2161 sock_reset_flag(newsk, SOCK_DONE);
2163 /* sk->sk_memcg will be populated at accept() time */
2164 newsk->sk_memcg = NULL;
2166 cgroup_sk_clone(&newsk->sk_cgrp_data);
2169 filter = rcu_dereference(sk->sk_filter);
2171 /* though it's an empty new sock, the charging may fail
2172 * if sysctl_optmem_max was changed between creation of
2173 * original socket and cloning
2175 is_charged = sk_filter_charge(newsk, filter);
2176 RCU_INIT_POINTER(newsk->sk_filter, filter);
2179 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2180 /* We need to make sure that we don't uncharge the new
2181 * socket if we couldn't charge it in the first place
2182 * as otherwise we uncharge the parent's filter.
2185 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2186 sk_free_unlock_clone(newsk);
2190 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2192 if (bpf_sk_storage_clone(sk, newsk)) {
2193 sk_free_unlock_clone(newsk);
2198 /* Clear sk_user_data if parent had the pointer tagged
2199 * as not suitable for copying when cloning.
2201 if (sk_user_data_is_nocopy(newsk))
2202 newsk->sk_user_data = NULL;
2205 newsk->sk_err_soft = 0;
2206 newsk->sk_priority = 0;
2207 newsk->sk_incoming_cpu = raw_smp_processor_id();
2209 /* Before updating sk_refcnt, we must commit prior changes to memory
2210 * (Documentation/RCU/rculist_nulls.rst for details)
2213 refcount_set(&newsk->sk_refcnt, 2);
2215 /* Increment the counter in the same struct proto as the master
2216 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2217 * is the same as sk->sk_prot->socks, as this field was copied
2220 * This _changes_ the previous behaviour, where
2221 * tcp_create_openreq_child always was incrementing the
2222 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2223 * to be taken into account in all callers. -acme
2225 sk_refcnt_debug_inc(newsk);
2226 sk_set_socket(newsk, NULL);
2227 sk_tx_queue_clear(newsk);
2228 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2230 if (newsk->sk_prot->sockets_allocated)
2231 sk_sockets_allocated_inc(newsk);
2233 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2234 net_enable_timestamp();
2238 EXPORT_SYMBOL_GPL(sk_clone_lock);
2240 void sk_free_unlock_clone(struct sock *sk)
2242 /* It is still raw copy of parent, so invalidate
2243 * destructor and make plain sk_free() */
2244 sk->sk_destruct = NULL;
2248 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2250 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2254 sk_dst_set(sk, dst);
2255 sk->sk_route_caps = dst->dev->features;
2257 sk->sk_route_caps |= NETIF_F_GSO;
2258 if (sk->sk_route_caps & NETIF_F_GSO)
2259 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2260 if (unlikely(sk->sk_gso_disabled))
2261 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2262 if (sk_can_gso(sk)) {
2263 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2264 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2266 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2267 /* pairs with the WRITE_ONCE() in netif_set_gso_max_size() */
2268 sk->sk_gso_max_size = READ_ONCE(dst->dev->gso_max_size);
2269 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2270 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2273 sk->sk_gso_max_segs = max_segs;
2275 EXPORT_SYMBOL_GPL(sk_setup_caps);
2278 * Simple resource managers for sockets.
2283 * Write buffer destructor automatically called from kfree_skb.
2285 void sock_wfree(struct sk_buff *skb)
2287 struct sock *sk = skb->sk;
2288 unsigned int len = skb->truesize;
2290 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2292 * Keep a reference on sk_wmem_alloc, this will be released
2293 * after sk_write_space() call
2295 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2296 sk->sk_write_space(sk);
2300 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2301 * could not do because of in-flight packets
2303 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2306 EXPORT_SYMBOL(sock_wfree);
2308 /* This variant of sock_wfree() is used by TCP,
2309 * since it sets SOCK_USE_WRITE_QUEUE.
2311 void __sock_wfree(struct sk_buff *skb)
2313 struct sock *sk = skb->sk;
2315 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2319 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2324 if (unlikely(!sk_fullsock(sk))) {
2325 skb->destructor = sock_edemux;
2330 skb->destructor = sock_wfree;
2331 skb_set_hash_from_sk(skb, sk);
2333 * We used to take a refcount on sk, but following operation
2334 * is enough to guarantee sk_free() wont free this sock until
2335 * all in-flight packets are completed
2337 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2339 EXPORT_SYMBOL(skb_set_owner_w);
2341 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2343 #ifdef CONFIG_TLS_DEVICE
2344 /* Drivers depend on in-order delivery for crypto offload,
2345 * partial orphan breaks out-of-order-OK logic.
2350 return (skb->destructor == sock_wfree ||
2351 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2354 /* This helper is used by netem, as it can hold packets in its
2355 * delay queue. We want to allow the owner socket to send more
2356 * packets, as if they were already TX completed by a typical driver.
2357 * But we also want to keep skb->sk set because some packet schedulers
2358 * rely on it (sch_fq for example).
2360 void skb_orphan_partial(struct sk_buff *skb)
2362 if (skb_is_tcp_pure_ack(skb))
2365 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2370 EXPORT_SYMBOL(skb_orphan_partial);
2373 * Read buffer destructor automatically called from kfree_skb.
2375 void sock_rfree(struct sk_buff *skb)
2377 struct sock *sk = skb->sk;
2378 unsigned int len = skb->truesize;
2380 atomic_sub(len, &sk->sk_rmem_alloc);
2381 sk_mem_uncharge(sk, len);
2383 EXPORT_SYMBOL(sock_rfree);
2386 * Buffer destructor for skbs that are not used directly in read or write
2387 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2389 void sock_efree(struct sk_buff *skb)
2393 EXPORT_SYMBOL(sock_efree);
2395 /* Buffer destructor for prefetch/receive path where reference count may
2396 * not be held, e.g. for listen sockets.
2399 void sock_pfree(struct sk_buff *skb)
2401 if (sk_is_refcounted(skb->sk))
2402 sock_gen_put(skb->sk);
2404 EXPORT_SYMBOL(sock_pfree);
2405 #endif /* CONFIG_INET */
2407 kuid_t sock_i_uid(struct sock *sk)
2411 read_lock_bh(&sk->sk_callback_lock);
2412 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2413 read_unlock_bh(&sk->sk_callback_lock);
2416 EXPORT_SYMBOL(sock_i_uid);
2418 unsigned long sock_i_ino(struct sock *sk)
2422 read_lock_bh(&sk->sk_callback_lock);
2423 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2424 read_unlock_bh(&sk->sk_callback_lock);
2427 EXPORT_SYMBOL(sock_i_ino);
2430 * Allocate a skb from the socket's send buffer.
2432 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2436 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2437 struct sk_buff *skb = alloc_skb(size, priority);
2440 skb_set_owner_w(skb, sk);
2446 EXPORT_SYMBOL(sock_wmalloc);
2448 static void sock_ofree(struct sk_buff *skb)
2450 struct sock *sk = skb->sk;
2452 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2455 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2458 struct sk_buff *skb;
2460 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2461 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2465 skb = alloc_skb(size, priority);
2469 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2471 skb->destructor = sock_ofree;
2476 * Allocate a memory block from the socket's option memory buffer.
2478 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2480 if ((unsigned int)size <= sysctl_optmem_max &&
2481 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2483 /* First do the add, to avoid the race if kmalloc
2486 atomic_add(size, &sk->sk_omem_alloc);
2487 mem = kmalloc(size, priority);
2490 atomic_sub(size, &sk->sk_omem_alloc);
2494 EXPORT_SYMBOL(sock_kmalloc);
2496 /* Free an option memory block. Note, we actually want the inline
2497 * here as this allows gcc to detect the nullify and fold away the
2498 * condition entirely.
2500 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2503 if (WARN_ON_ONCE(!mem))
2506 kfree_sensitive(mem);
2509 atomic_sub(size, &sk->sk_omem_alloc);
2512 void sock_kfree_s(struct sock *sk, void *mem, int size)
2514 __sock_kfree_s(sk, mem, size, false);
2516 EXPORT_SYMBOL(sock_kfree_s);
2518 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2520 __sock_kfree_s(sk, mem, size, true);
2522 EXPORT_SYMBOL(sock_kzfree_s);
2524 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2525 I think, these locks should be removed for datagram sockets.
2527 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2531 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2535 if (signal_pending(current))
2537 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2538 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2539 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2541 if (sk->sk_shutdown & SEND_SHUTDOWN)
2545 timeo = schedule_timeout(timeo);
2547 finish_wait(sk_sleep(sk), &wait);
2553 * Generic send/receive buffer handlers
2556 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2557 unsigned long data_len, int noblock,
2558 int *errcode, int max_page_order)
2560 struct sk_buff *skb;
2564 timeo = sock_sndtimeo(sk, noblock);
2566 err = sock_error(sk);
2571 if (sk->sk_shutdown & SEND_SHUTDOWN)
2574 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2577 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2578 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2582 if (signal_pending(current))
2584 timeo = sock_wait_for_wmem(sk, timeo);
2586 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2587 errcode, sk->sk_allocation);
2589 skb_set_owner_w(skb, sk);
2593 err = sock_intr_errno(timeo);
2598 EXPORT_SYMBOL(sock_alloc_send_pskb);
2600 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2601 int noblock, int *errcode)
2603 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2605 EXPORT_SYMBOL(sock_alloc_send_skb);
2607 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2608 struct sockcm_cookie *sockc)
2612 switch (cmsg->cmsg_type) {
2614 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2616 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2618 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2620 case SO_TIMESTAMPING_OLD:
2621 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2624 tsflags = *(u32 *)CMSG_DATA(cmsg);
2625 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2628 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2629 sockc->tsflags |= tsflags;
2632 if (!sock_flag(sk, SOCK_TXTIME))
2634 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2636 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2638 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2640 case SCM_CREDENTIALS:
2647 EXPORT_SYMBOL(__sock_cmsg_send);
2649 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2650 struct sockcm_cookie *sockc)
2652 struct cmsghdr *cmsg;
2655 for_each_cmsghdr(cmsg, msg) {
2656 if (!CMSG_OK(msg, cmsg))
2658 if (cmsg->cmsg_level != SOL_SOCKET)
2660 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2666 EXPORT_SYMBOL(sock_cmsg_send);
2668 static void sk_enter_memory_pressure(struct sock *sk)
2670 if (!sk->sk_prot->enter_memory_pressure)
2673 sk->sk_prot->enter_memory_pressure(sk);
2676 static void sk_leave_memory_pressure(struct sock *sk)
2678 if (sk->sk_prot->leave_memory_pressure) {
2679 sk->sk_prot->leave_memory_pressure(sk);
2681 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2683 if (memory_pressure && READ_ONCE(*memory_pressure))
2684 WRITE_ONCE(*memory_pressure, 0);
2688 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2691 * skb_page_frag_refill - check that a page_frag contains enough room
2692 * @sz: minimum size of the fragment we want to get
2693 * @pfrag: pointer to page_frag
2694 * @gfp: priority for memory allocation
2696 * Note: While this allocator tries to use high order pages, there is
2697 * no guarantee that allocations succeed. Therefore, @sz MUST be
2698 * less or equal than PAGE_SIZE.
2700 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2703 if (page_ref_count(pfrag->page) == 1) {
2707 if (pfrag->offset + sz <= pfrag->size)
2709 put_page(pfrag->page);
2713 if (SKB_FRAG_PAGE_ORDER &&
2714 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2715 /* Avoid direct reclaim but allow kswapd to wake */
2716 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2717 __GFP_COMP | __GFP_NOWARN |
2719 SKB_FRAG_PAGE_ORDER);
2720 if (likely(pfrag->page)) {
2721 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2725 pfrag->page = alloc_page(gfp);
2726 if (likely(pfrag->page)) {
2727 pfrag->size = PAGE_SIZE;
2732 EXPORT_SYMBOL(skb_page_frag_refill);
2734 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2736 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2739 sk_enter_memory_pressure(sk);
2740 sk_stream_moderate_sndbuf(sk);
2743 EXPORT_SYMBOL(sk_page_frag_refill);
2745 void __lock_sock(struct sock *sk)
2746 __releases(&sk->sk_lock.slock)
2747 __acquires(&sk->sk_lock.slock)
2752 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2753 TASK_UNINTERRUPTIBLE);
2754 spin_unlock_bh(&sk->sk_lock.slock);
2756 spin_lock_bh(&sk->sk_lock.slock);
2757 if (!sock_owned_by_user(sk))
2760 finish_wait(&sk->sk_lock.wq, &wait);
2763 void __release_sock(struct sock *sk)
2764 __releases(&sk->sk_lock.slock)
2765 __acquires(&sk->sk_lock.slock)
2767 struct sk_buff *skb, *next;
2769 while ((skb = sk->sk_backlog.head) != NULL) {
2770 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2772 spin_unlock_bh(&sk->sk_lock.slock);
2777 WARN_ON_ONCE(skb_dst_is_noref(skb));
2778 skb_mark_not_on_list(skb);
2779 sk_backlog_rcv(sk, skb);
2784 } while (skb != NULL);
2786 spin_lock_bh(&sk->sk_lock.slock);
2790 * Doing the zeroing here guarantee we can not loop forever
2791 * while a wild producer attempts to flood us.
2793 sk->sk_backlog.len = 0;
2796 void __sk_flush_backlog(struct sock *sk)
2798 spin_lock_bh(&sk->sk_lock.slock);
2800 spin_unlock_bh(&sk->sk_lock.slock);
2804 * sk_wait_data - wait for data to arrive at sk_receive_queue
2805 * @sk: sock to wait on
2806 * @timeo: for how long
2807 * @skb: last skb seen on sk_receive_queue
2809 * Now socket state including sk->sk_err is changed only under lock,
2810 * hence we may omit checks after joining wait queue.
2811 * We check receive queue before schedule() only as optimization;
2812 * it is very likely that release_sock() added new data.
2814 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2816 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2819 add_wait_queue(sk_sleep(sk), &wait);
2820 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2821 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2822 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2823 remove_wait_queue(sk_sleep(sk), &wait);
2826 EXPORT_SYMBOL(sk_wait_data);
2829 * __sk_mem_raise_allocated - increase memory_allocated
2831 * @size: memory size to allocate
2832 * @amt: pages to allocate
2833 * @kind: allocation type
2835 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2837 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2839 struct proto *prot = sk->sk_prot;
2840 long allocated = sk_memory_allocated_add(sk, amt);
2841 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2842 bool charged = true;
2845 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2846 gfp_memcg_charge())))
2847 goto suppress_allocation;
2850 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2851 sk_leave_memory_pressure(sk);
2855 /* Under pressure. */
2856 if (allocated > sk_prot_mem_limits(sk, 1))
2857 sk_enter_memory_pressure(sk);
2859 /* Over hard limit. */
2860 if (allocated > sk_prot_mem_limits(sk, 2))
2861 goto suppress_allocation;
2863 /* guarantee minimum buffer size under pressure */
2864 if (kind == SK_MEM_RECV) {
2865 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2868 } else { /* SK_MEM_SEND */
2869 int wmem0 = sk_get_wmem0(sk, prot);
2871 if (sk->sk_type == SOCK_STREAM) {
2872 if (sk->sk_wmem_queued < wmem0)
2874 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2879 if (sk_has_memory_pressure(sk)) {
2882 if (!sk_under_memory_pressure(sk))
2884 alloc = sk_sockets_allocated_read_positive(sk);
2885 if (sk_prot_mem_limits(sk, 2) > alloc *
2886 sk_mem_pages(sk->sk_wmem_queued +
2887 atomic_read(&sk->sk_rmem_alloc) +
2888 sk->sk_forward_alloc))
2892 suppress_allocation:
2894 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2895 sk_stream_moderate_sndbuf(sk);
2897 /* Fail only if socket is _under_ its sndbuf.
2898 * In this case we cannot block, so that we have to fail.
2900 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
2901 /* Force charge with __GFP_NOFAIL */
2902 if (memcg_charge && !charged) {
2903 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2904 gfp_memcg_charge() | __GFP_NOFAIL);
2910 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2911 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2913 sk_memory_allocated_sub(sk, amt);
2915 if (memcg_charge && charged)
2916 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2920 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2923 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2925 * @size: memory size to allocate
2926 * @kind: allocation type
2928 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2929 * rmem allocation. This function assumes that protocols which have
2930 * memory_pressure use sk_wmem_queued as write buffer accounting.
2932 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2934 int ret, amt = sk_mem_pages(size);
2936 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2937 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2939 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2942 EXPORT_SYMBOL(__sk_mem_schedule);
2945 * __sk_mem_reduce_allocated - reclaim memory_allocated
2947 * @amount: number of quanta
2949 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2951 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2953 sk_memory_allocated_sub(sk, amount);
2955 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2956 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2958 if (sk_under_memory_pressure(sk) &&
2959 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2960 sk_leave_memory_pressure(sk);
2962 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2965 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2967 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2969 void __sk_mem_reclaim(struct sock *sk, int amount)
2971 amount >>= SK_MEM_QUANTUM_SHIFT;
2972 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2973 __sk_mem_reduce_allocated(sk, amount);
2975 EXPORT_SYMBOL(__sk_mem_reclaim);
2977 int sk_set_peek_off(struct sock *sk, int val)
2979 sk->sk_peek_off = val;
2982 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2985 * Set of default routines for initialising struct proto_ops when
2986 * the protocol does not support a particular function. In certain
2987 * cases where it makes no sense for a protocol to have a "do nothing"
2988 * function, some default processing is provided.
2991 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2995 EXPORT_SYMBOL(sock_no_bind);
2997 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3002 EXPORT_SYMBOL(sock_no_connect);
3004 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3008 EXPORT_SYMBOL(sock_no_socketpair);
3010 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3015 EXPORT_SYMBOL(sock_no_accept);
3017 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3022 EXPORT_SYMBOL(sock_no_getname);
3024 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3028 EXPORT_SYMBOL(sock_no_ioctl);
3030 int sock_no_listen(struct socket *sock, int backlog)
3034 EXPORT_SYMBOL(sock_no_listen);
3036 int sock_no_shutdown(struct socket *sock, int how)
3040 EXPORT_SYMBOL(sock_no_shutdown);
3042 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3046 EXPORT_SYMBOL(sock_no_sendmsg);
3048 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3052 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3054 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3059 EXPORT_SYMBOL(sock_no_recvmsg);
3061 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3063 /* Mirror missing mmap method error code */
3066 EXPORT_SYMBOL(sock_no_mmap);
3069 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3070 * various sock-based usage counts.
3072 void __receive_sock(struct file *file)
3074 struct socket *sock;
3076 sock = sock_from_file(file);
3078 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3079 sock_update_classid(&sock->sk->sk_cgrp_data);
3083 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3086 struct msghdr msg = {.msg_flags = flags};
3088 char *kaddr = kmap(page);
3089 iov.iov_base = kaddr + offset;
3091 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3095 EXPORT_SYMBOL(sock_no_sendpage);
3097 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3098 int offset, size_t size, int flags)
3101 struct msghdr msg = {.msg_flags = flags};
3103 char *kaddr = kmap(page);
3105 iov.iov_base = kaddr + offset;
3107 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3111 EXPORT_SYMBOL(sock_no_sendpage_locked);
3114 * Default Socket Callbacks
3117 static void sock_def_wakeup(struct sock *sk)
3119 struct socket_wq *wq;
3122 wq = rcu_dereference(sk->sk_wq);
3123 if (skwq_has_sleeper(wq))
3124 wake_up_interruptible_all(&wq->wait);
3128 static void sock_def_error_report(struct sock *sk)
3130 struct socket_wq *wq;
3133 wq = rcu_dereference(sk->sk_wq);
3134 if (skwq_has_sleeper(wq))
3135 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3136 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3140 void sock_def_readable(struct sock *sk)
3142 struct socket_wq *wq;
3145 wq = rcu_dereference(sk->sk_wq);
3146 if (skwq_has_sleeper(wq))
3147 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3148 EPOLLRDNORM | EPOLLRDBAND);
3149 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3153 static void sock_def_write_space(struct sock *sk)
3155 struct socket_wq *wq;
3159 /* Do not wake up a writer until he can make "significant"
3162 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3163 wq = rcu_dereference(sk->sk_wq);
3164 if (skwq_has_sleeper(wq))
3165 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3166 EPOLLWRNORM | EPOLLWRBAND);
3168 /* Should agree with poll, otherwise some programs break */
3169 if (sock_writeable(sk))
3170 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3176 static void sock_def_destruct(struct sock *sk)
3180 void sk_send_sigurg(struct sock *sk)
3182 if (sk->sk_socket && sk->sk_socket->file)
3183 if (send_sigurg(&sk->sk_socket->file->f_owner))
3184 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3186 EXPORT_SYMBOL(sk_send_sigurg);
3188 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3189 unsigned long expires)
3191 if (!mod_timer(timer, expires))
3194 EXPORT_SYMBOL(sk_reset_timer);
3196 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3198 if (del_timer(timer))
3201 EXPORT_SYMBOL(sk_stop_timer);
3203 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3205 if (del_timer_sync(timer))
3208 EXPORT_SYMBOL(sk_stop_timer_sync);
3210 void sock_init_data(struct socket *sock, struct sock *sk)
3213 sk->sk_send_head = NULL;
3215 timer_setup(&sk->sk_timer, NULL, 0);
3217 sk->sk_allocation = GFP_KERNEL;
3218 sk->sk_rcvbuf = sysctl_rmem_default;
3219 sk->sk_sndbuf = sysctl_wmem_default;
3220 sk->sk_state = TCP_CLOSE;
3221 sk_set_socket(sk, sock);
3223 sock_set_flag(sk, SOCK_ZAPPED);
3226 sk->sk_type = sock->type;
3227 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3229 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3231 RCU_INIT_POINTER(sk->sk_wq, NULL);
3232 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3235 rwlock_init(&sk->sk_callback_lock);
3236 if (sk->sk_kern_sock)
3237 lockdep_set_class_and_name(
3238 &sk->sk_callback_lock,
3239 af_kern_callback_keys + sk->sk_family,
3240 af_family_kern_clock_key_strings[sk->sk_family]);
3242 lockdep_set_class_and_name(
3243 &sk->sk_callback_lock,
3244 af_callback_keys + sk->sk_family,
3245 af_family_clock_key_strings[sk->sk_family]);
3247 sk->sk_state_change = sock_def_wakeup;
3248 sk->sk_data_ready = sock_def_readable;
3249 sk->sk_write_space = sock_def_write_space;
3250 sk->sk_error_report = sock_def_error_report;
3251 sk->sk_destruct = sock_def_destruct;
3253 sk->sk_frag.page = NULL;
3254 sk->sk_frag.offset = 0;
3255 sk->sk_peek_off = -1;
3257 sk->sk_peer_pid = NULL;
3258 sk->sk_peer_cred = NULL;
3259 spin_lock_init(&sk->sk_peer_lock);
3261 sk->sk_write_pending = 0;
3262 sk->sk_rcvlowat = 1;
3263 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3264 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3266 sk->sk_stamp = SK_DEFAULT_STAMP;
3267 #if BITS_PER_LONG==32
3268 seqlock_init(&sk->sk_stamp_seq);
3270 atomic_set(&sk->sk_zckey, 0);
3272 #ifdef CONFIG_NET_RX_BUSY_POLL
3274 sk->sk_ll_usec = sysctl_net_busy_read;
3277 sk->sk_max_pacing_rate = ~0UL;
3278 sk->sk_pacing_rate = ~0UL;
3279 WRITE_ONCE(sk->sk_pacing_shift, 10);
3280 sk->sk_incoming_cpu = -1;
3282 sk_rx_queue_clear(sk);
3284 * Before updating sk_refcnt, we must commit prior changes to memory
3285 * (Documentation/RCU/rculist_nulls.rst for details)
3288 refcount_set(&sk->sk_refcnt, 1);
3289 atomic_set(&sk->sk_drops, 0);
3291 EXPORT_SYMBOL(sock_init_data);
3293 void lock_sock_nested(struct sock *sk, int subclass)
3295 /* The sk_lock has mutex_lock() semantics here. */
3296 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3299 spin_lock_bh(&sk->sk_lock.slock);
3300 if (sock_owned_by_user_nocheck(sk))
3302 sk->sk_lock.owned = 1;
3303 spin_unlock_bh(&sk->sk_lock.slock);
3305 EXPORT_SYMBOL(lock_sock_nested);
3307 void release_sock(struct sock *sk)
3309 spin_lock_bh(&sk->sk_lock.slock);
3310 if (sk->sk_backlog.tail)
3313 /* Warning : release_cb() might need to release sk ownership,
3314 * ie call sock_release_ownership(sk) before us.
3316 if (sk->sk_prot->release_cb)
3317 sk->sk_prot->release_cb(sk);
3319 sock_release_ownership(sk);
3320 if (waitqueue_active(&sk->sk_lock.wq))
3321 wake_up(&sk->sk_lock.wq);
3322 spin_unlock_bh(&sk->sk_lock.slock);
3324 EXPORT_SYMBOL(release_sock);
3326 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3329 spin_lock_bh(&sk->sk_lock.slock);
3331 if (!sock_owned_by_user_nocheck(sk)) {
3333 * Fast path return with bottom halves disabled and
3334 * sock::sk_lock.slock held.
3336 * The 'mutex' is not contended and holding
3337 * sock::sk_lock.slock prevents all other lockers to
3338 * proceed so the corresponding unlock_sock_fast() can
3339 * avoid the slow path of release_sock() completely and
3340 * just release slock.
3342 * From a semantical POV this is equivalent to 'acquiring'
3343 * the 'mutex', hence the corresponding lockdep
3344 * mutex_release() has to happen in the fast path of
3345 * unlock_sock_fast().
3351 sk->sk_lock.owned = 1;
3352 __acquire(&sk->sk_lock.slock);
3353 spin_unlock_bh(&sk->sk_lock.slock);
3356 EXPORT_SYMBOL(__lock_sock_fast);
3358 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3359 bool timeval, bool time32)
3361 struct sock *sk = sock->sk;
3362 struct timespec64 ts;
3364 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3365 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3366 if (ts.tv_sec == -1)
3368 if (ts.tv_sec == 0) {
3369 ktime_t kt = ktime_get_real();
3370 sock_write_timestamp(sk, kt);
3371 ts = ktime_to_timespec64(kt);
3377 #ifdef CONFIG_COMPAT_32BIT_TIME
3379 return put_old_timespec32(&ts, userstamp);
3381 #ifdef CONFIG_SPARC64
3382 /* beware of padding in sparc64 timeval */
3383 if (timeval && !in_compat_syscall()) {
3384 struct __kernel_old_timeval __user tv = {
3385 .tv_sec = ts.tv_sec,
3386 .tv_usec = ts.tv_nsec,
3388 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3393 return put_timespec64(&ts, userstamp);
3395 EXPORT_SYMBOL(sock_gettstamp);
3397 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3399 if (!sock_flag(sk, flag)) {
3400 unsigned long previous_flags = sk->sk_flags;
3402 sock_set_flag(sk, flag);
3404 * we just set one of the two flags which require net
3405 * time stamping, but time stamping might have been on
3406 * already because of the other one
3408 if (sock_needs_netstamp(sk) &&
3409 !(previous_flags & SK_FLAGS_TIMESTAMP))
3410 net_enable_timestamp();
3414 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3415 int level, int type)
3417 struct sock_exterr_skb *serr;
3418 struct sk_buff *skb;
3422 skb = sock_dequeue_err_skb(sk);
3428 msg->msg_flags |= MSG_TRUNC;
3431 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3435 sock_recv_timestamp(msg, sk, skb);
3437 serr = SKB_EXT_ERR(skb);
3438 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3440 msg->msg_flags |= MSG_ERRQUEUE;
3448 EXPORT_SYMBOL(sock_recv_errqueue);
3451 * Get a socket option on an socket.
3453 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3454 * asynchronous errors should be reported by getsockopt. We assume
3455 * this means if you specify SO_ERROR (otherwise whats the point of it).
3457 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3458 char __user *optval, int __user *optlen)
3460 struct sock *sk = sock->sk;
3462 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3464 EXPORT_SYMBOL(sock_common_getsockopt);
3466 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3469 struct sock *sk = sock->sk;
3473 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3474 flags & ~MSG_DONTWAIT, &addr_len);
3476 msg->msg_namelen = addr_len;
3479 EXPORT_SYMBOL(sock_common_recvmsg);
3482 * Set socket options on an inet socket.
3484 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3485 sockptr_t optval, unsigned int optlen)
3487 struct sock *sk = sock->sk;
3489 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3491 EXPORT_SYMBOL(sock_common_setsockopt);
3493 void sk_common_release(struct sock *sk)
3495 if (sk->sk_prot->destroy)
3496 sk->sk_prot->destroy(sk);
3499 * Observation: when sk_common_release is called, processes have
3500 * no access to socket. But net still has.
3501 * Step one, detach it from networking:
3503 * A. Remove from hash tables.
3506 sk->sk_prot->unhash(sk);
3509 * In this point socket cannot receive new packets, but it is possible
3510 * that some packets are in flight because some CPU runs receiver and
3511 * did hash table lookup before we unhashed socket. They will achieve
3512 * receive queue and will be purged by socket destructor.
3514 * Also we still have packets pending on receive queue and probably,
3515 * our own packets waiting in device queues. sock_destroy will drain
3516 * receive queue, but transmitted packets will delay socket destruction
3517 * until the last reference will be released.
3522 xfrm_sk_free_policy(sk);
3524 sk_refcnt_debug_release(sk);
3528 EXPORT_SYMBOL(sk_common_release);
3530 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3532 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3534 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3535 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3536 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3537 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3538 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3539 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3540 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3541 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3542 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3545 #ifdef CONFIG_PROC_FS
3546 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3548 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3550 int cpu, idx = prot->inuse_idx;
3553 for_each_possible_cpu(cpu)
3554 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3556 return res >= 0 ? res : 0;
3558 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3560 int sock_inuse_get(struct net *net)
3564 for_each_possible_cpu(cpu)
3565 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3570 EXPORT_SYMBOL_GPL(sock_inuse_get);
3572 static int __net_init sock_inuse_init_net(struct net *net)
3574 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3575 if (net->core.prot_inuse == NULL)
3580 static void __net_exit sock_inuse_exit_net(struct net *net)
3582 free_percpu(net->core.prot_inuse);
3585 static struct pernet_operations net_inuse_ops = {
3586 .init = sock_inuse_init_net,
3587 .exit = sock_inuse_exit_net,
3590 static __init int net_inuse_init(void)
3592 if (register_pernet_subsys(&net_inuse_ops))
3593 panic("Cannot initialize net inuse counters");
3598 core_initcall(net_inuse_init);
3600 static int assign_proto_idx(struct proto *prot)
3602 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3604 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3605 pr_err("PROTO_INUSE_NR exhausted\n");
3609 set_bit(prot->inuse_idx, proto_inuse_idx);
3613 static void release_proto_idx(struct proto *prot)
3615 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3616 clear_bit(prot->inuse_idx, proto_inuse_idx);
3619 static inline int assign_proto_idx(struct proto *prot)
3624 static inline void release_proto_idx(struct proto *prot)
3630 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3634 kfree(twsk_prot->twsk_slab_name);
3635 twsk_prot->twsk_slab_name = NULL;
3636 kmem_cache_destroy(twsk_prot->twsk_slab);
3637 twsk_prot->twsk_slab = NULL;
3640 static int tw_prot_init(const struct proto *prot)
3642 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3647 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3649 if (!twsk_prot->twsk_slab_name)
3652 twsk_prot->twsk_slab =
3653 kmem_cache_create(twsk_prot->twsk_slab_name,
3654 twsk_prot->twsk_obj_size, 0,
3655 SLAB_ACCOUNT | prot->slab_flags,
3657 if (!twsk_prot->twsk_slab) {
3658 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3666 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3670 kfree(rsk_prot->slab_name);
3671 rsk_prot->slab_name = NULL;
3672 kmem_cache_destroy(rsk_prot->slab);
3673 rsk_prot->slab = NULL;
3676 static int req_prot_init(const struct proto *prot)
3678 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3683 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3685 if (!rsk_prot->slab_name)
3688 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3689 rsk_prot->obj_size, 0,
3690 SLAB_ACCOUNT | prot->slab_flags,
3693 if (!rsk_prot->slab) {
3694 pr_crit("%s: Can't create request sock SLAB cache!\n",
3701 int proto_register(struct proto *prot, int alloc_slab)
3706 prot->slab = kmem_cache_create_usercopy(prot->name,
3708 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3710 prot->useroffset, prot->usersize,
3713 if (prot->slab == NULL) {
3714 pr_crit("%s: Can't create sock SLAB cache!\n",
3719 if (req_prot_init(prot))
3720 goto out_free_request_sock_slab;
3722 if (tw_prot_init(prot))
3723 goto out_free_timewait_sock_slab;
3726 mutex_lock(&proto_list_mutex);
3727 ret = assign_proto_idx(prot);
3729 mutex_unlock(&proto_list_mutex);
3730 goto out_free_timewait_sock_slab;
3732 list_add(&prot->node, &proto_list);
3733 mutex_unlock(&proto_list_mutex);
3736 out_free_timewait_sock_slab:
3738 tw_prot_cleanup(prot->twsk_prot);
3739 out_free_request_sock_slab:
3741 req_prot_cleanup(prot->rsk_prot);
3743 kmem_cache_destroy(prot->slab);
3749 EXPORT_SYMBOL(proto_register);
3751 void proto_unregister(struct proto *prot)
3753 mutex_lock(&proto_list_mutex);
3754 release_proto_idx(prot);
3755 list_del(&prot->node);
3756 mutex_unlock(&proto_list_mutex);
3758 kmem_cache_destroy(prot->slab);
3761 req_prot_cleanup(prot->rsk_prot);
3762 tw_prot_cleanup(prot->twsk_prot);
3764 EXPORT_SYMBOL(proto_unregister);
3766 int sock_load_diag_module(int family, int protocol)
3769 if (!sock_is_registered(family))
3772 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3773 NETLINK_SOCK_DIAG, family);
3777 if (family == AF_INET &&
3778 protocol != IPPROTO_RAW &&
3779 protocol < MAX_INET_PROTOS &&
3780 !rcu_access_pointer(inet_protos[protocol]))
3784 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3785 NETLINK_SOCK_DIAG, family, protocol);
3787 EXPORT_SYMBOL(sock_load_diag_module);
3789 #ifdef CONFIG_PROC_FS
3790 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3791 __acquires(proto_list_mutex)
3793 mutex_lock(&proto_list_mutex);
3794 return seq_list_start_head(&proto_list, *pos);
3797 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3799 return seq_list_next(v, &proto_list, pos);
3802 static void proto_seq_stop(struct seq_file *seq, void *v)
3803 __releases(proto_list_mutex)
3805 mutex_unlock(&proto_list_mutex);
3808 static char proto_method_implemented(const void *method)
3810 return method == NULL ? 'n' : 'y';
3812 static long sock_prot_memory_allocated(struct proto *proto)
3814 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3817 static const char *sock_prot_memory_pressure(struct proto *proto)
3819 return proto->memory_pressure != NULL ?
3820 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3823 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3826 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3827 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3830 sock_prot_inuse_get(seq_file_net(seq), proto),
3831 sock_prot_memory_allocated(proto),
3832 sock_prot_memory_pressure(proto),
3834 proto->slab == NULL ? "no" : "yes",
3835 module_name(proto->owner),
3836 proto_method_implemented(proto->close),
3837 proto_method_implemented(proto->connect),
3838 proto_method_implemented(proto->disconnect),
3839 proto_method_implemented(proto->accept),
3840 proto_method_implemented(proto->ioctl),
3841 proto_method_implemented(proto->init),
3842 proto_method_implemented(proto->destroy),
3843 proto_method_implemented(proto->shutdown),
3844 proto_method_implemented(proto->setsockopt),
3845 proto_method_implemented(proto->getsockopt),
3846 proto_method_implemented(proto->sendmsg),
3847 proto_method_implemented(proto->recvmsg),
3848 proto_method_implemented(proto->sendpage),
3849 proto_method_implemented(proto->bind),
3850 proto_method_implemented(proto->backlog_rcv),
3851 proto_method_implemented(proto->hash),
3852 proto_method_implemented(proto->unhash),
3853 proto_method_implemented(proto->get_port),
3854 proto_method_implemented(proto->enter_memory_pressure));
3857 static int proto_seq_show(struct seq_file *seq, void *v)
3859 if (v == &proto_list)
3860 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3869 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3871 proto_seq_printf(seq, list_entry(v, struct proto, node));
3875 static const struct seq_operations proto_seq_ops = {
3876 .start = proto_seq_start,
3877 .next = proto_seq_next,
3878 .stop = proto_seq_stop,
3879 .show = proto_seq_show,
3882 static __net_init int proto_init_net(struct net *net)
3884 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3885 sizeof(struct seq_net_private)))
3891 static __net_exit void proto_exit_net(struct net *net)
3893 remove_proc_entry("protocols", net->proc_net);
3897 static __net_initdata struct pernet_operations proto_net_ops = {
3898 .init = proto_init_net,
3899 .exit = proto_exit_net,
3902 static int __init proto_init(void)
3904 return register_pernet_subsys(&proto_net_ops);
3907 subsys_initcall(proto_init);
3909 #endif /* PROC_FS */
3911 #ifdef CONFIG_NET_RX_BUSY_POLL
3912 bool sk_busy_loop_end(void *p, unsigned long start_time)
3914 struct sock *sk = p;
3916 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3917 sk_busy_loop_timeout(sk, start_time);
3919 EXPORT_SYMBOL(sk_busy_loop_end);
3920 #endif /* CONFIG_NET_RX_BUSY_POLL */
3922 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3924 if (!sk->sk_prot->bind_add)
3926 return sk->sk_prot->bind_add(sk, addr, addr_len);
3928 EXPORT_SYMBOL(sock_bind_add);