1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include <linux/timekeeping.h>
17 #include "transaction.h"
21 #include "dev-replace.h"
23 #include "block-group.h"
24 #include "space-info.h"
27 #include "accessors.h"
29 static struct kmem_cache *btrfs_trans_handle_cachep;
31 #define BTRFS_ROOT_TRANS_TAG 0
34 * Transaction states and transitions
36 * No running transaction (fs tree blocks are not modified)
39 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
41 * Transaction N [[TRANS_STATE_RUNNING]]
43 * | New trans handles can be attached to transaction N by calling all
44 * | start_transaction() variants.
47 * | Call btrfs_commit_transaction() on any trans handle attached to
50 * Transaction N [[TRANS_STATE_COMMIT_START]]
52 * | Will wait for previous running transaction to completely finish if there
55 * | Then one of the following happes:
56 * | - Wait for all other trans handle holders to release.
57 * | The btrfs_commit_transaction() caller will do the commit work.
58 * | - Wait for current transaction to be committed by others.
59 * | Other btrfs_commit_transaction() caller will do the commit work.
61 * | At this stage, only btrfs_join_transaction*() variants can attach
62 * | to this running transaction.
63 * | All other variants will wait for current one to finish and attach to
67 * | Caller is chosen to commit transaction N, and all other trans handle
68 * | haven been released.
70 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
72 * | The heavy lifting transaction work is started.
73 * | From running delayed refs (modifying extent tree) to creating pending
74 * | snapshots, running qgroups.
75 * | In short, modify supporting trees to reflect modifications of subvolume
78 * | At this stage, all start_transaction() calls will wait for this
79 * | transaction to finish and attach to transaction N+1.
82 * | Until all supporting trees are updated.
84 * Transaction N [[TRANS_STATE_UNBLOCKED]]
86 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
87 * | need to write them back to disk and update |
90 * | At this stage, new transaction is allowed to |
92 * | All new start_transaction() calls will be |
93 * | attached to transid N+1. |
96 * | Until all tree blocks are super blocks are |
97 * | written to block devices |
99 * Transaction N [[TRANS_STATE_COMPLETED]] V
100 * All tree blocks and super blocks are written. Transaction N+1
101 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
102 * data structures will be cleaned up. | Life goes on
104 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
105 [TRANS_STATE_RUNNING] = 0U,
106 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
107 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
121 [TRANS_STATE_COMPLETED] = (__TRANS_START |
124 __TRANS_JOIN_NOLOCK |
125 __TRANS_JOIN_NOSTART),
128 void btrfs_put_transaction(struct btrfs_transaction *transaction)
130 WARN_ON(refcount_read(&transaction->use_count) == 0);
131 if (refcount_dec_and_test(&transaction->use_count)) {
132 BUG_ON(!list_empty(&transaction->list));
133 WARN_ON(!RB_EMPTY_ROOT(
134 &transaction->delayed_refs.href_root.rb_root));
135 WARN_ON(!RB_EMPTY_ROOT(
136 &transaction->delayed_refs.dirty_extent_root));
137 if (transaction->delayed_refs.pending_csums)
138 btrfs_err(transaction->fs_info,
139 "pending csums is %llu",
140 transaction->delayed_refs.pending_csums);
142 * If any block groups are found in ->deleted_bgs then it's
143 * because the transaction was aborted and a commit did not
144 * happen (things failed before writing the new superblock
145 * and calling btrfs_finish_extent_commit()), so we can not
146 * discard the physical locations of the block groups.
148 while (!list_empty(&transaction->deleted_bgs)) {
149 struct btrfs_block_group *cache;
151 cache = list_first_entry(&transaction->deleted_bgs,
152 struct btrfs_block_group,
154 list_del_init(&cache->bg_list);
155 btrfs_unfreeze_block_group(cache);
156 btrfs_put_block_group(cache);
158 WARN_ON(!list_empty(&transaction->dev_update_list));
163 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
165 struct btrfs_transaction *cur_trans = trans->transaction;
166 struct btrfs_fs_info *fs_info = trans->fs_info;
167 struct btrfs_root *root, *tmp;
170 * At this point no one can be using this transaction to modify any tree
171 * and no one can start another transaction to modify any tree either.
173 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
175 down_write(&fs_info->commit_root_sem);
177 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
178 fs_info->last_reloc_trans = trans->transid;
180 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
182 list_del_init(&root->dirty_list);
183 free_extent_buffer(root->commit_root);
184 root->commit_root = btrfs_root_node(root);
185 extent_io_tree_release(&root->dirty_log_pages);
186 btrfs_qgroup_clean_swapped_blocks(root);
189 /* We can free old roots now. */
190 spin_lock(&cur_trans->dropped_roots_lock);
191 while (!list_empty(&cur_trans->dropped_roots)) {
192 root = list_first_entry(&cur_trans->dropped_roots,
193 struct btrfs_root, root_list);
194 list_del_init(&root->root_list);
195 spin_unlock(&cur_trans->dropped_roots_lock);
196 btrfs_free_log(trans, root);
197 btrfs_drop_and_free_fs_root(fs_info, root);
198 spin_lock(&cur_trans->dropped_roots_lock);
200 spin_unlock(&cur_trans->dropped_roots_lock);
202 up_write(&fs_info->commit_root_sem);
205 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
208 if (type & TRANS_EXTWRITERS)
209 atomic_inc(&trans->num_extwriters);
212 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
215 if (type & TRANS_EXTWRITERS)
216 atomic_dec(&trans->num_extwriters);
219 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
222 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
225 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
227 return atomic_read(&trans->num_extwriters);
231 * To be called after doing the chunk btree updates right after allocating a new
232 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
233 * chunk after all chunk btree updates and after finishing the second phase of
234 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
235 * group had its chunk item insertion delayed to the second phase.
237 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
239 struct btrfs_fs_info *fs_info = trans->fs_info;
241 if (!trans->chunk_bytes_reserved)
244 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
245 trans->chunk_bytes_reserved, NULL);
246 trans->chunk_bytes_reserved = 0;
250 * either allocate a new transaction or hop into the existing one
252 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
255 struct btrfs_transaction *cur_trans;
257 spin_lock(&fs_info->trans_lock);
259 /* The file system has been taken offline. No new transactions. */
260 if (BTRFS_FS_ERROR(fs_info)) {
261 spin_unlock(&fs_info->trans_lock);
265 cur_trans = fs_info->running_transaction;
267 if (TRANS_ABORTED(cur_trans)) {
268 spin_unlock(&fs_info->trans_lock);
269 return cur_trans->aborted;
271 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
272 spin_unlock(&fs_info->trans_lock);
275 refcount_inc(&cur_trans->use_count);
276 atomic_inc(&cur_trans->num_writers);
277 extwriter_counter_inc(cur_trans, type);
278 spin_unlock(&fs_info->trans_lock);
279 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
280 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
283 spin_unlock(&fs_info->trans_lock);
286 * If we are ATTACH, we just want to catch the current transaction,
287 * and commit it. If there is no transaction, just return ENOENT.
289 if (type == TRANS_ATTACH)
293 * JOIN_NOLOCK only happens during the transaction commit, so
294 * it is impossible that ->running_transaction is NULL
296 BUG_ON(type == TRANS_JOIN_NOLOCK);
298 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
302 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
303 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
305 spin_lock(&fs_info->trans_lock);
306 if (fs_info->running_transaction) {
308 * someone started a transaction after we unlocked. Make sure
309 * to redo the checks above
311 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
312 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
315 } else if (BTRFS_FS_ERROR(fs_info)) {
316 spin_unlock(&fs_info->trans_lock);
317 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
318 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
323 cur_trans->fs_info = fs_info;
324 atomic_set(&cur_trans->pending_ordered, 0);
325 init_waitqueue_head(&cur_trans->pending_wait);
326 atomic_set(&cur_trans->num_writers, 1);
327 extwriter_counter_init(cur_trans, type);
328 init_waitqueue_head(&cur_trans->writer_wait);
329 init_waitqueue_head(&cur_trans->commit_wait);
330 cur_trans->state = TRANS_STATE_RUNNING;
332 * One for this trans handle, one so it will live on until we
333 * commit the transaction.
335 refcount_set(&cur_trans->use_count, 2);
336 cur_trans->flags = 0;
337 cur_trans->start_time = ktime_get_seconds();
339 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
341 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
342 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
343 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
346 * although the tree mod log is per file system and not per transaction,
347 * the log must never go across transaction boundaries.
350 if (!list_empty(&fs_info->tree_mod_seq_list))
351 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
352 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
353 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
354 atomic64_set(&fs_info->tree_mod_seq, 0);
356 spin_lock_init(&cur_trans->delayed_refs.lock);
358 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
359 INIT_LIST_HEAD(&cur_trans->dev_update_list);
360 INIT_LIST_HEAD(&cur_trans->switch_commits);
361 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
362 INIT_LIST_HEAD(&cur_trans->io_bgs);
363 INIT_LIST_HEAD(&cur_trans->dropped_roots);
364 mutex_init(&cur_trans->cache_write_mutex);
365 spin_lock_init(&cur_trans->dirty_bgs_lock);
366 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
367 spin_lock_init(&cur_trans->dropped_roots_lock);
368 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
369 spin_lock_init(&cur_trans->releasing_ebs_lock);
370 list_add_tail(&cur_trans->list, &fs_info->trans_list);
371 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
372 IO_TREE_TRANS_DIRTY_PAGES, NULL);
373 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
374 IO_TREE_FS_PINNED_EXTENTS, NULL);
375 fs_info->generation++;
376 cur_trans->transid = fs_info->generation;
377 fs_info->running_transaction = cur_trans;
378 cur_trans->aborted = 0;
379 spin_unlock(&fs_info->trans_lock);
385 * This does all the record keeping required to make sure that a shareable root
386 * is properly recorded in a given transaction. This is required to make sure
387 * the old root from before we joined the transaction is deleted when the
388 * transaction commits.
390 static int record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root,
394 struct btrfs_fs_info *fs_info = root->fs_info;
397 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
398 root->last_trans < trans->transid) || force) {
399 WARN_ON(!force && root->commit_root != root->node);
402 * see below for IN_TRANS_SETUP usage rules
403 * we have the reloc mutex held now, so there
404 * is only one writer in this function
406 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
408 /* make sure readers find IN_TRANS_SETUP before
409 * they find our root->last_trans update
413 spin_lock(&fs_info->fs_roots_radix_lock);
414 if (root->last_trans == trans->transid && !force) {
415 spin_unlock(&fs_info->fs_roots_radix_lock);
418 radix_tree_tag_set(&fs_info->fs_roots_radix,
419 (unsigned long)root->root_key.objectid,
420 BTRFS_ROOT_TRANS_TAG);
421 spin_unlock(&fs_info->fs_roots_radix_lock);
422 root->last_trans = trans->transid;
424 /* this is pretty tricky. We don't want to
425 * take the relocation lock in btrfs_record_root_in_trans
426 * unless we're really doing the first setup for this root in
429 * Normally we'd use root->last_trans as a flag to decide
430 * if we want to take the expensive mutex.
432 * But, we have to set root->last_trans before we
433 * init the relocation root, otherwise, we trip over warnings
434 * in ctree.c. The solution used here is to flag ourselves
435 * with root IN_TRANS_SETUP. When this is 1, we're still
436 * fixing up the reloc trees and everyone must wait.
438 * When this is zero, they can trust root->last_trans and fly
439 * through btrfs_record_root_in_trans without having to take the
440 * lock. smp_wmb() makes sure that all the writes above are
441 * done before we pop in the zero below
443 ret = btrfs_init_reloc_root(trans, root);
444 smp_mb__before_atomic();
445 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
451 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
452 struct btrfs_root *root)
454 struct btrfs_fs_info *fs_info = root->fs_info;
455 struct btrfs_transaction *cur_trans = trans->transaction;
457 /* Add ourselves to the transaction dropped list */
458 spin_lock(&cur_trans->dropped_roots_lock);
459 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
460 spin_unlock(&cur_trans->dropped_roots_lock);
462 /* Make sure we don't try to update the root at commit time */
463 spin_lock(&fs_info->fs_roots_radix_lock);
464 radix_tree_tag_clear(&fs_info->fs_roots_radix,
465 (unsigned long)root->root_key.objectid,
466 BTRFS_ROOT_TRANS_TAG);
467 spin_unlock(&fs_info->fs_roots_radix_lock);
470 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
471 struct btrfs_root *root)
473 struct btrfs_fs_info *fs_info = root->fs_info;
476 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
480 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
484 if (root->last_trans == trans->transid &&
485 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
488 mutex_lock(&fs_info->reloc_mutex);
489 ret = record_root_in_trans(trans, root, 0);
490 mutex_unlock(&fs_info->reloc_mutex);
495 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
497 return (trans->state >= TRANS_STATE_COMMIT_START &&
498 trans->state < TRANS_STATE_UNBLOCKED &&
499 !TRANS_ABORTED(trans));
502 /* wait for commit against the current transaction to become unblocked
503 * when this is done, it is safe to start a new transaction, but the current
504 * transaction might not be fully on disk.
506 static void wait_current_trans(struct btrfs_fs_info *fs_info)
508 struct btrfs_transaction *cur_trans;
510 spin_lock(&fs_info->trans_lock);
511 cur_trans = fs_info->running_transaction;
512 if (cur_trans && is_transaction_blocked(cur_trans)) {
513 refcount_inc(&cur_trans->use_count);
514 spin_unlock(&fs_info->trans_lock);
516 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
517 wait_event(fs_info->transaction_wait,
518 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
519 TRANS_ABORTED(cur_trans));
520 btrfs_put_transaction(cur_trans);
522 spin_unlock(&fs_info->trans_lock);
526 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
528 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
531 if (type == TRANS_START)
537 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
539 struct btrfs_fs_info *fs_info = root->fs_info;
541 if (!fs_info->reloc_ctl ||
542 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
543 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
550 static struct btrfs_trans_handle *
551 start_transaction(struct btrfs_root *root, unsigned int num_items,
552 unsigned int type, enum btrfs_reserve_flush_enum flush,
553 bool enforce_qgroups)
555 struct btrfs_fs_info *fs_info = root->fs_info;
556 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
557 struct btrfs_trans_handle *h;
558 struct btrfs_transaction *cur_trans;
560 u64 qgroup_reserved = 0;
561 bool reloc_reserved = false;
562 bool do_chunk_alloc = false;
565 if (BTRFS_FS_ERROR(fs_info))
566 return ERR_PTR(-EROFS);
568 if (current->journal_info) {
569 WARN_ON(type & TRANS_EXTWRITERS);
570 h = current->journal_info;
571 refcount_inc(&h->use_count);
572 WARN_ON(refcount_read(&h->use_count) > 2);
573 h->orig_rsv = h->block_rsv;
579 * Do the reservation before we join the transaction so we can do all
580 * the appropriate flushing if need be.
582 if (num_items && root != fs_info->chunk_root) {
583 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
584 u64 delayed_refs_bytes = 0;
586 qgroup_reserved = num_items * fs_info->nodesize;
587 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
593 * We want to reserve all the bytes we may need all at once, so
594 * we only do 1 enospc flushing cycle per transaction start. We
595 * accomplish this by simply assuming we'll do 2 x num_items
596 * worth of delayed refs updates in this trans handle, and
597 * refill that amount for whatever is missing in the reserve.
599 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
600 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
601 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
602 delayed_refs_bytes = num_bytes;
607 * Do the reservation for the relocation root creation
609 if (need_reserve_reloc_root(root)) {
610 num_bytes += fs_info->nodesize;
611 reloc_reserved = true;
614 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
617 if (delayed_refs_bytes) {
618 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
620 num_bytes -= delayed_refs_bytes;
623 if (rsv->space_info->force_alloc)
624 do_chunk_alloc = true;
625 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
626 !btrfs_block_rsv_full(delayed_refs_rsv)) {
628 * Some people call with btrfs_start_transaction(root, 0)
629 * because they can be throttled, but have some other mechanism
630 * for reserving space. We still want these guys to refill the
631 * delayed block_rsv so just add 1 items worth of reservation
634 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
639 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
646 * If we are JOIN_NOLOCK we're already committing a transaction and
647 * waiting on this guy, so we don't need to do the sb_start_intwrite
648 * because we're already holding a ref. We need this because we could
649 * have raced in and did an fsync() on a file which can kick a commit
650 * and then we deadlock with somebody doing a freeze.
652 * If we are ATTACH, it means we just want to catch the current
653 * transaction and commit it, so we needn't do sb_start_intwrite().
655 if (type & __TRANS_FREEZABLE)
656 sb_start_intwrite(fs_info->sb);
658 if (may_wait_transaction(fs_info, type))
659 wait_current_trans(fs_info);
662 ret = join_transaction(fs_info, type);
664 wait_current_trans(fs_info);
665 if (unlikely(type == TRANS_ATTACH ||
666 type == TRANS_JOIN_NOSTART))
669 } while (ret == -EBUSY);
674 cur_trans = fs_info->running_transaction;
676 h->transid = cur_trans->transid;
677 h->transaction = cur_trans;
678 refcount_set(&h->use_count, 1);
679 h->fs_info = root->fs_info;
682 INIT_LIST_HEAD(&h->new_bgs);
685 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
686 may_wait_transaction(fs_info, type)) {
687 current->journal_info = h;
688 btrfs_commit_transaction(h);
693 trace_btrfs_space_reservation(fs_info, "transaction",
694 h->transid, num_bytes, 1);
695 h->block_rsv = &fs_info->trans_block_rsv;
696 h->bytes_reserved = num_bytes;
697 h->reloc_reserved = reloc_reserved;
701 if (!current->journal_info)
702 current->journal_info = h;
705 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
706 * ALLOC_FORCE the first run through, and then we won't allocate for
707 * anybody else who races in later. We don't care about the return
710 if (do_chunk_alloc && num_bytes) {
711 u64 flags = h->block_rsv->space_info->flags;
713 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
714 CHUNK_ALLOC_NO_FORCE);
718 * btrfs_record_root_in_trans() needs to alloc new extents, and may
719 * call btrfs_join_transaction() while we're also starting a
722 * Thus it need to be called after current->journal_info initialized,
723 * or we can deadlock.
725 ret = btrfs_record_root_in_trans(h, root);
728 * The transaction handle is fully initialized and linked with
729 * other structures so it needs to be ended in case of errors,
732 btrfs_end_transaction(h);
739 if (type & __TRANS_FREEZABLE)
740 sb_end_intwrite(fs_info->sb);
741 kmem_cache_free(btrfs_trans_handle_cachep, h);
744 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
747 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
751 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
752 unsigned int num_items)
754 return start_transaction(root, num_items, TRANS_START,
755 BTRFS_RESERVE_FLUSH_ALL, true);
758 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
759 struct btrfs_root *root,
760 unsigned int num_items)
762 return start_transaction(root, num_items, TRANS_START,
763 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
766 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
768 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
772 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
774 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
775 BTRFS_RESERVE_NO_FLUSH, true);
779 * Similar to regular join but it never starts a transaction when none is
780 * running or after waiting for the current one to finish.
782 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
784 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
785 BTRFS_RESERVE_NO_FLUSH, true);
789 * btrfs_attach_transaction() - catch the running transaction
791 * It is used when we want to commit the current the transaction, but
792 * don't want to start a new one.
794 * Note: If this function return -ENOENT, it just means there is no
795 * running transaction. But it is possible that the inactive transaction
796 * is still in the memory, not fully on disk. If you hope there is no
797 * inactive transaction in the fs when -ENOENT is returned, you should
799 * btrfs_attach_transaction_barrier()
801 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
803 return start_transaction(root, 0, TRANS_ATTACH,
804 BTRFS_RESERVE_NO_FLUSH, true);
808 * btrfs_attach_transaction_barrier() - catch the running transaction
810 * It is similar to the above function, the difference is this one
811 * will wait for all the inactive transactions until they fully
814 struct btrfs_trans_handle *
815 btrfs_attach_transaction_barrier(struct btrfs_root *root)
817 struct btrfs_trans_handle *trans;
819 trans = start_transaction(root, 0, TRANS_ATTACH,
820 BTRFS_RESERVE_NO_FLUSH, true);
821 if (trans == ERR_PTR(-ENOENT))
822 btrfs_wait_for_commit(root->fs_info, 0);
827 /* Wait for a transaction commit to reach at least the given state. */
828 static noinline void wait_for_commit(struct btrfs_transaction *commit,
829 const enum btrfs_trans_state min_state)
831 struct btrfs_fs_info *fs_info = commit->fs_info;
832 u64 transid = commit->transid;
836 * At the moment this function is called with min_state either being
837 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
839 if (min_state == TRANS_STATE_COMPLETED)
840 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
842 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
845 wait_event(commit->commit_wait, commit->state >= min_state);
847 btrfs_put_transaction(commit);
849 if (min_state < TRANS_STATE_COMPLETED)
853 * A transaction isn't really completed until all of the
854 * previous transactions are completed, but with fsync we can
855 * end up with SUPER_COMMITTED transactions before a COMPLETED
856 * transaction. Wait for those.
859 spin_lock(&fs_info->trans_lock);
860 commit = list_first_entry_or_null(&fs_info->trans_list,
861 struct btrfs_transaction,
863 if (!commit || commit->transid > transid) {
864 spin_unlock(&fs_info->trans_lock);
867 refcount_inc(&commit->use_count);
869 spin_unlock(&fs_info->trans_lock);
873 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
875 struct btrfs_transaction *cur_trans = NULL, *t;
879 if (transid <= fs_info->last_trans_committed)
882 /* find specified transaction */
883 spin_lock(&fs_info->trans_lock);
884 list_for_each_entry(t, &fs_info->trans_list, list) {
885 if (t->transid == transid) {
887 refcount_inc(&cur_trans->use_count);
891 if (t->transid > transid) {
896 spin_unlock(&fs_info->trans_lock);
899 * The specified transaction doesn't exist, or we
900 * raced with btrfs_commit_transaction
903 if (transid > fs_info->last_trans_committed)
908 /* find newest transaction that is committing | committed */
909 spin_lock(&fs_info->trans_lock);
910 list_for_each_entry_reverse(t, &fs_info->trans_list,
912 if (t->state >= TRANS_STATE_COMMIT_START) {
913 if (t->state == TRANS_STATE_COMPLETED)
916 refcount_inc(&cur_trans->use_count);
920 spin_unlock(&fs_info->trans_lock);
922 goto out; /* nothing committing|committed */
925 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
926 btrfs_put_transaction(cur_trans);
931 void btrfs_throttle(struct btrfs_fs_info *fs_info)
933 wait_current_trans(fs_info);
936 static bool should_end_transaction(struct btrfs_trans_handle *trans)
938 struct btrfs_fs_info *fs_info = trans->fs_info;
940 if (btrfs_check_space_for_delayed_refs(fs_info))
943 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
946 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
948 struct btrfs_transaction *cur_trans = trans->transaction;
950 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
951 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
954 return should_end_transaction(trans);
957 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
960 struct btrfs_fs_info *fs_info = trans->fs_info;
962 if (!trans->block_rsv) {
963 ASSERT(!trans->bytes_reserved);
967 if (!trans->bytes_reserved)
970 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
971 trace_btrfs_space_reservation(fs_info, "transaction",
972 trans->transid, trans->bytes_reserved, 0);
973 btrfs_block_rsv_release(fs_info, trans->block_rsv,
974 trans->bytes_reserved, NULL);
975 trans->bytes_reserved = 0;
978 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
981 struct btrfs_fs_info *info = trans->fs_info;
982 struct btrfs_transaction *cur_trans = trans->transaction;
985 if (refcount_read(&trans->use_count) > 1) {
986 refcount_dec(&trans->use_count);
987 trans->block_rsv = trans->orig_rsv;
991 btrfs_trans_release_metadata(trans);
992 trans->block_rsv = NULL;
994 btrfs_create_pending_block_groups(trans);
996 btrfs_trans_release_chunk_metadata(trans);
998 if (trans->type & __TRANS_FREEZABLE)
999 sb_end_intwrite(info->sb);
1001 WARN_ON(cur_trans != info->running_transaction);
1002 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1003 atomic_dec(&cur_trans->num_writers);
1004 extwriter_counter_dec(cur_trans, trans->type);
1006 cond_wake_up(&cur_trans->writer_wait);
1008 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1009 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1011 btrfs_put_transaction(cur_trans);
1013 if (current->journal_info == trans)
1014 current->journal_info = NULL;
1017 btrfs_run_delayed_iputs(info);
1019 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1020 wake_up_process(info->transaction_kthread);
1021 if (TRANS_ABORTED(trans))
1022 err = trans->aborted;
1027 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1031 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1033 return __btrfs_end_transaction(trans, 0);
1036 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1038 return __btrfs_end_transaction(trans, 1);
1042 * when btree blocks are allocated, they have some corresponding bits set for
1043 * them in one of two extent_io trees. This is used to make sure all of
1044 * those extents are sent to disk but does not wait on them
1046 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1047 struct extent_io_tree *dirty_pages, int mark)
1051 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1052 struct extent_state *cached_state = NULL;
1056 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1057 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1058 mark, &cached_state)) {
1059 bool wait_writeback = false;
1061 err = convert_extent_bit(dirty_pages, start, end,
1063 mark, &cached_state);
1065 * convert_extent_bit can return -ENOMEM, which is most of the
1066 * time a temporary error. So when it happens, ignore the error
1067 * and wait for writeback of this range to finish - because we
1068 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1069 * to __btrfs_wait_marked_extents() would not know that
1070 * writeback for this range started and therefore wouldn't
1071 * wait for it to finish - we don't want to commit a
1072 * superblock that points to btree nodes/leafs for which
1073 * writeback hasn't finished yet (and without errors).
1074 * We cleanup any entries left in the io tree when committing
1075 * the transaction (through extent_io_tree_release()).
1077 if (err == -ENOMEM) {
1079 wait_writeback = true;
1082 err = filemap_fdatawrite_range(mapping, start, end);
1085 else if (wait_writeback)
1086 werr = filemap_fdatawait_range(mapping, start, end);
1087 free_extent_state(cached_state);
1088 cached_state = NULL;
1092 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1097 * when btree blocks are allocated, they have some corresponding bits set for
1098 * them in one of two extent_io trees. This is used to make sure all of
1099 * those extents are on disk for transaction or log commit. We wait
1100 * on all the pages and clear them from the dirty pages state tree
1102 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1103 struct extent_io_tree *dirty_pages)
1107 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1108 struct extent_state *cached_state = NULL;
1112 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1113 EXTENT_NEED_WAIT, &cached_state)) {
1115 * Ignore -ENOMEM errors returned by clear_extent_bit().
1116 * When committing the transaction, we'll remove any entries
1117 * left in the io tree. For a log commit, we don't remove them
1118 * after committing the log because the tree can be accessed
1119 * concurrently - we do it only at transaction commit time when
1120 * it's safe to do it (through extent_io_tree_release()).
1122 err = clear_extent_bit(dirty_pages, start, end,
1123 EXTENT_NEED_WAIT, &cached_state);
1127 err = filemap_fdatawait_range(mapping, start, end);
1130 free_extent_state(cached_state);
1131 cached_state = NULL;
1140 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1141 struct extent_io_tree *dirty_pages)
1143 bool errors = false;
1146 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1147 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1155 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1157 struct btrfs_fs_info *fs_info = log_root->fs_info;
1158 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1159 bool errors = false;
1162 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1164 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1165 if ((mark & EXTENT_DIRTY) &&
1166 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1169 if ((mark & EXTENT_NEW) &&
1170 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1179 * When btree blocks are allocated the corresponding extents are marked dirty.
1180 * This function ensures such extents are persisted on disk for transaction or
1183 * @trans: transaction whose dirty pages we'd like to write
1185 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1189 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1190 struct btrfs_fs_info *fs_info = trans->fs_info;
1191 struct blk_plug plug;
1193 blk_start_plug(&plug);
1194 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1195 blk_finish_plug(&plug);
1196 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1198 extent_io_tree_release(&trans->transaction->dirty_pages);
1209 * this is used to update the root pointer in the tree of tree roots.
1211 * But, in the case of the extent allocation tree, updating the root
1212 * pointer may allocate blocks which may change the root of the extent
1215 * So, this loops and repeats and makes sure the cowonly root didn't
1216 * change while the root pointer was being updated in the metadata.
1218 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1219 struct btrfs_root *root)
1222 u64 old_root_bytenr;
1224 struct btrfs_fs_info *fs_info = root->fs_info;
1225 struct btrfs_root *tree_root = fs_info->tree_root;
1227 old_root_used = btrfs_root_used(&root->root_item);
1230 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1231 if (old_root_bytenr == root->node->start &&
1232 old_root_used == btrfs_root_used(&root->root_item))
1235 btrfs_set_root_node(&root->root_item, root->node);
1236 ret = btrfs_update_root(trans, tree_root,
1242 old_root_used = btrfs_root_used(&root->root_item);
1249 * update all the cowonly tree roots on disk
1251 * The error handling in this function may not be obvious. Any of the
1252 * failures will cause the file system to go offline. We still need
1253 * to clean up the delayed refs.
1255 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1257 struct btrfs_fs_info *fs_info = trans->fs_info;
1258 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1259 struct list_head *io_bgs = &trans->transaction->io_bgs;
1260 struct list_head *next;
1261 struct extent_buffer *eb;
1265 * At this point no one can be using this transaction to modify any tree
1266 * and no one can start another transaction to modify any tree either.
1268 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1270 eb = btrfs_lock_root_node(fs_info->tree_root);
1271 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1272 0, &eb, BTRFS_NESTING_COW);
1273 btrfs_tree_unlock(eb);
1274 free_extent_buffer(eb);
1279 ret = btrfs_run_dev_stats(trans);
1282 ret = btrfs_run_dev_replace(trans);
1285 ret = btrfs_run_qgroups(trans);
1289 ret = btrfs_setup_space_cache(trans);
1294 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1295 struct btrfs_root *root;
1296 next = fs_info->dirty_cowonly_roots.next;
1297 list_del_init(next);
1298 root = list_entry(next, struct btrfs_root, dirty_list);
1299 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1301 list_add_tail(&root->dirty_list,
1302 &trans->transaction->switch_commits);
1303 ret = update_cowonly_root(trans, root);
1308 /* Now flush any delayed refs generated by updating all of the roots */
1309 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1313 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1314 ret = btrfs_write_dirty_block_groups(trans);
1319 * We're writing the dirty block groups, which could generate
1320 * delayed refs, which could generate more dirty block groups,
1321 * so we want to keep this flushing in this loop to make sure
1322 * everything gets run.
1324 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1329 if (!list_empty(&fs_info->dirty_cowonly_roots))
1332 /* Update dev-replace pointer once everything is committed */
1333 fs_info->dev_replace.committed_cursor_left =
1334 fs_info->dev_replace.cursor_left_last_write_of_item;
1340 * If we had a pending drop we need to see if there are any others left in our
1341 * dead roots list, and if not clear our bit and wake any waiters.
1343 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1346 * We put the drop in progress roots at the front of the list, so if the
1347 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1350 spin_lock(&fs_info->trans_lock);
1351 if (!list_empty(&fs_info->dead_roots)) {
1352 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1355 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1356 spin_unlock(&fs_info->trans_lock);
1360 spin_unlock(&fs_info->trans_lock);
1362 btrfs_wake_unfinished_drop(fs_info);
1366 * dead roots are old snapshots that need to be deleted. This allocates
1367 * a dirty root struct and adds it into the list of dead roots that need to
1370 void btrfs_add_dead_root(struct btrfs_root *root)
1372 struct btrfs_fs_info *fs_info = root->fs_info;
1374 spin_lock(&fs_info->trans_lock);
1375 if (list_empty(&root->root_list)) {
1376 btrfs_grab_root(root);
1378 /* We want to process the partially complete drops first. */
1379 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1380 list_add(&root->root_list, &fs_info->dead_roots);
1382 list_add_tail(&root->root_list, &fs_info->dead_roots);
1384 spin_unlock(&fs_info->trans_lock);
1388 * Update each subvolume root and its relocation root, if it exists, in the tree
1389 * of tree roots. Also free log roots if they exist.
1391 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1393 struct btrfs_fs_info *fs_info = trans->fs_info;
1394 struct btrfs_root *gang[8];
1399 * At this point no one can be using this transaction to modify any tree
1400 * and no one can start another transaction to modify any tree either.
1402 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1404 spin_lock(&fs_info->fs_roots_radix_lock);
1406 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1409 BTRFS_ROOT_TRANS_TAG);
1412 for (i = 0; i < ret; i++) {
1413 struct btrfs_root *root = gang[i];
1417 * At this point we can neither have tasks logging inodes
1418 * from a root nor trying to commit a log tree.
1420 ASSERT(atomic_read(&root->log_writers) == 0);
1421 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1422 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1424 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1425 (unsigned long)root->root_key.objectid,
1426 BTRFS_ROOT_TRANS_TAG);
1427 spin_unlock(&fs_info->fs_roots_radix_lock);
1429 btrfs_free_log(trans, root);
1430 ret2 = btrfs_update_reloc_root(trans, root);
1434 /* see comments in should_cow_block() */
1435 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1436 smp_mb__after_atomic();
1438 if (root->commit_root != root->node) {
1439 list_add_tail(&root->dirty_list,
1440 &trans->transaction->switch_commits);
1441 btrfs_set_root_node(&root->root_item,
1445 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1450 spin_lock(&fs_info->fs_roots_radix_lock);
1451 btrfs_qgroup_free_meta_all_pertrans(root);
1454 spin_unlock(&fs_info->fs_roots_radix_lock);
1459 * defrag a given btree.
1460 * Every leaf in the btree is read and defragged.
1462 int btrfs_defrag_root(struct btrfs_root *root)
1464 struct btrfs_fs_info *info = root->fs_info;
1465 struct btrfs_trans_handle *trans;
1468 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1472 trans = btrfs_start_transaction(root, 0);
1473 if (IS_ERR(trans)) {
1474 ret = PTR_ERR(trans);
1478 ret = btrfs_defrag_leaves(trans, root);
1480 btrfs_end_transaction(trans);
1481 btrfs_btree_balance_dirty(info);
1484 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1487 if (btrfs_defrag_cancelled(info)) {
1488 btrfs_debug(info, "defrag_root cancelled");
1493 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1498 * Do all special snapshot related qgroup dirty hack.
1500 * Will do all needed qgroup inherit and dirty hack like switch commit
1501 * roots inside one transaction and write all btree into disk, to make
1504 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1505 struct btrfs_root *src,
1506 struct btrfs_root *parent,
1507 struct btrfs_qgroup_inherit *inherit,
1510 struct btrfs_fs_info *fs_info = src->fs_info;
1514 * Save some performance in the case that qgroups are not
1515 * enabled. If this check races with the ioctl, rescan will
1518 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1522 * Ensure dirty @src will be committed. Or, after coming
1523 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1524 * recorded root will never be updated again, causing an outdated root
1527 ret = record_root_in_trans(trans, src, 1);
1532 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1533 * src root, so we must run the delayed refs here.
1535 * However this isn't particularly fool proof, because there's no
1536 * synchronization keeping us from changing the tree after this point
1537 * before we do the qgroup_inherit, or even from making changes while
1538 * we're doing the qgroup_inherit. But that's a problem for the future,
1539 * for now flush the delayed refs to narrow the race window where the
1540 * qgroup counters could end up wrong.
1542 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1544 btrfs_abort_transaction(trans, ret);
1548 ret = commit_fs_roots(trans);
1551 ret = btrfs_qgroup_account_extents(trans);
1555 /* Now qgroup are all updated, we can inherit it to new qgroups */
1556 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1562 * Now we do a simplified commit transaction, which will:
1563 * 1) commit all subvolume and extent tree
1564 * To ensure all subvolume and extent tree have a valid
1565 * commit_root to accounting later insert_dir_item()
1566 * 2) write all btree blocks onto disk
1567 * This is to make sure later btree modification will be cowed
1568 * Or commit_root can be populated and cause wrong qgroup numbers
1569 * In this simplified commit, we don't really care about other trees
1570 * like chunk and root tree, as they won't affect qgroup.
1571 * And we don't write super to avoid half committed status.
1573 ret = commit_cowonly_roots(trans);
1576 switch_commit_roots(trans);
1577 ret = btrfs_write_and_wait_transaction(trans);
1579 btrfs_handle_fs_error(fs_info, ret,
1580 "Error while writing out transaction for qgroup");
1584 * Force parent root to be updated, as we recorded it before so its
1585 * last_trans == cur_transid.
1586 * Or it won't be committed again onto disk after later
1590 ret = record_root_in_trans(trans, parent, 1);
1595 * new snapshots need to be created at a very specific time in the
1596 * transaction commit. This does the actual creation.
1599 * If the error which may affect the commitment of the current transaction
1600 * happens, we should return the error number. If the error which just affect
1601 * the creation of the pending snapshots, just return 0.
1603 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1604 struct btrfs_pending_snapshot *pending)
1607 struct btrfs_fs_info *fs_info = trans->fs_info;
1608 struct btrfs_key key;
1609 struct btrfs_root_item *new_root_item;
1610 struct btrfs_root *tree_root = fs_info->tree_root;
1611 struct btrfs_root *root = pending->root;
1612 struct btrfs_root *parent_root;
1613 struct btrfs_block_rsv *rsv;
1614 struct inode *parent_inode;
1615 struct btrfs_path *path;
1616 struct btrfs_dir_item *dir_item;
1617 struct dentry *dentry;
1618 struct extent_buffer *tmp;
1619 struct extent_buffer *old;
1620 struct timespec64 cur_time;
1627 ASSERT(pending->path);
1628 path = pending->path;
1630 ASSERT(pending->root_item);
1631 new_root_item = pending->root_item;
1633 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1635 goto no_free_objectid;
1638 * Make qgroup to skip current new snapshot's qgroupid, as it is
1639 * accounted by later btrfs_qgroup_inherit().
1641 btrfs_set_skip_qgroup(trans, objectid);
1643 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1645 if (to_reserve > 0) {
1646 pending->error = btrfs_block_rsv_add(fs_info,
1647 &pending->block_rsv,
1649 BTRFS_RESERVE_NO_FLUSH);
1651 goto clear_skip_qgroup;
1654 key.objectid = objectid;
1655 key.offset = (u64)-1;
1656 key.type = BTRFS_ROOT_ITEM_KEY;
1658 rsv = trans->block_rsv;
1659 trans->block_rsv = &pending->block_rsv;
1660 trans->bytes_reserved = trans->block_rsv->reserved;
1661 trace_btrfs_space_reservation(fs_info, "transaction",
1663 trans->bytes_reserved, 1);
1664 dentry = pending->dentry;
1665 parent_inode = pending->dir;
1666 parent_root = BTRFS_I(parent_inode)->root;
1667 ret = record_root_in_trans(trans, parent_root, 0);
1670 cur_time = current_time(parent_inode);
1673 * insert the directory item
1675 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1676 BUG_ON(ret); /* -ENOMEM */
1678 /* check if there is a file/dir which has the same name. */
1679 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1680 btrfs_ino(BTRFS_I(parent_inode)),
1681 &dentry->d_name, 0);
1682 if (dir_item != NULL && !IS_ERR(dir_item)) {
1683 pending->error = -EEXIST;
1684 goto dir_item_existed;
1685 } else if (IS_ERR(dir_item)) {
1686 ret = PTR_ERR(dir_item);
1687 btrfs_abort_transaction(trans, ret);
1690 btrfs_release_path(path);
1693 * pull in the delayed directory update
1694 * and the delayed inode item
1695 * otherwise we corrupt the FS during
1698 ret = btrfs_run_delayed_items(trans);
1699 if (ret) { /* Transaction aborted */
1700 btrfs_abort_transaction(trans, ret);
1704 ret = record_root_in_trans(trans, root, 0);
1706 btrfs_abort_transaction(trans, ret);
1709 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1710 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1711 btrfs_check_and_init_root_item(new_root_item);
1713 root_flags = btrfs_root_flags(new_root_item);
1714 if (pending->readonly)
1715 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1717 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1718 btrfs_set_root_flags(new_root_item, root_flags);
1720 btrfs_set_root_generation_v2(new_root_item,
1722 generate_random_guid(new_root_item->uuid);
1723 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1725 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1726 memset(new_root_item->received_uuid, 0,
1727 sizeof(new_root_item->received_uuid));
1728 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1729 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1730 btrfs_set_root_stransid(new_root_item, 0);
1731 btrfs_set_root_rtransid(new_root_item, 0);
1733 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1734 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1735 btrfs_set_root_otransid(new_root_item, trans->transid);
1737 old = btrfs_lock_root_node(root);
1738 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1741 btrfs_tree_unlock(old);
1742 free_extent_buffer(old);
1743 btrfs_abort_transaction(trans, ret);
1747 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1748 /* clean up in any case */
1749 btrfs_tree_unlock(old);
1750 free_extent_buffer(old);
1752 btrfs_abort_transaction(trans, ret);
1755 /* see comments in should_cow_block() */
1756 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1759 btrfs_set_root_node(new_root_item, tmp);
1760 /* record when the snapshot was created in key.offset */
1761 key.offset = trans->transid;
1762 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1763 btrfs_tree_unlock(tmp);
1764 free_extent_buffer(tmp);
1766 btrfs_abort_transaction(trans, ret);
1771 * insert root back/forward references
1773 ret = btrfs_add_root_ref(trans, objectid,
1774 parent_root->root_key.objectid,
1775 btrfs_ino(BTRFS_I(parent_inode)), index,
1778 btrfs_abort_transaction(trans, ret);
1782 key.offset = (u64)-1;
1783 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1784 if (IS_ERR(pending->snap)) {
1785 ret = PTR_ERR(pending->snap);
1786 pending->snap = NULL;
1787 btrfs_abort_transaction(trans, ret);
1791 ret = btrfs_reloc_post_snapshot(trans, pending);
1793 btrfs_abort_transaction(trans, ret);
1798 * Do special qgroup accounting for snapshot, as we do some qgroup
1799 * snapshot hack to do fast snapshot.
1800 * To co-operate with that hack, we do hack again.
1801 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1803 ret = qgroup_account_snapshot(trans, root, parent_root,
1804 pending->inherit, objectid);
1808 ret = btrfs_insert_dir_item(trans, &dentry->d_name,
1809 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1811 /* We have check then name at the beginning, so it is impossible. */
1812 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1814 btrfs_abort_transaction(trans, ret);
1818 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1819 dentry->d_name.len * 2);
1820 parent_inode->i_mtime = current_time(parent_inode);
1821 parent_inode->i_ctime = parent_inode->i_mtime;
1822 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1824 btrfs_abort_transaction(trans, ret);
1827 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1828 BTRFS_UUID_KEY_SUBVOL,
1831 btrfs_abort_transaction(trans, ret);
1834 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1835 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1836 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1838 if (ret && ret != -EEXIST) {
1839 btrfs_abort_transaction(trans, ret);
1845 pending->error = ret;
1847 trans->block_rsv = rsv;
1848 trans->bytes_reserved = 0;
1850 btrfs_clear_skip_qgroup(trans);
1852 kfree(new_root_item);
1853 pending->root_item = NULL;
1854 btrfs_free_path(path);
1855 pending->path = NULL;
1861 * create all the snapshots we've scheduled for creation
1863 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1865 struct btrfs_pending_snapshot *pending, *next;
1866 struct list_head *head = &trans->transaction->pending_snapshots;
1869 list_for_each_entry_safe(pending, next, head, list) {
1870 list_del(&pending->list);
1871 ret = create_pending_snapshot(trans, pending);
1878 static void update_super_roots(struct btrfs_fs_info *fs_info)
1880 struct btrfs_root_item *root_item;
1881 struct btrfs_super_block *super;
1883 super = fs_info->super_copy;
1885 root_item = &fs_info->chunk_root->root_item;
1886 super->chunk_root = root_item->bytenr;
1887 super->chunk_root_generation = root_item->generation;
1888 super->chunk_root_level = root_item->level;
1890 root_item = &fs_info->tree_root->root_item;
1891 super->root = root_item->bytenr;
1892 super->generation = root_item->generation;
1893 super->root_level = root_item->level;
1894 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1895 super->cache_generation = root_item->generation;
1896 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1897 super->cache_generation = 0;
1898 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1899 super->uuid_tree_generation = root_item->generation;
1902 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1904 struct btrfs_transaction *trans;
1907 spin_lock(&info->trans_lock);
1908 trans = info->running_transaction;
1910 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1911 spin_unlock(&info->trans_lock);
1915 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1917 struct btrfs_transaction *trans;
1920 spin_lock(&info->trans_lock);
1921 trans = info->running_transaction;
1923 ret = is_transaction_blocked(trans);
1924 spin_unlock(&info->trans_lock);
1928 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1930 struct btrfs_fs_info *fs_info = trans->fs_info;
1931 struct btrfs_transaction *cur_trans;
1933 /* Kick the transaction kthread. */
1934 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1935 wake_up_process(fs_info->transaction_kthread);
1937 /* take transaction reference */
1938 cur_trans = trans->transaction;
1939 refcount_inc(&cur_trans->use_count);
1941 btrfs_end_transaction(trans);
1944 * Wait for the current transaction commit to start and block
1945 * subsequent transaction joins
1947 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1948 wait_event(fs_info->transaction_blocked_wait,
1949 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1950 TRANS_ABORTED(cur_trans));
1951 btrfs_put_transaction(cur_trans);
1954 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1956 struct btrfs_fs_info *fs_info = trans->fs_info;
1957 struct btrfs_transaction *cur_trans = trans->transaction;
1959 WARN_ON(refcount_read(&trans->use_count) > 1);
1961 btrfs_abort_transaction(trans, err);
1963 spin_lock(&fs_info->trans_lock);
1966 * If the transaction is removed from the list, it means this
1967 * transaction has been committed successfully, so it is impossible
1968 * to call the cleanup function.
1970 BUG_ON(list_empty(&cur_trans->list));
1972 if (cur_trans == fs_info->running_transaction) {
1973 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1974 spin_unlock(&fs_info->trans_lock);
1977 * The thread has already released the lockdep map as reader
1978 * already in btrfs_commit_transaction().
1980 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1981 wait_event(cur_trans->writer_wait,
1982 atomic_read(&cur_trans->num_writers) == 1);
1984 spin_lock(&fs_info->trans_lock);
1988 * Now that we know no one else is still using the transaction we can
1989 * remove the transaction from the list of transactions. This avoids
1990 * the transaction kthread from cleaning up the transaction while some
1991 * other task is still using it, which could result in a use-after-free
1992 * on things like log trees, as it forces the transaction kthread to
1993 * wait for this transaction to be cleaned up by us.
1995 list_del_init(&cur_trans->list);
1997 spin_unlock(&fs_info->trans_lock);
1999 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2001 spin_lock(&fs_info->trans_lock);
2002 if (cur_trans == fs_info->running_transaction)
2003 fs_info->running_transaction = NULL;
2004 spin_unlock(&fs_info->trans_lock);
2006 if (trans->type & __TRANS_FREEZABLE)
2007 sb_end_intwrite(fs_info->sb);
2008 btrfs_put_transaction(cur_trans);
2009 btrfs_put_transaction(cur_trans);
2011 trace_btrfs_transaction_commit(fs_info);
2013 if (current->journal_info == trans)
2014 current->journal_info = NULL;
2015 btrfs_scrub_cancel(fs_info);
2017 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2021 * Release reserved delayed ref space of all pending block groups of the
2022 * transaction and remove them from the list
2024 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2026 struct btrfs_fs_info *fs_info = trans->fs_info;
2027 struct btrfs_block_group *block_group, *tmp;
2029 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2030 btrfs_delayed_refs_rsv_release(fs_info, 1);
2031 list_del_init(&block_group->bg_list);
2035 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2038 * We use try_to_writeback_inodes_sb() here because if we used
2039 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2040 * Currently are holding the fs freeze lock, if we do an async flush
2041 * we'll do btrfs_join_transaction() and deadlock because we need to
2042 * wait for the fs freeze lock. Using the direct flushing we benefit
2043 * from already being in a transaction and our join_transaction doesn't
2044 * have to re-take the fs freeze lock.
2046 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2047 * if it can read lock sb->s_umount. It will always be able to lock it,
2048 * except when the filesystem is being unmounted or being frozen, but in
2049 * those cases sync_filesystem() is called, which results in calling
2050 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2051 * Note that we don't call writeback_inodes_sb() directly, because it
2052 * will emit a warning if sb->s_umount is not locked.
2054 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2055 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2059 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2061 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2062 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2066 * Add a pending snapshot associated with the given transaction handle to the
2067 * respective handle. This must be called after the transaction commit started
2068 * and while holding fs_info->trans_lock.
2069 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2070 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2073 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2075 struct btrfs_transaction *cur_trans = trans->transaction;
2077 if (!trans->pending_snapshot)
2080 lockdep_assert_held(&trans->fs_info->trans_lock);
2081 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2083 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2086 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2088 fs_info->commit_stats.commit_count++;
2089 fs_info->commit_stats.last_commit_dur = interval;
2090 fs_info->commit_stats.max_commit_dur =
2091 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2092 fs_info->commit_stats.total_commit_dur += interval;
2095 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2097 struct btrfs_fs_info *fs_info = trans->fs_info;
2098 struct btrfs_transaction *cur_trans = trans->transaction;
2099 struct btrfs_transaction *prev_trans = NULL;
2104 ASSERT(refcount_read(&trans->use_count) == 1);
2105 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2107 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2109 /* Stop the commit early if ->aborted is set */
2110 if (TRANS_ABORTED(cur_trans)) {
2111 ret = cur_trans->aborted;
2112 goto lockdep_trans_commit_start_release;
2115 btrfs_trans_release_metadata(trans);
2116 trans->block_rsv = NULL;
2119 * We only want one transaction commit doing the flushing so we do not
2120 * waste a bunch of time on lock contention on the extent root node.
2122 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2123 &cur_trans->delayed_refs.flags)) {
2125 * Make a pass through all the delayed refs we have so far.
2126 * Any running threads may add more while we are here.
2128 ret = btrfs_run_delayed_refs(trans, 0);
2130 goto lockdep_trans_commit_start_release;
2133 btrfs_create_pending_block_groups(trans);
2135 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2138 /* this mutex is also taken before trying to set
2139 * block groups readonly. We need to make sure
2140 * that nobody has set a block group readonly
2141 * after a extents from that block group have been
2142 * allocated for cache files. btrfs_set_block_group_ro
2143 * will wait for the transaction to commit if it
2144 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2146 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2147 * only one process starts all the block group IO. It wouldn't
2148 * hurt to have more than one go through, but there's no
2149 * real advantage to it either.
2151 mutex_lock(&fs_info->ro_block_group_mutex);
2152 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2155 mutex_unlock(&fs_info->ro_block_group_mutex);
2158 ret = btrfs_start_dirty_block_groups(trans);
2160 goto lockdep_trans_commit_start_release;
2164 spin_lock(&fs_info->trans_lock);
2165 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2166 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2168 add_pending_snapshot(trans);
2170 spin_unlock(&fs_info->trans_lock);
2171 refcount_inc(&cur_trans->use_count);
2173 if (trans->in_fsync)
2174 want_state = TRANS_STATE_SUPER_COMMITTED;
2176 btrfs_trans_state_lockdep_release(fs_info,
2177 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2178 ret = btrfs_end_transaction(trans);
2179 wait_for_commit(cur_trans, want_state);
2181 if (TRANS_ABORTED(cur_trans))
2182 ret = cur_trans->aborted;
2184 btrfs_put_transaction(cur_trans);
2189 cur_trans->state = TRANS_STATE_COMMIT_START;
2190 wake_up(&fs_info->transaction_blocked_wait);
2191 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2193 if (cur_trans->list.prev != &fs_info->trans_list) {
2194 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2196 if (trans->in_fsync)
2197 want_state = TRANS_STATE_SUPER_COMMITTED;
2199 prev_trans = list_entry(cur_trans->list.prev,
2200 struct btrfs_transaction, list);
2201 if (prev_trans->state < want_state) {
2202 refcount_inc(&prev_trans->use_count);
2203 spin_unlock(&fs_info->trans_lock);
2205 wait_for_commit(prev_trans, want_state);
2207 ret = READ_ONCE(prev_trans->aborted);
2209 btrfs_put_transaction(prev_trans);
2211 goto lockdep_release;
2213 spin_unlock(&fs_info->trans_lock);
2216 spin_unlock(&fs_info->trans_lock);
2218 * The previous transaction was aborted and was already removed
2219 * from the list of transactions at fs_info->trans_list. So we
2220 * abort to prevent writing a new superblock that reflects a
2221 * corrupt state (pointing to trees with unwritten nodes/leafs).
2223 if (BTRFS_FS_ERROR(fs_info)) {
2225 goto lockdep_release;
2230 * Get the time spent on the work done by the commit thread and not
2231 * the time spent waiting on a previous commit
2233 start_time = ktime_get_ns();
2235 extwriter_counter_dec(cur_trans, trans->type);
2237 ret = btrfs_start_delalloc_flush(fs_info);
2239 goto lockdep_release;
2241 ret = btrfs_run_delayed_items(trans);
2243 goto lockdep_release;
2246 * The thread has started/joined the transaction thus it holds the
2247 * lockdep map as a reader. It has to release it before acquiring the
2248 * lockdep map as a writer.
2250 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2251 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2252 wait_event(cur_trans->writer_wait,
2253 extwriter_counter_read(cur_trans) == 0);
2255 /* some pending stuffs might be added after the previous flush. */
2256 ret = btrfs_run_delayed_items(trans);
2258 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2259 goto cleanup_transaction;
2262 btrfs_wait_delalloc_flush(fs_info);
2265 * Wait for all ordered extents started by a fast fsync that joined this
2266 * transaction. Otherwise if this transaction commits before the ordered
2267 * extents complete we lose logged data after a power failure.
2269 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2270 wait_event(cur_trans->pending_wait,
2271 atomic_read(&cur_trans->pending_ordered) == 0);
2273 btrfs_scrub_pause(fs_info);
2275 * Ok now we need to make sure to block out any other joins while we
2276 * commit the transaction. We could have started a join before setting
2277 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2279 spin_lock(&fs_info->trans_lock);
2280 add_pending_snapshot(trans);
2281 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2282 spin_unlock(&fs_info->trans_lock);
2285 * The thread has started/joined the transaction thus it holds the
2286 * lockdep map as a reader. It has to release it before acquiring the
2287 * lockdep map as a writer.
2289 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2290 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2291 wait_event(cur_trans->writer_wait,
2292 atomic_read(&cur_trans->num_writers) == 1);
2295 * Make lockdep happy by acquiring the state locks after
2296 * btrfs_trans_num_writers is released. If we acquired the state locks
2297 * before releasing the btrfs_trans_num_writers lock then lockdep would
2298 * complain because we did not follow the reverse order unlocking rule.
2300 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2301 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2302 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2305 * We've started the commit, clear the flag in case we were triggered to
2306 * do an async commit but somebody else started before the transaction
2307 * kthread could do the work.
2309 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2311 if (TRANS_ABORTED(cur_trans)) {
2312 ret = cur_trans->aborted;
2313 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2314 goto scrub_continue;
2317 * the reloc mutex makes sure that we stop
2318 * the balancing code from coming in and moving
2319 * extents around in the middle of the commit
2321 mutex_lock(&fs_info->reloc_mutex);
2324 * We needn't worry about the delayed items because we will
2325 * deal with them in create_pending_snapshot(), which is the
2326 * core function of the snapshot creation.
2328 ret = create_pending_snapshots(trans);
2333 * We insert the dir indexes of the snapshots and update the inode
2334 * of the snapshots' parents after the snapshot creation, so there
2335 * are some delayed items which are not dealt with. Now deal with
2338 * We needn't worry that this operation will corrupt the snapshots,
2339 * because all the tree which are snapshoted will be forced to COW
2340 * the nodes and leaves.
2342 ret = btrfs_run_delayed_items(trans);
2346 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2351 * make sure none of the code above managed to slip in a
2354 btrfs_assert_delayed_root_empty(fs_info);
2356 WARN_ON(cur_trans != trans->transaction);
2358 ret = commit_fs_roots(trans);
2362 /* commit_fs_roots gets rid of all the tree log roots, it is now
2363 * safe to free the root of tree log roots
2365 btrfs_free_log_root_tree(trans, fs_info);
2368 * Since fs roots are all committed, we can get a quite accurate
2369 * new_roots. So let's do quota accounting.
2371 ret = btrfs_qgroup_account_extents(trans);
2375 ret = commit_cowonly_roots(trans);
2380 * The tasks which save the space cache and inode cache may also
2381 * update ->aborted, check it.
2383 if (TRANS_ABORTED(cur_trans)) {
2384 ret = cur_trans->aborted;
2388 cur_trans = fs_info->running_transaction;
2390 btrfs_set_root_node(&fs_info->tree_root->root_item,
2391 fs_info->tree_root->node);
2392 list_add_tail(&fs_info->tree_root->dirty_list,
2393 &cur_trans->switch_commits);
2395 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2396 fs_info->chunk_root->node);
2397 list_add_tail(&fs_info->chunk_root->dirty_list,
2398 &cur_trans->switch_commits);
2400 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2401 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2402 fs_info->block_group_root->node);
2403 list_add_tail(&fs_info->block_group_root->dirty_list,
2404 &cur_trans->switch_commits);
2407 switch_commit_roots(trans);
2409 ASSERT(list_empty(&cur_trans->dirty_bgs));
2410 ASSERT(list_empty(&cur_trans->io_bgs));
2411 update_super_roots(fs_info);
2413 btrfs_set_super_log_root(fs_info->super_copy, 0);
2414 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2415 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2416 sizeof(*fs_info->super_copy));
2418 btrfs_commit_device_sizes(cur_trans);
2420 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2421 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2423 btrfs_trans_release_chunk_metadata(trans);
2426 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2427 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2428 * make sure that before we commit our superblock, no other task can
2429 * start a new transaction and commit a log tree before we commit our
2430 * superblock. Anyone trying to commit a log tree locks this mutex before
2431 * writing its superblock.
2433 mutex_lock(&fs_info->tree_log_mutex);
2435 spin_lock(&fs_info->trans_lock);
2436 cur_trans->state = TRANS_STATE_UNBLOCKED;
2437 fs_info->running_transaction = NULL;
2438 spin_unlock(&fs_info->trans_lock);
2439 mutex_unlock(&fs_info->reloc_mutex);
2441 wake_up(&fs_info->transaction_wait);
2442 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2444 ret = btrfs_write_and_wait_transaction(trans);
2446 btrfs_handle_fs_error(fs_info, ret,
2447 "Error while writing out transaction");
2448 mutex_unlock(&fs_info->tree_log_mutex);
2449 goto scrub_continue;
2453 * At this point, we should have written all the tree blocks allocated
2454 * in this transaction. So it's now safe to free the redirtyied extent
2457 btrfs_free_redirty_list(cur_trans);
2459 ret = write_all_supers(fs_info, 0);
2461 * the super is written, we can safely allow the tree-loggers
2462 * to go about their business
2464 mutex_unlock(&fs_info->tree_log_mutex);
2466 goto scrub_continue;
2469 * We needn't acquire the lock here because there is no other task
2470 * which can change it.
2472 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2473 wake_up(&cur_trans->commit_wait);
2474 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2476 btrfs_finish_extent_commit(trans);
2478 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2479 btrfs_clear_space_info_full(fs_info);
2481 fs_info->last_trans_committed = cur_trans->transid;
2483 * We needn't acquire the lock here because there is no other task
2484 * which can change it.
2486 cur_trans->state = TRANS_STATE_COMPLETED;
2487 wake_up(&cur_trans->commit_wait);
2488 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2490 spin_lock(&fs_info->trans_lock);
2491 list_del_init(&cur_trans->list);
2492 spin_unlock(&fs_info->trans_lock);
2494 btrfs_put_transaction(cur_trans);
2495 btrfs_put_transaction(cur_trans);
2497 if (trans->type & __TRANS_FREEZABLE)
2498 sb_end_intwrite(fs_info->sb);
2500 trace_btrfs_transaction_commit(fs_info);
2502 interval = ktime_get_ns() - start_time;
2504 btrfs_scrub_continue(fs_info);
2506 if (current->journal_info == trans)
2507 current->journal_info = NULL;
2509 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2511 update_commit_stats(fs_info, interval);
2516 mutex_unlock(&fs_info->reloc_mutex);
2517 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2519 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2520 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2521 btrfs_scrub_continue(fs_info);
2522 cleanup_transaction:
2523 btrfs_trans_release_metadata(trans);
2524 btrfs_cleanup_pending_block_groups(trans);
2525 btrfs_trans_release_chunk_metadata(trans);
2526 trans->block_rsv = NULL;
2527 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2528 if (current->journal_info == trans)
2529 current->journal_info = NULL;
2530 cleanup_transaction(trans, ret);
2535 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2536 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2537 goto cleanup_transaction;
2539 lockdep_trans_commit_start_release:
2540 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2541 btrfs_end_transaction(trans);
2546 * return < 0 if error
2547 * 0 if there are no more dead_roots at the time of call
2548 * 1 there are more to be processed, call me again
2550 * The return value indicates there are certainly more snapshots to delete, but
2551 * if there comes a new one during processing, it may return 0. We don't mind,
2552 * because btrfs_commit_super will poke cleaner thread and it will process it a
2553 * few seconds later.
2555 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2557 struct btrfs_root *root;
2560 spin_lock(&fs_info->trans_lock);
2561 if (list_empty(&fs_info->dead_roots)) {
2562 spin_unlock(&fs_info->trans_lock);
2565 root = list_first_entry(&fs_info->dead_roots,
2566 struct btrfs_root, root_list);
2567 list_del_init(&root->root_list);
2568 spin_unlock(&fs_info->trans_lock);
2570 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2572 btrfs_kill_all_delayed_nodes(root);
2574 if (btrfs_header_backref_rev(root->node) <
2575 BTRFS_MIXED_BACKREF_REV)
2576 ret = btrfs_drop_snapshot(root, 0, 0);
2578 ret = btrfs_drop_snapshot(root, 1, 0);
2580 btrfs_put_root(root);
2581 return (ret < 0) ? 0 : 1;
2584 int __init btrfs_transaction_init(void)
2586 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2587 sizeof(struct btrfs_trans_handle), 0,
2588 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2589 if (!btrfs_trans_handle_cachep)
2594 void __cold btrfs_transaction_exit(void)
2596 kmem_cache_destroy(btrfs_trans_handle_cachep);