]> Git Repo - linux.git/blob - fs/btrfs/transaction.c
btrfs: use struct qstr instead of name and namelen pairs
[linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include <linux/timekeeping.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "disk-io.h"
17 #include "transaction.h"
18 #include "locking.h"
19 #include "tree-log.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 #include "zoned.h"
26 #include "fs.h"
27 #include "accessors.h"
28
29 static struct kmem_cache *btrfs_trans_handle_cachep;
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 /*
34  * Transaction states and transitions
35  *
36  * No running transaction (fs tree blocks are not modified)
37  * |
38  * | To next stage:
39  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
40  * V
41  * Transaction N [[TRANS_STATE_RUNNING]]
42  * |
43  * | New trans handles can be attached to transaction N by calling all
44  * | start_transaction() variants.
45  * |
46  * | To next stage:
47  * |  Call btrfs_commit_transaction() on any trans handle attached to
48  * |  transaction N
49  * V
50  * Transaction N [[TRANS_STATE_COMMIT_START]]
51  * |
52  * | Will wait for previous running transaction to completely finish if there
53  * | is one
54  * |
55  * | Then one of the following happes:
56  * | - Wait for all other trans handle holders to release.
57  * |   The btrfs_commit_transaction() caller will do the commit work.
58  * | - Wait for current transaction to be committed by others.
59  * |   Other btrfs_commit_transaction() caller will do the commit work.
60  * |
61  * | At this stage, only btrfs_join_transaction*() variants can attach
62  * | to this running transaction.
63  * | All other variants will wait for current one to finish and attach to
64  * | transaction N+1.
65  * |
66  * | To next stage:
67  * |  Caller is chosen to commit transaction N, and all other trans handle
68  * |  haven been released.
69  * V
70  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
71  * |
72  * | The heavy lifting transaction work is started.
73  * | From running delayed refs (modifying extent tree) to creating pending
74  * | snapshots, running qgroups.
75  * | In short, modify supporting trees to reflect modifications of subvolume
76  * | trees.
77  * |
78  * | At this stage, all start_transaction() calls will wait for this
79  * | transaction to finish and attach to transaction N+1.
80  * |
81  * | To next stage:
82  * |  Until all supporting trees are updated.
83  * V
84  * Transaction N [[TRANS_STATE_UNBLOCKED]]
85  * |                                                Transaction N+1
86  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
87  * | need to write them back to disk and update     |
88  * | super blocks.                                  |
89  * |                                                |
90  * | At this stage, new transaction is allowed to   |
91  * | start.                                         |
92  * | All new start_transaction() calls will be      |
93  * | attached to transid N+1.                       |
94  * |                                                |
95  * | To next stage:                                 |
96  * |  Until all tree blocks are super blocks are    |
97  * |  written to block devices                      |
98  * V                                                |
99  * Transaction N [[TRANS_STATE_COMPLETED]]          V
100  *   All tree blocks and super blocks are written.  Transaction N+1
101  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
102  *   data structures will be cleaned up.            | Life goes on
103  */
104 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
105         [TRANS_STATE_RUNNING]           = 0U,
106         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
107         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
108                                            __TRANS_ATTACH |
109                                            __TRANS_JOIN |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
122                                            __TRANS_ATTACH |
123                                            __TRANS_JOIN |
124                                            __TRANS_JOIN_NOLOCK |
125                                            __TRANS_JOIN_NOSTART),
126 };
127
128 void btrfs_put_transaction(struct btrfs_transaction *transaction)
129 {
130         WARN_ON(refcount_read(&transaction->use_count) == 0);
131         if (refcount_dec_and_test(&transaction->use_count)) {
132                 BUG_ON(!list_empty(&transaction->list));
133                 WARN_ON(!RB_EMPTY_ROOT(
134                                 &transaction->delayed_refs.href_root.rb_root));
135                 WARN_ON(!RB_EMPTY_ROOT(
136                                 &transaction->delayed_refs.dirty_extent_root));
137                 if (transaction->delayed_refs.pending_csums)
138                         btrfs_err(transaction->fs_info,
139                                   "pending csums is %llu",
140                                   transaction->delayed_refs.pending_csums);
141                 /*
142                  * If any block groups are found in ->deleted_bgs then it's
143                  * because the transaction was aborted and a commit did not
144                  * happen (things failed before writing the new superblock
145                  * and calling btrfs_finish_extent_commit()), so we can not
146                  * discard the physical locations of the block groups.
147                  */
148                 while (!list_empty(&transaction->deleted_bgs)) {
149                         struct btrfs_block_group *cache;
150
151                         cache = list_first_entry(&transaction->deleted_bgs,
152                                                  struct btrfs_block_group,
153                                                  bg_list);
154                         list_del_init(&cache->bg_list);
155                         btrfs_unfreeze_block_group(cache);
156                         btrfs_put_block_group(cache);
157                 }
158                 WARN_ON(!list_empty(&transaction->dev_update_list));
159                 kfree(transaction);
160         }
161 }
162
163 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
164 {
165         struct btrfs_transaction *cur_trans = trans->transaction;
166         struct btrfs_fs_info *fs_info = trans->fs_info;
167         struct btrfs_root *root, *tmp;
168
169         /*
170          * At this point no one can be using this transaction to modify any tree
171          * and no one can start another transaction to modify any tree either.
172          */
173         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
174
175         down_write(&fs_info->commit_root_sem);
176
177         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
178                 fs_info->last_reloc_trans = trans->transid;
179
180         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
181                                  dirty_list) {
182                 list_del_init(&root->dirty_list);
183                 free_extent_buffer(root->commit_root);
184                 root->commit_root = btrfs_root_node(root);
185                 extent_io_tree_release(&root->dirty_log_pages);
186                 btrfs_qgroup_clean_swapped_blocks(root);
187         }
188
189         /* We can free old roots now. */
190         spin_lock(&cur_trans->dropped_roots_lock);
191         while (!list_empty(&cur_trans->dropped_roots)) {
192                 root = list_first_entry(&cur_trans->dropped_roots,
193                                         struct btrfs_root, root_list);
194                 list_del_init(&root->root_list);
195                 spin_unlock(&cur_trans->dropped_roots_lock);
196                 btrfs_free_log(trans, root);
197                 btrfs_drop_and_free_fs_root(fs_info, root);
198                 spin_lock(&cur_trans->dropped_roots_lock);
199         }
200         spin_unlock(&cur_trans->dropped_roots_lock);
201
202         up_write(&fs_info->commit_root_sem);
203 }
204
205 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
206                                          unsigned int type)
207 {
208         if (type & TRANS_EXTWRITERS)
209                 atomic_inc(&trans->num_extwriters);
210 }
211
212 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
213                                          unsigned int type)
214 {
215         if (type & TRANS_EXTWRITERS)
216                 atomic_dec(&trans->num_extwriters);
217 }
218
219 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
220                                           unsigned int type)
221 {
222         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
223 }
224
225 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
226 {
227         return atomic_read(&trans->num_extwriters);
228 }
229
230 /*
231  * To be called after doing the chunk btree updates right after allocating a new
232  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
233  * chunk after all chunk btree updates and after finishing the second phase of
234  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
235  * group had its chunk item insertion delayed to the second phase.
236  */
237 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
238 {
239         struct btrfs_fs_info *fs_info = trans->fs_info;
240
241         if (!trans->chunk_bytes_reserved)
242                 return;
243
244         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
245                                 trans->chunk_bytes_reserved, NULL);
246         trans->chunk_bytes_reserved = 0;
247 }
248
249 /*
250  * either allocate a new transaction or hop into the existing one
251  */
252 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
253                                      unsigned int type)
254 {
255         struct btrfs_transaction *cur_trans;
256
257         spin_lock(&fs_info->trans_lock);
258 loop:
259         /* The file system has been taken offline. No new transactions. */
260         if (BTRFS_FS_ERROR(fs_info)) {
261                 spin_unlock(&fs_info->trans_lock);
262                 return -EROFS;
263         }
264
265         cur_trans = fs_info->running_transaction;
266         if (cur_trans) {
267                 if (TRANS_ABORTED(cur_trans)) {
268                         spin_unlock(&fs_info->trans_lock);
269                         return cur_trans->aborted;
270                 }
271                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
272                         spin_unlock(&fs_info->trans_lock);
273                         return -EBUSY;
274                 }
275                 refcount_inc(&cur_trans->use_count);
276                 atomic_inc(&cur_trans->num_writers);
277                 extwriter_counter_inc(cur_trans, type);
278                 spin_unlock(&fs_info->trans_lock);
279                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
280                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
281                 return 0;
282         }
283         spin_unlock(&fs_info->trans_lock);
284
285         /*
286          * If we are ATTACH, we just want to catch the current transaction,
287          * and commit it. If there is no transaction, just return ENOENT.
288          */
289         if (type == TRANS_ATTACH)
290                 return -ENOENT;
291
292         /*
293          * JOIN_NOLOCK only happens during the transaction commit, so
294          * it is impossible that ->running_transaction is NULL
295          */
296         BUG_ON(type == TRANS_JOIN_NOLOCK);
297
298         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
299         if (!cur_trans)
300                 return -ENOMEM;
301
302         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
303         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
304
305         spin_lock(&fs_info->trans_lock);
306         if (fs_info->running_transaction) {
307                 /*
308                  * someone started a transaction after we unlocked.  Make sure
309                  * to redo the checks above
310                  */
311                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
312                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
313                 kfree(cur_trans);
314                 goto loop;
315         } else if (BTRFS_FS_ERROR(fs_info)) {
316                 spin_unlock(&fs_info->trans_lock);
317                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
318                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
319                 kfree(cur_trans);
320                 return -EROFS;
321         }
322
323         cur_trans->fs_info = fs_info;
324         atomic_set(&cur_trans->pending_ordered, 0);
325         init_waitqueue_head(&cur_trans->pending_wait);
326         atomic_set(&cur_trans->num_writers, 1);
327         extwriter_counter_init(cur_trans, type);
328         init_waitqueue_head(&cur_trans->writer_wait);
329         init_waitqueue_head(&cur_trans->commit_wait);
330         cur_trans->state = TRANS_STATE_RUNNING;
331         /*
332          * One for this trans handle, one so it will live on until we
333          * commit the transaction.
334          */
335         refcount_set(&cur_trans->use_count, 2);
336         cur_trans->flags = 0;
337         cur_trans->start_time = ktime_get_seconds();
338
339         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
340
341         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
342         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
343         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
344
345         /*
346          * although the tree mod log is per file system and not per transaction,
347          * the log must never go across transaction boundaries.
348          */
349         smp_mb();
350         if (!list_empty(&fs_info->tree_mod_seq_list))
351                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
352         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
353                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
354         atomic64_set(&fs_info->tree_mod_seq, 0);
355
356         spin_lock_init(&cur_trans->delayed_refs.lock);
357
358         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
359         INIT_LIST_HEAD(&cur_trans->dev_update_list);
360         INIT_LIST_HEAD(&cur_trans->switch_commits);
361         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
362         INIT_LIST_HEAD(&cur_trans->io_bgs);
363         INIT_LIST_HEAD(&cur_trans->dropped_roots);
364         mutex_init(&cur_trans->cache_write_mutex);
365         spin_lock_init(&cur_trans->dirty_bgs_lock);
366         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
367         spin_lock_init(&cur_trans->dropped_roots_lock);
368         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
369         spin_lock_init(&cur_trans->releasing_ebs_lock);
370         list_add_tail(&cur_trans->list, &fs_info->trans_list);
371         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
372                         IO_TREE_TRANS_DIRTY_PAGES, NULL);
373         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
374                         IO_TREE_FS_PINNED_EXTENTS, NULL);
375         fs_info->generation++;
376         cur_trans->transid = fs_info->generation;
377         fs_info->running_transaction = cur_trans;
378         cur_trans->aborted = 0;
379         spin_unlock(&fs_info->trans_lock);
380
381         return 0;
382 }
383
384 /*
385  * This does all the record keeping required to make sure that a shareable root
386  * is properly recorded in a given transaction.  This is required to make sure
387  * the old root from before we joined the transaction is deleted when the
388  * transaction commits.
389  */
390 static int record_root_in_trans(struct btrfs_trans_handle *trans,
391                                struct btrfs_root *root,
392                                int force)
393 {
394         struct btrfs_fs_info *fs_info = root->fs_info;
395         int ret = 0;
396
397         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
398             root->last_trans < trans->transid) || force) {
399                 WARN_ON(!force && root->commit_root != root->node);
400
401                 /*
402                  * see below for IN_TRANS_SETUP usage rules
403                  * we have the reloc mutex held now, so there
404                  * is only one writer in this function
405                  */
406                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
407
408                 /* make sure readers find IN_TRANS_SETUP before
409                  * they find our root->last_trans update
410                  */
411                 smp_wmb();
412
413                 spin_lock(&fs_info->fs_roots_radix_lock);
414                 if (root->last_trans == trans->transid && !force) {
415                         spin_unlock(&fs_info->fs_roots_radix_lock);
416                         return 0;
417                 }
418                 radix_tree_tag_set(&fs_info->fs_roots_radix,
419                                    (unsigned long)root->root_key.objectid,
420                                    BTRFS_ROOT_TRANS_TAG);
421                 spin_unlock(&fs_info->fs_roots_radix_lock);
422                 root->last_trans = trans->transid;
423
424                 /* this is pretty tricky.  We don't want to
425                  * take the relocation lock in btrfs_record_root_in_trans
426                  * unless we're really doing the first setup for this root in
427                  * this transaction.
428                  *
429                  * Normally we'd use root->last_trans as a flag to decide
430                  * if we want to take the expensive mutex.
431                  *
432                  * But, we have to set root->last_trans before we
433                  * init the relocation root, otherwise, we trip over warnings
434                  * in ctree.c.  The solution used here is to flag ourselves
435                  * with root IN_TRANS_SETUP.  When this is 1, we're still
436                  * fixing up the reloc trees and everyone must wait.
437                  *
438                  * When this is zero, they can trust root->last_trans and fly
439                  * through btrfs_record_root_in_trans without having to take the
440                  * lock.  smp_wmb() makes sure that all the writes above are
441                  * done before we pop in the zero below
442                  */
443                 ret = btrfs_init_reloc_root(trans, root);
444                 smp_mb__before_atomic();
445                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
446         }
447         return ret;
448 }
449
450
451 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
452                             struct btrfs_root *root)
453 {
454         struct btrfs_fs_info *fs_info = root->fs_info;
455         struct btrfs_transaction *cur_trans = trans->transaction;
456
457         /* Add ourselves to the transaction dropped list */
458         spin_lock(&cur_trans->dropped_roots_lock);
459         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
460         spin_unlock(&cur_trans->dropped_roots_lock);
461
462         /* Make sure we don't try to update the root at commit time */
463         spin_lock(&fs_info->fs_roots_radix_lock);
464         radix_tree_tag_clear(&fs_info->fs_roots_radix,
465                              (unsigned long)root->root_key.objectid,
466                              BTRFS_ROOT_TRANS_TAG);
467         spin_unlock(&fs_info->fs_roots_radix_lock);
468 }
469
470 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
471                                struct btrfs_root *root)
472 {
473         struct btrfs_fs_info *fs_info = root->fs_info;
474         int ret;
475
476         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
477                 return 0;
478
479         /*
480          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
481          * and barriers
482          */
483         smp_rmb();
484         if (root->last_trans == trans->transid &&
485             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
486                 return 0;
487
488         mutex_lock(&fs_info->reloc_mutex);
489         ret = record_root_in_trans(trans, root, 0);
490         mutex_unlock(&fs_info->reloc_mutex);
491
492         return ret;
493 }
494
495 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
496 {
497         return (trans->state >= TRANS_STATE_COMMIT_START &&
498                 trans->state < TRANS_STATE_UNBLOCKED &&
499                 !TRANS_ABORTED(trans));
500 }
501
502 /* wait for commit against the current transaction to become unblocked
503  * when this is done, it is safe to start a new transaction, but the current
504  * transaction might not be fully on disk.
505  */
506 static void wait_current_trans(struct btrfs_fs_info *fs_info)
507 {
508         struct btrfs_transaction *cur_trans;
509
510         spin_lock(&fs_info->trans_lock);
511         cur_trans = fs_info->running_transaction;
512         if (cur_trans && is_transaction_blocked(cur_trans)) {
513                 refcount_inc(&cur_trans->use_count);
514                 spin_unlock(&fs_info->trans_lock);
515
516                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
517                 wait_event(fs_info->transaction_wait,
518                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
519                            TRANS_ABORTED(cur_trans));
520                 btrfs_put_transaction(cur_trans);
521         } else {
522                 spin_unlock(&fs_info->trans_lock);
523         }
524 }
525
526 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
527 {
528         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
529                 return 0;
530
531         if (type == TRANS_START)
532                 return 1;
533
534         return 0;
535 }
536
537 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
538 {
539         struct btrfs_fs_info *fs_info = root->fs_info;
540
541         if (!fs_info->reloc_ctl ||
542             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
543             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
544             root->reloc_root)
545                 return false;
546
547         return true;
548 }
549
550 static struct btrfs_trans_handle *
551 start_transaction(struct btrfs_root *root, unsigned int num_items,
552                   unsigned int type, enum btrfs_reserve_flush_enum flush,
553                   bool enforce_qgroups)
554 {
555         struct btrfs_fs_info *fs_info = root->fs_info;
556         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
557         struct btrfs_trans_handle *h;
558         struct btrfs_transaction *cur_trans;
559         u64 num_bytes = 0;
560         u64 qgroup_reserved = 0;
561         bool reloc_reserved = false;
562         bool do_chunk_alloc = false;
563         int ret;
564
565         if (BTRFS_FS_ERROR(fs_info))
566                 return ERR_PTR(-EROFS);
567
568         if (current->journal_info) {
569                 WARN_ON(type & TRANS_EXTWRITERS);
570                 h = current->journal_info;
571                 refcount_inc(&h->use_count);
572                 WARN_ON(refcount_read(&h->use_count) > 2);
573                 h->orig_rsv = h->block_rsv;
574                 h->block_rsv = NULL;
575                 goto got_it;
576         }
577
578         /*
579          * Do the reservation before we join the transaction so we can do all
580          * the appropriate flushing if need be.
581          */
582         if (num_items && root != fs_info->chunk_root) {
583                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
584                 u64 delayed_refs_bytes = 0;
585
586                 qgroup_reserved = num_items * fs_info->nodesize;
587                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
588                                 enforce_qgroups);
589                 if (ret)
590                         return ERR_PTR(ret);
591
592                 /*
593                  * We want to reserve all the bytes we may need all at once, so
594                  * we only do 1 enospc flushing cycle per transaction start.  We
595                  * accomplish this by simply assuming we'll do 2 x num_items
596                  * worth of delayed refs updates in this trans handle, and
597                  * refill that amount for whatever is missing in the reserve.
598                  */
599                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
600                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
601                     btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
602                         delayed_refs_bytes = num_bytes;
603                         num_bytes <<= 1;
604                 }
605
606                 /*
607                  * Do the reservation for the relocation root creation
608                  */
609                 if (need_reserve_reloc_root(root)) {
610                         num_bytes += fs_info->nodesize;
611                         reloc_reserved = true;
612                 }
613
614                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
615                 if (ret)
616                         goto reserve_fail;
617                 if (delayed_refs_bytes) {
618                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
619                                                           delayed_refs_bytes);
620                         num_bytes -= delayed_refs_bytes;
621                 }
622
623                 if (rsv->space_info->force_alloc)
624                         do_chunk_alloc = true;
625         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
626                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
627                 /*
628                  * Some people call with btrfs_start_transaction(root, 0)
629                  * because they can be throttled, but have some other mechanism
630                  * for reserving space.  We still want these guys to refill the
631                  * delayed block_rsv so just add 1 items worth of reservation
632                  * here.
633                  */
634                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
635                 if (ret)
636                         goto reserve_fail;
637         }
638 again:
639         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
640         if (!h) {
641                 ret = -ENOMEM;
642                 goto alloc_fail;
643         }
644
645         /*
646          * If we are JOIN_NOLOCK we're already committing a transaction and
647          * waiting on this guy, so we don't need to do the sb_start_intwrite
648          * because we're already holding a ref.  We need this because we could
649          * have raced in and did an fsync() on a file which can kick a commit
650          * and then we deadlock with somebody doing a freeze.
651          *
652          * If we are ATTACH, it means we just want to catch the current
653          * transaction and commit it, so we needn't do sb_start_intwrite(). 
654          */
655         if (type & __TRANS_FREEZABLE)
656                 sb_start_intwrite(fs_info->sb);
657
658         if (may_wait_transaction(fs_info, type))
659                 wait_current_trans(fs_info);
660
661         do {
662                 ret = join_transaction(fs_info, type);
663                 if (ret == -EBUSY) {
664                         wait_current_trans(fs_info);
665                         if (unlikely(type == TRANS_ATTACH ||
666                                      type == TRANS_JOIN_NOSTART))
667                                 ret = -ENOENT;
668                 }
669         } while (ret == -EBUSY);
670
671         if (ret < 0)
672                 goto join_fail;
673
674         cur_trans = fs_info->running_transaction;
675
676         h->transid = cur_trans->transid;
677         h->transaction = cur_trans;
678         refcount_set(&h->use_count, 1);
679         h->fs_info = root->fs_info;
680
681         h->type = type;
682         INIT_LIST_HEAD(&h->new_bgs);
683
684         smp_mb();
685         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
686             may_wait_transaction(fs_info, type)) {
687                 current->journal_info = h;
688                 btrfs_commit_transaction(h);
689                 goto again;
690         }
691
692         if (num_bytes) {
693                 trace_btrfs_space_reservation(fs_info, "transaction",
694                                               h->transid, num_bytes, 1);
695                 h->block_rsv = &fs_info->trans_block_rsv;
696                 h->bytes_reserved = num_bytes;
697                 h->reloc_reserved = reloc_reserved;
698         }
699
700 got_it:
701         if (!current->journal_info)
702                 current->journal_info = h;
703
704         /*
705          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
706          * ALLOC_FORCE the first run through, and then we won't allocate for
707          * anybody else who races in later.  We don't care about the return
708          * value here.
709          */
710         if (do_chunk_alloc && num_bytes) {
711                 u64 flags = h->block_rsv->space_info->flags;
712
713                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
714                                   CHUNK_ALLOC_NO_FORCE);
715         }
716
717         /*
718          * btrfs_record_root_in_trans() needs to alloc new extents, and may
719          * call btrfs_join_transaction() while we're also starting a
720          * transaction.
721          *
722          * Thus it need to be called after current->journal_info initialized,
723          * or we can deadlock.
724          */
725         ret = btrfs_record_root_in_trans(h, root);
726         if (ret) {
727                 /*
728                  * The transaction handle is fully initialized and linked with
729                  * other structures so it needs to be ended in case of errors,
730                  * not just freed.
731                  */
732                 btrfs_end_transaction(h);
733                 return ERR_PTR(ret);
734         }
735
736         return h;
737
738 join_fail:
739         if (type & __TRANS_FREEZABLE)
740                 sb_end_intwrite(fs_info->sb);
741         kmem_cache_free(btrfs_trans_handle_cachep, h);
742 alloc_fail:
743         if (num_bytes)
744                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
745                                         num_bytes, NULL);
746 reserve_fail:
747         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
748         return ERR_PTR(ret);
749 }
750
751 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
752                                                    unsigned int num_items)
753 {
754         return start_transaction(root, num_items, TRANS_START,
755                                  BTRFS_RESERVE_FLUSH_ALL, true);
756 }
757
758 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
759                                         struct btrfs_root *root,
760                                         unsigned int num_items)
761 {
762         return start_transaction(root, num_items, TRANS_START,
763                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
764 }
765
766 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
767 {
768         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
769                                  true);
770 }
771
772 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
773 {
774         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
775                                  BTRFS_RESERVE_NO_FLUSH, true);
776 }
777
778 /*
779  * Similar to regular join but it never starts a transaction when none is
780  * running or after waiting for the current one to finish.
781  */
782 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
783 {
784         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
785                                  BTRFS_RESERVE_NO_FLUSH, true);
786 }
787
788 /*
789  * btrfs_attach_transaction() - catch the running transaction
790  *
791  * It is used when we want to commit the current the transaction, but
792  * don't want to start a new one.
793  *
794  * Note: If this function return -ENOENT, it just means there is no
795  * running transaction. But it is possible that the inactive transaction
796  * is still in the memory, not fully on disk. If you hope there is no
797  * inactive transaction in the fs when -ENOENT is returned, you should
798  * invoke
799  *     btrfs_attach_transaction_barrier()
800  */
801 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
802 {
803         return start_transaction(root, 0, TRANS_ATTACH,
804                                  BTRFS_RESERVE_NO_FLUSH, true);
805 }
806
807 /*
808  * btrfs_attach_transaction_barrier() - catch the running transaction
809  *
810  * It is similar to the above function, the difference is this one
811  * will wait for all the inactive transactions until they fully
812  * complete.
813  */
814 struct btrfs_trans_handle *
815 btrfs_attach_transaction_barrier(struct btrfs_root *root)
816 {
817         struct btrfs_trans_handle *trans;
818
819         trans = start_transaction(root, 0, TRANS_ATTACH,
820                                   BTRFS_RESERVE_NO_FLUSH, true);
821         if (trans == ERR_PTR(-ENOENT))
822                 btrfs_wait_for_commit(root->fs_info, 0);
823
824         return trans;
825 }
826
827 /* Wait for a transaction commit to reach at least the given state. */
828 static noinline void wait_for_commit(struct btrfs_transaction *commit,
829                                      const enum btrfs_trans_state min_state)
830 {
831         struct btrfs_fs_info *fs_info = commit->fs_info;
832         u64 transid = commit->transid;
833         bool put = false;
834
835         /*
836          * At the moment this function is called with min_state either being
837          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
838          */
839         if (min_state == TRANS_STATE_COMPLETED)
840                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
841         else
842                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
843
844         while (1) {
845                 wait_event(commit->commit_wait, commit->state >= min_state);
846                 if (put)
847                         btrfs_put_transaction(commit);
848
849                 if (min_state < TRANS_STATE_COMPLETED)
850                         break;
851
852                 /*
853                  * A transaction isn't really completed until all of the
854                  * previous transactions are completed, but with fsync we can
855                  * end up with SUPER_COMMITTED transactions before a COMPLETED
856                  * transaction. Wait for those.
857                  */
858
859                 spin_lock(&fs_info->trans_lock);
860                 commit = list_first_entry_or_null(&fs_info->trans_list,
861                                                   struct btrfs_transaction,
862                                                   list);
863                 if (!commit || commit->transid > transid) {
864                         spin_unlock(&fs_info->trans_lock);
865                         break;
866                 }
867                 refcount_inc(&commit->use_count);
868                 put = true;
869                 spin_unlock(&fs_info->trans_lock);
870         }
871 }
872
873 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
874 {
875         struct btrfs_transaction *cur_trans = NULL, *t;
876         int ret = 0;
877
878         if (transid) {
879                 if (transid <= fs_info->last_trans_committed)
880                         goto out;
881
882                 /* find specified transaction */
883                 spin_lock(&fs_info->trans_lock);
884                 list_for_each_entry(t, &fs_info->trans_list, list) {
885                         if (t->transid == transid) {
886                                 cur_trans = t;
887                                 refcount_inc(&cur_trans->use_count);
888                                 ret = 0;
889                                 break;
890                         }
891                         if (t->transid > transid) {
892                                 ret = 0;
893                                 break;
894                         }
895                 }
896                 spin_unlock(&fs_info->trans_lock);
897
898                 /*
899                  * The specified transaction doesn't exist, or we
900                  * raced with btrfs_commit_transaction
901                  */
902                 if (!cur_trans) {
903                         if (transid > fs_info->last_trans_committed)
904                                 ret = -EINVAL;
905                         goto out;
906                 }
907         } else {
908                 /* find newest transaction that is committing | committed */
909                 spin_lock(&fs_info->trans_lock);
910                 list_for_each_entry_reverse(t, &fs_info->trans_list,
911                                             list) {
912                         if (t->state >= TRANS_STATE_COMMIT_START) {
913                                 if (t->state == TRANS_STATE_COMPLETED)
914                                         break;
915                                 cur_trans = t;
916                                 refcount_inc(&cur_trans->use_count);
917                                 break;
918                         }
919                 }
920                 spin_unlock(&fs_info->trans_lock);
921                 if (!cur_trans)
922                         goto out;  /* nothing committing|committed */
923         }
924
925         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
926         btrfs_put_transaction(cur_trans);
927 out:
928         return ret;
929 }
930
931 void btrfs_throttle(struct btrfs_fs_info *fs_info)
932 {
933         wait_current_trans(fs_info);
934 }
935
936 static bool should_end_transaction(struct btrfs_trans_handle *trans)
937 {
938         struct btrfs_fs_info *fs_info = trans->fs_info;
939
940         if (btrfs_check_space_for_delayed_refs(fs_info))
941                 return true;
942
943         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
944 }
945
946 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
947 {
948         struct btrfs_transaction *cur_trans = trans->transaction;
949
950         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
951             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
952                 return true;
953
954         return should_end_transaction(trans);
955 }
956
957 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
958
959 {
960         struct btrfs_fs_info *fs_info = trans->fs_info;
961
962         if (!trans->block_rsv) {
963                 ASSERT(!trans->bytes_reserved);
964                 return;
965         }
966
967         if (!trans->bytes_reserved)
968                 return;
969
970         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
971         trace_btrfs_space_reservation(fs_info, "transaction",
972                                       trans->transid, trans->bytes_reserved, 0);
973         btrfs_block_rsv_release(fs_info, trans->block_rsv,
974                                 trans->bytes_reserved, NULL);
975         trans->bytes_reserved = 0;
976 }
977
978 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
979                                    int throttle)
980 {
981         struct btrfs_fs_info *info = trans->fs_info;
982         struct btrfs_transaction *cur_trans = trans->transaction;
983         int err = 0;
984
985         if (refcount_read(&trans->use_count) > 1) {
986                 refcount_dec(&trans->use_count);
987                 trans->block_rsv = trans->orig_rsv;
988                 return 0;
989         }
990
991         btrfs_trans_release_metadata(trans);
992         trans->block_rsv = NULL;
993
994         btrfs_create_pending_block_groups(trans);
995
996         btrfs_trans_release_chunk_metadata(trans);
997
998         if (trans->type & __TRANS_FREEZABLE)
999                 sb_end_intwrite(info->sb);
1000
1001         WARN_ON(cur_trans != info->running_transaction);
1002         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1003         atomic_dec(&cur_trans->num_writers);
1004         extwriter_counter_dec(cur_trans, trans->type);
1005
1006         cond_wake_up(&cur_trans->writer_wait);
1007
1008         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1009         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1010
1011         btrfs_put_transaction(cur_trans);
1012
1013         if (current->journal_info == trans)
1014                 current->journal_info = NULL;
1015
1016         if (throttle)
1017                 btrfs_run_delayed_iputs(info);
1018
1019         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1020                 wake_up_process(info->transaction_kthread);
1021                 if (TRANS_ABORTED(trans))
1022                         err = trans->aborted;
1023                 else
1024                         err = -EROFS;
1025         }
1026
1027         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1028         return err;
1029 }
1030
1031 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1032 {
1033         return __btrfs_end_transaction(trans, 0);
1034 }
1035
1036 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1037 {
1038         return __btrfs_end_transaction(trans, 1);
1039 }
1040
1041 /*
1042  * when btree blocks are allocated, they have some corresponding bits set for
1043  * them in one of two extent_io trees.  This is used to make sure all of
1044  * those extents are sent to disk but does not wait on them
1045  */
1046 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1047                                struct extent_io_tree *dirty_pages, int mark)
1048 {
1049         int err = 0;
1050         int werr = 0;
1051         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1052         struct extent_state *cached_state = NULL;
1053         u64 start = 0;
1054         u64 end;
1055
1056         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1057         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1058                                       mark, &cached_state)) {
1059                 bool wait_writeback = false;
1060
1061                 err = convert_extent_bit(dirty_pages, start, end,
1062                                          EXTENT_NEED_WAIT,
1063                                          mark, &cached_state);
1064                 /*
1065                  * convert_extent_bit can return -ENOMEM, which is most of the
1066                  * time a temporary error. So when it happens, ignore the error
1067                  * and wait for writeback of this range to finish - because we
1068                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1069                  * to __btrfs_wait_marked_extents() would not know that
1070                  * writeback for this range started and therefore wouldn't
1071                  * wait for it to finish - we don't want to commit a
1072                  * superblock that points to btree nodes/leafs for which
1073                  * writeback hasn't finished yet (and without errors).
1074                  * We cleanup any entries left in the io tree when committing
1075                  * the transaction (through extent_io_tree_release()).
1076                  */
1077                 if (err == -ENOMEM) {
1078                         err = 0;
1079                         wait_writeback = true;
1080                 }
1081                 if (!err)
1082                         err = filemap_fdatawrite_range(mapping, start, end);
1083                 if (err)
1084                         werr = err;
1085                 else if (wait_writeback)
1086                         werr = filemap_fdatawait_range(mapping, start, end);
1087                 free_extent_state(cached_state);
1088                 cached_state = NULL;
1089                 cond_resched();
1090                 start = end + 1;
1091         }
1092         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1093         return werr;
1094 }
1095
1096 /*
1097  * when btree blocks are allocated, they have some corresponding bits set for
1098  * them in one of two extent_io trees.  This is used to make sure all of
1099  * those extents are on disk for transaction or log commit.  We wait
1100  * on all the pages and clear them from the dirty pages state tree
1101  */
1102 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1103                                        struct extent_io_tree *dirty_pages)
1104 {
1105         int err = 0;
1106         int werr = 0;
1107         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1108         struct extent_state *cached_state = NULL;
1109         u64 start = 0;
1110         u64 end;
1111
1112         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1113                                       EXTENT_NEED_WAIT, &cached_state)) {
1114                 /*
1115                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1116                  * When committing the transaction, we'll remove any entries
1117                  * left in the io tree. For a log commit, we don't remove them
1118                  * after committing the log because the tree can be accessed
1119                  * concurrently - we do it only at transaction commit time when
1120                  * it's safe to do it (through extent_io_tree_release()).
1121                  */
1122                 err = clear_extent_bit(dirty_pages, start, end,
1123                                        EXTENT_NEED_WAIT, &cached_state);
1124                 if (err == -ENOMEM)
1125                         err = 0;
1126                 if (!err)
1127                         err = filemap_fdatawait_range(mapping, start, end);
1128                 if (err)
1129                         werr = err;
1130                 free_extent_state(cached_state);
1131                 cached_state = NULL;
1132                 cond_resched();
1133                 start = end + 1;
1134         }
1135         if (err)
1136                 werr = err;
1137         return werr;
1138 }
1139
1140 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1141                        struct extent_io_tree *dirty_pages)
1142 {
1143         bool errors = false;
1144         int err;
1145
1146         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1147         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1148                 errors = true;
1149
1150         if (errors && !err)
1151                 err = -EIO;
1152         return err;
1153 }
1154
1155 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1156 {
1157         struct btrfs_fs_info *fs_info = log_root->fs_info;
1158         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1159         bool errors = false;
1160         int err;
1161
1162         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1163
1164         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1165         if ((mark & EXTENT_DIRTY) &&
1166             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1167                 errors = true;
1168
1169         if ((mark & EXTENT_NEW) &&
1170             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1171                 errors = true;
1172
1173         if (errors && !err)
1174                 err = -EIO;
1175         return err;
1176 }
1177
1178 /*
1179  * When btree blocks are allocated the corresponding extents are marked dirty.
1180  * This function ensures such extents are persisted on disk for transaction or
1181  * log commit.
1182  *
1183  * @trans: transaction whose dirty pages we'd like to write
1184  */
1185 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1186 {
1187         int ret;
1188         int ret2;
1189         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1190         struct btrfs_fs_info *fs_info = trans->fs_info;
1191         struct blk_plug plug;
1192
1193         blk_start_plug(&plug);
1194         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1195         blk_finish_plug(&plug);
1196         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1197
1198         extent_io_tree_release(&trans->transaction->dirty_pages);
1199
1200         if (ret)
1201                 return ret;
1202         else if (ret2)
1203                 return ret2;
1204         else
1205                 return 0;
1206 }
1207
1208 /*
1209  * this is used to update the root pointer in the tree of tree roots.
1210  *
1211  * But, in the case of the extent allocation tree, updating the root
1212  * pointer may allocate blocks which may change the root of the extent
1213  * allocation tree.
1214  *
1215  * So, this loops and repeats and makes sure the cowonly root didn't
1216  * change while the root pointer was being updated in the metadata.
1217  */
1218 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1219                                struct btrfs_root *root)
1220 {
1221         int ret;
1222         u64 old_root_bytenr;
1223         u64 old_root_used;
1224         struct btrfs_fs_info *fs_info = root->fs_info;
1225         struct btrfs_root *tree_root = fs_info->tree_root;
1226
1227         old_root_used = btrfs_root_used(&root->root_item);
1228
1229         while (1) {
1230                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1231                 if (old_root_bytenr == root->node->start &&
1232                     old_root_used == btrfs_root_used(&root->root_item))
1233                         break;
1234
1235                 btrfs_set_root_node(&root->root_item, root->node);
1236                 ret = btrfs_update_root(trans, tree_root,
1237                                         &root->root_key,
1238                                         &root->root_item);
1239                 if (ret)
1240                         return ret;
1241
1242                 old_root_used = btrfs_root_used(&root->root_item);
1243         }
1244
1245         return 0;
1246 }
1247
1248 /*
1249  * update all the cowonly tree roots on disk
1250  *
1251  * The error handling in this function may not be obvious. Any of the
1252  * failures will cause the file system to go offline. We still need
1253  * to clean up the delayed refs.
1254  */
1255 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1256 {
1257         struct btrfs_fs_info *fs_info = trans->fs_info;
1258         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1259         struct list_head *io_bgs = &trans->transaction->io_bgs;
1260         struct list_head *next;
1261         struct extent_buffer *eb;
1262         int ret;
1263
1264         /*
1265          * At this point no one can be using this transaction to modify any tree
1266          * and no one can start another transaction to modify any tree either.
1267          */
1268         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1269
1270         eb = btrfs_lock_root_node(fs_info->tree_root);
1271         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1272                               0, &eb, BTRFS_NESTING_COW);
1273         btrfs_tree_unlock(eb);
1274         free_extent_buffer(eb);
1275
1276         if (ret)
1277                 return ret;
1278
1279         ret = btrfs_run_dev_stats(trans);
1280         if (ret)
1281                 return ret;
1282         ret = btrfs_run_dev_replace(trans);
1283         if (ret)
1284                 return ret;
1285         ret = btrfs_run_qgroups(trans);
1286         if (ret)
1287                 return ret;
1288
1289         ret = btrfs_setup_space_cache(trans);
1290         if (ret)
1291                 return ret;
1292
1293 again:
1294         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1295                 struct btrfs_root *root;
1296                 next = fs_info->dirty_cowonly_roots.next;
1297                 list_del_init(next);
1298                 root = list_entry(next, struct btrfs_root, dirty_list);
1299                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1300
1301                 list_add_tail(&root->dirty_list,
1302                               &trans->transaction->switch_commits);
1303                 ret = update_cowonly_root(trans, root);
1304                 if (ret)
1305                         return ret;
1306         }
1307
1308         /* Now flush any delayed refs generated by updating all of the roots */
1309         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1310         if (ret)
1311                 return ret;
1312
1313         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1314                 ret = btrfs_write_dirty_block_groups(trans);
1315                 if (ret)
1316                         return ret;
1317
1318                 /*
1319                  * We're writing the dirty block groups, which could generate
1320                  * delayed refs, which could generate more dirty block groups,
1321                  * so we want to keep this flushing in this loop to make sure
1322                  * everything gets run.
1323                  */
1324                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1325                 if (ret)
1326                         return ret;
1327         }
1328
1329         if (!list_empty(&fs_info->dirty_cowonly_roots))
1330                 goto again;
1331
1332         /* Update dev-replace pointer once everything is committed */
1333         fs_info->dev_replace.committed_cursor_left =
1334                 fs_info->dev_replace.cursor_left_last_write_of_item;
1335
1336         return 0;
1337 }
1338
1339 /*
1340  * If we had a pending drop we need to see if there are any others left in our
1341  * dead roots list, and if not clear our bit and wake any waiters.
1342  */
1343 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1344 {
1345         /*
1346          * We put the drop in progress roots at the front of the list, so if the
1347          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1348          * up.
1349          */
1350         spin_lock(&fs_info->trans_lock);
1351         if (!list_empty(&fs_info->dead_roots)) {
1352                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1353                                                            struct btrfs_root,
1354                                                            root_list);
1355                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1356                         spin_unlock(&fs_info->trans_lock);
1357                         return;
1358                 }
1359         }
1360         spin_unlock(&fs_info->trans_lock);
1361
1362         btrfs_wake_unfinished_drop(fs_info);
1363 }
1364
1365 /*
1366  * dead roots are old snapshots that need to be deleted.  This allocates
1367  * a dirty root struct and adds it into the list of dead roots that need to
1368  * be deleted
1369  */
1370 void btrfs_add_dead_root(struct btrfs_root *root)
1371 {
1372         struct btrfs_fs_info *fs_info = root->fs_info;
1373
1374         spin_lock(&fs_info->trans_lock);
1375         if (list_empty(&root->root_list)) {
1376                 btrfs_grab_root(root);
1377
1378                 /* We want to process the partially complete drops first. */
1379                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1380                         list_add(&root->root_list, &fs_info->dead_roots);
1381                 else
1382                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1383         }
1384         spin_unlock(&fs_info->trans_lock);
1385 }
1386
1387 /*
1388  * Update each subvolume root and its relocation root, if it exists, in the tree
1389  * of tree roots. Also free log roots if they exist.
1390  */
1391 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1392 {
1393         struct btrfs_fs_info *fs_info = trans->fs_info;
1394         struct btrfs_root *gang[8];
1395         int i;
1396         int ret;
1397
1398         /*
1399          * At this point no one can be using this transaction to modify any tree
1400          * and no one can start another transaction to modify any tree either.
1401          */
1402         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1403
1404         spin_lock(&fs_info->fs_roots_radix_lock);
1405         while (1) {
1406                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1407                                                  (void **)gang, 0,
1408                                                  ARRAY_SIZE(gang),
1409                                                  BTRFS_ROOT_TRANS_TAG);
1410                 if (ret == 0)
1411                         break;
1412                 for (i = 0; i < ret; i++) {
1413                         struct btrfs_root *root = gang[i];
1414                         int ret2;
1415
1416                         /*
1417                          * At this point we can neither have tasks logging inodes
1418                          * from a root nor trying to commit a log tree.
1419                          */
1420                         ASSERT(atomic_read(&root->log_writers) == 0);
1421                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1422                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1423
1424                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1425                                         (unsigned long)root->root_key.objectid,
1426                                         BTRFS_ROOT_TRANS_TAG);
1427                         spin_unlock(&fs_info->fs_roots_radix_lock);
1428
1429                         btrfs_free_log(trans, root);
1430                         ret2 = btrfs_update_reloc_root(trans, root);
1431                         if (ret2)
1432                                 return ret2;
1433
1434                         /* see comments in should_cow_block() */
1435                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1436                         smp_mb__after_atomic();
1437
1438                         if (root->commit_root != root->node) {
1439                                 list_add_tail(&root->dirty_list,
1440                                         &trans->transaction->switch_commits);
1441                                 btrfs_set_root_node(&root->root_item,
1442                                                     root->node);
1443                         }
1444
1445                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1446                                                 &root->root_key,
1447                                                 &root->root_item);
1448                         if (ret2)
1449                                 return ret2;
1450                         spin_lock(&fs_info->fs_roots_radix_lock);
1451                         btrfs_qgroup_free_meta_all_pertrans(root);
1452                 }
1453         }
1454         spin_unlock(&fs_info->fs_roots_radix_lock);
1455         return 0;
1456 }
1457
1458 /*
1459  * defrag a given btree.
1460  * Every leaf in the btree is read and defragged.
1461  */
1462 int btrfs_defrag_root(struct btrfs_root *root)
1463 {
1464         struct btrfs_fs_info *info = root->fs_info;
1465         struct btrfs_trans_handle *trans;
1466         int ret;
1467
1468         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1469                 return 0;
1470
1471         while (1) {
1472                 trans = btrfs_start_transaction(root, 0);
1473                 if (IS_ERR(trans)) {
1474                         ret = PTR_ERR(trans);
1475                         break;
1476                 }
1477
1478                 ret = btrfs_defrag_leaves(trans, root);
1479
1480                 btrfs_end_transaction(trans);
1481                 btrfs_btree_balance_dirty(info);
1482                 cond_resched();
1483
1484                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1485                         break;
1486
1487                 if (btrfs_defrag_cancelled(info)) {
1488                         btrfs_debug(info, "defrag_root cancelled");
1489                         ret = -EAGAIN;
1490                         break;
1491                 }
1492         }
1493         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1494         return ret;
1495 }
1496
1497 /*
1498  * Do all special snapshot related qgroup dirty hack.
1499  *
1500  * Will do all needed qgroup inherit and dirty hack like switch commit
1501  * roots inside one transaction and write all btree into disk, to make
1502  * qgroup works.
1503  */
1504 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1505                                    struct btrfs_root *src,
1506                                    struct btrfs_root *parent,
1507                                    struct btrfs_qgroup_inherit *inherit,
1508                                    u64 dst_objectid)
1509 {
1510         struct btrfs_fs_info *fs_info = src->fs_info;
1511         int ret;
1512
1513         /*
1514          * Save some performance in the case that qgroups are not
1515          * enabled. If this check races with the ioctl, rescan will
1516          * kick in anyway.
1517          */
1518         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1519                 return 0;
1520
1521         /*
1522          * Ensure dirty @src will be committed.  Or, after coming
1523          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1524          * recorded root will never be updated again, causing an outdated root
1525          * item.
1526          */
1527         ret = record_root_in_trans(trans, src, 1);
1528         if (ret)
1529                 return ret;
1530
1531         /*
1532          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1533          * src root, so we must run the delayed refs here.
1534          *
1535          * However this isn't particularly fool proof, because there's no
1536          * synchronization keeping us from changing the tree after this point
1537          * before we do the qgroup_inherit, or even from making changes while
1538          * we're doing the qgroup_inherit.  But that's a problem for the future,
1539          * for now flush the delayed refs to narrow the race window where the
1540          * qgroup counters could end up wrong.
1541          */
1542         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1543         if (ret) {
1544                 btrfs_abort_transaction(trans, ret);
1545                 return ret;
1546         }
1547
1548         ret = commit_fs_roots(trans);
1549         if (ret)
1550                 goto out;
1551         ret = btrfs_qgroup_account_extents(trans);
1552         if (ret < 0)
1553                 goto out;
1554
1555         /* Now qgroup are all updated, we can inherit it to new qgroups */
1556         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1557                                    inherit);
1558         if (ret < 0)
1559                 goto out;
1560
1561         /*
1562          * Now we do a simplified commit transaction, which will:
1563          * 1) commit all subvolume and extent tree
1564          *    To ensure all subvolume and extent tree have a valid
1565          *    commit_root to accounting later insert_dir_item()
1566          * 2) write all btree blocks onto disk
1567          *    This is to make sure later btree modification will be cowed
1568          *    Or commit_root can be populated and cause wrong qgroup numbers
1569          * In this simplified commit, we don't really care about other trees
1570          * like chunk and root tree, as they won't affect qgroup.
1571          * And we don't write super to avoid half committed status.
1572          */
1573         ret = commit_cowonly_roots(trans);
1574         if (ret)
1575                 goto out;
1576         switch_commit_roots(trans);
1577         ret = btrfs_write_and_wait_transaction(trans);
1578         if (ret)
1579                 btrfs_handle_fs_error(fs_info, ret,
1580                         "Error while writing out transaction for qgroup");
1581
1582 out:
1583         /*
1584          * Force parent root to be updated, as we recorded it before so its
1585          * last_trans == cur_transid.
1586          * Or it won't be committed again onto disk after later
1587          * insert_dir_item()
1588          */
1589         if (!ret)
1590                 ret = record_root_in_trans(trans, parent, 1);
1591         return ret;
1592 }
1593
1594 /*
1595  * new snapshots need to be created at a very specific time in the
1596  * transaction commit.  This does the actual creation.
1597  *
1598  * Note:
1599  * If the error which may affect the commitment of the current transaction
1600  * happens, we should return the error number. If the error which just affect
1601  * the creation of the pending snapshots, just return 0.
1602  */
1603 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1604                                    struct btrfs_pending_snapshot *pending)
1605 {
1606
1607         struct btrfs_fs_info *fs_info = trans->fs_info;
1608         struct btrfs_key key;
1609         struct btrfs_root_item *new_root_item;
1610         struct btrfs_root *tree_root = fs_info->tree_root;
1611         struct btrfs_root *root = pending->root;
1612         struct btrfs_root *parent_root;
1613         struct btrfs_block_rsv *rsv;
1614         struct inode *parent_inode;
1615         struct btrfs_path *path;
1616         struct btrfs_dir_item *dir_item;
1617         struct dentry *dentry;
1618         struct extent_buffer *tmp;
1619         struct extent_buffer *old;
1620         struct timespec64 cur_time;
1621         int ret = 0;
1622         u64 to_reserve = 0;
1623         u64 index = 0;
1624         u64 objectid;
1625         u64 root_flags;
1626
1627         ASSERT(pending->path);
1628         path = pending->path;
1629
1630         ASSERT(pending->root_item);
1631         new_root_item = pending->root_item;
1632
1633         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1634         if (pending->error)
1635                 goto no_free_objectid;
1636
1637         /*
1638          * Make qgroup to skip current new snapshot's qgroupid, as it is
1639          * accounted by later btrfs_qgroup_inherit().
1640          */
1641         btrfs_set_skip_qgroup(trans, objectid);
1642
1643         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1644
1645         if (to_reserve > 0) {
1646                 pending->error = btrfs_block_rsv_add(fs_info,
1647                                                      &pending->block_rsv,
1648                                                      to_reserve,
1649                                                      BTRFS_RESERVE_NO_FLUSH);
1650                 if (pending->error)
1651                         goto clear_skip_qgroup;
1652         }
1653
1654         key.objectid = objectid;
1655         key.offset = (u64)-1;
1656         key.type = BTRFS_ROOT_ITEM_KEY;
1657
1658         rsv = trans->block_rsv;
1659         trans->block_rsv = &pending->block_rsv;
1660         trans->bytes_reserved = trans->block_rsv->reserved;
1661         trace_btrfs_space_reservation(fs_info, "transaction",
1662                                       trans->transid,
1663                                       trans->bytes_reserved, 1);
1664         dentry = pending->dentry;
1665         parent_inode = pending->dir;
1666         parent_root = BTRFS_I(parent_inode)->root;
1667         ret = record_root_in_trans(trans, parent_root, 0);
1668         if (ret)
1669                 goto fail;
1670         cur_time = current_time(parent_inode);
1671
1672         /*
1673          * insert the directory item
1674          */
1675         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1676         BUG_ON(ret); /* -ENOMEM */
1677
1678         /* check if there is a file/dir which has the same name. */
1679         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1680                                          btrfs_ino(BTRFS_I(parent_inode)),
1681                                          &dentry->d_name, 0);
1682         if (dir_item != NULL && !IS_ERR(dir_item)) {
1683                 pending->error = -EEXIST;
1684                 goto dir_item_existed;
1685         } else if (IS_ERR(dir_item)) {
1686                 ret = PTR_ERR(dir_item);
1687                 btrfs_abort_transaction(trans, ret);
1688                 goto fail;
1689         }
1690         btrfs_release_path(path);
1691
1692         /*
1693          * pull in the delayed directory update
1694          * and the delayed inode item
1695          * otherwise we corrupt the FS during
1696          * snapshot
1697          */
1698         ret = btrfs_run_delayed_items(trans);
1699         if (ret) {      /* Transaction aborted */
1700                 btrfs_abort_transaction(trans, ret);
1701                 goto fail;
1702         }
1703
1704         ret = record_root_in_trans(trans, root, 0);
1705         if (ret) {
1706                 btrfs_abort_transaction(trans, ret);
1707                 goto fail;
1708         }
1709         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1710         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1711         btrfs_check_and_init_root_item(new_root_item);
1712
1713         root_flags = btrfs_root_flags(new_root_item);
1714         if (pending->readonly)
1715                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1716         else
1717                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1718         btrfs_set_root_flags(new_root_item, root_flags);
1719
1720         btrfs_set_root_generation_v2(new_root_item,
1721                         trans->transid);
1722         generate_random_guid(new_root_item->uuid);
1723         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1724                         BTRFS_UUID_SIZE);
1725         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1726                 memset(new_root_item->received_uuid, 0,
1727                        sizeof(new_root_item->received_uuid));
1728                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1729                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1730                 btrfs_set_root_stransid(new_root_item, 0);
1731                 btrfs_set_root_rtransid(new_root_item, 0);
1732         }
1733         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1734         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1735         btrfs_set_root_otransid(new_root_item, trans->transid);
1736
1737         old = btrfs_lock_root_node(root);
1738         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1739                               BTRFS_NESTING_COW);
1740         if (ret) {
1741                 btrfs_tree_unlock(old);
1742                 free_extent_buffer(old);
1743                 btrfs_abort_transaction(trans, ret);
1744                 goto fail;
1745         }
1746
1747         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1748         /* clean up in any case */
1749         btrfs_tree_unlock(old);
1750         free_extent_buffer(old);
1751         if (ret) {
1752                 btrfs_abort_transaction(trans, ret);
1753                 goto fail;
1754         }
1755         /* see comments in should_cow_block() */
1756         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1757         smp_wmb();
1758
1759         btrfs_set_root_node(new_root_item, tmp);
1760         /* record when the snapshot was created in key.offset */
1761         key.offset = trans->transid;
1762         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1763         btrfs_tree_unlock(tmp);
1764         free_extent_buffer(tmp);
1765         if (ret) {
1766                 btrfs_abort_transaction(trans, ret);
1767                 goto fail;
1768         }
1769
1770         /*
1771          * insert root back/forward references
1772          */
1773         ret = btrfs_add_root_ref(trans, objectid,
1774                                  parent_root->root_key.objectid,
1775                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1776                                  &dentry->d_name);
1777         if (ret) {
1778                 btrfs_abort_transaction(trans, ret);
1779                 goto fail;
1780         }
1781
1782         key.offset = (u64)-1;
1783         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1784         if (IS_ERR(pending->snap)) {
1785                 ret = PTR_ERR(pending->snap);
1786                 pending->snap = NULL;
1787                 btrfs_abort_transaction(trans, ret);
1788                 goto fail;
1789         }
1790
1791         ret = btrfs_reloc_post_snapshot(trans, pending);
1792         if (ret) {
1793                 btrfs_abort_transaction(trans, ret);
1794                 goto fail;
1795         }
1796
1797         /*
1798          * Do special qgroup accounting for snapshot, as we do some qgroup
1799          * snapshot hack to do fast snapshot.
1800          * To co-operate with that hack, we do hack again.
1801          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1802          */
1803         ret = qgroup_account_snapshot(trans, root, parent_root,
1804                                       pending->inherit, objectid);
1805         if (ret < 0)
1806                 goto fail;
1807
1808         ret = btrfs_insert_dir_item(trans, &dentry->d_name,
1809                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1810                                     index);
1811         /* We have check then name at the beginning, so it is impossible. */
1812         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1813         if (ret) {
1814                 btrfs_abort_transaction(trans, ret);
1815                 goto fail;
1816         }
1817
1818         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1819                                          dentry->d_name.len * 2);
1820         parent_inode->i_mtime = current_time(parent_inode);
1821         parent_inode->i_ctime = parent_inode->i_mtime;
1822         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1823         if (ret) {
1824                 btrfs_abort_transaction(trans, ret);
1825                 goto fail;
1826         }
1827         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1828                                   BTRFS_UUID_KEY_SUBVOL,
1829                                   objectid);
1830         if (ret) {
1831                 btrfs_abort_transaction(trans, ret);
1832                 goto fail;
1833         }
1834         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1835                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1836                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1837                                           objectid);
1838                 if (ret && ret != -EEXIST) {
1839                         btrfs_abort_transaction(trans, ret);
1840                         goto fail;
1841                 }
1842         }
1843
1844 fail:
1845         pending->error = ret;
1846 dir_item_existed:
1847         trans->block_rsv = rsv;
1848         trans->bytes_reserved = 0;
1849 clear_skip_qgroup:
1850         btrfs_clear_skip_qgroup(trans);
1851 no_free_objectid:
1852         kfree(new_root_item);
1853         pending->root_item = NULL;
1854         btrfs_free_path(path);
1855         pending->path = NULL;
1856
1857         return ret;
1858 }
1859
1860 /*
1861  * create all the snapshots we've scheduled for creation
1862  */
1863 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1864 {
1865         struct btrfs_pending_snapshot *pending, *next;
1866         struct list_head *head = &trans->transaction->pending_snapshots;
1867         int ret = 0;
1868
1869         list_for_each_entry_safe(pending, next, head, list) {
1870                 list_del(&pending->list);
1871                 ret = create_pending_snapshot(trans, pending);
1872                 if (ret)
1873                         break;
1874         }
1875         return ret;
1876 }
1877
1878 static void update_super_roots(struct btrfs_fs_info *fs_info)
1879 {
1880         struct btrfs_root_item *root_item;
1881         struct btrfs_super_block *super;
1882
1883         super = fs_info->super_copy;
1884
1885         root_item = &fs_info->chunk_root->root_item;
1886         super->chunk_root = root_item->bytenr;
1887         super->chunk_root_generation = root_item->generation;
1888         super->chunk_root_level = root_item->level;
1889
1890         root_item = &fs_info->tree_root->root_item;
1891         super->root = root_item->bytenr;
1892         super->generation = root_item->generation;
1893         super->root_level = root_item->level;
1894         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1895                 super->cache_generation = root_item->generation;
1896         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1897                 super->cache_generation = 0;
1898         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1899                 super->uuid_tree_generation = root_item->generation;
1900 }
1901
1902 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1903 {
1904         struct btrfs_transaction *trans;
1905         int ret = 0;
1906
1907         spin_lock(&info->trans_lock);
1908         trans = info->running_transaction;
1909         if (trans)
1910                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1911         spin_unlock(&info->trans_lock);
1912         return ret;
1913 }
1914
1915 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1916 {
1917         struct btrfs_transaction *trans;
1918         int ret = 0;
1919
1920         spin_lock(&info->trans_lock);
1921         trans = info->running_transaction;
1922         if (trans)
1923                 ret = is_transaction_blocked(trans);
1924         spin_unlock(&info->trans_lock);
1925         return ret;
1926 }
1927
1928 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1929 {
1930         struct btrfs_fs_info *fs_info = trans->fs_info;
1931         struct btrfs_transaction *cur_trans;
1932
1933         /* Kick the transaction kthread. */
1934         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1935         wake_up_process(fs_info->transaction_kthread);
1936
1937         /* take transaction reference */
1938         cur_trans = trans->transaction;
1939         refcount_inc(&cur_trans->use_count);
1940
1941         btrfs_end_transaction(trans);
1942
1943         /*
1944          * Wait for the current transaction commit to start and block
1945          * subsequent transaction joins
1946          */
1947         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1948         wait_event(fs_info->transaction_blocked_wait,
1949                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1950                    TRANS_ABORTED(cur_trans));
1951         btrfs_put_transaction(cur_trans);
1952 }
1953
1954 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1955 {
1956         struct btrfs_fs_info *fs_info = trans->fs_info;
1957         struct btrfs_transaction *cur_trans = trans->transaction;
1958
1959         WARN_ON(refcount_read(&trans->use_count) > 1);
1960
1961         btrfs_abort_transaction(trans, err);
1962
1963         spin_lock(&fs_info->trans_lock);
1964
1965         /*
1966          * If the transaction is removed from the list, it means this
1967          * transaction has been committed successfully, so it is impossible
1968          * to call the cleanup function.
1969          */
1970         BUG_ON(list_empty(&cur_trans->list));
1971
1972         if (cur_trans == fs_info->running_transaction) {
1973                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1974                 spin_unlock(&fs_info->trans_lock);
1975
1976                 /*
1977                  * The thread has already released the lockdep map as reader
1978                  * already in btrfs_commit_transaction().
1979                  */
1980                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1981                 wait_event(cur_trans->writer_wait,
1982                            atomic_read(&cur_trans->num_writers) == 1);
1983
1984                 spin_lock(&fs_info->trans_lock);
1985         }
1986
1987         /*
1988          * Now that we know no one else is still using the transaction we can
1989          * remove the transaction from the list of transactions. This avoids
1990          * the transaction kthread from cleaning up the transaction while some
1991          * other task is still using it, which could result in a use-after-free
1992          * on things like log trees, as it forces the transaction kthread to
1993          * wait for this transaction to be cleaned up by us.
1994          */
1995         list_del_init(&cur_trans->list);
1996
1997         spin_unlock(&fs_info->trans_lock);
1998
1999         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2000
2001         spin_lock(&fs_info->trans_lock);
2002         if (cur_trans == fs_info->running_transaction)
2003                 fs_info->running_transaction = NULL;
2004         spin_unlock(&fs_info->trans_lock);
2005
2006         if (trans->type & __TRANS_FREEZABLE)
2007                 sb_end_intwrite(fs_info->sb);
2008         btrfs_put_transaction(cur_trans);
2009         btrfs_put_transaction(cur_trans);
2010
2011         trace_btrfs_transaction_commit(fs_info);
2012
2013         if (current->journal_info == trans)
2014                 current->journal_info = NULL;
2015         btrfs_scrub_cancel(fs_info);
2016
2017         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2018 }
2019
2020 /*
2021  * Release reserved delayed ref space of all pending block groups of the
2022  * transaction and remove them from the list
2023  */
2024 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2025 {
2026        struct btrfs_fs_info *fs_info = trans->fs_info;
2027        struct btrfs_block_group *block_group, *tmp;
2028
2029        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2030                btrfs_delayed_refs_rsv_release(fs_info, 1);
2031                list_del_init(&block_group->bg_list);
2032        }
2033 }
2034
2035 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2036 {
2037         /*
2038          * We use try_to_writeback_inodes_sb() here because if we used
2039          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2040          * Currently are holding the fs freeze lock, if we do an async flush
2041          * we'll do btrfs_join_transaction() and deadlock because we need to
2042          * wait for the fs freeze lock.  Using the direct flushing we benefit
2043          * from already being in a transaction and our join_transaction doesn't
2044          * have to re-take the fs freeze lock.
2045          *
2046          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2047          * if it can read lock sb->s_umount. It will always be able to lock it,
2048          * except when the filesystem is being unmounted or being frozen, but in
2049          * those cases sync_filesystem() is called, which results in calling
2050          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2051          * Note that we don't call writeback_inodes_sb() directly, because it
2052          * will emit a warning if sb->s_umount is not locked.
2053          */
2054         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2055                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2056         return 0;
2057 }
2058
2059 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2060 {
2061         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2062                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2063 }
2064
2065 /*
2066  * Add a pending snapshot associated with the given transaction handle to the
2067  * respective handle. This must be called after the transaction commit started
2068  * and while holding fs_info->trans_lock.
2069  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2070  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2071  * returns an error.
2072  */
2073 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2074 {
2075         struct btrfs_transaction *cur_trans = trans->transaction;
2076
2077         if (!trans->pending_snapshot)
2078                 return;
2079
2080         lockdep_assert_held(&trans->fs_info->trans_lock);
2081         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2082
2083         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2084 }
2085
2086 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2087 {
2088         fs_info->commit_stats.commit_count++;
2089         fs_info->commit_stats.last_commit_dur = interval;
2090         fs_info->commit_stats.max_commit_dur =
2091                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2092         fs_info->commit_stats.total_commit_dur += interval;
2093 }
2094
2095 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2096 {
2097         struct btrfs_fs_info *fs_info = trans->fs_info;
2098         struct btrfs_transaction *cur_trans = trans->transaction;
2099         struct btrfs_transaction *prev_trans = NULL;
2100         int ret;
2101         ktime_t start_time;
2102         ktime_t interval;
2103
2104         ASSERT(refcount_read(&trans->use_count) == 1);
2105         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2106
2107         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2108
2109         /* Stop the commit early if ->aborted is set */
2110         if (TRANS_ABORTED(cur_trans)) {
2111                 ret = cur_trans->aborted;
2112                 goto lockdep_trans_commit_start_release;
2113         }
2114
2115         btrfs_trans_release_metadata(trans);
2116         trans->block_rsv = NULL;
2117
2118         /*
2119          * We only want one transaction commit doing the flushing so we do not
2120          * waste a bunch of time on lock contention on the extent root node.
2121          */
2122         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2123                               &cur_trans->delayed_refs.flags)) {
2124                 /*
2125                  * Make a pass through all the delayed refs we have so far.
2126                  * Any running threads may add more while we are here.
2127                  */
2128                 ret = btrfs_run_delayed_refs(trans, 0);
2129                 if (ret)
2130                         goto lockdep_trans_commit_start_release;
2131         }
2132
2133         btrfs_create_pending_block_groups(trans);
2134
2135         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2136                 int run_it = 0;
2137
2138                 /* this mutex is also taken before trying to set
2139                  * block groups readonly.  We need to make sure
2140                  * that nobody has set a block group readonly
2141                  * after a extents from that block group have been
2142                  * allocated for cache files.  btrfs_set_block_group_ro
2143                  * will wait for the transaction to commit if it
2144                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2145                  *
2146                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2147                  * only one process starts all the block group IO.  It wouldn't
2148                  * hurt to have more than one go through, but there's no
2149                  * real advantage to it either.
2150                  */
2151                 mutex_lock(&fs_info->ro_block_group_mutex);
2152                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2153                                       &cur_trans->flags))
2154                         run_it = 1;
2155                 mutex_unlock(&fs_info->ro_block_group_mutex);
2156
2157                 if (run_it) {
2158                         ret = btrfs_start_dirty_block_groups(trans);
2159                         if (ret)
2160                                 goto lockdep_trans_commit_start_release;
2161                 }
2162         }
2163
2164         spin_lock(&fs_info->trans_lock);
2165         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2166                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2167
2168                 add_pending_snapshot(trans);
2169
2170                 spin_unlock(&fs_info->trans_lock);
2171                 refcount_inc(&cur_trans->use_count);
2172
2173                 if (trans->in_fsync)
2174                         want_state = TRANS_STATE_SUPER_COMMITTED;
2175
2176                 btrfs_trans_state_lockdep_release(fs_info,
2177                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2178                 ret = btrfs_end_transaction(trans);
2179                 wait_for_commit(cur_trans, want_state);
2180
2181                 if (TRANS_ABORTED(cur_trans))
2182                         ret = cur_trans->aborted;
2183
2184                 btrfs_put_transaction(cur_trans);
2185
2186                 return ret;
2187         }
2188
2189         cur_trans->state = TRANS_STATE_COMMIT_START;
2190         wake_up(&fs_info->transaction_blocked_wait);
2191         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2192
2193         if (cur_trans->list.prev != &fs_info->trans_list) {
2194                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2195
2196                 if (trans->in_fsync)
2197                         want_state = TRANS_STATE_SUPER_COMMITTED;
2198
2199                 prev_trans = list_entry(cur_trans->list.prev,
2200                                         struct btrfs_transaction, list);
2201                 if (prev_trans->state < want_state) {
2202                         refcount_inc(&prev_trans->use_count);
2203                         spin_unlock(&fs_info->trans_lock);
2204
2205                         wait_for_commit(prev_trans, want_state);
2206
2207                         ret = READ_ONCE(prev_trans->aborted);
2208
2209                         btrfs_put_transaction(prev_trans);
2210                         if (ret)
2211                                 goto lockdep_release;
2212                 } else {
2213                         spin_unlock(&fs_info->trans_lock);
2214                 }
2215         } else {
2216                 spin_unlock(&fs_info->trans_lock);
2217                 /*
2218                  * The previous transaction was aborted and was already removed
2219                  * from the list of transactions at fs_info->trans_list. So we
2220                  * abort to prevent writing a new superblock that reflects a
2221                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2222                  */
2223                 if (BTRFS_FS_ERROR(fs_info)) {
2224                         ret = -EROFS;
2225                         goto lockdep_release;
2226                 }
2227         }
2228
2229         /*
2230          * Get the time spent on the work done by the commit thread and not
2231          * the time spent waiting on a previous commit
2232          */
2233         start_time = ktime_get_ns();
2234
2235         extwriter_counter_dec(cur_trans, trans->type);
2236
2237         ret = btrfs_start_delalloc_flush(fs_info);
2238         if (ret)
2239                 goto lockdep_release;
2240
2241         ret = btrfs_run_delayed_items(trans);
2242         if (ret)
2243                 goto lockdep_release;
2244
2245         /*
2246          * The thread has started/joined the transaction thus it holds the
2247          * lockdep map as a reader. It has to release it before acquiring the
2248          * lockdep map as a writer.
2249          */
2250         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2251         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2252         wait_event(cur_trans->writer_wait,
2253                    extwriter_counter_read(cur_trans) == 0);
2254
2255         /* some pending stuffs might be added after the previous flush. */
2256         ret = btrfs_run_delayed_items(trans);
2257         if (ret) {
2258                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2259                 goto cleanup_transaction;
2260         }
2261
2262         btrfs_wait_delalloc_flush(fs_info);
2263
2264         /*
2265          * Wait for all ordered extents started by a fast fsync that joined this
2266          * transaction. Otherwise if this transaction commits before the ordered
2267          * extents complete we lose logged data after a power failure.
2268          */
2269         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2270         wait_event(cur_trans->pending_wait,
2271                    atomic_read(&cur_trans->pending_ordered) == 0);
2272
2273         btrfs_scrub_pause(fs_info);
2274         /*
2275          * Ok now we need to make sure to block out any other joins while we
2276          * commit the transaction.  We could have started a join before setting
2277          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2278          */
2279         spin_lock(&fs_info->trans_lock);
2280         add_pending_snapshot(trans);
2281         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2282         spin_unlock(&fs_info->trans_lock);
2283
2284         /*
2285          * The thread has started/joined the transaction thus it holds the
2286          * lockdep map as a reader. It has to release it before acquiring the
2287          * lockdep map as a writer.
2288          */
2289         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2290         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2291         wait_event(cur_trans->writer_wait,
2292                    atomic_read(&cur_trans->num_writers) == 1);
2293
2294         /*
2295          * Make lockdep happy by acquiring the state locks after
2296          * btrfs_trans_num_writers is released. If we acquired the state locks
2297          * before releasing the btrfs_trans_num_writers lock then lockdep would
2298          * complain because we did not follow the reverse order unlocking rule.
2299          */
2300         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2301         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2302         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2303
2304         /*
2305          * We've started the commit, clear the flag in case we were triggered to
2306          * do an async commit but somebody else started before the transaction
2307          * kthread could do the work.
2308          */
2309         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2310
2311         if (TRANS_ABORTED(cur_trans)) {
2312                 ret = cur_trans->aborted;
2313                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2314                 goto scrub_continue;
2315         }
2316         /*
2317          * the reloc mutex makes sure that we stop
2318          * the balancing code from coming in and moving
2319          * extents around in the middle of the commit
2320          */
2321         mutex_lock(&fs_info->reloc_mutex);
2322
2323         /*
2324          * We needn't worry about the delayed items because we will
2325          * deal with them in create_pending_snapshot(), which is the
2326          * core function of the snapshot creation.
2327          */
2328         ret = create_pending_snapshots(trans);
2329         if (ret)
2330                 goto unlock_reloc;
2331
2332         /*
2333          * We insert the dir indexes of the snapshots and update the inode
2334          * of the snapshots' parents after the snapshot creation, so there
2335          * are some delayed items which are not dealt with. Now deal with
2336          * them.
2337          *
2338          * We needn't worry that this operation will corrupt the snapshots,
2339          * because all the tree which are snapshoted will be forced to COW
2340          * the nodes and leaves.
2341          */
2342         ret = btrfs_run_delayed_items(trans);
2343         if (ret)
2344                 goto unlock_reloc;
2345
2346         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2347         if (ret)
2348                 goto unlock_reloc;
2349
2350         /*
2351          * make sure none of the code above managed to slip in a
2352          * delayed item
2353          */
2354         btrfs_assert_delayed_root_empty(fs_info);
2355
2356         WARN_ON(cur_trans != trans->transaction);
2357
2358         ret = commit_fs_roots(trans);
2359         if (ret)
2360                 goto unlock_reloc;
2361
2362         /* commit_fs_roots gets rid of all the tree log roots, it is now
2363          * safe to free the root of tree log roots
2364          */
2365         btrfs_free_log_root_tree(trans, fs_info);
2366
2367         /*
2368          * Since fs roots are all committed, we can get a quite accurate
2369          * new_roots. So let's do quota accounting.
2370          */
2371         ret = btrfs_qgroup_account_extents(trans);
2372         if (ret < 0)
2373                 goto unlock_reloc;
2374
2375         ret = commit_cowonly_roots(trans);
2376         if (ret)
2377                 goto unlock_reloc;
2378
2379         /*
2380          * The tasks which save the space cache and inode cache may also
2381          * update ->aborted, check it.
2382          */
2383         if (TRANS_ABORTED(cur_trans)) {
2384                 ret = cur_trans->aborted;
2385                 goto unlock_reloc;
2386         }
2387
2388         cur_trans = fs_info->running_transaction;
2389
2390         btrfs_set_root_node(&fs_info->tree_root->root_item,
2391                             fs_info->tree_root->node);
2392         list_add_tail(&fs_info->tree_root->dirty_list,
2393                       &cur_trans->switch_commits);
2394
2395         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2396                             fs_info->chunk_root->node);
2397         list_add_tail(&fs_info->chunk_root->dirty_list,
2398                       &cur_trans->switch_commits);
2399
2400         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2401                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2402                                     fs_info->block_group_root->node);
2403                 list_add_tail(&fs_info->block_group_root->dirty_list,
2404                               &cur_trans->switch_commits);
2405         }
2406
2407         switch_commit_roots(trans);
2408
2409         ASSERT(list_empty(&cur_trans->dirty_bgs));
2410         ASSERT(list_empty(&cur_trans->io_bgs));
2411         update_super_roots(fs_info);
2412
2413         btrfs_set_super_log_root(fs_info->super_copy, 0);
2414         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2415         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2416                sizeof(*fs_info->super_copy));
2417
2418         btrfs_commit_device_sizes(cur_trans);
2419
2420         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2421         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2422
2423         btrfs_trans_release_chunk_metadata(trans);
2424
2425         /*
2426          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2427          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2428          * make sure that before we commit our superblock, no other task can
2429          * start a new transaction and commit a log tree before we commit our
2430          * superblock. Anyone trying to commit a log tree locks this mutex before
2431          * writing its superblock.
2432          */
2433         mutex_lock(&fs_info->tree_log_mutex);
2434
2435         spin_lock(&fs_info->trans_lock);
2436         cur_trans->state = TRANS_STATE_UNBLOCKED;
2437         fs_info->running_transaction = NULL;
2438         spin_unlock(&fs_info->trans_lock);
2439         mutex_unlock(&fs_info->reloc_mutex);
2440
2441         wake_up(&fs_info->transaction_wait);
2442         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2443
2444         ret = btrfs_write_and_wait_transaction(trans);
2445         if (ret) {
2446                 btrfs_handle_fs_error(fs_info, ret,
2447                                       "Error while writing out transaction");
2448                 mutex_unlock(&fs_info->tree_log_mutex);
2449                 goto scrub_continue;
2450         }
2451
2452         /*
2453          * At this point, we should have written all the tree blocks allocated
2454          * in this transaction. So it's now safe to free the redirtyied extent
2455          * buffers.
2456          */
2457         btrfs_free_redirty_list(cur_trans);
2458
2459         ret = write_all_supers(fs_info, 0);
2460         /*
2461          * the super is written, we can safely allow the tree-loggers
2462          * to go about their business
2463          */
2464         mutex_unlock(&fs_info->tree_log_mutex);
2465         if (ret)
2466                 goto scrub_continue;
2467
2468         /*
2469          * We needn't acquire the lock here because there is no other task
2470          * which can change it.
2471          */
2472         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2473         wake_up(&cur_trans->commit_wait);
2474         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2475
2476         btrfs_finish_extent_commit(trans);
2477
2478         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2479                 btrfs_clear_space_info_full(fs_info);
2480
2481         fs_info->last_trans_committed = cur_trans->transid;
2482         /*
2483          * We needn't acquire the lock here because there is no other task
2484          * which can change it.
2485          */
2486         cur_trans->state = TRANS_STATE_COMPLETED;
2487         wake_up(&cur_trans->commit_wait);
2488         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2489
2490         spin_lock(&fs_info->trans_lock);
2491         list_del_init(&cur_trans->list);
2492         spin_unlock(&fs_info->trans_lock);
2493
2494         btrfs_put_transaction(cur_trans);
2495         btrfs_put_transaction(cur_trans);
2496
2497         if (trans->type & __TRANS_FREEZABLE)
2498                 sb_end_intwrite(fs_info->sb);
2499
2500         trace_btrfs_transaction_commit(fs_info);
2501
2502         interval = ktime_get_ns() - start_time;
2503
2504         btrfs_scrub_continue(fs_info);
2505
2506         if (current->journal_info == trans)
2507                 current->journal_info = NULL;
2508
2509         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2510
2511         update_commit_stats(fs_info, interval);
2512
2513         return ret;
2514
2515 unlock_reloc:
2516         mutex_unlock(&fs_info->reloc_mutex);
2517         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2518 scrub_continue:
2519         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2520         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2521         btrfs_scrub_continue(fs_info);
2522 cleanup_transaction:
2523         btrfs_trans_release_metadata(trans);
2524         btrfs_cleanup_pending_block_groups(trans);
2525         btrfs_trans_release_chunk_metadata(trans);
2526         trans->block_rsv = NULL;
2527         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2528         if (current->journal_info == trans)
2529                 current->journal_info = NULL;
2530         cleanup_transaction(trans, ret);
2531
2532         return ret;
2533
2534 lockdep_release:
2535         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2536         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2537         goto cleanup_transaction;
2538
2539 lockdep_trans_commit_start_release:
2540         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2541         btrfs_end_transaction(trans);
2542         return ret;
2543 }
2544
2545 /*
2546  * return < 0 if error
2547  * 0 if there are no more dead_roots at the time of call
2548  * 1 there are more to be processed, call me again
2549  *
2550  * The return value indicates there are certainly more snapshots to delete, but
2551  * if there comes a new one during processing, it may return 0. We don't mind,
2552  * because btrfs_commit_super will poke cleaner thread and it will process it a
2553  * few seconds later.
2554  */
2555 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2556 {
2557         struct btrfs_root *root;
2558         int ret;
2559
2560         spin_lock(&fs_info->trans_lock);
2561         if (list_empty(&fs_info->dead_roots)) {
2562                 spin_unlock(&fs_info->trans_lock);
2563                 return 0;
2564         }
2565         root = list_first_entry(&fs_info->dead_roots,
2566                         struct btrfs_root, root_list);
2567         list_del_init(&root->root_list);
2568         spin_unlock(&fs_info->trans_lock);
2569
2570         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2571
2572         btrfs_kill_all_delayed_nodes(root);
2573
2574         if (btrfs_header_backref_rev(root->node) <
2575                         BTRFS_MIXED_BACKREF_REV)
2576                 ret = btrfs_drop_snapshot(root, 0, 0);
2577         else
2578                 ret = btrfs_drop_snapshot(root, 1, 0);
2579
2580         btrfs_put_root(root);
2581         return (ret < 0) ? 0 : 1;
2582 }
2583
2584 int __init btrfs_transaction_init(void)
2585 {
2586         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2587                         sizeof(struct btrfs_trans_handle), 0,
2588                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2589         if (!btrfs_trans_handle_cachep)
2590                 return -ENOMEM;
2591         return 0;
2592 }
2593
2594 void __cold btrfs_transaction_exit(void)
2595 {
2596         kmem_cache_destroy(btrfs_trans_handle_cachep);
2597 }
This page took 0.178164 seconds and 4 git commands to generate.