2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
53 #define pr_fmt(fmt) "TCP: " fmt
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
66 #include <net/net_namespace.h>
68 #include <net/inet_hashtables.h>
70 #include <net/transp_v6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 tcp_hdr(skb)->source);
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
152 struct ip_options_rcu *inet_opt;
154 if (addr_len < sizeof(struct sockaddr_in))
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
166 nexthop = inet_opt->opt.faddr;
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175 orig_sport, orig_dport, sk, true);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
188 if (!inet_opt || !inet_opt->opt.srr)
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
204 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
206 * VJ's idea. We save last timestamp seen from
207 * the destination in peer table, when entering state
208 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
209 * when trying new connection.
212 inet_peer_refcheck(peer);
213 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
214 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
215 tp->rx_opt.ts_recent = peer->tcp_ts;
220 inet->inet_dport = usin->sin_port;
221 inet->inet_daddr = daddr;
223 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
227 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
234 tcp_set_state(sk, TCP_SYN_SENT);
235 err = inet_hash_connect(&tcp_death_row, sk);
239 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
240 inet->inet_sport, inet->inet_dport, sk);
246 /* OK, now commit destination to socket. */
247 sk->sk_gso_type = SKB_GSO_TCPV4;
248 sk_setup_caps(sk, &rt->dst);
251 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
256 inet->inet_id = tp->write_seq ^ jiffies;
258 err = tcp_connect(sk);
267 * This unhashes the socket and releases the local port,
270 tcp_set_state(sk, TCP_CLOSE);
272 sk->sk_route_caps = 0;
273 inet->inet_dport = 0;
276 EXPORT_SYMBOL(tcp_v4_connect);
279 * This routine does path mtu discovery as defined in RFC1191.
281 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
283 struct dst_entry *dst;
284 struct inet_sock *inet = inet_sk(sk);
286 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
287 * send out by Linux are always <576bytes so they should go through
290 if (sk->sk_state == TCP_LISTEN)
293 /* We don't check in the destentry if pmtu discovery is forbidden
294 * on this route. We just assume that no packet_to_big packets
295 * are send back when pmtu discovery is not active.
296 * There is a small race when the user changes this flag in the
297 * route, but I think that's acceptable.
299 if ((dst = __sk_dst_check(sk, 0)) == NULL)
302 dst->ops->update_pmtu(dst, mtu);
304 /* Something is about to be wrong... Remember soft error
305 * for the case, if this connection will not able to recover.
307 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
308 sk->sk_err_soft = EMSGSIZE;
312 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
313 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
314 tcp_sync_mss(sk, mtu);
316 /* Resend the TCP packet because it's
317 * clear that the old packet has been
318 * dropped. This is the new "fast" path mtu
321 tcp_simple_retransmit(sk);
322 } /* else let the usual retransmit timer handle it */
326 * This routine is called by the ICMP module when it gets some
327 * sort of error condition. If err < 0 then the socket should
328 * be closed and the error returned to the user. If err > 0
329 * it's just the icmp type << 8 | icmp code. After adjustment
330 * header points to the first 8 bytes of the tcp header. We need
331 * to find the appropriate port.
333 * The locking strategy used here is very "optimistic". When
334 * someone else accesses the socket the ICMP is just dropped
335 * and for some paths there is no check at all.
336 * A more general error queue to queue errors for later handling
337 * is probably better.
341 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
343 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
344 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
345 struct inet_connection_sock *icsk;
347 struct inet_sock *inet;
348 const int type = icmp_hdr(icmp_skb)->type;
349 const int code = icmp_hdr(icmp_skb)->code;
355 struct net *net = dev_net(icmp_skb->dev);
357 if (icmp_skb->len < (iph->ihl << 2) + 8) {
358 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
362 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
363 iph->saddr, th->source, inet_iif(icmp_skb));
365 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
368 if (sk->sk_state == TCP_TIME_WAIT) {
369 inet_twsk_put(inet_twsk(sk));
374 /* If too many ICMPs get dropped on busy
375 * servers this needs to be solved differently.
377 if (sock_owned_by_user(sk))
378 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
380 if (sk->sk_state == TCP_CLOSE)
383 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390 seq = ntohl(th->seq);
391 if (sk->sk_state != TCP_LISTEN &&
392 !between(seq, tp->snd_una, tp->snd_nxt)) {
393 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
398 case ICMP_SOURCE_QUENCH:
399 /* Just silently ignore these. */
401 case ICMP_PARAMETERPROB:
404 case ICMP_DEST_UNREACH:
405 if (code > NR_ICMP_UNREACH)
408 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
409 if (!sock_owned_by_user(sk))
410 do_pmtu_discovery(sk, iph, info);
414 err = icmp_err_convert[code].errno;
415 /* check if icmp_skb allows revert of backoff
416 * (see draft-zimmermann-tcp-lcd) */
417 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
419 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
423 if (sock_owned_by_user(sk))
426 icsk->icsk_backoff--;
427 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
428 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
431 skb = tcp_write_queue_head(sk);
434 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
435 tcp_time_stamp - TCP_SKB_CB(skb)->when);
438 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
439 remaining, TCP_RTO_MAX);
441 /* RTO revert clocked out retransmission.
442 * Will retransmit now */
443 tcp_retransmit_timer(sk);
447 case ICMP_TIME_EXCEEDED:
454 switch (sk->sk_state) {
455 struct request_sock *req, **prev;
457 if (sock_owned_by_user(sk))
460 req = inet_csk_search_req(sk, &prev, th->dest,
461 iph->daddr, iph->saddr);
465 /* ICMPs are not backlogged, hence we cannot get
466 an established socket here.
470 if (seq != tcp_rsk(req)->snt_isn) {
471 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
476 * Still in SYN_RECV, just remove it silently.
477 * There is no good way to pass the error to the newly
478 * created socket, and POSIX does not want network
479 * errors returned from accept().
481 inet_csk_reqsk_queue_drop(sk, req, prev);
485 case TCP_SYN_RECV: /* Cannot happen.
486 It can f.e. if SYNs crossed.
488 if (!sock_owned_by_user(sk)) {
491 sk->sk_error_report(sk);
495 sk->sk_err_soft = err;
500 /* If we've already connected we will keep trying
501 * until we time out, or the user gives up.
503 * rfc1122 4.2.3.9 allows to consider as hard errors
504 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
505 * but it is obsoleted by pmtu discovery).
507 * Note, that in modern internet, where routing is unreliable
508 * and in each dark corner broken firewalls sit, sending random
509 * errors ordered by their masters even this two messages finally lose
510 * their original sense (even Linux sends invalid PORT_UNREACHs)
512 * Now we are in compliance with RFCs.
517 if (!sock_owned_by_user(sk) && inet->recverr) {
519 sk->sk_error_report(sk);
520 } else { /* Only an error on timeout */
521 sk->sk_err_soft = err;
529 static void __tcp_v4_send_check(struct sk_buff *skb,
530 __be32 saddr, __be32 daddr)
532 struct tcphdr *th = tcp_hdr(skb);
534 if (skb->ip_summed == CHECKSUM_PARTIAL) {
535 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
536 skb->csum_start = skb_transport_header(skb) - skb->head;
537 skb->csum_offset = offsetof(struct tcphdr, check);
539 th->check = tcp_v4_check(skb->len, saddr, daddr,
546 /* This routine computes an IPv4 TCP checksum. */
547 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
549 const struct inet_sock *inet = inet_sk(sk);
551 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
553 EXPORT_SYMBOL(tcp_v4_send_check);
555 int tcp_v4_gso_send_check(struct sk_buff *skb)
557 const struct iphdr *iph;
560 if (!pskb_may_pull(skb, sizeof(*th)))
567 skb->ip_summed = CHECKSUM_PARTIAL;
568 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
573 * This routine will send an RST to the other tcp.
575 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
577 * Answer: if a packet caused RST, it is not for a socket
578 * existing in our system, if it is matched to a socket,
579 * it is just duplicate segment or bug in other side's TCP.
580 * So that we build reply only basing on parameters
581 * arrived with segment.
582 * Exception: precedence violation. We do not implement it in any case.
585 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
587 const struct tcphdr *th = tcp_hdr(skb);
590 #ifdef CONFIG_TCP_MD5SIG
591 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
594 struct ip_reply_arg arg;
595 #ifdef CONFIG_TCP_MD5SIG
596 struct tcp_md5sig_key *key;
597 const __u8 *hash_location = NULL;
598 unsigned char newhash[16];
600 struct sock *sk1 = NULL;
604 /* Never send a reset in response to a reset. */
608 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 /* Swap the send and the receive. */
612 memset(&rep, 0, sizeof(rep));
613 rep.th.dest = th->source;
614 rep.th.source = th->dest;
615 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.seq = th->ack_seq;
622 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
623 skb->len - (th->doff << 2));
626 memset(&arg, 0, sizeof(arg));
627 arg.iov[0].iov_base = (unsigned char *)&rep;
628 arg.iov[0].iov_len = sizeof(rep.th);
630 #ifdef CONFIG_TCP_MD5SIG
631 hash_location = tcp_parse_md5sig_option(th);
632 if (!sk && hash_location) {
634 * active side is lost. Try to find listening socket through
635 * source port, and then find md5 key through listening socket.
636 * we are not loose security here:
637 * Incoming packet is checked with md5 hash with finding key,
638 * no RST generated if md5 hash doesn't match.
640 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
641 &tcp_hashinfo, ip_hdr(skb)->daddr,
642 ntohs(th->source), inet_iif(skb));
643 /* don't send rst if it can't find key */
647 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
648 &ip_hdr(skb)->saddr, AF_INET);
652 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
653 if (genhash || memcmp(hash_location, newhash, 16) != 0)
656 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
662 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
664 (TCPOPT_MD5SIG << 8) |
666 /* Update length and the length the header thinks exists */
667 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
668 rep.th.doff = arg.iov[0].iov_len / 4;
670 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
671 key, ip_hdr(skb)->saddr,
672 ip_hdr(skb)->daddr, &rep.th);
675 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
676 ip_hdr(skb)->saddr, /* XXX */
677 arg.iov[0].iov_len, IPPROTO_TCP, 0);
678 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
679 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
680 /* When socket is gone, all binding information is lost.
681 * routing might fail in this case. using iif for oif to
682 * make sure we can deliver it
684 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
686 net = dev_net(skb_dst(skb)->dev);
687 arg.tos = ip_hdr(skb)->tos;
688 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
689 &arg, arg.iov[0].iov_len);
691 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
692 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
694 #ifdef CONFIG_TCP_MD5SIG
703 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
704 outside socket context is ugly, certainly. What can I do?
707 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
708 u32 win, u32 ts, int oif,
709 struct tcp_md5sig_key *key,
710 int reply_flags, u8 tos)
712 const struct tcphdr *th = tcp_hdr(skb);
715 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
716 #ifdef CONFIG_TCP_MD5SIG
717 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
721 struct ip_reply_arg arg;
722 struct net *net = dev_net(skb_dst(skb)->dev);
724 memset(&rep.th, 0, sizeof(struct tcphdr));
725 memset(&arg, 0, sizeof(arg));
727 arg.iov[0].iov_base = (unsigned char *)&rep;
728 arg.iov[0].iov_len = sizeof(rep.th);
730 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
731 (TCPOPT_TIMESTAMP << 8) |
733 rep.opt[1] = htonl(tcp_time_stamp);
734 rep.opt[2] = htonl(ts);
735 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
738 /* Swap the send and the receive. */
739 rep.th.dest = th->source;
740 rep.th.source = th->dest;
741 rep.th.doff = arg.iov[0].iov_len / 4;
742 rep.th.seq = htonl(seq);
743 rep.th.ack_seq = htonl(ack);
745 rep.th.window = htons(win);
747 #ifdef CONFIG_TCP_MD5SIG
749 int offset = (ts) ? 3 : 0;
751 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
753 (TCPOPT_MD5SIG << 8) |
755 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
756 rep.th.doff = arg.iov[0].iov_len/4;
758 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
759 key, ip_hdr(skb)->saddr,
760 ip_hdr(skb)->daddr, &rep.th);
763 arg.flags = reply_flags;
764 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
765 ip_hdr(skb)->saddr, /* XXX */
766 arg.iov[0].iov_len, IPPROTO_TCP, 0);
767 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
769 arg.bound_dev_if = oif;
771 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
772 &arg, arg.iov[0].iov_len);
774 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
777 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
779 struct inet_timewait_sock *tw = inet_twsk(sk);
780 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
782 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
783 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
786 tcp_twsk_md5_key(tcptw),
787 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
794 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
795 struct request_sock *req)
797 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
798 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
801 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
803 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 * Send a SYN-ACK after having received a SYN.
809 * This still operates on a request_sock only, not on a big
812 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
813 struct request_sock *req,
814 struct request_values *rvp)
816 const struct inet_request_sock *ireq = inet_rsk(req);
819 struct sk_buff * skb;
821 /* First, grab a route. */
822 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
825 skb = tcp_make_synack(sk, dst, req, rvp);
828 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
830 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
833 err = net_xmit_eval(err);
840 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
841 struct request_values *rvp)
843 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
844 return tcp_v4_send_synack(sk, NULL, req, rvp);
848 * IPv4 request_sock destructor.
850 static void tcp_v4_reqsk_destructor(struct request_sock *req)
852 kfree(inet_rsk(req)->opt);
856 * Return 1 if a syncookie should be sent
858 int tcp_syn_flood_action(struct sock *sk,
859 const struct sk_buff *skb,
862 const char *msg = "Dropping request";
864 struct listen_sock *lopt;
868 #ifdef CONFIG_SYN_COOKIES
869 if (sysctl_tcp_syncookies) {
870 msg = "Sending cookies";
872 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
875 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
877 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
878 if (!lopt->synflood_warned) {
879 lopt->synflood_warned = 1;
880 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
881 proto, ntohs(tcp_hdr(skb)->dest), msg);
885 EXPORT_SYMBOL(tcp_syn_flood_action);
888 * Save and compile IPv4 options into the request_sock if needed.
890 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
893 const struct ip_options *opt = &(IPCB(skb)->opt);
894 struct ip_options_rcu *dopt = NULL;
896 if (opt && opt->optlen) {
897 int opt_size = sizeof(*dopt) + opt->optlen;
899 dopt = kmalloc(opt_size, GFP_ATOMIC);
901 if (ip_options_echo(&dopt->opt, skb)) {
910 #ifdef CONFIG_TCP_MD5SIG
912 * RFC2385 MD5 checksumming requires a mapping of
913 * IP address->MD5 Key.
914 * We need to maintain these in the sk structure.
917 /* Find the Key structure for an address. */
918 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
919 const union tcp_md5_addr *addr,
922 struct tcp_sock *tp = tcp_sk(sk);
923 struct tcp_md5sig_key *key;
924 struct hlist_node *pos;
925 unsigned int size = sizeof(struct in_addr);
926 struct tcp_md5sig_info *md5sig;
928 /* caller either holds rcu_read_lock() or socket lock */
929 md5sig = rcu_dereference_check(tp->md5sig_info,
930 sock_owned_by_user(sk) ||
931 lockdep_is_held(&sk->sk_lock.slock));
934 #if IS_ENABLED(CONFIG_IPV6)
935 if (family == AF_INET6)
936 size = sizeof(struct in6_addr);
938 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
939 if (key->family != family)
941 if (!memcmp(&key->addr, addr, size))
946 EXPORT_SYMBOL(tcp_md5_do_lookup);
948 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
949 struct sock *addr_sk)
951 union tcp_md5_addr *addr;
953 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
954 return tcp_md5_do_lookup(sk, addr, AF_INET);
956 EXPORT_SYMBOL(tcp_v4_md5_lookup);
958 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
959 struct request_sock *req)
961 union tcp_md5_addr *addr;
963 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
964 return tcp_md5_do_lookup(sk, addr, AF_INET);
967 /* This can be called on a newly created socket, from other files */
968 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
969 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
971 /* Add Key to the list */
972 struct tcp_md5sig_key *key;
973 struct tcp_sock *tp = tcp_sk(sk);
974 struct tcp_md5sig_info *md5sig;
976 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
978 /* Pre-existing entry - just update that one. */
979 memcpy(key->key, newkey, newkeylen);
980 key->keylen = newkeylen;
984 md5sig = rcu_dereference_protected(tp->md5sig_info,
985 sock_owned_by_user(sk));
987 md5sig = kmalloc(sizeof(*md5sig), gfp);
991 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
992 INIT_HLIST_HEAD(&md5sig->head);
993 rcu_assign_pointer(tp->md5sig_info, md5sig);
996 key = sock_kmalloc(sk, sizeof(*key), gfp);
999 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1000 sock_kfree_s(sk, key, sizeof(*key));
1004 memcpy(key->key, newkey, newkeylen);
1005 key->keylen = newkeylen;
1006 key->family = family;
1007 memcpy(&key->addr, addr,
1008 (family == AF_INET6) ? sizeof(struct in6_addr) :
1009 sizeof(struct in_addr));
1010 hlist_add_head_rcu(&key->node, &md5sig->head);
1013 EXPORT_SYMBOL(tcp_md5_do_add);
1015 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct tcp_md5sig_key *key;
1019 struct tcp_md5sig_info *md5sig;
1021 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1024 hlist_del_rcu(&key->node);
1025 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1026 kfree_rcu(key, rcu);
1027 md5sig = rcu_dereference_protected(tp->md5sig_info,
1028 sock_owned_by_user(sk));
1029 if (hlist_empty(&md5sig->head))
1030 tcp_free_md5sig_pool();
1033 EXPORT_SYMBOL(tcp_md5_do_del);
1035 void tcp_clear_md5_list(struct sock *sk)
1037 struct tcp_sock *tp = tcp_sk(sk);
1038 struct tcp_md5sig_key *key;
1039 struct hlist_node *pos, *n;
1040 struct tcp_md5sig_info *md5sig;
1042 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1044 if (!hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1047 hlist_del_rcu(&key->node);
1048 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1049 kfree_rcu(key, rcu);
1053 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1056 struct tcp_md5sig cmd;
1057 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1059 if (optlen < sizeof(cmd))
1062 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1065 if (sin->sin_family != AF_INET)
1068 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1069 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1072 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1075 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1076 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1080 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1081 __be32 daddr, __be32 saddr, int nbytes)
1083 struct tcp4_pseudohdr *bp;
1084 struct scatterlist sg;
1086 bp = &hp->md5_blk.ip4;
1089 * 1. the TCP pseudo-header (in the order: source IP address,
1090 * destination IP address, zero-padded protocol number, and
1096 bp->protocol = IPPROTO_TCP;
1097 bp->len = cpu_to_be16(nbytes);
1099 sg_init_one(&sg, bp, sizeof(*bp));
1100 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1103 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1104 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1106 struct tcp_md5sig_pool *hp;
1107 struct hash_desc *desc;
1109 hp = tcp_get_md5sig_pool();
1111 goto clear_hash_noput;
1112 desc = &hp->md5_desc;
1114 if (crypto_hash_init(desc))
1116 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1118 if (tcp_md5_hash_header(hp, th))
1120 if (tcp_md5_hash_key(hp, key))
1122 if (crypto_hash_final(desc, md5_hash))
1125 tcp_put_md5sig_pool();
1129 tcp_put_md5sig_pool();
1131 memset(md5_hash, 0, 16);
1135 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1136 const struct sock *sk, const struct request_sock *req,
1137 const struct sk_buff *skb)
1139 struct tcp_md5sig_pool *hp;
1140 struct hash_desc *desc;
1141 const struct tcphdr *th = tcp_hdr(skb);
1142 __be32 saddr, daddr;
1145 saddr = inet_sk(sk)->inet_saddr;
1146 daddr = inet_sk(sk)->inet_daddr;
1148 saddr = inet_rsk(req)->loc_addr;
1149 daddr = inet_rsk(req)->rmt_addr;
1151 const struct iphdr *iph = ip_hdr(skb);
1156 hp = tcp_get_md5sig_pool();
1158 goto clear_hash_noput;
1159 desc = &hp->md5_desc;
1161 if (crypto_hash_init(desc))
1164 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1166 if (tcp_md5_hash_header(hp, th))
1168 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1170 if (tcp_md5_hash_key(hp, key))
1172 if (crypto_hash_final(desc, md5_hash))
1175 tcp_put_md5sig_pool();
1179 tcp_put_md5sig_pool();
1181 memset(md5_hash, 0, 16);
1184 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1186 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1189 * This gets called for each TCP segment that arrives
1190 * so we want to be efficient.
1191 * We have 3 drop cases:
1192 * o No MD5 hash and one expected.
1193 * o MD5 hash and we're not expecting one.
1194 * o MD5 hash and its wrong.
1196 const __u8 *hash_location = NULL;
1197 struct tcp_md5sig_key *hash_expected;
1198 const struct iphdr *iph = ip_hdr(skb);
1199 const struct tcphdr *th = tcp_hdr(skb);
1201 unsigned char newhash[16];
1203 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1205 hash_location = tcp_parse_md5sig_option(th);
1207 /* We've parsed the options - do we have a hash? */
1208 if (!hash_expected && !hash_location)
1211 if (hash_expected && !hash_location) {
1212 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1216 if (!hash_expected && hash_location) {
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1221 /* Okay, so this is hash_expected and hash_location -
1222 * so we need to calculate the checksum.
1224 genhash = tcp_v4_md5_hash_skb(newhash,
1228 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1229 if (net_ratelimit()) {
1230 pr_info("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1231 &iph->saddr, ntohs(th->source),
1232 &iph->daddr, ntohs(th->dest),
1233 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1242 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1244 .obj_size = sizeof(struct tcp_request_sock),
1245 .rtx_syn_ack = tcp_v4_rtx_synack,
1246 .send_ack = tcp_v4_reqsk_send_ack,
1247 .destructor = tcp_v4_reqsk_destructor,
1248 .send_reset = tcp_v4_send_reset,
1249 .syn_ack_timeout = tcp_syn_ack_timeout,
1252 #ifdef CONFIG_TCP_MD5SIG
1253 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1254 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1255 .calc_md5_hash = tcp_v4_md5_hash_skb,
1259 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1261 struct tcp_extend_values tmp_ext;
1262 struct tcp_options_received tmp_opt;
1263 const u8 *hash_location;
1264 struct request_sock *req;
1265 struct inet_request_sock *ireq;
1266 struct tcp_sock *tp = tcp_sk(sk);
1267 struct dst_entry *dst = NULL;
1268 __be32 saddr = ip_hdr(skb)->saddr;
1269 __be32 daddr = ip_hdr(skb)->daddr;
1270 __u32 isn = TCP_SKB_CB(skb)->when;
1271 int want_cookie = 0;
1273 /* Never answer to SYNs send to broadcast or multicast */
1274 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1277 /* TW buckets are converted to open requests without
1278 * limitations, they conserve resources and peer is
1279 * evidently real one.
1281 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1282 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1287 /* Accept backlog is full. If we have already queued enough
1288 * of warm entries in syn queue, drop request. It is better than
1289 * clogging syn queue with openreqs with exponentially increasing
1292 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1295 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1299 #ifdef CONFIG_TCP_MD5SIG
1300 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1303 tcp_clear_options(&tmp_opt);
1304 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1305 tmp_opt.user_mss = tp->rx_opt.user_mss;
1306 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1308 if (tmp_opt.cookie_plus > 0 &&
1309 tmp_opt.saw_tstamp &&
1310 !tp->rx_opt.cookie_out_never &&
1311 (sysctl_tcp_cookie_size > 0 ||
1312 (tp->cookie_values != NULL &&
1313 tp->cookie_values->cookie_desired > 0))) {
1315 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1316 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1318 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1319 goto drop_and_release;
1321 /* Secret recipe starts with IP addresses */
1322 *mess++ ^= (__force u32)daddr;
1323 *mess++ ^= (__force u32)saddr;
1325 /* plus variable length Initiator Cookie */
1328 *c++ ^= *hash_location++;
1330 want_cookie = 0; /* not our kind of cookie */
1331 tmp_ext.cookie_out_never = 0; /* false */
1332 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1333 } else if (!tp->rx_opt.cookie_in_always) {
1334 /* redundant indications, but ensure initialization. */
1335 tmp_ext.cookie_out_never = 1; /* true */
1336 tmp_ext.cookie_plus = 0;
1338 goto drop_and_release;
1340 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1342 if (want_cookie && !tmp_opt.saw_tstamp)
1343 tcp_clear_options(&tmp_opt);
1345 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1346 tcp_openreq_init(req, &tmp_opt, skb);
1348 ireq = inet_rsk(req);
1349 ireq->loc_addr = daddr;
1350 ireq->rmt_addr = saddr;
1351 ireq->no_srccheck = inet_sk(sk)->transparent;
1352 ireq->opt = tcp_v4_save_options(sk, skb);
1354 if (security_inet_conn_request(sk, skb, req))
1357 if (!want_cookie || tmp_opt.tstamp_ok)
1358 TCP_ECN_create_request(req, tcp_hdr(skb));
1361 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1362 req->cookie_ts = tmp_opt.tstamp_ok;
1364 struct inet_peer *peer = NULL;
1367 /* VJ's idea. We save last timestamp seen
1368 * from the destination in peer table, when entering
1369 * state TIME-WAIT, and check against it before
1370 * accepting new connection request.
1372 * If "isn" is not zero, this request hit alive
1373 * timewait bucket, so that all the necessary checks
1374 * are made in the function processing timewait state.
1376 if (tmp_opt.saw_tstamp &&
1377 tcp_death_row.sysctl_tw_recycle &&
1378 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1379 fl4.daddr == saddr &&
1380 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1381 inet_peer_refcheck(peer);
1382 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1383 (s32)(peer->tcp_ts - req->ts_recent) >
1385 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1386 goto drop_and_release;
1389 /* Kill the following clause, if you dislike this way. */
1390 else if (!sysctl_tcp_syncookies &&
1391 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1392 (sysctl_max_syn_backlog >> 2)) &&
1393 (!peer || !peer->tcp_ts_stamp) &&
1394 (!dst || !dst_metric(dst, RTAX_RTT))) {
1395 /* Without syncookies last quarter of
1396 * backlog is filled with destinations,
1397 * proven to be alive.
1398 * It means that we continue to communicate
1399 * to destinations, already remembered
1400 * to the moment of synflood.
1402 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1403 &saddr, ntohs(tcp_hdr(skb)->source));
1404 goto drop_and_release;
1407 isn = tcp_v4_init_sequence(skb);
1409 tcp_rsk(req)->snt_isn = isn;
1410 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1412 if (tcp_v4_send_synack(sk, dst, req,
1413 (struct request_values *)&tmp_ext) ||
1417 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1427 EXPORT_SYMBOL(tcp_v4_conn_request);
1431 * The three way handshake has completed - we got a valid synack -
1432 * now create the new socket.
1434 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1435 struct request_sock *req,
1436 struct dst_entry *dst)
1438 struct inet_request_sock *ireq;
1439 struct inet_sock *newinet;
1440 struct tcp_sock *newtp;
1442 #ifdef CONFIG_TCP_MD5SIG
1443 struct tcp_md5sig_key *key;
1445 struct ip_options_rcu *inet_opt;
1447 if (sk_acceptq_is_full(sk))
1450 newsk = tcp_create_openreq_child(sk, req, skb);
1454 newsk->sk_gso_type = SKB_GSO_TCPV4;
1456 newtp = tcp_sk(newsk);
1457 newinet = inet_sk(newsk);
1458 ireq = inet_rsk(req);
1459 newinet->inet_daddr = ireq->rmt_addr;
1460 newinet->inet_rcv_saddr = ireq->loc_addr;
1461 newinet->inet_saddr = ireq->loc_addr;
1462 inet_opt = ireq->opt;
1463 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1465 newinet->mc_index = inet_iif(skb);
1466 newinet->mc_ttl = ip_hdr(skb)->ttl;
1467 newinet->rcv_tos = ip_hdr(skb)->tos;
1468 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1470 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1471 newinet->inet_id = newtp->write_seq ^ jiffies;
1474 dst = inet_csk_route_child_sock(sk, newsk, req);
1478 /* syncookie case : see end of cookie_v4_check() */
1480 sk_setup_caps(newsk, dst);
1482 tcp_mtup_init(newsk);
1483 tcp_sync_mss(newsk, dst_mtu(dst));
1484 newtp->advmss = dst_metric_advmss(dst);
1485 if (tcp_sk(sk)->rx_opt.user_mss &&
1486 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1487 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1489 tcp_initialize_rcv_mss(newsk);
1490 if (tcp_rsk(req)->snt_synack)
1491 tcp_valid_rtt_meas(newsk,
1492 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1493 newtp->total_retrans = req->retrans;
1495 #ifdef CONFIG_TCP_MD5SIG
1496 /* Copy over the MD5 key from the original socket */
1497 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1501 * We're using one, so create a matching key
1502 * on the newsk structure. If we fail to get
1503 * memory, then we end up not copying the key
1506 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1507 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1508 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1512 if (__inet_inherit_port(sk, newsk) < 0)
1514 __inet_hash_nolisten(newsk, NULL);
1519 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1523 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1526 tcp_clear_xmit_timers(newsk);
1527 tcp_cleanup_congestion_control(newsk);
1528 bh_unlock_sock(newsk);
1532 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1534 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1536 struct tcphdr *th = tcp_hdr(skb);
1537 const struct iphdr *iph = ip_hdr(skb);
1539 struct request_sock **prev;
1540 /* Find possible connection requests. */
1541 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1542 iph->saddr, iph->daddr);
1544 return tcp_check_req(sk, skb, req, prev);
1546 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1547 th->source, iph->daddr, th->dest, inet_iif(skb));
1550 if (nsk->sk_state != TCP_TIME_WAIT) {
1554 inet_twsk_put(inet_twsk(nsk));
1558 #ifdef CONFIG_SYN_COOKIES
1560 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1565 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1567 const struct iphdr *iph = ip_hdr(skb);
1569 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1570 if (!tcp_v4_check(skb->len, iph->saddr,
1571 iph->daddr, skb->csum)) {
1572 skb->ip_summed = CHECKSUM_UNNECESSARY;
1577 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1578 skb->len, IPPROTO_TCP, 0);
1580 if (skb->len <= 76) {
1581 return __skb_checksum_complete(skb);
1587 /* The socket must have it's spinlock held when we get
1590 * We have a potential double-lock case here, so even when
1591 * doing backlog processing we use the BH locking scheme.
1592 * This is because we cannot sleep with the original spinlock
1595 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1598 #ifdef CONFIG_TCP_MD5SIG
1600 * We really want to reject the packet as early as possible
1602 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1603 * o There is an MD5 option and we're not expecting one
1605 if (tcp_v4_inbound_md5_hash(sk, skb))
1609 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1610 sock_rps_save_rxhash(sk, skb);
1611 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1618 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1621 if (sk->sk_state == TCP_LISTEN) {
1622 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1627 sock_rps_save_rxhash(nsk, skb);
1628 if (tcp_child_process(sk, nsk, skb)) {
1635 sock_rps_save_rxhash(sk, skb);
1637 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1644 tcp_v4_send_reset(rsk, skb);
1647 /* Be careful here. If this function gets more complicated and
1648 * gcc suffers from register pressure on the x86, sk (in %ebx)
1649 * might be destroyed here. This current version compiles correctly,
1650 * but you have been warned.
1655 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1658 EXPORT_SYMBOL(tcp_v4_do_rcv);
1664 int tcp_v4_rcv(struct sk_buff *skb)
1666 const struct iphdr *iph;
1667 const struct tcphdr *th;
1670 struct net *net = dev_net(skb->dev);
1672 if (skb->pkt_type != PACKET_HOST)
1675 /* Count it even if it's bad */
1676 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1678 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1683 if (th->doff < sizeof(struct tcphdr) / 4)
1685 if (!pskb_may_pull(skb, th->doff * 4))
1688 /* An explanation is required here, I think.
1689 * Packet length and doff are validated by header prediction,
1690 * provided case of th->doff==0 is eliminated.
1691 * So, we defer the checks. */
1692 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1697 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1698 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1699 skb->len - th->doff * 4);
1700 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1701 TCP_SKB_CB(skb)->when = 0;
1702 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1703 TCP_SKB_CB(skb)->sacked = 0;
1705 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1710 if (sk->sk_state == TCP_TIME_WAIT)
1713 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1714 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1715 goto discard_and_relse;
1718 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1719 goto discard_and_relse;
1722 if (sk_filter(sk, skb))
1723 goto discard_and_relse;
1727 bh_lock_sock_nested(sk);
1729 if (!sock_owned_by_user(sk)) {
1730 #ifdef CONFIG_NET_DMA
1731 struct tcp_sock *tp = tcp_sk(sk);
1732 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1733 tp->ucopy.dma_chan = net_dma_find_channel();
1734 if (tp->ucopy.dma_chan)
1735 ret = tcp_v4_do_rcv(sk, skb);
1739 if (!tcp_prequeue(sk, skb))
1740 ret = tcp_v4_do_rcv(sk, skb);
1742 } else if (unlikely(sk_add_backlog(sk, skb))) {
1744 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1745 goto discard_and_relse;
1754 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1757 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1759 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1761 tcp_v4_send_reset(NULL, skb);
1765 /* Discard frame. */
1774 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1775 inet_twsk_put(inet_twsk(sk));
1779 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1780 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1781 inet_twsk_put(inet_twsk(sk));
1784 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1786 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1788 iph->daddr, th->dest,
1791 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1792 inet_twsk_put(inet_twsk(sk));
1796 /* Fall through to ACK */
1799 tcp_v4_timewait_ack(sk, skb);
1803 case TCP_TW_SUCCESS:;
1808 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1810 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1811 struct inet_sock *inet = inet_sk(sk);
1812 struct inet_peer *peer;
1815 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1816 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1820 rt_bind_peer(rt, inet->inet_daddr, 1);
1822 *release_it = false;
1827 EXPORT_SYMBOL(tcp_v4_get_peer);
1829 void *tcp_v4_tw_get_peer(struct sock *sk)
1831 const struct inet_timewait_sock *tw = inet_twsk(sk);
1833 return inet_getpeer_v4(tw->tw_daddr, 1);
1835 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1837 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1838 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1839 .twsk_unique = tcp_twsk_unique,
1840 .twsk_destructor= tcp_twsk_destructor,
1841 .twsk_getpeer = tcp_v4_tw_get_peer,
1844 const struct inet_connection_sock_af_ops ipv4_specific = {
1845 .queue_xmit = ip_queue_xmit,
1846 .send_check = tcp_v4_send_check,
1847 .rebuild_header = inet_sk_rebuild_header,
1848 .conn_request = tcp_v4_conn_request,
1849 .syn_recv_sock = tcp_v4_syn_recv_sock,
1850 .get_peer = tcp_v4_get_peer,
1851 .net_header_len = sizeof(struct iphdr),
1852 .setsockopt = ip_setsockopt,
1853 .getsockopt = ip_getsockopt,
1854 .addr2sockaddr = inet_csk_addr2sockaddr,
1855 .sockaddr_len = sizeof(struct sockaddr_in),
1856 .bind_conflict = inet_csk_bind_conflict,
1857 #ifdef CONFIG_COMPAT
1858 .compat_setsockopt = compat_ip_setsockopt,
1859 .compat_getsockopt = compat_ip_getsockopt,
1862 EXPORT_SYMBOL(ipv4_specific);
1864 #ifdef CONFIG_TCP_MD5SIG
1865 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1866 .md5_lookup = tcp_v4_md5_lookup,
1867 .calc_md5_hash = tcp_v4_md5_hash_skb,
1868 .md5_parse = tcp_v4_parse_md5_keys,
1872 /* NOTE: A lot of things set to zero explicitly by call to
1873 * sk_alloc() so need not be done here.
1875 static int tcp_v4_init_sock(struct sock *sk)
1877 struct inet_connection_sock *icsk = inet_csk(sk);
1878 struct tcp_sock *tp = tcp_sk(sk);
1880 skb_queue_head_init(&tp->out_of_order_queue);
1881 tcp_init_xmit_timers(sk);
1882 tcp_prequeue_init(tp);
1884 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1885 tp->mdev = TCP_TIMEOUT_INIT;
1887 /* So many TCP implementations out there (incorrectly) count the
1888 * initial SYN frame in their delayed-ACK and congestion control
1889 * algorithms that we must have the following bandaid to talk
1890 * efficiently to them. -DaveM
1892 tp->snd_cwnd = TCP_INIT_CWND;
1894 /* See draft-stevens-tcpca-spec-01 for discussion of the
1895 * initialization of these values.
1897 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1898 tp->snd_cwnd_clamp = ~0;
1899 tp->mss_cache = TCP_MSS_DEFAULT;
1901 tp->reordering = sysctl_tcp_reordering;
1902 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1904 sk->sk_state = TCP_CLOSE;
1906 sk->sk_write_space = sk_stream_write_space;
1907 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1909 icsk->icsk_af_ops = &ipv4_specific;
1910 icsk->icsk_sync_mss = tcp_sync_mss;
1911 #ifdef CONFIG_TCP_MD5SIG
1912 tp->af_specific = &tcp_sock_ipv4_specific;
1915 /* TCP Cookie Transactions */
1916 if (sysctl_tcp_cookie_size > 0) {
1917 /* Default, cookies without s_data_payload. */
1919 kzalloc(sizeof(*tp->cookie_values),
1921 if (tp->cookie_values != NULL)
1922 kref_init(&tp->cookie_values->kref);
1924 /* Presumed zeroed, in order of appearance:
1925 * cookie_in_always, cookie_out_never,
1926 * s_data_constant, s_data_in, s_data_out
1928 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1929 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1932 sock_update_memcg(sk);
1933 sk_sockets_allocated_inc(sk);
1939 void tcp_v4_destroy_sock(struct sock *sk)
1941 struct tcp_sock *tp = tcp_sk(sk);
1943 tcp_clear_xmit_timers(sk);
1945 tcp_cleanup_congestion_control(sk);
1947 /* Cleanup up the write buffer. */
1948 tcp_write_queue_purge(sk);
1950 /* Cleans up our, hopefully empty, out_of_order_queue. */
1951 __skb_queue_purge(&tp->out_of_order_queue);
1953 #ifdef CONFIG_TCP_MD5SIG
1954 /* Clean up the MD5 key list, if any */
1955 if (tp->md5sig_info) {
1956 tcp_clear_md5_list(sk);
1957 kfree_rcu(tp->md5sig_info, rcu);
1958 tp->md5sig_info = NULL;
1962 #ifdef CONFIG_NET_DMA
1963 /* Cleans up our sk_async_wait_queue */
1964 __skb_queue_purge(&sk->sk_async_wait_queue);
1967 /* Clean prequeue, it must be empty really */
1968 __skb_queue_purge(&tp->ucopy.prequeue);
1970 /* Clean up a referenced TCP bind bucket. */
1971 if (inet_csk(sk)->icsk_bind_hash)
1975 * If sendmsg cached page exists, toss it.
1977 if (sk->sk_sndmsg_page) {
1978 __free_page(sk->sk_sndmsg_page);
1979 sk->sk_sndmsg_page = NULL;
1982 /* TCP Cookie Transactions */
1983 if (tp->cookie_values != NULL) {
1984 kref_put(&tp->cookie_values->kref,
1985 tcp_cookie_values_release);
1986 tp->cookie_values = NULL;
1989 sk_sockets_allocated_dec(sk);
1990 sock_release_memcg(sk);
1992 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1994 #ifdef CONFIG_PROC_FS
1995 /* Proc filesystem TCP sock list dumping. */
1997 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1999 return hlist_nulls_empty(head) ? NULL :
2000 list_entry(head->first, struct inet_timewait_sock, tw_node);
2003 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2005 return !is_a_nulls(tw->tw_node.next) ?
2006 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2010 * Get next listener socket follow cur. If cur is NULL, get first socket
2011 * starting from bucket given in st->bucket; when st->bucket is zero the
2012 * very first socket in the hash table is returned.
2014 static void *listening_get_next(struct seq_file *seq, void *cur)
2016 struct inet_connection_sock *icsk;
2017 struct hlist_nulls_node *node;
2018 struct sock *sk = cur;
2019 struct inet_listen_hashbucket *ilb;
2020 struct tcp_iter_state *st = seq->private;
2021 struct net *net = seq_file_net(seq);
2024 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2025 spin_lock_bh(&ilb->lock);
2026 sk = sk_nulls_head(&ilb->head);
2030 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2034 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2035 struct request_sock *req = cur;
2037 icsk = inet_csk(st->syn_wait_sk);
2041 if (req->rsk_ops->family == st->family) {
2047 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2050 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2052 sk = sk_nulls_next(st->syn_wait_sk);
2053 st->state = TCP_SEQ_STATE_LISTENING;
2054 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2056 icsk = inet_csk(sk);
2057 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2058 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2060 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2061 sk = sk_nulls_next(sk);
2064 sk_nulls_for_each_from(sk, node) {
2065 if (!net_eq(sock_net(sk), net))
2067 if (sk->sk_family == st->family) {
2071 icsk = inet_csk(sk);
2072 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2073 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2075 st->uid = sock_i_uid(sk);
2076 st->syn_wait_sk = sk;
2077 st->state = TCP_SEQ_STATE_OPENREQ;
2081 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2083 spin_unlock_bh(&ilb->lock);
2085 if (++st->bucket < INET_LHTABLE_SIZE) {
2086 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2087 spin_lock_bh(&ilb->lock);
2088 sk = sk_nulls_head(&ilb->head);
2096 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2098 struct tcp_iter_state *st = seq->private;
2103 rc = listening_get_next(seq, NULL);
2105 while (rc && *pos) {
2106 rc = listening_get_next(seq, rc);
2112 static inline int empty_bucket(struct tcp_iter_state *st)
2114 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2115 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2119 * Get first established socket starting from bucket given in st->bucket.
2120 * If st->bucket is zero, the very first socket in the hash is returned.
2122 static void *established_get_first(struct seq_file *seq)
2124 struct tcp_iter_state *st = seq->private;
2125 struct net *net = seq_file_net(seq);
2129 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2131 struct hlist_nulls_node *node;
2132 struct inet_timewait_sock *tw;
2133 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2135 /* Lockless fast path for the common case of empty buckets */
2136 if (empty_bucket(st))
2140 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2141 if (sk->sk_family != st->family ||
2142 !net_eq(sock_net(sk), net)) {
2148 st->state = TCP_SEQ_STATE_TIME_WAIT;
2149 inet_twsk_for_each(tw, node,
2150 &tcp_hashinfo.ehash[st->bucket].twchain) {
2151 if (tw->tw_family != st->family ||
2152 !net_eq(twsk_net(tw), net)) {
2158 spin_unlock_bh(lock);
2159 st->state = TCP_SEQ_STATE_ESTABLISHED;
2165 static void *established_get_next(struct seq_file *seq, void *cur)
2167 struct sock *sk = cur;
2168 struct inet_timewait_sock *tw;
2169 struct hlist_nulls_node *node;
2170 struct tcp_iter_state *st = seq->private;
2171 struct net *net = seq_file_net(seq);
2176 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2180 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2187 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2188 st->state = TCP_SEQ_STATE_ESTABLISHED;
2190 /* Look for next non empty bucket */
2192 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2195 if (st->bucket > tcp_hashinfo.ehash_mask)
2198 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2199 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2201 sk = sk_nulls_next(sk);
2203 sk_nulls_for_each_from(sk, node) {
2204 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2208 st->state = TCP_SEQ_STATE_TIME_WAIT;
2209 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2217 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2219 struct tcp_iter_state *st = seq->private;
2223 rc = established_get_first(seq);
2226 rc = established_get_next(seq, rc);
2232 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2235 struct tcp_iter_state *st = seq->private;
2237 st->state = TCP_SEQ_STATE_LISTENING;
2238 rc = listening_get_idx(seq, &pos);
2241 st->state = TCP_SEQ_STATE_ESTABLISHED;
2242 rc = established_get_idx(seq, pos);
2248 static void *tcp_seek_last_pos(struct seq_file *seq)
2250 struct tcp_iter_state *st = seq->private;
2251 int offset = st->offset;
2252 int orig_num = st->num;
2255 switch (st->state) {
2256 case TCP_SEQ_STATE_OPENREQ:
2257 case TCP_SEQ_STATE_LISTENING:
2258 if (st->bucket >= INET_LHTABLE_SIZE)
2260 st->state = TCP_SEQ_STATE_LISTENING;
2261 rc = listening_get_next(seq, NULL);
2262 while (offset-- && rc)
2263 rc = listening_get_next(seq, rc);
2268 case TCP_SEQ_STATE_ESTABLISHED:
2269 case TCP_SEQ_STATE_TIME_WAIT:
2270 st->state = TCP_SEQ_STATE_ESTABLISHED;
2271 if (st->bucket > tcp_hashinfo.ehash_mask)
2273 rc = established_get_first(seq);
2274 while (offset-- && rc)
2275 rc = established_get_next(seq, rc);
2283 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2285 struct tcp_iter_state *st = seq->private;
2288 if (*pos && *pos == st->last_pos) {
2289 rc = tcp_seek_last_pos(seq);
2294 st->state = TCP_SEQ_STATE_LISTENING;
2298 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2301 st->last_pos = *pos;
2305 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2307 struct tcp_iter_state *st = seq->private;
2310 if (v == SEQ_START_TOKEN) {
2311 rc = tcp_get_idx(seq, 0);
2315 switch (st->state) {
2316 case TCP_SEQ_STATE_OPENREQ:
2317 case TCP_SEQ_STATE_LISTENING:
2318 rc = listening_get_next(seq, v);
2320 st->state = TCP_SEQ_STATE_ESTABLISHED;
2323 rc = established_get_first(seq);
2326 case TCP_SEQ_STATE_ESTABLISHED:
2327 case TCP_SEQ_STATE_TIME_WAIT:
2328 rc = established_get_next(seq, v);
2333 st->last_pos = *pos;
2337 static void tcp_seq_stop(struct seq_file *seq, void *v)
2339 struct tcp_iter_state *st = seq->private;
2341 switch (st->state) {
2342 case TCP_SEQ_STATE_OPENREQ:
2344 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2345 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2347 case TCP_SEQ_STATE_LISTENING:
2348 if (v != SEQ_START_TOKEN)
2349 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2351 case TCP_SEQ_STATE_TIME_WAIT:
2352 case TCP_SEQ_STATE_ESTABLISHED:
2354 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2359 int tcp_seq_open(struct inode *inode, struct file *file)
2361 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2362 struct tcp_iter_state *s;
2365 err = seq_open_net(inode, file, &afinfo->seq_ops,
2366 sizeof(struct tcp_iter_state));
2370 s = ((struct seq_file *)file->private_data)->private;
2371 s->family = afinfo->family;
2375 EXPORT_SYMBOL(tcp_seq_open);
2377 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2380 struct proc_dir_entry *p;
2382 afinfo->seq_ops.start = tcp_seq_start;
2383 afinfo->seq_ops.next = tcp_seq_next;
2384 afinfo->seq_ops.stop = tcp_seq_stop;
2386 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2387 afinfo->seq_fops, afinfo);
2392 EXPORT_SYMBOL(tcp_proc_register);
2394 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2396 proc_net_remove(net, afinfo->name);
2398 EXPORT_SYMBOL(tcp_proc_unregister);
2400 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2401 struct seq_file *f, int i, int uid, int *len)
2403 const struct inet_request_sock *ireq = inet_rsk(req);
2404 int ttd = req->expires - jiffies;
2406 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2407 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2410 ntohs(inet_sk(sk)->inet_sport),
2412 ntohs(ireq->rmt_port),
2414 0, 0, /* could print option size, but that is af dependent. */
2415 1, /* timers active (only the expire timer) */
2416 jiffies_to_clock_t(ttd),
2419 0, /* non standard timer */
2420 0, /* open_requests have no inode */
2421 atomic_read(&sk->sk_refcnt),
2426 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2429 unsigned long timer_expires;
2430 const struct tcp_sock *tp = tcp_sk(sk);
2431 const struct inet_connection_sock *icsk = inet_csk(sk);
2432 const struct inet_sock *inet = inet_sk(sk);
2433 __be32 dest = inet->inet_daddr;
2434 __be32 src = inet->inet_rcv_saddr;
2435 __u16 destp = ntohs(inet->inet_dport);
2436 __u16 srcp = ntohs(inet->inet_sport);
2439 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2441 timer_expires = icsk->icsk_timeout;
2442 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2444 timer_expires = icsk->icsk_timeout;
2445 } else if (timer_pending(&sk->sk_timer)) {
2447 timer_expires = sk->sk_timer.expires;
2450 timer_expires = jiffies;
2453 if (sk->sk_state == TCP_LISTEN)
2454 rx_queue = sk->sk_ack_backlog;
2457 * because we dont lock socket, we might find a transient negative value
2459 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2461 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2462 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2463 i, src, srcp, dest, destp, sk->sk_state,
2464 tp->write_seq - tp->snd_una,
2467 jiffies_to_clock_t(timer_expires - jiffies),
2468 icsk->icsk_retransmits,
2470 icsk->icsk_probes_out,
2472 atomic_read(&sk->sk_refcnt), sk,
2473 jiffies_to_clock_t(icsk->icsk_rto),
2474 jiffies_to_clock_t(icsk->icsk_ack.ato),
2475 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2477 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2481 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2482 struct seq_file *f, int i, int *len)
2486 int ttd = tw->tw_ttd - jiffies;
2491 dest = tw->tw_daddr;
2492 src = tw->tw_rcv_saddr;
2493 destp = ntohs(tw->tw_dport);
2494 srcp = ntohs(tw->tw_sport);
2496 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2497 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2498 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2499 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2500 atomic_read(&tw->tw_refcnt), tw, len);
2505 static int tcp4_seq_show(struct seq_file *seq, void *v)
2507 struct tcp_iter_state *st;
2510 if (v == SEQ_START_TOKEN) {
2511 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2512 " sl local_address rem_address st tx_queue "
2513 "rx_queue tr tm->when retrnsmt uid timeout "
2519 switch (st->state) {
2520 case TCP_SEQ_STATE_LISTENING:
2521 case TCP_SEQ_STATE_ESTABLISHED:
2522 get_tcp4_sock(v, seq, st->num, &len);
2524 case TCP_SEQ_STATE_OPENREQ:
2525 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2527 case TCP_SEQ_STATE_TIME_WAIT:
2528 get_timewait4_sock(v, seq, st->num, &len);
2531 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2536 static const struct file_operations tcp_afinfo_seq_fops = {
2537 .owner = THIS_MODULE,
2538 .open = tcp_seq_open,
2540 .llseek = seq_lseek,
2541 .release = seq_release_net
2544 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2547 .seq_fops = &tcp_afinfo_seq_fops,
2549 .show = tcp4_seq_show,
2553 static int __net_init tcp4_proc_init_net(struct net *net)
2555 return tcp_proc_register(net, &tcp4_seq_afinfo);
2558 static void __net_exit tcp4_proc_exit_net(struct net *net)
2560 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2563 static struct pernet_operations tcp4_net_ops = {
2564 .init = tcp4_proc_init_net,
2565 .exit = tcp4_proc_exit_net,
2568 int __init tcp4_proc_init(void)
2570 return register_pernet_subsys(&tcp4_net_ops);
2573 void tcp4_proc_exit(void)
2575 unregister_pernet_subsys(&tcp4_net_ops);
2577 #endif /* CONFIG_PROC_FS */
2579 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2581 const struct iphdr *iph = skb_gro_network_header(skb);
2583 switch (skb->ip_summed) {
2584 case CHECKSUM_COMPLETE:
2585 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2587 skb->ip_summed = CHECKSUM_UNNECESSARY;
2593 NAPI_GRO_CB(skb)->flush = 1;
2597 return tcp_gro_receive(head, skb);
2600 int tcp4_gro_complete(struct sk_buff *skb)
2602 const struct iphdr *iph = ip_hdr(skb);
2603 struct tcphdr *th = tcp_hdr(skb);
2605 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2606 iph->saddr, iph->daddr, 0);
2607 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2609 return tcp_gro_complete(skb);
2612 struct proto tcp_prot = {
2614 .owner = THIS_MODULE,
2616 .connect = tcp_v4_connect,
2617 .disconnect = tcp_disconnect,
2618 .accept = inet_csk_accept,
2620 .init = tcp_v4_init_sock,
2621 .destroy = tcp_v4_destroy_sock,
2622 .shutdown = tcp_shutdown,
2623 .setsockopt = tcp_setsockopt,
2624 .getsockopt = tcp_getsockopt,
2625 .recvmsg = tcp_recvmsg,
2626 .sendmsg = tcp_sendmsg,
2627 .sendpage = tcp_sendpage,
2628 .backlog_rcv = tcp_v4_do_rcv,
2630 .unhash = inet_unhash,
2631 .get_port = inet_csk_get_port,
2632 .enter_memory_pressure = tcp_enter_memory_pressure,
2633 .sockets_allocated = &tcp_sockets_allocated,
2634 .orphan_count = &tcp_orphan_count,
2635 .memory_allocated = &tcp_memory_allocated,
2636 .memory_pressure = &tcp_memory_pressure,
2637 .sysctl_wmem = sysctl_tcp_wmem,
2638 .sysctl_rmem = sysctl_tcp_rmem,
2639 .max_header = MAX_TCP_HEADER,
2640 .obj_size = sizeof(struct tcp_sock),
2641 .slab_flags = SLAB_DESTROY_BY_RCU,
2642 .twsk_prot = &tcp_timewait_sock_ops,
2643 .rsk_prot = &tcp_request_sock_ops,
2644 .h.hashinfo = &tcp_hashinfo,
2645 .no_autobind = true,
2646 #ifdef CONFIG_COMPAT
2647 .compat_setsockopt = compat_tcp_setsockopt,
2648 .compat_getsockopt = compat_tcp_getsockopt,
2650 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2651 .init_cgroup = tcp_init_cgroup,
2652 .destroy_cgroup = tcp_destroy_cgroup,
2653 .proto_cgroup = tcp_proto_cgroup,
2656 EXPORT_SYMBOL(tcp_prot);
2658 static int __net_init tcp_sk_init(struct net *net)
2660 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2661 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2664 static void __net_exit tcp_sk_exit(struct net *net)
2666 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2669 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2671 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2674 static struct pernet_operations __net_initdata tcp_sk_ops = {
2675 .init = tcp_sk_init,
2676 .exit = tcp_sk_exit,
2677 .exit_batch = tcp_sk_exit_batch,
2680 void __init tcp_v4_init(void)
2682 inet_hashinfo_init(&tcp_hashinfo);
2683 if (register_pernet_subsys(&tcp_sk_ops))
2684 panic("Failed to create the TCP control socket.\n");