1 // SPDX-License-Identifier: GPL-2.0
3 * Pressure stall information for CPU, memory and IO
5 * Copyright (c) 2018 Facebook, Inc.
9 * Copyright (c) 2018 Google, Inc.
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an oncpu task.
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
52 * The percentage of wallclock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
93 * For the 257 number crunchers on 256 CPUs, this yields:
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
99 * For the 1 out of 4 memory-delayed tasks, this yields:
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
119 * For each runqueue, we track:
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
125 * and then periodically aggregate:
127 * tNONIDLE = sum(tNONIDLE[i])
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
140 #include "../workqueue_internal.h"
141 #include <linux/sched/loadavg.h>
142 #include <linux/seq_file.h>
143 #include <linux/proc_fs.h>
144 #include <linux/seqlock.h>
145 #include <linux/uaccess.h>
146 #include <linux/cgroup.h>
147 #include <linux/module.h>
148 #include <linux/sched.h>
149 #include <linux/ctype.h>
150 #include <linux/file.h>
151 #include <linux/poll.h>
152 #include <linux/psi.h>
155 static int psi_bug __read_mostly;
157 DEFINE_STATIC_KEY_FALSE(psi_disabled);
158 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
160 #ifdef CONFIG_PSI_DEFAULT_DISABLED
161 static bool psi_enable;
163 static bool psi_enable = true;
165 static int __init setup_psi(char *str)
167 return kstrtobool(str, &psi_enable) == 0;
169 __setup("psi=", setup_psi);
171 /* Running averages - we need to be higher-res than loadavg */
172 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
173 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
174 #define EXP_60s 1981 /* 1/exp(2s/60s) */
175 #define EXP_300s 2034 /* 1/exp(2s/300s) */
177 /* PSI trigger definitions */
178 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
179 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
180 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
182 /* Sampling frequency in nanoseconds */
183 static u64 psi_period __read_mostly;
185 /* System-level pressure and stall tracking */
186 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
187 struct psi_group psi_system = {
188 .pcpu = &system_group_pcpu,
191 static void psi_avgs_work(struct work_struct *work);
193 static void poll_timer_fn(struct timer_list *t);
195 static void group_init(struct psi_group *group)
199 for_each_possible_cpu(cpu)
200 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
201 group->avg_last_update = sched_clock();
202 group->avg_next_update = group->avg_last_update + psi_period;
203 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
204 mutex_init(&group->avgs_lock);
205 /* Init trigger-related members */
206 mutex_init(&group->trigger_lock);
207 INIT_LIST_HEAD(&group->triggers);
208 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
209 group->poll_states = 0;
210 group->poll_min_period = U32_MAX;
211 memset(group->polling_total, 0, sizeof(group->polling_total));
212 group->polling_next_update = ULLONG_MAX;
213 group->polling_until = 0;
214 init_waitqueue_head(&group->poll_wait);
215 timer_setup(&group->poll_timer, poll_timer_fn, 0);
216 rcu_assign_pointer(group->poll_task, NULL);
219 void __init psi_init(void)
222 static_branch_enable(&psi_disabled);
226 if (!cgroup_psi_enabled())
227 static_branch_disable(&psi_cgroups_enabled);
229 psi_period = jiffies_to_nsecs(PSI_FREQ);
230 group_init(&psi_system);
233 static bool test_state(unsigned int *tasks, enum psi_states state)
237 return unlikely(tasks[NR_IOWAIT]);
239 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
241 return unlikely(tasks[NR_MEMSTALL]);
243 return unlikely(tasks[NR_MEMSTALL] &&
244 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
246 return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
248 return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
250 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
257 static void get_recent_times(struct psi_group *group, int cpu,
258 enum psi_aggregators aggregator, u32 *times,
259 u32 *pchanged_states)
261 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
262 u64 now, state_start;
267 *pchanged_states = 0;
269 /* Snapshot a coherent view of the CPU state */
271 seq = read_seqcount_begin(&groupc->seq);
272 now = cpu_clock(cpu);
273 memcpy(times, groupc->times, sizeof(groupc->times));
274 state_mask = groupc->state_mask;
275 state_start = groupc->state_start;
276 } while (read_seqcount_retry(&groupc->seq, seq));
278 /* Calculate state time deltas against the previous snapshot */
279 for (s = 0; s < NR_PSI_STATES; s++) {
282 * In addition to already concluded states, we also
283 * incorporate currently active states on the CPU,
284 * since states may last for many sampling periods.
286 * This way we keep our delta sampling buckets small
287 * (u32) and our reported pressure close to what's
288 * actually happening.
290 if (state_mask & (1 << s))
291 times[s] += now - state_start;
293 delta = times[s] - groupc->times_prev[aggregator][s];
294 groupc->times_prev[aggregator][s] = times[s];
298 *pchanged_states |= (1 << s);
302 static void calc_avgs(unsigned long avg[3], int missed_periods,
303 u64 time, u64 period)
307 /* Fill in zeroes for periods of no activity */
308 if (missed_periods) {
309 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
310 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
311 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
314 /* Sample the most recent active period */
315 pct = div_u64(time * 100, period);
317 avg[0] = calc_load(avg[0], EXP_10s, pct);
318 avg[1] = calc_load(avg[1], EXP_60s, pct);
319 avg[2] = calc_load(avg[2], EXP_300s, pct);
322 static void collect_percpu_times(struct psi_group *group,
323 enum psi_aggregators aggregator,
324 u32 *pchanged_states)
326 u64 deltas[NR_PSI_STATES - 1] = { 0, };
327 unsigned long nonidle_total = 0;
328 u32 changed_states = 0;
333 * Collect the per-cpu time buckets and average them into a
334 * single time sample that is normalized to wallclock time.
336 * For averaging, each CPU is weighted by its non-idle time in
337 * the sampling period. This eliminates artifacts from uneven
338 * loading, or even entirely idle CPUs.
340 for_each_possible_cpu(cpu) {
341 u32 times[NR_PSI_STATES];
343 u32 cpu_changed_states;
345 get_recent_times(group, cpu, aggregator, times,
346 &cpu_changed_states);
347 changed_states |= cpu_changed_states;
349 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
350 nonidle_total += nonidle;
352 for (s = 0; s < PSI_NONIDLE; s++)
353 deltas[s] += (u64)times[s] * nonidle;
357 * Integrate the sample into the running statistics that are
358 * reported to userspace: the cumulative stall times and the
361 * Pressure percentages are sampled at PSI_FREQ. We might be
362 * called more often when the user polls more frequently than
363 * that; we might be called less often when there is no task
364 * activity, thus no data, and clock ticks are sporadic. The
365 * below handles both.
369 for (s = 0; s < NR_PSI_STATES - 1; s++)
370 group->total[aggregator][s] +=
371 div_u64(deltas[s], max(nonidle_total, 1UL));
374 *pchanged_states = changed_states;
377 static u64 update_averages(struct psi_group *group, u64 now)
379 unsigned long missed_periods = 0;
385 expires = group->avg_next_update;
386 if (now - expires >= psi_period)
387 missed_periods = div_u64(now - expires, psi_period);
390 * The periodic clock tick can get delayed for various
391 * reasons, especially on loaded systems. To avoid clock
392 * drift, we schedule the clock in fixed psi_period intervals.
393 * But the deltas we sample out of the per-cpu buckets above
394 * are based on the actual time elapsing between clock ticks.
396 avg_next_update = expires + ((1 + missed_periods) * psi_period);
397 period = now - (group->avg_last_update + (missed_periods * psi_period));
398 group->avg_last_update = now;
400 for (s = 0; s < NR_PSI_STATES - 1; s++) {
403 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
405 * Due to the lockless sampling of the time buckets,
406 * recorded time deltas can slip into the next period,
407 * which under full pressure can result in samples in
408 * excess of the period length.
410 * We don't want to report non-sensical pressures in
411 * excess of 100%, nor do we want to drop such events
412 * on the floor. Instead we punt any overage into the
413 * future until pressure subsides. By doing this we
414 * don't underreport the occurring pressure curve, we
415 * just report it delayed by one period length.
417 * The error isn't cumulative. As soon as another
418 * delta slips from a period P to P+1, by definition
419 * it frees up its time T in P.
423 group->avg_total[s] += sample;
424 calc_avgs(group->avg[s], missed_periods, sample, period);
427 return avg_next_update;
430 static void psi_avgs_work(struct work_struct *work)
432 struct delayed_work *dwork;
433 struct psi_group *group;
438 dwork = to_delayed_work(work);
439 group = container_of(dwork, struct psi_group, avgs_work);
441 mutex_lock(&group->avgs_lock);
445 collect_percpu_times(group, PSI_AVGS, &changed_states);
446 nonidle = changed_states & (1 << PSI_NONIDLE);
448 * If there is task activity, periodically fold the per-cpu
449 * times and feed samples into the running averages. If things
450 * are idle and there is no data to process, stop the clock.
451 * Once restarted, we'll catch up the running averages in one
452 * go - see calc_avgs() and missed_periods.
454 if (now >= group->avg_next_update)
455 group->avg_next_update = update_averages(group, now);
458 schedule_delayed_work(dwork, nsecs_to_jiffies(
459 group->avg_next_update - now) + 1);
462 mutex_unlock(&group->avgs_lock);
465 /* Trigger tracking window manipulations */
466 static void window_reset(struct psi_window *win, u64 now, u64 value,
469 win->start_time = now;
470 win->start_value = value;
471 win->prev_growth = prev_growth;
475 * PSI growth tracking window update and growth calculation routine.
477 * This approximates a sliding tracking window by interpolating
478 * partially elapsed windows using historical growth data from the
479 * previous intervals. This minimizes memory requirements (by not storing
480 * all the intermediate values in the previous window) and simplifies
481 * the calculations. It works well because PSI signal changes only in
482 * positive direction and over relatively small window sizes the growth
483 * is close to linear.
485 static u64 window_update(struct psi_window *win, u64 now, u64 value)
490 elapsed = now - win->start_time;
491 growth = value - win->start_value;
493 * After each tracking window passes win->start_value and
494 * win->start_time get reset and win->prev_growth stores
495 * the average per-window growth of the previous window.
496 * win->prev_growth is then used to interpolate additional
497 * growth from the previous window assuming it was linear.
499 if (elapsed > win->size)
500 window_reset(win, now, value, growth);
504 remaining = win->size - elapsed;
505 growth += div64_u64(win->prev_growth * remaining, win->size);
511 static void init_triggers(struct psi_group *group, u64 now)
513 struct psi_trigger *t;
515 list_for_each_entry(t, &group->triggers, node)
516 window_reset(&t->win, now,
517 group->total[PSI_POLL][t->state], 0);
518 memcpy(group->polling_total, group->total[PSI_POLL],
519 sizeof(group->polling_total));
520 group->polling_next_update = now + group->poll_min_period;
523 static u64 update_triggers(struct psi_group *group, u64 now)
525 struct psi_trigger *t;
526 bool new_stall = false;
527 u64 *total = group->total[PSI_POLL];
530 * On subsequent updates, calculate growth deltas and let
531 * watchers know when their specified thresholds are exceeded.
533 list_for_each_entry(t, &group->triggers, node) {
536 /* Check for stall activity */
537 if (group->polling_total[t->state] == total[t->state])
541 * Multiple triggers might be looking at the same state,
542 * remember to update group->polling_total[] once we've
543 * been through all of them. Also remember to extend the
544 * polling time if we see new stall activity.
548 /* Calculate growth since last update */
549 growth = window_update(&t->win, now, total[t->state]);
550 if (growth < t->threshold)
553 /* Limit event signaling to once per window */
554 if (now < t->last_event_time + t->win.size)
557 /* Generate an event */
558 if (cmpxchg(&t->event, 0, 1) == 0)
559 wake_up_interruptible(&t->event_wait);
560 t->last_event_time = now;
564 memcpy(group->polling_total, total,
565 sizeof(group->polling_total));
567 return now + group->poll_min_period;
570 /* Schedule polling if it's not already scheduled. */
571 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
573 struct task_struct *task;
576 * Do not reschedule if already scheduled.
577 * Possible race with a timer scheduled after this check but before
578 * mod_timer below can be tolerated because group->polling_next_update
579 * will keep updates on schedule.
581 if (timer_pending(&group->poll_timer))
586 task = rcu_dereference(group->poll_task);
588 * kworker might be NULL in case psi_trigger_destroy races with
589 * psi_task_change (hotpath) which can't use locks
592 mod_timer(&group->poll_timer, jiffies + delay);
597 static void psi_poll_work(struct psi_group *group)
602 mutex_lock(&group->trigger_lock);
606 collect_percpu_times(group, PSI_POLL, &changed_states);
608 if (changed_states & group->poll_states) {
609 /* Initialize trigger windows when entering polling mode */
610 if (now > group->polling_until)
611 init_triggers(group, now);
614 * Keep the monitor active for at least the duration of the
615 * minimum tracking window as long as monitor states are
618 group->polling_until = now +
619 group->poll_min_period * UPDATES_PER_WINDOW;
622 if (now > group->polling_until) {
623 group->polling_next_update = ULLONG_MAX;
627 if (now >= group->polling_next_update)
628 group->polling_next_update = update_triggers(group, now);
630 psi_schedule_poll_work(group,
631 nsecs_to_jiffies(group->polling_next_update - now) + 1);
634 mutex_unlock(&group->trigger_lock);
637 static int psi_poll_worker(void *data)
639 struct psi_group *group = (struct psi_group *)data;
641 sched_set_fifo_low(current);
644 wait_event_interruptible(group->poll_wait,
645 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
646 kthread_should_stop());
647 if (kthread_should_stop())
650 psi_poll_work(group);
655 static void poll_timer_fn(struct timer_list *t)
657 struct psi_group *group = from_timer(group, t, poll_timer);
659 atomic_set(&group->poll_wakeup, 1);
660 wake_up_interruptible(&group->poll_wait);
663 static void record_times(struct psi_group_cpu *groupc, u64 now)
667 delta = now - groupc->state_start;
668 groupc->state_start = now;
670 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
671 groupc->times[PSI_IO_SOME] += delta;
672 if (groupc->state_mask & (1 << PSI_IO_FULL))
673 groupc->times[PSI_IO_FULL] += delta;
676 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
677 groupc->times[PSI_MEM_SOME] += delta;
678 if (groupc->state_mask & (1 << PSI_MEM_FULL))
679 groupc->times[PSI_MEM_FULL] += delta;
682 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
683 groupc->times[PSI_CPU_SOME] += delta;
684 if (groupc->state_mask & (1 << PSI_CPU_FULL))
685 groupc->times[PSI_CPU_FULL] += delta;
688 if (groupc->state_mask & (1 << PSI_NONIDLE))
689 groupc->times[PSI_NONIDLE] += delta;
692 static void psi_group_change(struct psi_group *group, int cpu,
693 unsigned int clear, unsigned int set, u64 now,
696 struct psi_group_cpu *groupc;
701 groupc = per_cpu_ptr(group->pcpu, cpu);
704 * First we assess the aggregate resource states this CPU's
705 * tasks have been in since the last change, and account any
706 * SOME and FULL time these may have resulted in.
708 * Then we update the task counts according to the state
709 * change requested through the @clear and @set bits.
711 write_seqcount_begin(&groupc->seq);
713 record_times(groupc, now);
715 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
718 if (groupc->tasks[t]) {
720 } else if (!psi_bug) {
721 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n",
722 cpu, t, groupc->tasks[0],
723 groupc->tasks[1], groupc->tasks[2],
724 groupc->tasks[3], groupc->tasks[4],
730 for (t = 0; set; set &= ~(1 << t), t++)
734 /* Calculate state mask representing active states */
735 for (s = 0; s < NR_PSI_STATES; s++) {
736 if (test_state(groupc->tasks, s))
737 state_mask |= (1 << s);
741 * Since we care about lost potential, a memstall is FULL
742 * when there are no other working tasks, but also when
743 * the CPU is actively reclaiming and nothing productive
744 * could run even if it were runnable. So when the current
745 * task in a cgroup is in_memstall, the corresponding groupc
746 * on that cpu is in PSI_MEM_FULL state.
748 if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
749 state_mask |= (1 << PSI_MEM_FULL);
751 groupc->state_mask = state_mask;
753 write_seqcount_end(&groupc->seq);
755 if (state_mask & group->poll_states)
756 psi_schedule_poll_work(group, 1);
758 if (wake_clock && !delayed_work_pending(&group->avgs_work))
759 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
762 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
764 if (*iter == &psi_system)
767 #ifdef CONFIG_CGROUPS
768 if (static_branch_likely(&psi_cgroups_enabled)) {
769 struct cgroup *cgroup = NULL;
772 cgroup = task->cgroups->dfl_cgrp;
774 cgroup = cgroup_parent(*iter);
776 if (cgroup && cgroup_parent(cgroup)) {
778 return cgroup_psi(cgroup);
786 static void psi_flags_change(struct task_struct *task, int clear, int set)
788 if (((task->psi_flags & set) ||
789 (task->psi_flags & clear) != clear) &&
791 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
792 task->pid, task->comm, task_cpu(task),
793 task->psi_flags, clear, set);
797 task->psi_flags &= ~clear;
798 task->psi_flags |= set;
801 void psi_task_change(struct task_struct *task, int clear, int set)
803 int cpu = task_cpu(task);
804 struct psi_group *group;
805 bool wake_clock = true;
812 psi_flags_change(task, clear, set);
814 now = cpu_clock(cpu);
816 * Periodic aggregation shuts off if there is a period of no
817 * task changes, so we wake it back up if necessary. However,
818 * don't do this if the task change is the aggregation worker
819 * itself going to sleep, or we'll ping-pong forever.
821 if (unlikely((clear & TSK_RUNNING) &&
822 (task->flags & PF_WQ_WORKER) &&
823 wq_worker_last_func(task) == psi_avgs_work))
826 while ((group = iterate_groups(task, &iter)))
827 psi_group_change(group, cpu, clear, set, now, wake_clock);
830 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
833 struct psi_group *group, *common = NULL;
834 int cpu = task_cpu(prev);
836 u64 now = cpu_clock(cpu);
839 bool identical_state;
841 psi_flags_change(next, 0, TSK_ONCPU);
843 * When switching between tasks that have an identical
844 * runtime state, the cgroup that contains both tasks
845 * we reach the first common ancestor. Iterate @next's
846 * ancestors only until we encounter @prev's ONCPU.
848 identical_state = prev->psi_flags == next->psi_flags;
850 while ((group = iterate_groups(next, &iter))) {
851 if (identical_state &&
852 per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
857 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
862 int clear = TSK_ONCPU, set = 0;
865 * When we're going to sleep, psi_dequeue() lets us
866 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
867 * TSK_IOWAIT here, where we can combine it with
868 * TSK_ONCPU and save walking common ancestors twice.
871 clear |= TSK_RUNNING;
872 if (prev->in_memstall)
873 clear |= TSK_MEMSTALL_RUNNING;
878 psi_flags_change(prev, clear, set);
881 while ((group = iterate_groups(prev, &iter)) && group != common)
882 psi_group_change(group, cpu, clear, set, now, true);
885 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
886 * with dequeuing too, finish that for the rest of the hierarchy.
890 for (; group; group = iterate_groups(prev, &iter))
891 psi_group_change(group, cpu, clear, set, now, true);
897 * psi_memstall_enter - mark the beginning of a memory stall section
898 * @flags: flags to handle nested sections
900 * Marks the calling task as being stalled due to a lack of memory,
901 * such as waiting for a refault or performing reclaim.
903 void psi_memstall_enter(unsigned long *flags)
908 if (static_branch_likely(&psi_disabled))
911 *flags = current->in_memstall;
915 * in_memstall setting & accounting needs to be atomic wrt
916 * changes to the task's scheduling state, otherwise we can
917 * race with CPU migration.
919 rq = this_rq_lock_irq(&rf);
921 current->in_memstall = 1;
922 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
924 rq_unlock_irq(rq, &rf);
928 * psi_memstall_leave - mark the end of an memory stall section
929 * @flags: flags to handle nested memdelay sections
931 * Marks the calling task as no longer stalled due to lack of memory.
933 void psi_memstall_leave(unsigned long *flags)
938 if (static_branch_likely(&psi_disabled))
944 * in_memstall clearing & accounting needs to be atomic wrt
945 * changes to the task's scheduling state, otherwise we could
946 * race with CPU migration.
948 rq = this_rq_lock_irq(&rf);
950 current->in_memstall = 0;
951 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
953 rq_unlock_irq(rq, &rf);
956 #ifdef CONFIG_CGROUPS
957 int psi_cgroup_alloc(struct cgroup *cgroup)
959 if (static_branch_likely(&psi_disabled))
962 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
963 if (!cgroup->psi.pcpu)
965 group_init(&cgroup->psi);
969 void psi_cgroup_free(struct cgroup *cgroup)
971 if (static_branch_likely(&psi_disabled))
974 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
975 free_percpu(cgroup->psi.pcpu);
976 /* All triggers must be removed by now */
977 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
981 * cgroup_move_task - move task to a different cgroup
983 * @to: the target css_set
985 * Move task to a new cgroup and safely migrate its associated stall
986 * state between the different groups.
988 * This function acquires the task's rq lock to lock out concurrent
989 * changes to the task's scheduling state and - in case the task is
990 * running - concurrent changes to its stall state.
992 void cgroup_move_task(struct task_struct *task, struct css_set *to)
994 unsigned int task_flags;
998 if (static_branch_likely(&psi_disabled)) {
1000 * Lame to do this here, but the scheduler cannot be locked
1001 * from the outside, so we move cgroups from inside sched/.
1003 rcu_assign_pointer(task->cgroups, to);
1007 rq = task_rq_lock(task, &rf);
1010 * We may race with schedule() dropping the rq lock between
1011 * deactivating prev and switching to next. Because the psi
1012 * updates from the deactivation are deferred to the switch
1013 * callback to save cgroup tree updates, the task's scheduling
1014 * state here is not coherent with its psi state:
1016 * schedule() cgroup_move_task()
1020 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1024 * psi_task_change() // old cgroup
1025 * task->cgroups = to
1026 * psi_task_change() // new cgroup
1029 * psi_sched_switch() // does deferred updates in new cgroup
1031 * Don't rely on the scheduling state. Use psi_flags instead.
1033 task_flags = task->psi_flags;
1036 psi_task_change(task, task_flags, 0);
1038 /* See comment above */
1039 rcu_assign_pointer(task->cgroups, to);
1042 psi_task_change(task, 0, task_flags);
1044 task_rq_unlock(rq, task, &rf);
1046 #endif /* CONFIG_CGROUPS */
1048 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1053 if (static_branch_likely(&psi_disabled))
1056 /* Update averages before reporting them */
1057 mutex_lock(&group->avgs_lock);
1058 now = sched_clock();
1059 collect_percpu_times(group, PSI_AVGS, NULL);
1060 if (now >= group->avg_next_update)
1061 group->avg_next_update = update_averages(group, now);
1062 mutex_unlock(&group->avgs_lock);
1064 for (full = 0; full < 2; full++) {
1065 unsigned long avg[3];
1069 for (w = 0; w < 3; w++)
1070 avg[w] = group->avg[res * 2 + full][w];
1071 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1074 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1075 full ? "full" : "some",
1076 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1077 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1078 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1085 static int psi_io_show(struct seq_file *m, void *v)
1087 return psi_show(m, &psi_system, PSI_IO);
1090 static int psi_memory_show(struct seq_file *m, void *v)
1092 return psi_show(m, &psi_system, PSI_MEM);
1095 static int psi_cpu_show(struct seq_file *m, void *v)
1097 return psi_show(m, &psi_system, PSI_CPU);
1100 static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
1102 if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
1105 return single_open(file, psi_show, NULL);
1108 static int psi_io_open(struct inode *inode, struct file *file)
1110 return psi_open(file, psi_io_show);
1113 static int psi_memory_open(struct inode *inode, struct file *file)
1115 return psi_open(file, psi_memory_show);
1118 static int psi_cpu_open(struct inode *inode, struct file *file)
1120 return psi_open(file, psi_cpu_show);
1123 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1124 char *buf, size_t nbytes, enum psi_res res)
1126 struct psi_trigger *t;
1127 enum psi_states state;
1131 if (static_branch_likely(&psi_disabled))
1132 return ERR_PTR(-EOPNOTSUPP);
1134 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1135 state = PSI_IO_SOME + res * 2;
1136 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1137 state = PSI_IO_FULL + res * 2;
1139 return ERR_PTR(-EINVAL);
1141 if (state >= PSI_NONIDLE)
1142 return ERR_PTR(-EINVAL);
1144 if (window_us < WINDOW_MIN_US ||
1145 window_us > WINDOW_MAX_US)
1146 return ERR_PTR(-EINVAL);
1148 /* Check threshold */
1149 if (threshold_us == 0 || threshold_us > window_us)
1150 return ERR_PTR(-EINVAL);
1152 t = kmalloc(sizeof(*t), GFP_KERNEL);
1154 return ERR_PTR(-ENOMEM);
1158 t->threshold = threshold_us * NSEC_PER_USEC;
1159 t->win.size = window_us * NSEC_PER_USEC;
1160 window_reset(&t->win, 0, 0, 0);
1163 t->last_event_time = 0;
1164 init_waitqueue_head(&t->event_wait);
1166 mutex_lock(&group->trigger_lock);
1168 if (!rcu_access_pointer(group->poll_task)) {
1169 struct task_struct *task;
1171 task = kthread_create(psi_poll_worker, group, "psimon");
1174 mutex_unlock(&group->trigger_lock);
1175 return ERR_CAST(task);
1177 atomic_set(&group->poll_wakeup, 0);
1178 wake_up_process(task);
1179 rcu_assign_pointer(group->poll_task, task);
1182 list_add(&t->node, &group->triggers);
1183 group->poll_min_period = min(group->poll_min_period,
1184 div_u64(t->win.size, UPDATES_PER_WINDOW));
1185 group->nr_triggers[t->state]++;
1186 group->poll_states |= (1 << t->state);
1188 mutex_unlock(&group->trigger_lock);
1193 void psi_trigger_destroy(struct psi_trigger *t)
1195 struct psi_group *group;
1196 struct task_struct *task_to_destroy = NULL;
1199 * We do not check psi_disabled since it might have been disabled after
1200 * the trigger got created.
1207 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1208 * from under a polling process.
1210 wake_up_interruptible(&t->event_wait);
1212 mutex_lock(&group->trigger_lock);
1214 if (!list_empty(&t->node)) {
1215 struct psi_trigger *tmp;
1216 u64 period = ULLONG_MAX;
1219 group->nr_triggers[t->state]--;
1220 if (!group->nr_triggers[t->state])
1221 group->poll_states &= ~(1 << t->state);
1222 /* reset min update period for the remaining triggers */
1223 list_for_each_entry(tmp, &group->triggers, node)
1224 period = min(period, div_u64(tmp->win.size,
1225 UPDATES_PER_WINDOW));
1226 group->poll_min_period = period;
1227 /* Destroy poll_task when the last trigger is destroyed */
1228 if (group->poll_states == 0) {
1229 group->polling_until = 0;
1230 task_to_destroy = rcu_dereference_protected(
1232 lockdep_is_held(&group->trigger_lock));
1233 rcu_assign_pointer(group->poll_task, NULL);
1234 del_timer(&group->poll_timer);
1238 mutex_unlock(&group->trigger_lock);
1241 * Wait for psi_schedule_poll_work RCU to complete its read-side
1242 * critical section before destroying the trigger and optionally the
1247 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
1248 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1250 if (task_to_destroy) {
1252 * After the RCU grace period has expired, the worker
1253 * can no longer be found through group->poll_task.
1255 kthread_stop(task_to_destroy);
1260 __poll_t psi_trigger_poll(void **trigger_ptr,
1261 struct file *file, poll_table *wait)
1263 __poll_t ret = DEFAULT_POLLMASK;
1264 struct psi_trigger *t;
1266 if (static_branch_likely(&psi_disabled))
1267 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1269 t = smp_load_acquire(trigger_ptr);
1271 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1273 poll_wait(file, &t->event_wait, wait);
1275 if (cmpxchg(&t->event, 1, 0) == 1)
1281 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1282 size_t nbytes, enum psi_res res)
1286 struct seq_file *seq;
1287 struct psi_trigger *new;
1289 if (static_branch_likely(&psi_disabled))
1295 buf_size = min(nbytes, sizeof(buf));
1296 if (copy_from_user(buf, user_buf, buf_size))
1299 buf[buf_size - 1] = '\0';
1301 seq = file->private_data;
1303 /* Take seq->lock to protect seq->private from concurrent writes */
1304 mutex_lock(&seq->lock);
1306 /* Allow only one trigger per file descriptor */
1308 mutex_unlock(&seq->lock);
1312 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1314 mutex_unlock(&seq->lock);
1315 return PTR_ERR(new);
1318 smp_store_release(&seq->private, new);
1319 mutex_unlock(&seq->lock);
1324 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1325 size_t nbytes, loff_t *ppos)
1327 return psi_write(file, user_buf, nbytes, PSI_IO);
1330 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1331 size_t nbytes, loff_t *ppos)
1333 return psi_write(file, user_buf, nbytes, PSI_MEM);
1336 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1337 size_t nbytes, loff_t *ppos)
1339 return psi_write(file, user_buf, nbytes, PSI_CPU);
1342 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1344 struct seq_file *seq = file->private_data;
1346 return psi_trigger_poll(&seq->private, file, wait);
1349 static int psi_fop_release(struct inode *inode, struct file *file)
1351 struct seq_file *seq = file->private_data;
1353 psi_trigger_destroy(seq->private);
1354 return single_release(inode, file);
1357 static const struct proc_ops psi_io_proc_ops = {
1358 .proc_open = psi_io_open,
1359 .proc_read = seq_read,
1360 .proc_lseek = seq_lseek,
1361 .proc_write = psi_io_write,
1362 .proc_poll = psi_fop_poll,
1363 .proc_release = psi_fop_release,
1366 static const struct proc_ops psi_memory_proc_ops = {
1367 .proc_open = psi_memory_open,
1368 .proc_read = seq_read,
1369 .proc_lseek = seq_lseek,
1370 .proc_write = psi_memory_write,
1371 .proc_poll = psi_fop_poll,
1372 .proc_release = psi_fop_release,
1375 static const struct proc_ops psi_cpu_proc_ops = {
1376 .proc_open = psi_cpu_open,
1377 .proc_read = seq_read,
1378 .proc_lseek = seq_lseek,
1379 .proc_write = psi_cpu_write,
1380 .proc_poll = psi_fop_poll,
1381 .proc_release = psi_fop_release,
1384 static int __init psi_proc_init(void)
1387 proc_mkdir("pressure", NULL);
1388 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1389 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1390 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1394 module_init(psi_proc_init);